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Since the seminal work by Rothschild and Stiglitz on competitive insurance

markets under adverse selection the problem of non-existence of equilibrium has

puzzled many economists. In this paper we approach this problem from an evo-

lutionary point of view. In a dynamic model insurance companies remove loss-

making contracts from the market and copy pro�t-making ones. Occasionally,

they also experiment, adding new contracts or removing current ones arbitrarily.

We show that the Rothschild-Stiglitz outcome arises in the long run if it consti-

tutes an equilibrium in the static framework, but also if it is not an equilibrium,

provided that �rms only experiment with contracts in the vicinity of their current

portfolio.
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1 Introduction

Ever since the seminal work by Rothschild and Stiglitz (1976) on competitive insurance

markets under adverse selection the problem of non-existence of equilibrium has been

one of the major puzzles in insurance economics. The origin of this problem lies in

the fact that only separating contracts can constitute an equilibrium in the sense of

Rothschild and Stiglitz, while in some cases a single, pooling contract may be preferred

by everyone and will, therefore, upset the separating contracts.

There are two main approaches to this problem in the literature. One way out of it

is to allow �rms to play mixed strategies (Dasgupta and Maskin, 1986).

Another solution is to propose alternative equilibrium concepts. Wilson (1977) intro-

duced the equilibrium requirement that, if a �rm wants to o�er an additional contract,

this one should stay pro�table even after loss-making contracts are withdrawn from the

market. The result was that, in the case of non-existence of a separating equilibrium, a

pooling equilibrium exists. Miyazaki (1977) and Spence (1978) allowed, in addition, for

cross-subsidizing contracts. In that case, only separating equilibria exist, but possibly

one where one type of contract makes losses and the other one pro�ts.

However, in the Wilson approach, �rms must anticipate the reactions of other �rms

before o�ering a new contract. This is acceptable if the other �rms react suÆciently

fast, e.g. in the same period. If there is a delay of at least one period in the reaction

time, why should a new �rm not enter and make a pro�t for this single period? The

introduction of cross-subsidizing contracts in equilibrium is also subject to criticism.

Why should a �rm which o�ers a pro�t-making contract and a loss-making contract not

withdraw the latter and go for the former only?

Riley (1979) introduced the notion of `reactive' equilibrium. Here, it is the antici-

pation of entry that deters �rms from o�ering a pooling contract, thus the separating

contracts �a la Rothschild-Stiglitz constitute the only equilibrium, regardless of the dis-

tribution of types.

There exist a few attempts of introducing some form of sequential structure in the

model. In Grossman (1979) customers �rst send some form of signal before �rms make
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their contract o�er, while in Hellwig (1987) �rms can, after the informed agents have

made their choice, decline to serve some contracts. Although in those cases equilibria

exist, it is not clear whether these models apply to standard competitive markets.

There are two main features of all the models mentioned above that can be regarded

as unsatisfactory. First, none of them provides `an explicitly dynamic model, which

describes how �rms adjust their policies over time' (Wilson (1977), p. 205), although

the equilibrium concepts proposed have usually some dynamic interpretation. Second,

strong rationality assumptions are made in a context of incomplete information, where

�rms have limited knowledge (if at all) concerning the number of customers' types, their

distribution and accident probabilities. In the present work, the non-existence problem

is addressed from the perspective of evolutionary game theory. In the spirit of Vega-

Redondo (1997), we propose a dynamic model, where the notion of full rationality is

dismissed and replaced by simple rules of behavior based on imitation of success.1

N�oldeke and Samuelson (1997) already present an evolutionary model for the related

case of signaling. In their work, �rms use market experience to update their beliefs

on the proportion of individuals with di�erent productivity levels in the population.

Then wages contingent on observed education levels are determined by the updated

productivity. In the case of an insurance market, where insurance �rms o�er premium-

indemnity contracts, this would imply that, if some individuals buy a contract with a

given indemnity, �rms observe the pro�t or loss they make with that contract and, for

that indemnity, they charge the break-even premium in the next period. This implies

Bertrand competition for each indemnity. The result of N�oldeke and Samuelson applied

to the case of screening would read as follows: In the long run, the Rothschild-Stiglitz

separating contracts are the unique outcome, if, and only if, they constitute a compet-

itive equilibrium. If a competitive equilibrium fails to exist, then the Wilson pooling

contract is observed in the long run, but this is not the unique long-run outcome.

The modeling in the present work di�ers from that of N�oldeke and Samuelson (1997)

mainly in two aspects. First, we do not restrict ourselves to a schedule of contracts

where the premium is a function of the indemnity; in particular, not every feasible

1Imitation of success as a behavior of economic institutions was already remarked by Alchian (1950).
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indemnity must occur in a �rm's menu. Second, we do not explicitly model updating

beliefs, although we do let new information come into the system. What we propose

is an alternative learning rule on the side of �rms, which is also based on their market

experience, and allows us to explain how they learn to o�er separating contracts for the

di�erent types. In our model, in any period, �rms o�er a menu of contracts, i.e., a set

of premium-indemnity pairs. Depending on their risk type, consumers choose the best

contract available. After observing what has been o�ered and the pro�ts obtained by all

�rms in the market, each �rm revises its behavior by removing its loss-making contracts

and copying any contract which was o�ered in the last period and made a pro�t. This

speci�es the main driving force of �rms' behavior.

Apart from imitating other �rms, insurance companies also experiment with their

own contracts. They occasionally remove contracts from their own menu or add further

contracts which are close to some of the previously o�ered, that is a new contract's

premium and/or indemnity di�ers from that/those of an existing one by a small amount.2

This scenario will, in line with the literature, be called local experimentation.3 Lowering

the price or raising the indemnity a little bit might be considered as an attempt by a

�rm with little information to increase the market share without incurring the risk of a

high loss. Experimentation in general, however, may also be seen to implicitly capture

the individual learning through the information acquisition or the formation of beliefs,

to which the �rm may also be subject. Rothschild and Stiglitz already suggest that a

way out of the non-existence problem was the de�nition of a `local equilibrium' where

`�rms experiment with contracts similar to those already on the market' (Rothschild

and Stiglitz, 1976, p.646).

With this dynamics of imitation, withdrawal and local experimentation, which is

speci�ed more precisely in the next section, we show that, independently of the pro-

portion of high risks in the population, only the separating contracts with the lowest

pro�ts to the �rm (\Rothschild-Stiglitz" contracts) are o�ered in the long run. This

2In this respect we also di�er from N�oldeke and Samuelson (1997), who allow experimenting

�rms to o�er any wage-education pair. However in section 3 we discuss the dynamics under global

experimentation.

3This type of local experimentation has been �rst introduced by Al�os-Ferrer et al. (1998).
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result points out an instability problem that pooling and cross-subsidizing contracts

have: The former are very easily overcome by small changes in the contract structure,

while the latter are not robust because �rms give up loss-making contracts. This result

agrees with the Riley equilibrium but stands in contrast to other equilibrium concepts

discussed above.4

If experimentation is not local, but global, then the Rothschild-Stiglitz contracts

are still the long-run prediction, as long as they constitute a competitive equilibrium

in the Rothschild-Stiglitz model. This result is interesting in itself, because it shows

that the competitive equilibrium is learned even if the �rms have no information about

consumers' types and/or preferences. If, however, the competitive equilibrium does not

exist, then, under global experimentation, we do not obtain a clear-cut market outcome.

In fact, all absorbing states of the dynamics without mutation can be observed with

positive probability in the long run.

Although we discuss a model of an insurance market in this paper, the results we

obtain apply to a much wider class of competitive markets with adverse selection, for

which the single crossing property holds.

The paper is structured as follows. Section 2 speci�es the model. In section 3 we

carry out the analysis. In section 4 we conclude.

2 The Model

2.1 Rothschild and Stiglitz' model of an insurance market

Consider a large population of individuals facing the risk of losing L. Each individual

has an initial wealth W . There are two types in society: High risks (in proportion �)

who have a risk probability �h and low risks (in proportion 1��) with a risk probability

�l < �h. Each individual knows her own risk probability but this is not observable in

general.

4Interestingly, it is also in agreement with a recent result by Kahn and Mookherjee (1995). These

authors argue, in a cooperative context, that the only outcome which is coalition proof is the \Optimal

Non-subsidized Allocation," which is the Rothschild-Stiglitz outcome for the case of two types.
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A �nite population of insurance companies j = 1; :::; n (n > 1) o�er insurance

contracts to the individuals described above. An insurance contract c = (P; I) is char-

acterized by the premium P , which has to be paid by the insured, and by the indemnity

I, which the insurer pays in case the loss materializes.

Individuals have to decide whether to sign an insurance contract and which one. We

will assume that they are risk averse. In particular, the utility that they obtain from

money is given by a continuously di�erentiable and concave function u : IR! IR, such

that u0 > 0. The utility of an individual of type i = l; h after signing an insurance

contract (P; I) is given by the expected utility function

Ui(P; I) = (1� �i)u(W � P ) + �iu(W � P � L + I):

Individuals optimally decide which insurance policy to purchase, if any at all, given the

contracts posted by the insurers and their own particular type. If a contract is o�ered

by several �rms, individuals choose each with the same probability.

Insurance companies compete for customers. Each company j posts a �nite menu of

contracts Sj. By s = (S1; : : : ; Sn) we denote the collection of contracts o�ered.

Below we will model �rms as boundedly rational. In particular, �rms do not neces-

sarily know anything about the number of consumers' types or their utility functions.

Therefore it seems most natural that �rms may o�er any menu of contracts.

Insurers are risk neutral, so their expected pro�t per contract signed by a customer

of expected accident probability � is given by

V ((P; I); �) = (1� �)P + �(P � I) = P � �I:

For our dynamics the only important thing will be whether there are pro�ts or losses with

any given contract. Therefore, whenever expected pro�ts are positive (resp. negative),

we take for granted that also realized pro�ts are positive (resp. negative).5

5If any contract makes nonzero expected pro�ts (losses), then by applying the weak law of large

numbers, the probability that such a contract makes a loss (pro�t) becomes in�nitesimally small, and

therefore does not interfere with the learning dynamics. Technically, our results hold if, �rst, the

number of individuals goes to in�nity, and then the probability of experimentation approaches zero.
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Call �(c; s) the pro�t that any �rm j makes with contract c 2 Sj, which depends on

the whole collection of contracts o�ered s. �(c; s) already accounts for the individuals'

reaction to s. The set of contracts which yield positive (resp. negative) pro�ts is then

denoted

B+(s) = fc 2 [n
i=1Sij�(c; s) > 0g; B�(s) = fc 2 [n

i=1Sij�(c; s) < 0g:

Notice that each of these sets may be empty.

We de�ne cRSh = (PRS
h ; IRSh ) = (�hL; L), and cRSl = (PRS

l ; IRSl ), such that Uh(c
RS
h ) =

Uh(c
RS
l ) and V (cRSl ; �l) = 0. These contracts are called the Rothschild-Stiglitz contracts.

Call �hl = ��h+ (1� �)�l. In the Rothschild-Stiglitz model, (cRSl ; cRSh ) is a competitive

equilibrium if and only if

P = fc 2 IR2
jV (c; �hl) > 0; Ul(c) > Ul(c

RS
l )g = ;:

2.2 Dynamic behavior of the �rms

Suppose the insurance market described in the previous subsection opens every period

t = 1; 2; : : :. We are interested in explaining how �rms learn which contracts to o�er

following a dynamic process of imitation, withdrawal and experimentation. For technical

reasons we assume the set of possible contracts to be �nite.

Assumption 1 Each contract (P; I) belongs to a �nite bidimensional grid � = �1��2 =

fÆ; 2Æ; :::; �Pg � fÆ; 2Æ; ::::; �Ig, where �P > PRS
h and �I > IRSh .

Note that each �rm o�ers at most �P �I=Æ2 contracts. The state of the system at the

beginning of any period is denoted s 2 
, where 
 = fSjS � �gn, the state space, is

the set of all possible collections of contracts.

Imitation and Withdrawal

Let the system be in state s(t) = (S1(t); : : : ; Sn(t)) at the beginning of period t.

After contracts have been purchased, damages have occurred, and pro�ts have been

realized, each �rm revises its set of o�ered contracts. On making this decision, insurance
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companies take into account the pro�tability of the contracts that were o�ered in period

t. Each �rm adds all pro�t-making contracts observed in the market at t, and removes

all loss-making contracts from its menu of period t.6 This results in the new menu

�
Sj(t) [B+(s(t))

�
nB�(s(t)):7

Experimentation/Mutation

After imitation and withdrawal have taken place, each �rm experiments with a

certain probability � 2 (0; 1) independent across them and across time. In the sequel,

and following the standard terminology, we will refer to this experimentation also as

mutation. For each �rm, experimentation consists of either randomly removing some

contracts from its own, previously o�ered menu (these may well be idle contracts, but

can also be pro�t-making ones), or randomly adding to it one or more contracts that lie

in neighborhoods of its previously o�ered ones. This adding works precisely as follows.

For any r > 0, denote the r-neighborhood of c 2 IR2 by

Nr(c) = fc0 2 �j jjc� c0jj < rg;

where jj � jj is any norm on IR2. If Sj 6= ;, a mutating �rm j may add to its menu any

subset of
[
c2Sj

Nr(c):

6Alternatively, one can assume that each �rm has a probability 0 < Æ � 1 of learning each period,

which is independent across them. This would introduce some inertia in the process. Our results would

also hold in that case.
7Alternatively, one could assume that �rms cannot observe the pro�t that each contract makes

individually, but only the pro�ts obtained by the menus. Our analysis extends to this case as follows.

Denote by B(s) be the set of menus with maximal pro�ts in state s. It is straightforward that our

theorem still holds under the alternative rule for imitation and withdrawal: any �rm j with Sj(t) =2

B(s(t)) replaces its menu by �
Sj(t) [ ~S

�
n
�
B
�(s(t)) \ Sj(t)

�

where ~S 2 B(s(t)); those �rms j for which Sj(t) 2 B(s(t)) replace their menus by

Sj(t) n
�
B
�(s(t)) \ Sj(t)

�
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If Sj = ;, a mutating �rm j may add to its menu any subset of �.8 Notice that for

r suÆciently large, when �rms experiment, they will o�er new contracts which can be

anywhere on the contract space.

Markov process

As we have described, for each �rm j, imitation, withdrawal, and mutation result

in some portfolio Sj(t + 1). This takes the system from state s(t), at the beginning of

period t, to state s(t+ 1) = (S1(t+ 1); : : : ; Sn(t+ 1)), at the beginning of period t+ 1.

Given � > 0, at any t, the probability of transition from any state s to any other state

s0, P �
ss0, is uniquely determined and independent of t, and, thus, P � = (P �

s;s0)s;s02
 de�nes

the transition matrix of a Markov process. Then, the following standard result holds,

and is quoted here without proof (see e.g. Freidlin and Wentzell (1984)).

Lemma 1 If the process is ergodic 9, then, given � > 0, the process P � has a unique

invariant distribution ��, which statistically summarizes the behavior of the system along

any sample path with probability one independently of initial conditions. Furthermore,

the limit invariant distribution �� = lim�!0 �
� exists.

Any state s with ��(s) > 0 is called a long-run state. If the mutation probability

is suÆciently small, then the invariant distribution concentrates its weight on the long-

run states, whereas the probability of all other states tends to zero. Thus, one can take

the set of long-run states as a prediction of the long-run behavior if mutation is rare.

These states will be characterized using the techniques introduced by Young (1993), and

Kandori, Mailath and Rob (1993), as applied in N�oldeke and Samuelson (1993, 1997).

We can now turn to the analysis.

8 Our main result still holds if the previous rule is changed to \. . .may add to its menu any subset

of E", where E � � contains at least one pair of separating, pro�t-making contracts that are neighbors

to each other. An example that works for all suÆciently small Æ is E = Nr(0; 0).
9Notice that P � is not necessarily a positive matrix due to the lack of inertia in the learning process

and the fact that mutation is local. This in turn implies that the process might not be irreducible.

However, in the appendix, we will show that it has a unique recurrent communication class, which is

aperiodic. This is what we mean here by ergodicity.
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3 Analysis

In the following we make a simplifying genericity assumption. It requires that purchased

contracts yield either pro�ts or losses, and no individual is indi�erent between di�erent

contracts.

Assumption 2 For all (P; I) 2 �, we have P=I 62 f�l; �h; �hlg. Furthermore, Ui(c) 6=

Ui(c
0) for c; c0 2 � with c 6= c0, and i = l; h.

Before we state our main result, let us denote by R(c; c0) the set of states in which

all �rms o�er contracts c, c0, and (possibly) any set of idle contracts.

Our main result states that, if contracts lie on a suÆciently �ne grid, and mutations

occur in small neighborhoods of the existing ones, then there exist exactly two pro�t-

making contracts that will be observed in the long run. These are characterized by

maximality properties and approximate the Rothschild-Stiglitz contracts. Moreover, if

the latter constitute a competitive equilibrium in the static framework, the statements

hold even if mutation is global.

Theorem There exist r0 > 0 and a function Æ0(�) > 0 such that, for r < r0 and

Æ < Æ0(r), �
�(s) > 0 if and only if s 2 R(kl; kh), where kl, and kh are pro�t-making

contracts, uniquely characterized by

Uh(kh) = max
c2�; V (c;�h)>0

Uh(c); (1)

Ul(kl) = max
c2�; V (c;�l)>0;Uh(c)<Uh(kh)

Ul(c): (2)

For Æ ! 0, we have kh ! cRSh and kl ! cRSl . Moreover, if P = ;, then we can choose

r0 =1.

A proof of this theorem is presented in the Appendix. Here we outline the intuition

of the market mechanisms that underlie the result. This will be done in �ve steps.

First, notice that, in each period, withdrawal eliminates loss-making contracts and

imitation only adds pro�t-making ones already present in the market. Therefore, the

number of o�ered contracts cannot increase by imitation and withdrawal. Furthermore,
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once there are no loss-making contracts o�ered, imitation leads trivially to situations

in which all �rms are o�ering the same set of active contracts. Thus, in the long run,

the only states that will be potentially observed will be those ones in which all �rms

are o�ering the same set of pro�t-making contracts, and no loss-making ones. These

constitute the absorbing states of the dynamics without mutation.

Second, any state s in which kl and kh are purchased (s 2 R(kl; kh)) is stable in

the sense that after any mutation, imitation and withdrawal lead the system back to

another state s0 2 R(kl; kh). To see this, notice �rst that in the neighborhood of kl

and kh, there exists no pro�t-making contract which attracts both risk types or only

the high risks, and every pro�t-making contract which attracts only the low risks must

be cross-subsidizing a loss-making contract taken by the high risks (otherwise, both

types would be buying the same contract). Even if a �rm experiments with such a

pair of cross-subsidizing contracts, imitation and withdrawal eventually lead back to

the original state (in which kh and kl were purchased), because after the loss-making

contract is withdrawn, the other mutant contract attracts both risk types and makes

itself losses, vanishing then from the market also. If the grid is �ne enough, kl, kh

approximate the Rothschild-Stiglitz contracts.

In the following steps we argue that starting from any other absorbing state, a chain

of single mutations along absorbing states will lead to a state in R(kl; kh). Intuitively,

this completes the proof, because, since mutations are rare, two mutations at once (the

event necessary to destabilize states in R(kl; kh)) is a much less probable event than a

single mutation (the event necessary to destabilize any other state). Moreover, one can

connect any state out of R(kl; kh) to one in R(kl; kh) with a chain of single mutations,

but one would have to introduce two mutations at once at the beginning of one of such

chains in order to connect any state in R(kl; kh) to any other out of it.

Third, suppose the system is in an absorbing state where two arbitrary pro�t-making

contracts are o�ered, one purchased by the low risks, the other one by the high risks.

It may be that in the neighborhood of the low risks' contract there exists another one

which does not attract the high risks, but increases the payo� of the low risks and still

makes pro�ts. If a �rm experiments with such a contract, it will be imitated, implying
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that the former low risks' contract becomes idle. Repeated application of this kind of

competition, and a similar one on the high risks' contracts, leads to the conclusion that

all states of this type can be abandoned with a single mutation and that there exists

a chain of single mutations along absorbing states which brings the system to a state

where no �rm can o�er a yet more attractive contract to either type and still make

pro�ts, i.e., a state in R(kl; kh).

Fourth, suppose the system is in a state in which only one pro�t-making contract

is o�ered which is bought by the high risks only (the low risks are not buying any

insurance). Then, price-cutting and/or indemnity-increasing experimentation can lead

to a pro�t-making contract which is bought by both risk types. Therefore, suppose

now that the system is in a state in which such a contract is o�ered. Then, provided

that the grid is �ne enough, a mutant contract exists which attracts the low risks only.

This contract makes pro�ts. However, the incumbent contract is now bought by the

high risks only and it can either make pro�ts or losses. In the former case, we are in

a state with two pro�t-making contracts, and the chain of single mutations continues

as described above. In the latter, after this contract is discarded, the mutant contract

attracts both types, until a new mutant comes in that again attracts the low risks only.

Finally, after some mutations of this type, an additional mutant makes losses as soon

as it attracts both types. This last contract is discarded, implying that the insurance

market has died out.

Fifth, suppose that the system is in a state in which no contract is o�ered. For small

grid size, the contract space contains a pair of pro�t-making contracts, each taken by a

di�erent risk type, such that these contracts are neighbors to each other. One mutation

can make the contract for the high risks arise. This one is maybe also taken by the low

risks, but makes pro�ts anyway, so an absorbing state is reached after this contract is

imitated. The contract for the low risks arises by one further mutation, implying that

we have reached a state with two separating, pro�t-making contracts which was already

discussed.

As this intuitive explanation indicates, the theorem holds even if �rms only exper-

iment with one new contract at a time. Furthermore, the result also holds if, starting
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from a dead market, �rms only experiment near the origin of the contract space (see

footnote 8).10

If the Rothschild-Stiglitz contracts do not constitute a competitive equilibrium in

their model, and mutations are global, the evolutionary process does not select any

speci�c set of contracts. Only the loss-making contracts are eliminated.

Corollary Suppose P 6= ; and r =1. Then, for all suÆciently small Æ, all absorbing

states are long-run states.

The idea of the proof (see Appendix) is that all pooling situations can again be

destabilized along the same lines of the proof of the theorem , but now there also exists

a mutation, which destabilizes the Rothschild-Stiglitz outcome. This mutation is given

by a pro�t-making, pooling contract in the set P, exactly as in their original paper.

4 Conclusions

We have analyzed an insurance market under asymmetric information in an evolutionary

context. Our main �ndings are the following:

- If the separating contracts of the Rothschild-Stiglitz type do constitute an equilibrium

in their model, then they are also the only ones purchased in any long-run state of

our evolutionary process. This implies that �rms, without knowing anything about the

risks, utility functions or number of types of their customers, still learn to o�er the

competitive equilibrium contracts.

- If experimentation is local, then the Rothschild-Stiglitz, separating contracts are still

o�ered in all long-run states, even if a competitive equilibrium of the classic model does

not exist.

Our work can be interpreted as follows. Provided that insurance companies decide

10It is worth mentioning that, for our dynamics, the speed of convergence is high in the sense that

the expected waiting time until the system reaches a long-run state is of order ��1 (this follows from

Theorem 2 in Ellison (1998)).
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mainly on the basis of how other �rms have performed in the market with their contracts.

If, from time to time, they also experiment with new contracts in a cautious manner,

in particular only with contracts that are similar to the existing ones. Then, in such a

framework, the Rothschild-Stiglitz type of separating contracts will be observed in the

long run, even if this does not constitute a competitive equilibrium of the classic, static

framework. To destabilize those contracts, one needs �rms that can experiment with any

contract on the contact space. However, as already Rothschild and Stiglitz (1976, p.646)

have noted, 'one would expect that competition would lead to small perturbations'.
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Appendix

Proof of the theorem:

For any two states s; s0 2 
 the resistence r(s; s0) is the minimum number of mu-

tations in any �nite sequence of transitions that brings the system from s to s0. A

nonempty set Q � 
 is called absorbing if Q is minimal with respect to the property

that for all s 2 Q, s0 62 Q we have r(s; s0) 6= 0. A state s is called absorbing if fsg is an

absorbing set.

The next Lemma characterizes the absorbing sets. Note that in an absorbing state

�rms may o�er di�erent sets of idle contracts.

Lemma 2 Each absorbing set consists of a single state. A state is absorbing if and only

if (1) no �rm o�ers a loss-making contract, and (2) if any �rm o�ers a pro�t-making

contract, this contract is o�ered by all �rms.

Proof. \if": obvious. \only if": Suppose the system is in any state. Every period,

by imitation and withdrawal, the total number of contracts o�ered decreases or stays

constant until it cannot decrease further by subsequent withdrawal, i.e., (1) holds. At

this point, imitation implies that (1) and (2) hold. This also shows that each absorbing

set consists of a single state.

For any two absorbing states s, s0, we write s ! s0 if r(s; s0) = 1. We write s ) s0

if there exists a �nite sequence of absorbing states s1 = s; : : : ; sq = s0 (q � 1) such that

si ! si+1 for i = 1; : : : ; q�1 (\a chain of single mutations"). We write s() s0 if s) s0

and s0 ) s. An equivalence class R of () is called a locally stable component if there

do not exist s 2 R, s0 62 R with s ! s0. By N�oldeke-Samuelson (1993), Proposition 1,

the existence of a unique locally stable component implies that the support of the limit

invariant distribution �� coincides with the states appearing in that component.
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For any r > 0, Æ > 0, and contracts cl; ch 2 �, we de�ne

Ul(cl; ch) = fc0 2 Nr(cl)jUl(c
0) > Ul(cl); Uh(c

0) < Uh(ch); V (c
0; �l) > 0g;

Uh(cl; ch) = fc0 2 Nr(ch)jUh(c
0) > Uh(ch); Ul(c

0) < Ul(cl); V (c
0; �h) > 0g:

Claim I. There exists r0 > 0 such that for all 0 < r < r0, the following holds: for

all suÆciently small Æ > 0, a set of states R is a locally stable component if and only if

R = R(kl; kh) with pro�t-making contracts kl and kh 6= kl such that Ul(kl; kh) = ; and

Uh(kl; kh) = ;.

Claim II. For all r > 0, the following holds: for all suÆciently small Æ > 0, let

kl = kl(Æ) and kh = kh(Æ) be such that Ul(kl; kh) = ; and Uh(kl; kh) = ;; then the

maximization program given by (1) and (2) and the convergence result formulated in

the theorem hold for kl and kh.

Remark 1 The proof of these two claims suÆces to prove our Theorem. Claim I shows

that the set of long-run states is the unique stable component R(kl; kh), i.e., starting

from any state in this set, after one mutation, learning will lead the process back into

that set; moreover, starting from any other state, there exists a chain of single mutations

that leads the process into some state in R(kl; kh). Moreover, all states in R(kl; kh) can

be connected among themselves. At the same time this also shows that all states can be

connected to a given one. This immediately implies the existence of a unique recurrent

communication class, which includes the states in R(kl; kh). If other communication

classes exist, they are transient. Aperiodicity follows from the fact that from any ab-

sorbing state there is positive probability that the process stays in it. This guarantees

that 1 applies. Claim II then refers to the characterization of kl and kh.

Proof of Claim I. If P 6= ;, then let r0 > 0 be the jj � jj-distance between the sets

fc 2 IR2
jUh(c) � Uh(c

RS
h )g and P; if P = ;, de�ne r0 = 1. Now �x r < r0, and let kl

and kh 6= kl such that Ul(kl; kh) = ; and Uh(kl; kh) = ;. By Claim II, Æ can be chosen
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so small that kl = kl(Æ) and kh = kh(Æ) are uniquely characterized by the maximization

program given by (1) and (2) in the theorem. Furthermore, we choose Æ so small that

the jj � jj-distance between the sets fc 2 IR2
jUh(c) � Uh(kh)g and

P(kl) = fc 2 IR2
jV (c; �hl) > 0; Ul(c) > Ul(kl)g

is larger than r (this is possible because, by Claim II, the distance approximates r0 for

Æ ! 0.)

It is suÆcient to show that for all suÆciently small Æ > 0 the following holds: (1)

After any single mutation away from a state in R(kl; kh), imitation and withdrawal must

drive the system back to R(kl; kh). (2) Starting from any absorbing state there exists

a chain of single mutations that leads into some state in R(kl; kh). (3) If s; s0 2 
 are

absorbing states with identical nonempty sets of pro�t-making contracts (s and s0 di�er

only in the idle contracts), then s) s0.

(1): We consider three cases. (a) Suppose a �rm mutates such that it discards

pro�t-making contracts. At the end of the period, it realizes that the other �rms are

still making pro�ts with their contracts kl and kh, and then it learns to re-o�er these

contracts. (b) Suppose a �rm i mutates such that it invents a set of new contracts, none

of which makes pro�ts. One, or both, of the old pro�t-making contracts may become

idle, but none of them can start making losses. Hence, at the end of the period only

�rm i changes its menu: it discards all loss-making contracts. As a result, some of i's

idle contracts may become loss-making or pro�t-making. If only loss-making contracts

come up, our argument can be repeated, while the size of �rm i's menu is decreased up

to the point where the system is back to a state in R(kl; kh). If however, a pro�t-making

contract comes up, we have to consider case (c) below. (c) Suppose a �rm mutates such

that it invents a set of new contracts N , and there exists a contract c 2 N which makes

pro�ts. We know that c is not bought by both consumer types, because c 62 P(kl).

Moreover, by the characterization of kh, c is not bought by the h-types, but by the l-

types. By the characterization of kl, we have Uh(c) > Uh(kh), and there exists a contract

d 2 N , bought by the h-types, with Uh(d) > Uh(c) > Uh(kh). By the characterization

of kh, d makes losses (\cross-subsidization"). All contracts in N 0 = N n fc; dg are
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idle. Subsequent learning implies that c is imitated and d is discarded. As soon as d

has vanished from the market, either c cross-subsidizes another loss-making contract

d0 2 N 0, or c makes losses. After some learning, all potential contracts that can be

cross-subsidized by c have vanished, and �nally also c is discarded. After that, there

might exist another pro�t-making contract c0 2 N . Repetition of this argument reveals

that after some more learning all contracts that are contained in N are discarded or

become idle and a state in R(kl; kh) is reached.

(2): Assume that the system is in any absorbing state s. First, a chain of single

mutations exists such that all idle contracts in s are discarded. Call s0 the state reached

then. In s0 each �rm o�ers the same set S of contracts, and all contracts in S make

pro�ts. Three cases are possible: (a) S = fcl; chg (cl 6= ch), (b) S = fcg, and (c) S = ;.

(a): Let cl denote the contract bought by the l-types. Now suppose that Ul(cl; ch) 6=

;. There exists a mutation which adds a contract c0l 2 Ul(cl; ch) to some �rm's menu.

The contract c0l makes pro�ts because it attracts only the l-types. Now all �rms imitate

c0l, and cl becomes idle. Thus, the system has arrived in a new absorbing state. Again,

by a chain of single mutations the idle contract cl is discarded, so we are back to case

(a) with S 0 = fc0l; chg. The utility of the l-types is higher in S 0 than in S, and the utility

of the h-types is unchanged. In a similar way, if Uh(cl; ch) 6= ;, then a chain of single

mutations leads back to case (a) with the h-types' utility increased and the l-types'

utility unchanged. Since the set of possible utility levels is �nite for both types, there

exists a chain of single mutations which leads the system to S� = fkl; khg.

(b): Here we need three facts. The �rst one is needed due to technical problems

which arise near the origin. There exists a Î > 0 such that:

9Æ0 > 0 8Æ < Æ0 c = (P; I) 2 � (I � Î ; Ul(c) > Ul(0; 0)) : Uh(c; c) 6= ;: (3)

Along the rest of the state space, the following statement holds:

9Æ0 > 0 8Æ < Æ0; c = (P; I) 2 � (I > Î; V (c; �hl) > 0) : Ul(c; c) 6= ;: (4)

(To see (4), note that P � �hlÎ). Facts (3) and (4) hold under our assumptions on the

utility function. In particular, u0 > 0 and continuity of u0 guarantee that [U 0

h(c)�U 0

l (c)]

18



is uniformly bounded from below. The third fact follows from the characterization of

kh given by (1) in the maximization program in the theorem for Æ suÆciently small.

9Æ0 > 0 8Æ < Æ0; c = (P; I) 2 � (c 6= kh; V (c; �h) > 0); 9c0 2 Nr(c) : V (c
0; �h) > 0; Uh(c

0) > Uh(c):

(5)

(b�): Consider �rst the case that both the l- and the h-type buy c = (P; I). If

I � Î, then, by fact (3), there exists c0 2 Uh(c; c) that attracts the high risks only and

makes a pro�t; c0 is imitated and we are in case (a) again. If I > Î, then suppose a

mutation occurs which adds a c0 2 Ul(c; c) (existence follows from fact (4)) to one �rm's

menu. At �rst c0 only attracts the l-types, makes pro�ts and is imitated by all �rms.

Now, if V (c; �h) > 0, then we are in case (a); if, however, V (c; �h) < 0, then c makes

losses now, it is discarded, and everybody buys c0. If then V (c0; �hl) > 0, we are in case

(b�) again with c0 instead of c, thereby having increased the payo� of the l-types. If, on

the contrary, V (c0; �hl) < 0, then c0 makes losses, it is discarded, and we are in case (c)

below. Note that we are either in case (a) or in case (c), after a �nite number of steps,

because there exist only �nitely many utility levels for the l-types.

(b�): Consider now the case that only the h-types buy c = (P; I) and the l-types

buy no insurance. If c 6= kh, by fact (5), it follows that there exists a mutant c0 that will

be imitated and c becomes idle. The construction can be repeated with c replaced by

c0, until a state is reached with a unique pro�t-making contract d, where either d = kh

or d is sold to both types. In the latter case, we are in case (b�). To tackle the former,

let Æ be so small that Ul( �P; Æ) < Ul(0; 0), and let t1 be the state where all �rms o�er

the menu f( �P; Æ); khg. By part (3) below, state t1 can be reached by a chain of single

mutations. Now consider the following sequence of contracts

(c1; c2; : : :) = (( �P; Æ); ( �P; 2Æ); : : : ; ( �P; Il); ( �P � Æ; Il); : : : ; (Pl; Il));

where (Pl; Il) := kl. Let ti be the state where all �rms o�er the menu fc1; : : : ; ci; khg, and

let k be minimal with Ul(ck) > Ul(0; 0). By construction, V (ck; �l) > 0 and Uh(ck) <

Uh(kh). By (3), we have t1 ) tk. After cancelling the idle contracts fc1; : : : ; ck�1g in tk,

we have reached case (a) with the separating pair fck; khg.

(c): Let cl 2 � and ch 2 Nr(cl) be pro�t-making contracts, bought by the l- and
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the h-types respectively (such a pair exists if Æ is suÆciently small). De�ne t as the

absorbing state where all �rms o�er the menu fcl; chg.

In the current state no �rm is o�ering any contract, but there exists a mutation

which adds ch to one �rm's menu. After all �rms have imitated ch, another absorbing

state is reached. There exists a further mutation which adds cl to one �rm's menu, and

imitation leads to state t. Now we are in case (a).

(3): De�ne t 2 
 as the state constructed from s by discarding all idle contracts.

We have s) t. Now consider any idle contract c = (P; I) in state s0. Let c� = (P �; I�)

be a pro�t-making contract in s. We do the case P � P � (P < P � is similar). Consider

the following sequence of contracts,

(P �; I�); (P � + Æ; I�); : : : ; (P; I�); (P; I� � Æ); : : : ; (P; I):

Starting from state t, there exists a mutation which adds (P � + Æ; I�) to �rm 1's menu,

a subsequent mutation which adds this contract to �rm 2's menu, and so on. Now

there exist mutations which add (P � + 2Æ; I�) to all �rm's menus, and then there exist

mutations which withdraw (P � + Æ; I�) from all menus. This process can be continued

according to the previous sequence of contracts until a state u is reached which di�ers

from t only by the fact that c is added to all �rms' menus. All contracts added and

deleted on the way were idle (c� or c were preferred), and therefore all states on the way

are absorbing, which implies t ) u. In a similar way, all idle contracts in state s0 can

be added to the �rms' menus.

Sketch of proof of Claim II. The convergence result follows easily from the maximiza-

tion program given by (1) and (2) in the theorem. It remains to show, for any contracts

kh; kl 2 �, that (1) and (2) in that maximization program are satis�ed if and only if

Ui(kl; kh) = ; (i = l; h). \only if" is straightforward from the de�nitions. To see \if", let

ch; cl 2 � be a pro�t-making, separating pair which does not satisfy the maximization

program given by (1) and (2) (with ki replaced by ci), but satis�es Uh(cl; ch) = ;. We

have to show that Ul(cl; ch) 6= ;.

There can be only three reasons for Uh(cl; ch) = ;: (1) in the vicinity of ch, every

contract which is better for the high risks, makes a loss; hence, ch = kh, and (1) in the
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maximization program holds. Then it must be that (2) in that maximization program

does not hold, which in turn implies that Ul(cl; ch) 6= ;. (2) any contract in the vicinity

of ch which is preferred by the high risks is also preferred by the low risks to their

contract cl; by the single-crossing property and the fact that the low risks prefer cl to

ch, this can only hold if ch lies in the vicinity of the upper boundary of the contract

space, P = �P , and the low risks just prefer their contract to ch; by single crossing it

then holds that Ul(cl; ch) 6= ;. (3) for some contracts in the vicinity of ch �rms would

make a loss, for others the contract is preferred by the low risks; this can only hold at

a point of overinsurance, and the low risks just prefer their contract to ch; similar as

above, this implies that Ul(cl; ch) 6= ;. This completes the proof. 2

Proof of the corollary:

We must show that for any two absorbing states s; s0 we have s ) s0. From the

theorem, s ) t for any t 2 R(kl; kh). Starting from t, there exists a mutation which

invents a c 2 P (to get this, Æ must be chosen so small that P \ � 6= ;). After all �rms

have learned this contract, the system is again in an absorbing state. Now a chain of

further mutations discards all idle contracts and we are in case (b�) of the proof above.

From there, case (c) can be reached. Starting from the dead market, there exists a

mutation which adds the set of pro�t-making contracts in s0 to one �rm's menu. This

�rm is then imitated, and we have reached a state s00 with s ) s00 such that s00 is

identical to s0 up to idle contracts. By step (3) in Claim I, s00 ) s0. 2
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