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Abstract

This paper studies measurable processes modeling a continuum of ran-
dom variables such that individual uncertainty cancels out exactly at the
aggregate level (in the sense of a strong law of large numbers). These
processes provide an analytically tractable framework for the analysis of
stochastic mass phenomena in economics, without departing from the
usual measure theory techniques. The paper shows the abundance of
such processes and studies the implications on independence and correla-
tion among the individual random variables. The approach is based on
modeling the aggregate level first and derive the properties of the indi-
vidual one afterwards. The main difference with other approaches is that
exact (rather than approximate) results are provided in standard Borel
spaces. This is important if the set of agents affected in a specific way by
a random element or shock needs to be studied, as happens e.g. in many
dynamical models.
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1 Introduction

Models with a continuum of random variables are extensively used in economics.
Such random variables represent, for example, individual risk of agents in a con-
tinuum population (an interval). The motivation for the use of the continuum
in the first place is the intuitive idea that if agents in a large population face
individual uncertainty, this uncertainty vanishes upon aggregation.

The list of models relying on such a construction is simply too large to quote.
We review here some important examples.

Prescott and Townsend [17] put forward a general framework for adverse
selection and moral hazard problems. In their model, there are finitely many
types of agents, and a continuum of agents of each type. Then a law of large
numbers is used to establish that there is no aggregate uncertainty within each
type. For instance, in a risk insurance model, where type i agents have a
probability of accident θi, they state that “of people of type i, θi is also the
fraction that will suffer a loss” (see Prescott and Townsend [17, p.24]).

Lucas [13] studies a monetary economy with a continuum of individuals,
where each of them receives an independent preferences shock in such a way
that the fraction of individuals suffering a given shock is identified with the
individual probability of suffering that shock. That is, he implicitly uses a
law of large numbers to state that “with a continuum of agents, there is no
aggregative uncertainty” (see Lucas [13, p.206]).

Grossman and Helpman [9], in their well-known quality ladders model, pos-
tulate a continuum of products, whose quality is improved with a certain (in-
dependent) probability ιdt in a time interval of length dt. They state that “by
the law of large numbers, a fraction ι of the products are continually being
improved” (see Grossman and Helpman [9, p.49]).

Other examples include large (non-atomic) games with strategic uncertainty,
as in Schmeidler [18], Mas Colell [14] or Pascoa [16], where, in principle, a
continuum of players choosing mixed strategies randomize independently and
their randomizations must be aggregated to obtain the distribution of actions
in the population that each individual faces.

In Harrington [11], a continuum of individuals observe different realizations
of an environmental stochastic element. Then a law of large numbers is implic-
itly used to state that the fraction of agents observing a certain realization is
exactly equal to the probability of this realization.

A related problem is the one posed by models with a continuum of randomly
matched agents, with examples including many evolutionary models and the
above mentioned paper by Harrington [11]. That framework was analyzed in a
related paper (see Alós-Ferrer [5]).

These models, and many others, postulate an interval of agents, endowed
with identically distributed random variables, and informally invoke a strong
law of large numbers to identify the sample average across the population with
the mean of the individual random variables.

Mathematically, this is formalized by a process x(i, ω), with ω and element
in a sample space Ω and i an agent in a population I, or, more generally, a
parameter in an appropriate space, typically an interval. The functions x(i, ·) are
the individual random variables, which are assumed be identically distributed
with a fixed random variable X of distribution f . The law of large numbers
would then say that, for any ω, the sample function x(·, ω) should also have
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distribution f . A less demanding formulation, which is the one used in the
examples above, would establish the equality between the mean of X and the
sample average of x(·, ω), for any ω. For example, if a continuum of agents are
tossing coins (X being “toss a coin”), half of them should always obtain heads.

Judd [12] and Feldman and Gilles [7] proved that, if the individual uncer-
tainty is idiosyncratic, such a law of large numbers does not exist, because the
sets of agents obtaining a certain realization (say, heads) may not be measurable,
and, even if they are, they need not have the appropriate measure (i.e., numer-
ically equal to the probability of the considered realization, say, one half). The
mathematical problem is that the process x(i, ω) is not (jointly) measurable,
which prevents Fubini-type results.

Since the establishment of this impossibility result, the literature has tried to
find a way around the problem, relaxing or changing assumptions to obtain more
sophisticated constructions verifying the properties assumed by economic mod-
els. Judd [12] showed that there exist extensions of the Kolmogorov probability
space (the basic space on which x(i, ω) is defined) such that the sample average
(for the whole population) equals the mean, with probability one. He notes,
though, that these extensions are arbitrary. We can find analogous, equally rea-
sonable extensions such that the “law of large numbers” does not hold. In fact,
Feldman and Gilles showed that it is impossible to have an extension satisfying
the same property for all Borel subsets of agents (a problem named absence of
homogeneity), i.e. we will always have some counterintuitive behavior. We will
refer to this result as FG in the sequel.

The absence of homogeneity is specially worrying, since, if the population
is represented by an interval, one would expect any subinterval to have analo-
gous properties to those of the whole population. Bringing more sophisticated
weapons to the battle, Green [8] constructs a process which fulfills homogeneity1.
This does not contradict FG because the space of agents is itself constructed
in order to guarantee the property, and it is not a Borel space, but an abstract
probability space endowed with a σ-algebra which is not countably generated,
and thus cannot be easily interpreted. Moreover, Green finds again the free-
dom of choice encountered by Judd [12], noticing that we could have different
constructions satisfying different numerical equalities.

The problem of the lack of a law of large numbers, and its importance in
Economics, has received a great deal of attention in recent years. Of course there
is no way around the basic impossibility result. A continuum of independent,
identically distributed random variables will not satisfy the Strong Law of Large
Numbers. The only possible solution is to relax some part of this sentence.

One possible approach is to renounce to the strong law of large numbers,
asking instead for weaker results. Uhlig [21] proposed to change the integral
used to compute the sample averages, hence redefining the problem. Al-Najjar
[1, 3] elaborates on this approach, which is of special interest with respect to the
(highly demanding) problems which appear in the framework of large games.
There, the problem is one of definition, and the crucial question is how does each
individual agent perceive the aggregate level. Hence, it might be reasonable to
say that the individual agent perceives the population aggregate behavior as if
certain integral concept were at work, even if no statement can be made about

1This process is analogous to the construction illustrated by Anderson [6], based on non-
standard analysis)
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the set of agents who choose a certain action after randomization2.
The approach of Uhlig and Al-Najjar consists essentially in renouncing to the

exact cancellation of individual risk that a strong law of large numbers would
provide. The results obtained are actually enough for some static frameworks
(as long as one accepts to redefine the problem), specially if the only important
thing is how does each individual perceive the whole population. The approach
is, however, problematic because it does not solve the measurability problem.
The sets of agents obtaining a particular realization remain potentially non-
measurable. Also, the exact cancellation of individual risk is crucial for many
macroeconomic and finance applications (see e.g. the references in [12, 7]).

Consider a population dynamical system with an explicit time component.
In such dynamic models, the results prescribed by a law of large numbers at
time t (i.e. the sets of agents which have obtained a given realization) have
a very precise interpretation which is to be used to generate the results for
t + 1. Those sets have to be measurable. If not, the dynamical system cannot
even be defined. Moreover, very often, the link between the population model
and the (deterministic) dynamic equations describing its evolution along time
is an exact claim which, if formalized, must be put in the form of a strong
law of large numbers, e.g. exactly how many agents have obtained a certain
realization. Examples include most of evolutionary game theory (see e.g. [19,
22]), random matching models (see [5] for a discussion), and in general any
dynamic model where it is important to keep track of the sets of agents that
have experienced a specific realization (e.g. [11, 15]). Consider, for instance,
evolutionary game theory. While in large games the crucial question is how
does each individual perceive the aggregate level, in an evolutionary setting
the individual is irrelevant, and all that matters is the measure of the set of
individuals of its same type. For such models, the measurability problem cannot
be bypassed; it must be solved.

Sun [20] presents a complete exposition of the possibilities of changing the
usual continuum framework to hyperfinite models based on non-standard analy-
sis. This approach, of enormous mathematical possibilities, delivers exact results
(which can be called a strong law of large numbers) at the cost of renouncing
to the “classical” spaces of agents, as e.g. the unit interval, in favor of more
abstract entities. While ultimately this might be the only way out for specially
demanding models, the question arises whether it is really necessary to fully
abandon the continuum model.

In contrast to previous work, this paper focuses on the standard space of
agents, i.e. a Borel space over an interval, and tries to answer the question of
what the implications of exact aggregate results (Strong Law of Large Numbers)
are, always without changing the usual framework and without leaving the realm
of standard measure theory. The primary aim of the paper is to study and
characterize the family of standard (as opposed to non-standard or hyperfinite)
processes satisfying the exact (strong) law of large numbers.

The main idea is to change the approach to the problem and concentrate
attention in the converse implication of that studied in the literature. Suppose
that we have a process such that individual uncertainty cancels out exactly
at the aggregate level. This process could be the one underlying the economic

2For a precise discussion of the relationship between the subjective individual level and the
law of large numbers, see [4]
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models cited above. The question is then what can be said about such a process.
Does it exist? Is it unique? Can it be characterized?

The vital requirement for tractability is, of course, joint measurability. As
a consequence, the claim for full independence among the individual random
variables is lost. The idea of sacrificing full independence in favor of exact
results is not new. Feldman and Gilles [7] already point to it, citing an exam-
ple where individual uncertainty and exact aggregate results are obtained at
the cost of losing independence. The difference with the present work is that
here the converse question is analyzed. We turn to the analysis and tentative
characterization of the full family of processes where individual uncertainty and
deterministic aggregate outcomes are obtained.

Renouncing to full independence is of course a restriction for some situa-
tions, but not always. Close examination of many economic models reveal that,
frequently, independence is added to the hypothesis of the model because it
is thought to be necessary for the application of an unspecified law of large
numbers. In many of them, though, independence is not needed. In random
matching models, independence is actually excluded, because if one agent is
matched to another one, the second has to be matched to the first. Also, as
Al-Najjar [1] points out, “strong distributional assumptions should be avoided
in the study of large games where correlation due to sunspots, correlated types,
or correlated randomization devices is quite natural.” To cite another extreme
example, if a subject crashes his car against his neighbor’s, it is hard to under-
stand how could their probabilities of accident have been independent.

In models where independence is crucial, the approach here will yield only
approximate results, as we will detail later on.

Section 2 introduces notation and defines the object of study, which is named
population extension of a random variable. Section 3 shows the existence and
non-uniqueness of population extensions. Section 4 tackles the issue of homo-
geneity, showing that ex ante, each measurable subset of agents satisfies the
law of large numbers. Section 5 formalizes in which sense are the individual
random variables not independent. Section 6 introduces the concept of ran-
domness basis, which are detailed, maximal “maps” describing the correlation
relations among individual variables within a population extension. The main
result of the paper is that any population extension can be described through
a randomness basis. Section 7 shows that randomness bases serve both as a
classifying device and to pin down how many independent random variables
can we have in a specific population extension. Section 8 studies a type of par-
ticularly well-behaved population extensions. Section 9 sketches some selected
applications.

2 Notation and definitions

Consider a random variable

X : (A,A, λ) → S

defined on a probability space (A,A, λ) and taking values on a (finite3) set
S = {1, 2, ..., N}. Such a variable could be a model for the sources of random-

3We focus on simple random variables for concreteness. However, with the appropriate
reformalization, the main results are still true for arbitrary real random variables.
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ness that a given, fixed individual faces. By taking a large population of such
individuals, the researcher expects to “wash away” the uncertainty and obtain
a deterministic aggregate model. E.g., if X models a coin toss, one expects to
be able to say that, in a large population, half the agents obtain heads.

Let I = (0, 1] be the set of agents. The triple formed by this set, the σ-
algebra of its Borel subsets B, and the Lebesgue measure µ, is the space of
agents.

Denote λs = Pr(X = s) := λ({a ∈ A / X(a) = s}) for each s ∈ S.

2.1 Traditional approach

To model idiosyncratic risk on this space of agents, the first approach is to endow
each agent with a copy of the random variable X. This creates a continuum
of i.i.d. random variables, {xi}i∈I and, by Kolmogorov’s Extension Theorem,
there exists a probability space to represent them, i.e. we have

x : (Ω,F , P ) → SI

The result we are interested in is that, for (almost) each realization of the
randomness, and for each (measurable) subset of agents, the fraction of agents
who obtain a particular realization s ∈ S equals the probability Pr(X = s).
Formally, this means that, for all s ∈ S, for almost all ω ∈ Ω, and for any
measurable subset of agents of positive measure, B ∈ B / µ(B) > 0,

µ({i ∈ B / xi(ω) = s}) = λs · µ(B)

Feldman and Gilles [7] showed that this “Law of Large Numbers” is in general
false. The first problem is that the set {i ∈ B / xi(ω) = s} needs not be
measurable. The second, that even if it is, the equality needs not hold.

Following Judd [12], it is possible to see that the situation is even more
curious. Given a fixed set B, the set of realizations ω such that {i ∈ B / xi(ω) =
s} is measurable is itself non-measurable. It has outer measure 1 and inner
measure 0, a fact which can be used to construct extensions of the probability
space (Ω,F , P ) such that the above equality (for B = I) holds with any arbitrary
probability 0 ≤ p ≤ 1, a disturbing freedom of choice. Moreover, because of FG,
a different extension will be needed for each different Borel set, i.e. there exists
no extension satisfying simultaneously the above equation for all measurable
sets of agents.

2.2 An alternative approach

The traditional approach is based on the implicit choice of modeling firstly at
the individual level and aggregating afterwards. The impossibility result FG
could arguably be interpreted as casting doubt on the aptness of this modeling
decision.

In economics, when continuum models are called for, the most important
level is the aggregate one. Exactly as insurance companies estimate the proba-
bilities of accident from cross-panel data and then infer an individual measure
of risk, in these cases it would be more reasonable to start with a model for
the population as a whole and then infer the properties of individual risk. This
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“Copernican” turn would allow the researcher to concentrate attention on the
relevant characteristics of a population model.

The aim of this paper is to study the object which the researchers need and
characterize it. This object would be a random process at the population level,
displaying aggregate stability (and hence analytical tractability) but individual
uncertainty. This uncertainty at the microscopic level can be studied because
the population process will induce individual random variables.

It should be kept in mind that this population process is a modeling tool.
The lack of uncertainty at the aggregate level should not be viewed as a result,
but as a condition which reflects some observed result. The tool is built to model
economic situations displaying aggregation effects, and hence should exhibit this
characteristic.

It should also display enough mathematical regularity to be useful as a tool.
The extensions found by Judd [12] or Green [8] are problematic, not only because
of the above-mentioned “disturbing freedom of choice,” but also because the
associated probability spaces are analytically untractable. For instance, the
population process can be considered as a random function from the product
of the sample space and the set of agents. Both in Judd [12] and in Green [8],
it can be seen that their processes cannot be jointly measurable in their two
arguments. However, joint measurability is precisely the kind of mathematical
regularity condition which would make the process tractable.

Let us start defining our object of study. Our population process will ran-
domly specify a (measurable) partition of the population, i.e. the sets of agents
obtaining each of the possible realizations. Thus, let P(I) be the set of parti-
tions of I into |S| subsets, and let R(I) be the set of measurable partitions of I
into |S| subsets.

P(I) = {R ∈ (2I)S / ∪ {Rs / s ∈ S} = I ∧ Rs ∩Rs′ = ∅ ∀ s, s′ ∈ S}
R(I) = P(I) ∩ BS

Note that the notation Rs refers to the s-coordinate of the element R ∈
(2I)S , that is, Rs ∈ 2I .

In order to transform X into a suitable population-wide random variable, we
should use a new mapping which directly specifies the partition of the population
in measurable subsets, such that the agents of a specific subset are those which
have obtained a specific realization. That is, we are looking for a mapping
XI taking values on R(I) such that, with probability one, µ(XI

s ) = Pr(X =
s) ∀ s ∈ S.

More formally, we want to have a mapping XI taking values on R(I) and
defined on a probability space (Ω,F , P ) (which here does not need to be Kol-
mogorov’s product space) such that

P (ω ∈ Ω / µ(XI
s (ω)) = λs) = 1 ∀ s ∈ S

Again, note that XI
s (ω) refers to the s-coordinate of the element XI(ω) ∈

P(I). If XI(ω) ∈ R(I), then XI
s (ω) ∈ B, which is implicitly required by the

last equation.
Such a mapping could always be re-interpreted as a continuum of random

variables {xI
i }i∈I , taking xI

i (ω) = s iff i ∈ XI
s (ω). The difference with the

previous approach is that the set of agents which obtain a certain realization is
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measurable by definition. This is not “assuming away” the problem because the
question is whether such “population random variables” exist or not and which
properties need they have. Let us now formally define the object.

Definition 2.1. Given the set of agents I and a random variable X : (A,A, λ) →
S, a mapping XI : (Ω,F , P ) → P(I) is said to be a population extension of X
if it verifies

1. Joint measurability: the mapping x : I × Ω → S defined by x(i, ω) = s iff
i ∈ XI

s (ω), is a random variable.

2. Individual uncertainty: P ({ω ∈ Ω / i ∈ XI
s (ω)}) = λs ∀ s ∈ S, i ∈ I

3. Aggregate stability: P ({ω ∈ Ω / µ(XI
s (ω)) = λs}) = 1 ∀ s ∈ S

where λs = λ({a ∈ A / X(a) = s}) ∀ s ∈ S.

The first condition is simply a joint measurability requirement. It implies
that the variables {xI

i }i∈I defined by xI
i (ω) = s iff i ∈ XI

s (ω), and the map-
pings given by µ(XI

s (ω)) ∀ s ∈ S, are random variables, making the following
conditions meaningful. It also allows us to treat the population extension as
a random variable, since it actually takes values in the measurable partitions
R(I). See Appendix B for a “population extension” which does not fulfill joint
measurability.

The second condition says that, from the individuals point of view, uncer-
tainty is indeed captured by the original random variable X. The third condition
establishes that uncertainty disappears at the aggregate level.

In summary, a population extension is simply a mathematical model, analo-
gous to a random variable (joint measurability condition) displaying uncertainty
at the microscopic level (individual uncertainty condition) but such that this un-
certainty disappears upon aggregation (aggregate stability condition).

3 Existence and Non-Uniqueness

In order to show existence of non-trivial extensions, it is enough to give one
example. Let S, I, and X be given. We construct now a population extension
of X.

Example 3.1. The Wheel Extension.
The half-open interval of agents (0, 1] can be interpreted as a circumference.

Suppose that this circumference is randomly rolled (calling for a random variable
uniformly distributed on (0, 1]) and then placed over another circumference with
an arc labeled “s”, of length λs, for each possible realization s of X. Then, we
say that agents placed over the arc “s” have obtained an “s”. This seems to be
the simplest procedure to obtain a population extension of X.

Formally, the population extension is given by Ω = (0, 1], F = B, P = µ,
and

XI
s (ω) =







(Γs−1 − ω, Γs − ω] if ω ≤ Γs−1

(0,Γs − ω] ∪ (Γs−1 + 1− ω, 1] if Γs−1 < ω ≤ Γs
(Γs−1 + 1− ω, Γs + 1− ω] if ω > Γs

where Γs =
∑s

r=1 λr, Γ0 = 0. This extension can be generalized to any
subinterval.
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To show non-uniqueness, it is enough to construct a different example. In
fact, we can do better than that, by constructing a whole family of extensions.

Example 3.2. The Z-Extensions.
Let Z : I → S be any measurable function such that µ(Z−1(s)) = λs ∀ s ∈ S.

We shall see later that such functions exist.
The population extension XI(Z) of X is defined through Ω = (0, 1], F = B,

P = µ, and
XI

s (ω) = [(Z−1(s)− ω) ∪ (Z−1(s) + 1− ω)] ∩ (0, 1]
This example is non-vacuous, because every R ∈ R(I) such that µ(Rs) =

λs ∀ s ∈ S specifies a suitable function Z. If Rs = (
∑s−1

r=1 λr,
∑s

r=1 λr] ∀ s ∈ S,
we obtain the Wheel Extension. A different example is given by

Rs = ( 1
2 −

1
2

∑s
r=1 λr, 1

2 + 1
2

∑s
r=1 λr] \ Rs−1 ∀ s ∈ S, with R0 = ∅.

As a preliminary result, we have (somewhat trivially) showed the abundance
of processes which qualify as population extensions. Our aim is now to study
their general properties.

Remark 3.3. The population extension takes values on R(I) ⊂ BS . This set
has cardinality ℵ1. Given a family {xi}i∈I , one could have tried to define the
“population extension” taking values on

R∗(I) = {R ∈ P(I)S / ∪ {Rs / s ∈ S} = I ∧ Rs ∩Rs′ = ∅ ∀ s, s′ ∈ S}

but, because of the FG impossibility result, these partitions are not measurable
in general. In fact, this set has cardinality ℵ2. This cardinality difference is at
the very core of the original problem.

4 Homogeneity

Feldmann and Gilles [7] show that the “law of large numbers” fails with a
continuum of independent random variables. This failure takes the form of
a realization of the underlying probability space and a Borel subset of agents
(even an interval) such that the proportion of agents of that subset obtaining a
given realization s is not equal to the probability of that realization according
to the variable X. In order to study this failure, we will call such behavior a
“pathology” and formally define it in our framework.

Definition 4.1. Given a population extension XI of a random variable X, a
pathology is a pair (ω, B) ∈ Ω×B such that µ(XI

s (ω)∩B) 6= µ(B) ·λs for some
s ∈ S.

Pathologies are problematic from the economic point of view. In an economy
with a large number of traders and risk, it would be expected that any large
coalition of traders could be able to form a risk-pooling coalition, at least in
expected terms. See [8] for a discussion. The bad news is that pathologies are
bound to exist. The good news is that, in expected terms, the law of large
numbers is still true for any positive-measure subset of agents.

Proposition 4.2. Given any population extension XI of a random variable X,
then for all ω ∈ Ω there exists a set B ∈ B such that (ω, B) is a pathology.

8



Proof. Let ω ∈ Ω, and suppose that, for all B ∈ B, (ω,B) is not a pathology.
Given s ∈ S, this means that µ(XI

s (ω) ∩ B) = µ(B) · λs for all B ∈ B. Call
zs
ω(i) = 1 iff i ∈ XI

s (ω), 0 otherwise. Then, zω(·) is a measurable function such
that

∫

B zs
ω(i)dµ(i) = µ(B) · λs for all B ∈ B. The Radon-Nykodym theorem

implies then that zω(i) = λs almost everywhere, a contradiction. �

Proposition 4.3. Given any population extension XI of a random variable X,
pathologies cancel out in the aggregate, i.e. for all B ∈ B and for all s ∈ S,

∫

Ω
µ(XI

s (ω) ∩B)dP (ω) = µ(B) · λs

Proof. Given s ∈ S, call zs(ω, i) = 1 iff i ∈ XI
s (ω), 0 otherwise. Then, zs(·, ·) is

a jointly measurable function. Moreover,
∫

Ω µ(XI
s (ω) ∩B)dP (ω) =

∫

Ω

∫

B zs(ω, i)dµ(i)dP (ω) =
=

∫

B

∫

Ω zs(ω, i)dP (ω)dµ(i) =
∫

B P ({ω ∈ Ω / x(ω, i) = s})dµ(i) =
=

∫

B λsdµ(i) = µ(B) · λs

where the second equality holds by Fubini’s theorem. �

The first proposition means that what has been taken as a law of large
numbers fails. The proof is inspired in Feldman and Gilles [7], although they
state the result only for families of i.i.d. random variables, whereas here we
see that it also applies when independence is not assumed (the fact that the
individual variables come from a population extension is also irrelevant for the
proof). The second proposition, though, shows us that the joint measurability
built into the definition of a population extension allows us, if not to get rid of
the pathologies, at least to conclude with a statement that certainly has some
flavour of a law of large numbers: pathologies disappear in the aggregate. For
example, in an economy with a large number of traders and risk, any large
coalition would expect risk to cancel out for its members (see Section 9).

Since a pathology is the failure of the sought equality for a specific realization
of the underlying probability space, and the previous result just shows that
integrating over all such realizations must give us precisely that equality, it
might be tempting to suggest that the problem with the law of large numbers
could now be reinterpreted as the lack of one further integration step. What is
actually at work, from the purely mathematical point of view, is that the joint
measurability requirement allows for the use of Fubini’s theorem and hence
to transfer the regularities at the aggregate level in the agents space to the
aggregate level in the sample space.

5 Independence

A law of large numbers establishes an aggregate result for a set of independent
random variables.4 When we try to model situations which call for such an
aggregation result in the continuum framework, it is obviously counterintuitive
to have the aggregate result at the whole population level, and to observe its

4Notice that the random variables of an arbitrary family are independent if and only if the
variables of each finite subfamily are independent. This is stronger that the notion of pairwise
independence. However, the whole analysis could be carried for this weaker notion, and the
results in this and the following section would hold true.
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failure at a given subinterval (which should be, in some sense, isomorphic to the
whole population). And yet this “absence of homogeneity” is what the impos-
sibility result of Feldman and Gilles shows. In the framework of a population
extension, we have disposed of the independence assumption, and decided that
the aggregate level should be the first one to be modeled. In the previous sec-
tion, we have even restored homogeneity up to a point. We can now establish
the precise relationship with the independence - or lack of independence - at
the individual level. The following theorem and its proof are closely related to
Green [8, Theorem 4].

Theorem 5.1. Given any population extension XI of a random variable X,
there exists no set J ⊂ I such that J is dense in a Borel set of strictly positive
measure and the induced random variables {xj}j∈J are independent.

Proof. Let J be dense in A ∈ B, µ(A) > 0, and suppose that {xj}j∈J are
independent.

Consider any s ∈ S such that 0 < λs < 1. Then, x−1(s) ∈ B × F .
By Lemma A.1 (see Appendix A), for all ε > 0 there exist N ∈ N, B1, ..., BN ∈

B, G1, ..., Gn ∈ F such that the sets {Bn}N
n=1 are disjoint and

(µ× P )(((A× Ω) ∩ x−1(s))∆ ∪N
n=1 (Bn ×Gn)) < ε.

By restricting to the sub-σ-algebra B∩A, it can be assumed that B1, ..., BN ⊂
A.

Then, by Fubini’s Theorem,

(µ× P )(((A× Ω) ∩ x−1(s))∆ ∪N
n=1 (Bn ×Gn)) =

∫

P (ω / (i, ω) ∈
(((A× Ω) ∩ x−1(s))∆ ∪N

n=1 (Bn × Fn)))dµ(i) =
=

∫

A P (x−1
i (s)∆{Gn / i ∈ Bn})dµ(i)

which implies that there exists a Borel set C ⊂ A, µ(C) > 0, such that for
all i ∈ C, P (x−1

i (s)∆{Gn / i ∈ Bn}) < ε.
Take a fixed Bm such that µ(Bm ∩C) > 0. This exists because, if not, since

C is infinite, there exists i ∈ C\ ∪N
n=1 Bn, implying that λs = P (x−1

i (s)) < ε, a
contradiction for ε small enough.

Since J is dense in B, there exist two different agents, j, k ∈ J ∩ Bm ∩ C.
Then, P (x−1

j (s)∆Gm) < ε and P (x−1
k (s)∆Gm) < ε.

Since P (x−1
j (s)) = P (x−1

k (s)) = λs, this implies P (x−1
j (s)∩x−1

k (s)∩Gm) =
P (x−1

j (s) ∪ x−1
k (s) ∪ Gm) − P ((x−1

j (s)∆Gm) ∪ (x−1
k (s)∆Gm)) > λs − 2ε > λ2

s

for ε small enough. But, since j, k ∈ J , we have that P (x−1
j (s) ∩ x−1

k (s)) = λ2
s,

a contradiction. �

Corollary 5.2. Given any population extension XI of a random variable X,
there cannot exist a subset of positive measure J ⊂ I such that the random
variables {xI

j}j∈J are independent.

This last, hardly-surprising, result establishes the extent to which we have
renounced to the full independence requirement. Basically, once we accept that
the properties we want exclude a continuum of independent random variables,
there would not be such a family of random variables, even as a subset. What
is important to notice is that the regularity properties of a population extension
are extended to subsets, as we saw in the previous section and as we will see
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below. Hence, what this last negative result is telling us is that a population
extension has coherent properties, with no real conceptual contradiction between
the whole family of random variables and a given subset.

6 Randomness Basis

As we have just seen, the family {xI
i }i∈I cannot contain a subset of independent

variables of positive measure. In the examples above, the maximal subsets of
independent variables in this family have cardinality 1. In this sense, those
examples are “minimal”. The question which immediately arises is how would
“maximal” examples be, i.e. to what extent can we get families of i.i.d. random
variables within a population extension.

This question turns more interesting when we realize that the answer could
be a mean to find a systematic way to describe population extensions of random
variables. This is the objective of this section. We shall build upon “maximal”
sets of independent and non-independent variables to understand the common
features of population extensions and the possible variety that we might en-
counter.

Remark 6.1. All the results in this section, including the main theorem, hold
true when applied to an arbitrary family of random variables, not coming from
a population extension. The proofs remain the same.

Definition 6.2. Given a population extension XI , a set d ∈ B is called a cluster
for XI if for all i, j ∈ d, the random variables xI

i , x
I
j are not independent.

Definition 6.3. A random system D for a population extension XI is a family
of disjoint clusters for XI such that, for every set of agents {i(d) / d ∈ D}, the
random variables{xI

i(d) / d ∈ D} are independent.

Definition 6.4. Given two Borel sets d, d′ ∈ B, we say that d is almost included
in d′ if µ(d\d′) = 0. Denote it by d ⊂ d′ a.e.

Remark 6.5. If d ⊂ d′ a.e., then µ(d) = µ(d ∩ d′) + µ(d\d′) = µ(d ∩ d′) ≤ µ(d′).

The next result shows that it is possible to obtain maximal clusters with
respect to almost inclusion.5

Lemma 6.6. Let C be a chain in B according to the relation “to be almost
included in”. Then,

1. There exists a countable subchain {dn}∞n=1 ⊂ C such that d∞ := lim inf dn

is an upper bound for the chain C in B.

2. Consider a population extension XI . If all the elements of the chain C
are clusters for XI , then d∞ is also a cluster for XI .

Proof. Let C be such a chain,6 and let r be the supremum of the set of real
numbers {µ(d) / d ∈ C}. If r = 0, then the assertion is trivial. Thus, suppose

5Of course, it is not possible to do the same with respect to set inclusion. The introduction
of the almost inclusion relation allows us to concentrate in positive measure sets, avoiding the
conceptual problems associated to null-sets.

6Note that the natural candidate for an upper bound, ∪{d / d ∈ C}, is the union of a
maybe uncountable sequence of Borel-measurable subsets of the interval I, and thus may be
non-measurable.

11



that r > 0. For each n ∈ N\{0}, let dn ∈ C such that µ(dn) ≥ r − 1
n . These

sets can be chosen in such a way that dn ⊂ dn+1 a.e., for all n.
Define7 d∞ := lim inf dn = ∪∞n=1∩∞m=n dm. This set is obviously measurable.

Moreover, dn ⊂ d∞ a.e. for all n.

µ(dn\ ∩∞m=n dm) = µ(∪∞m=ndn\dm) ≤
∞
∑

m=n

µ(dn\dm) = 0 → µ(dn\d∞) = 0

and this in turn implies that µ(d∞) = r.
Let d ∈ C. We have to prove that d ⊂ d∞ a.e.
Given n, then either dn ⊂ d a.e. or d ⊂ dn a.e. If d ⊂ dn a.e. for some n,

then d ⊂ d∞ a.e. and we are done. If d is not almost included in dn for any
n, then, dn ⊂ d a.e. for all n. Thus, µ(d) ≥ µ(dn) ≥ r − 1

n ∀ n, implying that
µ(d) = r.

Consider the intersection d ∩ d∞. If µ(d ∩ d∞) < r, then exists n such that
µ(d ∩ d∞) < r − 1

n . But, since d ∩ dn ⊂ d ∩ d∞ a.e., we have that r − 1
n ≤

µ(dn) = µ(d∩ dn) + µ(dn\d) = µ(d∩ dn) ≤ µ(d∩ d∞) < r− 1
n , a contradiction.

Thus, µ(d ∩ d∞) = r, implying that µ(d\d∞) = µ(d)− µ(d ∩ d∞) = r − r = 0,
and, hence, that d ⊂ d∞ a.e.

In summary, d∞ is an upper bound for C.
To prove the second part, take i, j ∈ d∞. Then, there exist n, n′ such that

i ∈ ∩∞m=ndm and j ∈ ∩∞m=n′dm. Let n′′ = max{n, n′}. Then, i, j ∈ dn′′ and,
since dn′′ is a cluster, the random variables xI

i , x
I
j are not independent. �

The following well-known property will be used several times in the sequel.

Lemma 6.7. Let B be a family of disjoint Borel sets of I of strictly positive
measure. Then, B is countable.

Proof. Obviously, Bn = {b ∈ B / µ(b) > 1
n} is finite for all n ∈ N\{0}. Since

B = ∪∞n=1Bn, it follows that B is countable. �

The following result is an immediate consequence of the lemma.

Proposition 6.8. Given a random system D for a population extension, define
m(D) = {d ∈ D / µ(d) > 0}. Then, m(D) is countable.

Definition 6.9. Given two random systems D,D′ for a population extension
XI , we say that D′ is broader than D if ∀ d ∈ D ∃ d′ ∈ D′ such that d ⊂ d′ a.e.
Denote this relation by �. A randomness basis is a maximal random system
with respect to �.

A randomness basis is, thus, a precise (up to null sets) way to explain the
structure of a population extension in terms of independence and correlation.
It can be conceived as a map which tells us which sets of agents are affected by
correlated shocks (the clusters). Across these sets, the sources of randomness
affecting agents are independent.

The next result shows that randomness basis always exist. The proof, al-
though lengthy, essentially relies on a Zorn’s Lemma argument.

Theorem 6.10. Any population extension XI has at least a randomness basis.
7Note that ∪∞n=1dn is a measurable set of measure r. In fact, this set verifies the first part

of the statement, but not necessarily the second.
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Proof. Consider any subset M ⊂ I, such that the variables {xI
i }i∈M are in-

dependent. Such sets exist trivially (e.g. a singleton) and can be regarded as
random systems. So, the set of random systems for XI is nonempty. This set
is preordered by the binary relation “to be broader than”.

We want to apply Zorn’s Lemma to this set. Thus, let D be a chain of
random systems. We have to find an upper bound for this chain.

Define m(D) = ∪{m(D) / D ∈ D}.

Step 1 Define the following binary relation: if d, d′ ∈ m(D), we say dRd′

whenever d ⊂ d′ a.e. or d′ ⊂ d a.e. Then, R is an equivalence relation.

R is obviously reflexive and symmetric. It is also transitive: if dRd′ and
d′Rd′′, we have the following possibilities. If d ⊂ d′ a.e. and d′ ⊂ d′′ a.e., then
d ⊂ d′′ a.e. and dRd′′. If d′ ⊂ d a.e. and d′′ ⊂ d′ a.e., then d′′ ⊂ d a.e. and
dRd′′.

The remaining two cases are: first, d ⊂ d′ a.e. and d′′ ⊂ d′ a.e.; second,
d′ ⊂ d a.e. and d′ ⊂ d′′ a.e. We consider them simultaneously.

Let D, D′′ ∈ D such that d ∈ D, d′′ ∈ D′′. Without loss of generality, and
since D is a chain, we can assume that D′′ � D. Thus, there exists d∗ ∈ D′′

such that d ⊂ d∗ a.e. If d∗ = d′′, then dRd′′. Otherwise, take i ∈ (d∩d′)∩d∗ and
j ∈ d′′ ∩ d′. These elements exist because µ(d), µ(d′), µ(d′′) > 0. Then, xI

i and
xI

j are not independent, because i, j ∈ d′ and d′ is a cluster. But i ∈ d∗, j ∈ d′′

and d∗, d′′ are different clusters in the same random system D′′, a contradiction.
Thus, R is an equivalence relation.

Step 2 Consider the quotient set m(D)/R. Each of the classes C of this
quotient set is a chain of clusters for XI for the almost inclusion rela-
tion. By Lemma 6.6, for each chain C there exists a countable subchain
{dn(C)}∞n=1 ⊂ C such that d∞(C) = lim inf dn(C) is a cluster for XP and
an upper bound for C. Define D∗ = {d∞(C) / C ∈ m(D)/R}. This is a
set of disjoint measurable sets of I (see below), of positive measure, and
hence m(D)/R must be countable by Lemma 6.7.

For each n ∈ N\{0} and for each C ∈ m(D)/R, choose Dn(C) ∈ D such that
dn(C) ∈ Dn(C). To see that the sets d∞(C) are disjoint, consider two different
equivalence classes C,C ′ ∈ m(D)/R, and let i ∈ d∞(C) ∩ d∞(C ′). Then there
exist dn(C), dm(C ′) such that i ∈ dn(C) ∩ dm(C ′). Without loss of general-
ity, assume Dn(C) � Dm(C ′). Then, there exists d∗ ∈ Dm(C ′), d∗ 6= dm(C ′),
such that dn(C) ⊂ d∗ a.e. Let j ∈ dn(C)∩ d∗ (this set is nonempty because
µ(dn(C)) > 0). Since i, j ∈ dn(C), we have that xI

i , x
I
j are not independent.

But, since i ∈ dm(C ′), j ∈ d∗, we have that xI
i , x

I
j are independent, a contradic-

tion.
D∗ is the prime candidate for an upper bound of the chain of random sys-

tems. However, it is not necessarily so, because D∗ needs not be a random
system unless we establish some relation between the sequences {dn(C)}∞n=1.

Step 3 There exists a sequence of random systems {En}∞n=1 such that, for all
C ∈ m(D)/R, the sequence of clusters {en(C)}∞n=1 = {C ∩ En}∞n=1 has
the same properties as {dn(C)}∞n=1, i.e. lim inf en(C) is a cluster for XI

and an upper bound for C.
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Consider a given C and its associated sequence {dn(C)}∞n=1. Denote r(C) =
µ(d∞(C)). Now, consider another C ′ and its associated sequence {dn(C ′)}∞n=1.
This latter sequence induces another sequence in C, given by {C ∩Dn(C ′)}∞n=1.
Let bn be the (unique) element in C ∩Dn(C ′), if it exists, and bn = ∅ otherwise
(we will still write bn ∈ C ∩ Dn(C ′) in this case). If there exists bn such that
µ(bn) = r(C), we say that {dn(C ′)}∞n=1 covers {dn(C)}∞n=1. Now, distinguish
two cases:

Case 1 There exists {dn(C)}∞n=1 such that no other {dn(C ′)}∞n=1 covers it.

Fix this C, and define en(C) = dn(C) for all n, En = Dn(C).

Now consider any other C ′ ∈ m(D)/R, and define bn as above. Consider
the nontrivial subcase sup{µ(bn)} > 0. We will show that sup{µ(en(C ′))} =
r(C ′). In order to see it, consider any ε > 0. There exists dn(C ′) such
that µ(dn(C ′)) > r(C ′) − ε. Then, consider bn, which can be assumed
to have strictly positive measure in this subcase. As µ(bn) < r(C),
there exists dm(C),m > n, such that µ(dm(C)) > µ(bn), implying both
that bn ⊂ dm(C) a.e. and that the converse is not true. Thus, since
bn ∈ Dn(C ′) and dm(C) ∈ Dm(C), we must have that Dm(C) � Dn(C ′),
which in turn implies that dn(C ′), which is the element in Dn(C ′) ∩ C ′,
must be almost included in the element in Dm(C)∩C ′, i.e. em(C ′). Thus,
µ(em(C ′)) > r(C ′) − ε. In summary, for every ε > 0 there exists m such
that µ(em(C ′)) > r(C ′) − ε, implying sup{µ(en(C ′))} = r(C ′). But this
last fact is enough to establish that {en(C ′)}∞n=1has the same properties
as {dn(C ′)}∞n=1, analogously to the proof of Lemma 6.6.

If sup{µ(bn)} = 0, then any Dm(C) must be such that Dm(C) � Dn(C ′)
for all n and the same conclusion follows trivially.

Case 2 For all {dn(C)}∞n=1, there exists {dn(C ′)}∞n=1 which covers it.

In this case, for all C, there exists e(C) ∈ C such that µ(e(C)) = r(C).
Since m(D)/R is countable, we can enumerate it. Hence, let m(D)/R =
{Cn}∞n=1. We construct now the sequence {En}∞n=1 by induction.

Let E1 ∈ D be such that e(C1) ∈ E1. Then, for any n > 1, let E′
n ∈ D

be such that e(Cn) ∈ E′
n. If E′

n � En−1, define En = E′
n. If En−1 � E′

n,
define En = En−1. Obviously, this sequence verifies the desired properties.

Given the claim just proved, we can rename our clusters and simply state
dn(C) = en(C) for all n and C. Now, the sequences {dn(C)}∞n=1 which give
rise to the sets d∞(C) have the property that dn(C), dn(C ′) belong to the same
random system for all equivalence classes C,C ′ and fixed n, i.e. Dn(C) =
Dn(C ′). Write simply Dn = Dn(C)

Step 4 D∗ = {d∞(C) / C ∈ m(D)/R} is a random system.

By Lemma 6.6, it is clear that d∞(C) is a cluster for XI for each C ∈
m(D)/R.

Let d∞(C1), ..., d∞(CK) ∈ D∗, and let ik ∈ d∞(Ck), k = 1, ..., K. We have
to prove that xI

i1 , ..., x
I
iK

are independent.
Let n1, ..., nK be such that ik ∈ ∩∞m=nk

dm(Ck), k = 1, ..., K. Denote n =
max{n1, ..., nK}. Then, ik ∈ dn(Ck), k = 1, ..., K and dn(Ck) ∈ Dn, k =
1, ..., K. Thus, xI

i1 , ..., x
I
iK

are independent.
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Finally, it is clear that D∗ is an upper bound for the chain D. Thus, every
chain in the set of all random systems for XI has an upper bound. Existence
of randomness basis is then implied by Zorn’s Lemma. �

Remark 6.11. It is not true in general that µ(∪d∈Dd) = 1. This question will
be addressed later.

7 Classification of population extensions

We are now ready to use randomness basis to gain an insight on the possi-
ble variety of population extensions, in terms of independence and correlation.
We need some additional concepts to establish the link between the correla-
tion structure in a population extension and the individual random variables it
represents.

Definition 7.1. Let D be a randomness basis for a population extension XI .
An element d ∈ D is called idiosyncratic if d = {i}, almost idiosyncratic if
µ(d) = 0, and significant if µ(d) > 0.

Definition 7.2. Let D be a randomness basis for a population extension XI .
A representation of D is a subset M ⊂ I such that, for every i ∈ M , there
exists a unique d ∈ D such that i ∈ d, and for every d ∈ D, there exists a
unique i ∈ M such that i ∈ d. Denote D(i) = d if i ∈ d.

Remark 7.3. A representation of a randomness basis is automatically a family
of i.i.d. random variables, of the cardinality of the randomness basis. Thus, one
natural question is which is the maximum cardinality of both.

The next theorem gives a classification of the possible types of population
extensions, or, more accurately, of the associated randomness bases. Essentially,
what we see is that the complexity of a population extension can be expressed
in terms of the cardinality of the maximal sets of independent random variables
that it represents. This complexity ranges, then, from easy examples like the
Wheel Extension (cardinality 1) to fairly complex structures where this cardi-
nality is uncountable.

To complete the existence part of the classification, examples are required.
Some of them have already been presented. The remaining ones are detailed
after the proof.

Theorem 7.4. Let XI be a population extension with randomness basis D.
Then, D is necessarily of one of the following four types. Moreover, for each of
these types, there exist examples of population extensions having such random-
ness basis.

1. Finite: D is finite.

2. Essentially finite: D is countably infinite, but only a finite number of its
elements are significant.

3. Countable: D is countably infinite, and an infinite number of its elements
are significant.
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4. Uncountable: D is uncountable, but only a countable number of its el-
ements are significant. Moreover, there is no representation of strictly
positive measure.

Proof. D can be finite, countably infinite, or uncountable. Examples 3.1 and
3.2 belong to the first type. If D is countably infinite, the number of significant
elements can either be finite or countably infinite. Examples 7.5 and 7.6 show
that both cases are possible.

If D is uncountable, no representation can have positive measure to avoid FG
impossibility result. Example 7.7 shows that it is possible to have a countably
infinite number of significant elements. All what is left to do is to show that
there cannot be an uncountable number of them. But this is immediate since
m(D) must be countable by Lemma 6.7. �

Example 7.5. An essentially finite extension.
Consider any Z-extension, and afterwards endow each of the agents in { 1

n}
∞
n=1

with an i.i.d. random variable, independent also from the Z-extension. All these
agents belong to singleton idiosyncratic elements of the randomness basis, while
the remaining set is significant.

Example 7.6. A countable extension.
Choose the set of agents M = { 1

m}
∞
m=1 and apply to every interval ( 1

m+1 , 1
m ]

an independent Wheel Extension. These intervals form a countably infinite
randomness basis (with representation M), and all of them are significant.

Example 7.7. The Cantor Population Extension
Let E1

1 = ( 1
3 , 2

3 ], i11 = 2
3 . Apply to all the agents in E1 a Wheel Extension,

and remove it from I. Let E1
2 = ( 1

9 , 2
9 ], i12 = 2

9 and E2
2 = ( 7

9 , 8
9 ], i22 = 8

9 . Apply
to all the agents in E1

2 a Wheel Extension and to all the agents in E2
2 another

Wheel extension. Proceed iteratively: at each step k, define {El
k}l=1,..,k as

the (half-open) middle thirds of the intervals which remain after {El
t}

t=1,...,k−1
l=1,..,t

are removed. The set C = ∪∞k=1{i1k, ..., ikk} is obviously countable. The set D =
(0, 1]\∪∞k=1{∪k

l=1E
l
k} is, analogously to the Cantor ternary set, uncountable, and

has measure zero. Endow all agents in D with independent random variables
identical to X, and independent from those of agents in C.

This extension has an uncountable randomness basis with representation
C ∪ D. C is a countable set of representatives of significant clusters, where
D(ilk) = El

k, and D is an uncountable set of idiosyncratic representatives. The
idea which allows us to obtain an uncountable set of agents with i.i.d. random
variables is the recourse to a nowhere dense set, namely the Cantor Set. As
Theorem 5.1 shows, this is the only kind of examples which can be constructed
with an uncountable randomness basis.

8 Separated Randomness Basis

In this section, we study a particular type of population extensions which turn
out to be particularly well-behaved. In particular, we will see that randomness
basis are essentially unique, and that the clusters are itself population exten-
sions, in the sense of fulfilling the strong law of large numbers.

Given a randomness basis for a population extension, it is not guaranteed
that the joint measure of the clusters is equal to the measure of the population.
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Quite naturally, it is possible to have overlapping “sources of randomness” giving
rise to much more complicated behavior out of the clusters. This area is defined
now.

Definition 8.1. Let D be a randomness basis for a population extension XI .
The residual of XI according to D is defined as V (D) = I−∪d∈Dd. If µ(V (D)) =
0, then D is called separated.

When the residual is negligible, the population extension has a number of
appealing properties which add to the tractability of the process. The first one
is the essential uniqueness of the randomness basis.

Theorem 8.2. If a population extension XI has a separated randomness basis,
then it is unique (up to null sets), i.e. m(D) � m(D′) and m(D′) � m(D) for
any two separated randomness basis D,D′.

Proof. Let D,D′ be separated randomness basis.
Let d′ ∈ m(D′). Obviously, there exists a unique d ∈ D such that d∩d′ 6= ∅.

Since µ(V (D)) = 0, it must be d′ ⊂ d a.e. Since D′ is a maximal random system,
this also implies that d ⊂ d′ a.e., hence d = d′ up to almost inclusion. This also
holds (reciprocally) for D, and thus D = D′ up to almost inclusion. �

This property does not hold for non-separated randomness basis, as we see
in the following counterexample.

Example 8.3. A population extension without separated randomness basis.
Consider a disjoint partition of I into five intervals, called A1, A2, B1, B2, B3.

Consider six i.i.d. random variables uniformly distributed on (0, 1], and denote
their realizations by ωj , j = 1, ..., 6. Apply to each of the intervals a Z-extension
based on a random variable obtained from these six, according to the scheme:

A1 A2 B1 B2 B3
1
3 (ω1 + ω3 + ω5) 1

3 (ω2 + ω4 + ω6) 1
2 (ω1 + ω2) 1

2 (ω3 + ω4) 1
2 (ω5 + ω6)

There are two different randomness basis. The first is D = {A1, A2}, with
V (D) = B1∪B2∪B3. The second is D′ = {B1, B2, B3}, with V (D′) = A1∪A2.
Note that |D| 6= |D′|.

Another property of population extensions with separated randomness basis
is that the clusters inherit the properties of the extension, which yields a further
(partial) homogeneity result in addition to Proposition 4.3. This result is quite
intuitive. If we have two clusters, all the variables of agents in one of them
are independent of those of individuals in the second. Then the “law of large
numbers” must hold in the clusters, because if the fraction of agents obtaining
a given realization were lower than the corresponding probability in one clus-
ter, then this fraction should be larger in the second cluster, so that both add
up and the “law” is verified for the whole population. Hence we would (intu-
itively) have a correlation, which is against the definition of the clusters. This
apparently trivial fact has a non-trivial proof, due to the difficulties of linking
the independence among clusters with the fact that we have a continuum of
variables in each of them.

Theorem 8.4. Let XI be a population extension for a random variable X and
let D be a randomness basis for XI . Suppose D is separated. Then,
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µ({i ∈ d / XI
i (ω) = s}) = λs · µ(d) ∀ d ∈ D.

Proof. This property is trivial if µ(d) = 0. Hence, assume µ(d) > 0, and call
d′ = ∪{d′′ ∈ D\{d}}. By construction, d and d′ verify that, for all i ∈ d and
j ∈ d′, xI

i and xI
j are independent. Moreover, µ(d ∪ d′) = 1 and d ∩ d′ = ∅.

Consider a given realization, s, such that λ = λs > 0. By joint measurability,
the set E = x−1(s) ∩(d×Ω) is measurable in the product σ-algebra B×F . We
want to prove that, for almost all ω, µ(Eω) = λ · µ(d).

Suppose not. There exist Ω−,Ω+ ∈ F such that P (Ω− ∪ Ω+) = 1 and
µ(Eω) ≤ λ·µ(d) ∀ ω ∈ Ω−, µ(Eω) > λ·µ(d) ∀ ω ∈ Ω+. Moreover,

∫

Ω−
µ(Eω)dP (ω) <

λ · µ(d) · P (Ω−).
By Fubini’s Theorem,

∫

Ω µ(Eω)dP (ω) =
∫

d P (Ei)dµ(i) =
∫

d λdµ(i) = λ ·
µ(d). Hence, it is immediate to see that

∫

Ω−
(λ·µ(d)−µ(Eω))dP (ω) =

∫

Ω+
(µ(Eω)−

λ · µ(d))dP (ω) = η > 0.
Take ε < η and consider the approximation described in Lemma A.1 (see

Appendix A). Call E0 = E\ ∪L
l=1 (I × Fl). We have that

(µ×P )(E∆∪L
l=1(B(Fl)×Fl)) = (µ×P )(E0)+

∑L
l=1

∫

Fl
µ(Eω∆B(Fl))dP (ω) < ε.

We prove now two claims.

Claim 1 Let ρ > 0. A set A ∈ F is called ρ-homogeneous if
∫

A µ(Eω)dP (ω) =
ρ·P (A) and

∫

Ω\A µ(Eω)dP (ω) = ρ·P (Ω\A) Then, if A, B are ρ-homogeneous,
A\B is also ρ-homogeneous.

Consider the partition of Ω given by {A∩B, A\B, B\A, Ω\(A∪B)}. For
each C in this partition, call Q(C) =

∫

C µ(Eω)dP (ω). Then, from the
fact that both A and B are ρ-homogeneous we have the following system
of equations:









1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

















Q(A ∩B)
Q(A\B)
Q(B\A)
Q(Ω\(A ∪B))









= ρ ·









P (A)
P (Ω\A)
P (B)
P (Ω\B)









=









1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

















ρ · P (A ∩B)
ρ · P (A\B)
ρ · P (B\A)
ρ · P (Ω\(A ∪B))









Since the coefficient matrix is invertible, the conclusion of the first claim
follows.

Claim 2 For any i ∈ d, Ei is λ · µ(d)-homogeneous.

Since for all j ∈ d′, xI
i and xI

j are independent, P (Ei ∩ (xI
j )
−1(s)) =

λ2 ∀ j ∈ d′. Then, by Fubini’s theorem,

∫

Ei
µ({i ∈ d′ / x(i, ω) = s})dP (ω) =

∫

d′ P (Ei ∩ (xI
j )
−1(s))dµ(i) =

λ2 · µ(d′).
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By aggregate stability, λ · P (Ei) =
∫

Ei
µ({i ∈ I / x(i, ω) = s})dP (ω) =

∫

Ei
µ({i ∈ d / x(i, ω) = s})dP (ω) + λ2 · µ(d′).

It follows that
∫

Ei
µ(Eω)dP (ω) =

∫

Ei
µ({i ∈ d / x(i, ω) = s})dP (ω) =

λ2 · (1 − µ(d′)) = λ2 · µ(d) = λ · µ(d) · P (Ei), where the last equality
holds because, by individual uncertainty, P (Ei) = λ. The conclusion of
the second claim follows.

Consider now a given Fl. By construction (see Lemma A.1), there exist
{j1, ..., jn} ⊂ {i1, ..., iN} such that Fl = ((Ej1\Ej2)\...)\Ejn . Combining the
two claims above, and reasoning iteratively, it is easy to see that Fl is λ · µ(d)-
homogeneous.

This means that
∫

Fl
µ(Eω)dP (ω) = λ ·µ(d) ·P (Fl) and automatically yields

that
∫

Fl∩Ω−
(λ · µ(d)− µ(Eω))dP (ω) =

∫

Fl∩Ω+
(µ(Eω)− λ · µ(d))dP (ω) = ηl.

We evaluate now the approximation restricted to Fl× d. Let µ(B(Fl)) = al,
and let Fl(a−) = {ω ∈ Fl / µ(Eω) ≤ a}, Fl(a+) = {ω ∈ Fl / µ(Eω) > a} for
any number a. Note that

∫

Fl
µ(Eω∆B(Fl))dP (ω) ≥

∫

Fl
|µ(Eω)− al|dP (ω) =

=
∫

Fl(a−)(al − µ(Eω))dP (ω) +
∫

Fl(a+)(µ(Eω)− al)dP (ω).
Suppose that al ≥ λ · µ(d). Then, Fl(λ · µ(d)) ⊂ Fl(a−) and it follows that
∫

Fl(a−)(al − µ(Eω))dP (ω) ≥
∫

Fl(λ·µ(d))(al − µ(Eω))dP (ω) ≥
∫

Fl(λ·µ(d))(λ · µ(d)− µ(Eω))dP (ω) = ηl.
Analogously, if al ≤ λ · µ(d) then

∫

Fl(a+)(µ(Eω)− al)dP (ω) ≥ ηl.
In any case, we have that

∫

Fl
µ(Eω∆B(Fl))dP (ω) ≥ ηl.

Now consider the whole approximation:
(µ× P )(E0) +

∑L
l=1

∫

Fl
µ(Eω∆B(Fl))dP (ω) ≥

∑L
l=1 ηl =

∑L
l=1

∫

Fl∩Ω+
(µ(Eω)− λ · µ(d))dP (ω) =

∫

Ω+
(µ(Eω)− λ · µ(d))dP (ω) = η, a

contradiction. �

9 Applications

9.1 Approximately idiosyncratic risk

A model for risk is always based on a fixed random variable, x, e.g. the probabil-
ity of having an accident. A population extension of X provides an immediate
large population model for such risk framework, exhibiting the essential features
one expects to capture. For example, Proposition 4.3 implies that, for a large
number of traders, equal sharing of resources is a Core Allocation (defined as
an allocation such that no measurable coalition would be prefer another one in
expected terms).

The only thing we have renounced to, if a population extension is used to
model risk in a large population, is full independence. While admittedly this
could be unacceptable for some extreme situations, for many others, if indepen-
dence is important at all, it would be enough to assume that correlation is small
enough. The following theorem shows in which sense can this be formalized.

Theorem 9.1. Given a simple random variable X and given ε > 0, there exist
population extensions XI with regular randomness basis such that, for every
agent i,

19



µ({j ∈ I / xI
i , x

I
j are not independent}) < ε.

Proof. Take n ∈ N such that 1
n < ε and apply an independent Z-extension to

every interval ( k
n , k+1

n ], k = 0, ..., n− 1. �

Al-Najjar [2] constructs “finite-characteristic economies” where all the agents
in pre-specified intervals obtain exactly the same realization. Thus, the intervals
are actually atoms and the economies are easily reinterpreted as economies with
a finite number of agents. Aggregate stability (“a law of large numbers”) is
obtained as a limit result as the size of the intervals approaches zero, although
for any fixed finite-characteristic economy, the aggregate stability (“law of large
numbers”) condition is false.

Theorem 9.1 is unrelated to Al-Najjar’s. It provides economies where agents
obtain correlated but not identical realizations inside each of a number of inter-
vals. Thus, these economies cannot be reinterpreted as economies with a finite
number of agents. Moreover, for each ε > 0, the aggregate stability condition
holds exactly. There is no need to reinterpret the result in terms of limits. The
role of ε here is radically different. If the measure of the elements of a random-
ness basis is interpreted as the size of “correlation areas”, i.e. the clusters, then
they would be a measure of the correlation in the economy. Thus, the theorem
states that this measure can be made arbitrarily small.

9.2 Random Matching and other dynamic models

Random matching processes are a quite complex application of continuum fam-
ilies of random variables. It might seem that a random matching process could
simply be viewed as a family of independent random variables, whose realiza-
tions are interpreted as the random name of the partner. This is not true
because such variables could not be independent. If agent i is matched with
agent j, then agent j has to be matched with agent i.

If agents can be of a finite number of types, then three properties are usually
needed in economic applications. Firstly, for any given agent, the probability of
being matched to agents of a certain type equals the proportion of such agents
in the population. Secondly, the fraction of matches between agents of two
given types equals the product of the population proportions of these two types
(twice for different types). Thirdly, the probability of any two fixed agents to
be matched is zero.

In Alós-Ferrer [5], it is shown that there exist random matching processes
for a continuum of individuals, satisfying these properties. The key for the
construction is to consider a random variable X taking values on the set of
types such that the probability of each type equals the proportion of agents of
such type, and then construct a family of random variables which actually can
be reinterpreted now as a population extension of X. The realizations of this
population extension are interpreted as the type of the future partners, and then
it is shown that this information is enough to construct a probability space on
true matchings.

As a final example, consider Harrington [11]. A continuum of agents of
different types are randomly matched each period. Additionally, agents face
the realization of an environmental stochastic element (favorable or adverse
environment, for instance) each period. Then, a law of large numbers is used
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to write down deterministic equations which characterize the evolution of the
population.

In terms of population extensions, this model is now easy to understand.
Random matching proceeds as explained above. Additionally, there exists a
population extension of the random variable which determines the environment.
Both elements give exact results, and hence are easily repeated in time. The
whole dynamical system is easily constructed, and deterministic equations are
indeed the result.

10 Concluding Remarks

We have shown that population extensions display enough regularities to provide
a tractable framework for the study of stochastic mass phenomena in economics.
The joint measurability condition provides analytical tractability, including the
convenient consequence (Theorem 4.3) that the unavoidable pathologies cancel
out in the aggregate. The individual uncertainty condition allows us to incorpo-
rate the usual models into this framework in a straightforward way. The lack of
aggregate uncertainty reflects our desire to study population situations where
aggregative effects are indeed observed.

In the framework of a population extension, full independence is necessar-
ily lost (Theorem 8.4). Instead, potentially complex patterns of independence
and correlation appear. Randomness bases are a first tool for the classification
and understanding of what these patterns are. The fact that they always ex-
ist, as proven in Theorem 6.10, guarantees their usefulness. Its uniqueness in
the class of population extensions with separated randomness basis allows the
identification of the randomness basis with the population extension.

The two properties illustrated for population extensions with separated ran-
domness basis (uniqueness of the randomness basis and cluster-homogeneity)
single out this class of population extensions as a powerful modeling tool for
economics.

The study of the residual is left for future research. While it is clear that
we could ignore it and concentrate on separated randomness basis for most
economic models, the possibilities opened by its appearance are, at the very
least, intriguing.

Which is the relevance of population extensions for theoretical economists?
The aim has been to provide and study a tractable framework for modeling pur-
poses. Suppose a researcher wants to study an individual uncertainty situation
in a large population framework. Then, the first step is to model this uncer-
tainty by a random variable X. The second step is now simply to postulate
a population extension of X, and the researcher has automatically a tractable
model (where Fubini-type results hold) with individual uncertainty cancelling
out exactly on aggregation. Not only that, but the sets of agents facing a given
realization are measurable, allowing for the construction of dynamical systems
where the measures of those sets are the relevant variables. The researcher can
then regard the population extension as a convenient “black box,” which, like
reality, may exhibit varying degrees of internal complexity while still capturing
the features that the researcher was interested in.
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A The approximation of measurable sets

The following technical property is used twice in the main text.

Lemma A.1. Let (I,B, µ)and (Ω,F , P )be measurable spaces, and let E ∈ B×F .
Then, for all ε > 0,

1. there exist N ∈ N, B1, ..., BN ∈ B pairwise disjoint, and G1, ..., GN ∈ F
such that (µ× P )(E∆ ∪N

n=1 (Bn ×Gn)) < ε

2. furthermore, it can be assumed that, for each n = 1, ..., N , there exists
in ∈ Bn such that Gn = Ein = {ω / (in, ω) = s} = (xI

i )
−1(s)

3. there exist F1, ..., FL ∈ F pairwise disjoint such that ∪N
n=1(Bn × Gn) =

∪L
l=1(B(Fl)× Fl), where B(Fl) = ∪{Bn / Fl ⊂ Ein}.

Proof. The first part is a consequence of Halmos [10, S.13, Theorem D], tak-
ing into account that B × F is generated by the class of all finite, disjoint
unions of rectangles. The sets B1, ..., BN are ensured to be disjoint by ap-
propriate refining. The third part is then easy, and the Fl are obtained as
Fl = ((Gj1\Gj2)\...)\Gjm for appropriate {j1, ..., jm} ⊂ {1, ..., N}.

To see the second part, take the approximation prescribed by the first one
for ε

3 , and define
En=(E ∩ (Bn × Ω)), E0=E\((∪N

n=1Bn)× Ω). Note that E = ∪N
n=0En.

εn = (µ× P )(En∆(Bn ×Gn)) =
∫

Bn
P (Ei∆Gn)dµ(i)

ε0 = (µ× P )(E0)
Then,

∑N
n=0 εn = ε

3
Given n ∈ {1, ..., n}, then there exists in ∈ Bn such that P (Ein∆Gn) ≤

2εn
µ(Bn) . If not,

∫

Bn
P (Ei∆Gn)dµ(i) ≥ 2εn, a contradiction. Consider Bn × Ein .

The symmetric difference operator verifies that, for any three sets A,B,C,
A∆C ⊂ (A∆B) ∪ (B∆C). Using this property, En∆(Bn × Ein) ⊂ (En∆(Bn ×
Gn)) ∪ ((Bn ×Gn)∆(Bn × Ein)). Hence,

(µ× P )(En∆(Bn × Ein)) ≤ (µ× P )(En∆(Bn ×Gn))+
(µ× P )(Bn × (Gn∆Ein)) = εn + µ(Bn) · P (Gn∆Ein) ≤ 3εn

Then, (µ× P )(E∆ ∪N
n=1 (Bn × Ein)) =

(µ× P )(E0) +
∑N

n=1(µ× P )(En∆(Bn × Ein)) ≤ ε0 + 3
∑N

n=1 εn ≤ 3 ε
3 = ε.

All what is left is to rename Gn = Ein . �

B A non-measurable extension

Consider a random variable X taking the values 0, 1 with probability 1
2 . Fol-

lowing Judd [12], we can show that,8 given an interval, there exists a family of
i.i.d. random variables identical to X, indexed on that interval, and such that,
with probability one in the appropriate probability space, the measure of the
agents rolling 0 in that interval is r, for any r in [0, 1]. We call such a family an
r-family.

Take a partition of (0, 1] into six intervals of measure 1
6 , A1, ..., A6. Individ-

uals in C1 = A1 ∪ A2 ∪ A3 will obtain realizations according to the following
procedure. First, roll k = 1, 2, or 3, each with probability 1

3 . Then, assign to
8This result is more general than the one proved by Judd, but the proof is totally analogous.
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the agents in Ak an r-family of random variables, with r = 1. Apply to the
union of the other two intervals a wheel extension. Do exactly the same for
C2 = A4 ∪ A5 ∪ A6, but taking r = 0. Then, C1 is a cluster of agents, each of
them having probability 1

2 of rolling a 0, but such that the measure of agents
rolling a 0 is always 1

3 . Analogously, C2 is a cluster where this measure is 1
6 .

Thus, the total measure is always 1
2 , and we have a population extension with

a separated randomness basis, but the associate constants for the clusters are
not 1

2 , but 2
3 and 1

3 .
Of course, this contradicts Theorem 8.4, a fact which shows that this “pop-

ulation extension” fails to be jointly measurable.
This example is created through a trick. Embedding a continuum of i.i.d.

random variables in the construction, the relevant sets of realizations (in this
case, those such that 1

3 or 2
3 of the agents obtain 0) turn out to be non-

measurable in such a way that a new probability space can be created by
assigning to them any measure we please. Obviously, the existence of such
“pathological” extensions is more a technical problem than a conceptual one.
Joint measurability excludes these examples.
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