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Abstract

Aggregate labor productivity used to be strongly procyclical in the United States, but
the procyclicality has largely disappeared since the mid-1980s. This paper explores the
industry-level evidence in order to discriminate between existing explanations of the vanish-
ing procyclicality of the labor productivity.

I document the change in the cyclical properties of productivity in the U.S. using
industry-level data and focus on a particularly puzzling feature, namely that the correla-
tions of the industry productivity with industry output and labor input remained on average
much more stable before and after the mid-1980s compared to the aggregate correlations.
In other words, there is little evidence for the vanishing cyclicality of labor productivity at
the industry level.

I construct a simple industry-level RBC model that nests two leading explanations of
the vanishing cyclicality of productivity that have been proposed in the literature. I show
that the two explanations have qualitatively different predictions for the cyclical properties
of industry-level variables. The mechanism based on a structural change in the composition
of aggregate shocks is able to replicate the stability of industry-level moments across time.
In contrast, the mechanism based on increased labor market flexibility is less successful in
matching the industry-level evidence.
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1 Introduction

Macroeconomists tend to think about business cycle fluctuations in terms of fixed relation-

ships that generate stable co-movement patterns between economic variables. However, the

nature of business cycle fluctuations in the U.S. have changed over the last 70 years. The

procyclicality of aggregate labor productivity used to belong to the most strongly documented

stylized facts in macroeconomics, but recent studies show it has largely disappeared.

In the 1980s, the robust empirical evidence on procyclical productivity actually led to the

emergence of the real business cycle theory, in which the fluctuations of productivity are the

driving force behind business cycles. The concept of productivity fluctuations as one of the driv-

ing forces behind macroeconomic fluctuations still continues to be influential in both academic

and applied economics today.

However, more recent literature, including e.g. Stiroh (2009) and Gaĺı and Gambetti (2009),

pointed out that the procyclicality of measured aggregate productivity has largely disappeared

since the mid-1980s. This observation challenges the validity of business cycle models based on

the exogenous fluctuations of productivity, and more generally the validity of macroeconomic

models which generate procyclical productivity exogenously or endogenously. Finding a sound

explanation of the change in the co-movement patterns is of crucial importance for the correct

identification of sources of business cycle fluctuations, and thus has implications for economic

theory and policy. Numerous potential explanations of the vanishing procyclicality of produc-

tivity have been proposed in the macroeconomic literature, ranging from changes in cyclical

measurement errors of production inputs and outputs (e.g. Gaĺı and van Rens 2019, Berger

2018, Garin et al. 2018, Nucci and Riggi 2013, and McGrattan and Prescott 2010) to structural

changes in composition of shocks and their effects on the economy (e.g. Gaĺı and Gambetti

2009, Barnichon 2010, and Yépez 2017).

In this paper I contribute to the discussion by bringing in industry-level evidence, which

I argue can help to discriminate between various explanations of the vanishing procyclicality

of labor productivity. I first document the change in cyclical properties of productivity in the

U.S. using industry-level data, which to my knowledge was only previously considered by Wang

(2014). I use the dataset constructed by Dale Jorgenson and his co-authors (Jorgenson, 2008),

which contains information about the U.S. economy between 1960 and 2005 disaggregated into

88 industries. My empirical observations are broadly in line with Wang (2014) but my focus is

on documenting a particularly puzzling feature of the industry-level data: the correlations of

industry productivity with industry output and labor input remained on average much more

stable before and after the mid-1980s compared to the aggregate correlations. In other words,

there is little evidence for vanishing pro-cyclicality of labor productivity at the industry level.

At the same time, the change in composition of industries explains only a small part of the

reduction of procyclicality of measured productivity. Instead, the majority of the decrease in

correlations between aggregate productivity and output (resp. hours) can be attributed to the

change in co-movement across industries.

After establishing these empirical observations I construct a simple industry-level RBC

model that nests several explanations of the vanishing cyclicality of productivity proposed in

the literature. I use the model to evaluate whether the proposed mechanisms are compatible
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with the industry-level evidence. Despite its simplicity, the model can qualitatively replicate the

changes in the cyclical co-movement of measured aggregate productivity and other macroeco-

nomic variables through two distinct mechanisms. The procyclicality of aggregate productivity

in the model, measured in terms of correlations with labor input and output, decreases when

the relative size of aggregate demand side shocks decreases compared to technology shocks, as

suggested e.g., in Barnichon (2010). The procyclicality of aggregate productivity also decreases

when the observed labor input (hours) becomes more flexible in comparison to the unobserved

labor input margin (effort), as suggested in, for example, Gaĺı and van Rens (2019).

Although both mechanisms are able to reduce the correlations of aggregate productivity

with output and labor input, I show that they have qualitatively different predictions for the

cyclical properties of industry-level variables. Within my model framework, the mechanism

based on a structural change in the composition of aggregate shocks is able to replicate the

stability of industry-level moments across time. In contrast, the mechanism based on a change

in the flexibility of hours is less successful in matching the industry-level evidence.

It is important to mention that the change in the cyclical properties of labor productivity

did not appear in isolation. Other potentially related changes appeared roughly at the same

time, in the period referred to as the Great Moderation. The volatility of both aggregate

output and labor input decreased in mid-1980s (McConnell and Perez-Quiros, 2000), while

the relative volatility of aggregate hours compared to output increased (Gaĺı and Gambetti,

2009). The recoveries during the last three decades were untypically slow (Gaĺı et al., 2012). In

addition, there is some discussion on whether the lead-lag structure of employment and output

has changed. After the three most recent recessions, some studies argued that in comparison

to output, it took a relatively long time for employment to start recovering, an observation

referred to as jobless recoveries; see e.g. Bernanke (2009), Jaimovich and Siu (2012), Berger

(2018).

The rest of this paper is organized as follows: in the remainder of this section, I describe the

relationship of the paper to the existing literature. I present the empirical findings in section

2. Section 3 describes the model. In section 4 I present the quantitative results and discuss the

intuition behind these results in sections 5 and 6. Section 7 concludes.

1.1 Relationship to the existing literature

The analysis in this paper complements the extensive body of theoretical and empirical

literature on change in cyclicality of U.S. labor productivity starting from Stiroh (2009) and Gaĺı

and Gambetti (2009). The previous studies have documented a robust decline in correlations

between measured aggregate productivity and aggregate output, resp. production inputs across

the two time periods: first, the post-war period between 1950 and mid-1980s which I refer to as

pre-1984 period and second, the post-1984 period from 1984 to up to 2015, where the end date

depends on data availability.1 Extensive empirical analyses have been conducted by Fernald

and Wang (2016), Wang (2014), and Daly et al. (2017) among others.

1I choose the breaking point between the two sub-periods in line with the rest of the literature to be the
beginning of 1984.
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Fernald and Wang (2016) provide an overview of the existing explanations of vanishing

cyclicality of productivity and analyse the empirical evidence related to a wide range of these

explanations. They make several important points based on the quarterly U.S. data series

developed by Fernald (2014). Using the identification strategy based on Basu et al. (2006),

Fernald decomposes the measured productivity series into factor utilization component and

utilization-adjusted TFP, a purified measure of productivity which in theory more closely reflects

the true technological progress. Fernald and Wang (2016) find that (1) utilization-adjusted TFP

was never really pro-cyclical before the mid-1980s, and it remained so,2 (2) factor utilization

was the procyclical component of measured productivity before the mid-1980s and it stayed

procyclical,3 and (3) the relative volatility of factor utilization compared to utilization-adjusted

TFP substantially decreased in the period after 1984. The major part of the drop in cyclicality

of measured productivity is explained by the decrease in volatility of the utilization component.

Fernald and Wang stress that any theory aspiring to explain the vanishing procyclicality of

aggregate productivity must necessarily be consistent with these three observations.

Wang (2014) is, to my knowledge, the only other paper analysing the industry-level evidence

on vanishing cyclicality of productivity. Wang uses an alternative data set, 31 industry U.S. data

published by World KLEMS (2010). The moment statistics reported by Wang are consistent

with my own computations, however, the interpretation of the observed facts differs in some

cases. Most noticeably, I stress that the correlations of industry-level productivity with industry-

level output and labor input remained on average much more stable between and after 1984

compared to the aggregate correlations. Indeed, Wang (2014) also decomposes the aggregate

correlations into the contribution of within-industry and cross-industry correlations and finds

that the vast majority of actual change in the aggregate correlations comes from the cross-

industry terms. She subsequently normalizes the contribution of the cross-industry terms by

the disproportionally high number of cross-industry pairs and concludes that per industry pair,

the contribution of within-industry changes is more important. I argue in this paper that there

is no theoretical justification for such normalization and provide a model that illustrates the

relationship between the industry-level and aggregate correlations from a new perspective.

I loosely follow Fernald and Wang (2016) in classifying the explanations proposed in the

literature into mechanisms based on (1) systematic measurement errors of inputs or outputs

and (2) other structural explanations.

The first group of explanations is based on some kind of cyclical measurement error of inputs

or outputs. There would be no change in cyclicality of measured productivity if all the inputs

and outputs were exactly accounted for. The mechanism that has attracted perhaps the most

attention is based on the change in the efficiency of labor markets. Gaĺı and van Rens (2019)

argue that an improvement in the labor market matching technology effectively made adjusting

the labor force less costly, which made firms rely less on adjusting unobservable intensive margins

of production (such as labor utilization in form of unobserved labor effort, imperfectly measured

overtime hours, or capital utilization) and more on adjusting the number of employees.4 Gaĺı

2If anything, utilization-adjusted TFP became more correlated with inputs and outputs after the mid-1980s,
not less correlated.

3The correlation of the utilization measure with labor input actually decreased for brief periods between 1990
and 2005, but the effect is less important than the drop in the volatility of factor utilization component.

4The idea goes back to a literature, starting with Oi (1962) and Solow (1964), which attributes the procycli-
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and van Rens stress that this mechanism is simultaneously able to explain another change in

the nature of macroeconomic fluctuations, namely the increase in relative volatility of aggregate

hours compared to aggregate output. The basic idea behind the mechanism, which I also

integrate into the model and explore in this paper, is described in Gaĺı and van Rens (2019,

pages 2-3) as follows:

Suppose that firms have two margins for adjusting their effective labor input: (observed)

employment and (unobserved) effort, which are denoted (in logs) by n and e, respectively.5

Both margins of labor input are transformed into output according to a standard production

function,

y = (1− α)(n+ e) + a, (1)

where a is log total factor productivity and α is a parameter measuring diminishing returns to

labor. Measured labor productivity, or output per worker, is given by

y − n = −αn+ (1− α)e+ a. (2)

Labor market frictions make it costly to adjust employment n. Since these adjustment costs

are convex, frictions are higher when the average level of hiring is higher. Effort provides an

alternative margin of adjustment of labor input and is not subject to those frictions (or to

a lesser degree). Thus, the larger the frictions, the less employment fluctuates and the more

volatile are fluctuations in effort. Reduced hiring frictions decrease the volatility of effort and

therefore increase the relative volatility of employment with respect to output. The increased

volatility of n also makes labor productivity less procyclical, and, in the presence of shocks

other than shifts in technology, may even make productivity countercyclical.

Other papers featuring similar mechanisms include Barnichon (2010), Lewis et al. (2018),

Evans (2019) and Nucci and Riggi (2013). An alternative channel through which higher flexi-

bility in the labor markets may have played a role is that firms might be able to better identify

less productive workers and lay them off more selectively during bad times. Berger (2018)

suggests that this can explain both the good performance of labor productivity in recessions

and the slow recovery of employment afterwards. Although there is no unmeasured labor input

margin present in this mechanism, the heterogeneous workers’ quality creates a wedge between

observed and effective labor input. The implications from my model can not directly speak

to the mechanism proposed by Berger, but it is likely that increased selective hiring, similar

to other explanations based on the labor market flexibility, would also generate substantial

changes at the industry level. Riggi (2019) proposes another alternative mechanism based on

efficiency wages that is able to generate countercyclical work effort if firms imperfectly detect

shirking workers. An improvement in monitoring possibilities of firms in her model can gener-

ate a decrease in the correlation between measured productivity and labor input. However, the

volatility of labor utilization in this case increases, which is not in line with the observations

made by Fernald and Wang (2016).

Another idea connected to the systematic measurement errors that my model does not

cality of productivity to variations in effort, resulting in seemingly increasing returns to labor.
5To simplify the argument, we assume hours per worker are constant, consistent with the observation that in

the US data most adjustments in total hours worked take place along the extensive margin.

5



directly address is that the growing importance of intangible investment might have led to

systematic errors in measurement of output; see McGrattan and Prescott (2010), McGrattan

(2017). To the extent that intangible investment activity is procyclical, measured productiv-

ity may have become less correlated with measured output if intangible output became more

important.

However, the higher share of unmeasured intangible investment in output also does not

explain why the volatility of the factor utilization component constructed by Fernald (2014)

became less volatile compared to the utility-adjusted TFP. The factor utilization component is

identified based on the fluctuations of observed hours per worker, a margin that is not directly

affected by the share of intangible investment. Thus, the mechanism is not in line with the

empirical observations made by Fernald and Wang (2016). Moreover, Wang (2014) uses the

observed intensity of ICT-investment at industry level as a proxy for the intangible investment,

assuming complementarity between the two margins. Wang finds little evidence that intangible

investment explains the decline in cyclicality of measured productivity. Nevertheless, one must

stress that assessing the role of intangible investment inherently suffers from data limitations, as

intangible investment activities are hard to measure. McGrattan (2017) makes a considerable

contribution in this respect by improving the existing industry-level datasets to better reflect

the increasing importance of intangible investment.

A further mechanism that gives rise to a wedge between measured and actual productivity

at aggregate and industry level is reallocation. Garin et al. (2018) suggest that procyclical

reallocation became much more prominent since the mid-1980s due to the increased importance

of industry-specific shocks documented, for example, by Foerster et al. (2011). Although I also

analyse the role of changing importance of aggregate shocks, my model does not feature any

reallocation friction. Fernald and Wang (2016) argue that the reallocation component also does

not enter the factor utilisation term, making it an unlikely main driver of vanishing cyclicality of

aggregate labor productivity. However, this mechanism could have contributed to the observed

changes.

Lastly, it is clear that the U.S. economy has undergone substantial changes in composition

over the last 70 years. Carvalho and Gabaix (2013) have argued that a substantial part of the

decrease in variance of macroeconomic variables in the Great Moderation can be explained by

the changes in composition of industries. However, in line with Wang (2014) I show in section 2

that the changes in composition only explain a minor part of the observed change in cyclicality

of measured productivity.

The second broad group of explanations has related the observed changes in the cyclical be-

haviour of macroeconomic variables more directly to structural changes. These include changes

in relative importance of various types of shocks, or the way in which the shocks affect the

economy.

Numerous studies have identified a change in the size and composition of different types of

shocks after the mid-1980s. Some authors argued that the Great Moderation can be accounted

to good luck (Justiniano and Primiceri 2008, Arias et al. 2007). Others have attributed the

changes to a different policy conduct or changing structure of the economy in general; see e.g.

Clarida et al. (2000), Kahn et al. (2002), Gaĺı and Gambetti (2009), Dynan et al. (2006), Yépez
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(2017).

Barnichon (2010) and Gaĺı and Gambetti (2009) connect the vanishing cyclicality of pro-

ductivity to the observation that aggregate demand shocks have become less volatile relative to

aggregate technology shocks after the mid-1980s. Different types of shocks, for example technol-

ogy or monetary policy shocks, naturally affect the measured productivity differently. Because

the responses of macroeconomic variables to various shocks depend on the model framework,

the effect of changes in shock composition on the cyclicality of productivity can only be studied

within a given model. Both empirically and within a typical New-Keynesian model framework,

technology improvements raise the measured productivity but cause hours to contract in the

short run; see e.g. Gaĺı (1999). Therefore, greater importance of technology shocks implies that

the share of utilization-adjusted TFP in the measured productivity grows and, simultaneously,

that the correlation of measured productivity with inputs decreases. This is also the case in my

model, which features both demand side and technology aggregate shocks.

In the remainder of this paper, I concentrate on the two most prominent mechanisms from

both strands of the literature, the labor market flexibility explanation and the shock composition

explanation. I build an industry-level model that, in a simple form, nests the mechanisms from

Gaĺı and van Rens (2019) and Barnichon (2010). I replicate the aggregate implications of these

papers and compare their industry-level predictions with the evidence.

In order to keep the main insights of my paper intuitive and tractable, I keep the industry

structure of the economy as simple as possible. I abstract from using the realistic industry

composition and the input-output linkages between industries. Nevertheless, it is important

to mention that this simplification is not completely innocuous. A rich literature documents

the important role of industry structure and the input-output linkages for generating realistic

co-movement patterns between the industry-level economic variables; see e.g. Horvath (2000),

Dupor (1999), Acemoglu et al. (2012), Holly and Petrella (2012), Atalay (2017). The industry

structure also influences the extent to which industry-specific shocks propagate across industries,

and therefore determines the relative importance of aggregate and industry-specific shocks nec-

essary to generate the realistic economic fluctuations at both the industry and aggregate level.

For this reason, my model is not able to generate the realistic co-movement patterns observed

across industries in the U.S. economy. Moreover, the importance of industry-specific shocks in

generating aggregate fluctuations might be underestimated in my model.

2 Empirical evidence: Changes in cyclicality of productivity at

the aggregate and industry level

In this section I present the empirical evidence on the change in cyclicality of measured pro-

ductivity and other macroeconomic variables in the U.S. in the periods before and after 1984.

I first introduce the data source and show that the aggregate moments constructed using the

data are consistent with the findings in the existing literature. I then continue by analysing the

industry-level evidence. I find that the industry-level correlations remained on average much

more stable across the two time periods compared to the aggregate correlations. I analyse the

effect of industry composition and find that it only contributed a minor part of the observed

7



changes of aggregate correlations. In order to shed more light on these seemingly inconsis-

tent industry-level observations I decompose the aggregate correlations into the contribution of

within-industry and cross-industry correlations and find that the vast majority of the actual

change in aggregate correlations comes from decreased co-movement across industries.

2.1 Data

The primary data source that I use is the KLEMS growth accounting data set developed by

Dale Jorgenson and his co-authors (Jorgenson 2008). The data set provides annual information

on capital, labor and intermediate inputs and outputs of the U.S. economy between 1960 and

2005 disaggregated into 88 industries. Most of the literature so far has focused on analysing

aggregate-level data, such as from the BLS Labor Productivity and Cost (LPC) program, which

are available at higher frequency, but do not contain industry-level information. In line with

the literature I focus on the private business sector which consists of 77 industries.

I use the standard bottom-up KLEMS methodology in order to construct the aggregate

series from the industry-level data; see e.g. Timmer et al. (2007). I also rely on the KLEMS

methodology for computing the two standard measures of productivity: labor productivity and

total factor productivity (TFP). I thus define the measured labor productivity as value added

per effective hour and measured TFP as the usual Solow residual.6 While most of the existing

literature reports results for both measured labor productivity and TFP, Wang (2014) argues

for focusing on TFP as a cleaner measure of productivity.

The measure of labor input reported in Jorgenson’s dataset is effective hours. Effective

hours are defined as total hours adjusted for the composition of the workforce, taking into

account some observable characteristics (education, age and gender). The details describing the

construction of data series and the moments are provided in Appendix A.

2.2 Change in cyclicality of aggregate productivity

Previous literature has documented significant differences in cyclicality of productivity in

the U.S. between periods pre- and post-1984. The correlation of measured aggregate labor pro-

ductivity with output went from strongly procyclical to acyclical, while correlation of measured

aggregate labor productivity with labor input went from weakly procyclical to countercyclical.

The aggregate stylized facts computed from the industry-level Jorgenson data set are consistent

with these observations: various measures of cyclicality of aggregate productivity have substan-

tially decreased since the mid-1980s. Figure 1 plots the annual growth rates of aggregate value

added, hours, and labor productivity constructed from the Jorgenson data.

To document the aggregate changes, I compute four correlations: between measured aggre-

gate labor productivity (LP ) resp. total factor productivity (TFP ) and aggregate value added

(V A) resp. hours (H). I compute each of the correlations using four different detrending meth-

ods. I use growth rates (first differences), Christiano-Fitzgerald band-pass filter that isolates

the frequencies between 2 and 8 years, and Hodrick-Prescott filter with smoothing parameters

6My measure of TFP at both aggregate and industry level is value added-based, not gross output-based Solow
residual. The difference between the two measures only affects the scaling of the productivity series.
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Figure 1: Aggregate variables constructed from industry-level Jorgenson (2008) data set: annual
growth rates of value added, hours, and labor productivity.

λ = 100, resp. λ = 6.25.7

Table 1 reports the cyclical correlations for the two time periods of interest. The correlation

of measured aggregate labor productivity with hours decreased sharply from weakly procyclical

to strongly countercyclical, with the difference between the two sub-periods ranging from −0.58

to −0.85 depending on the detrending method. The correlation of labor productivity with

output decreased from procyclical to basically acyclical, with the difference ranging between

−0.29 and −0.58. The table also shows that measured TFP is consistently more procyclical

than labor productivity. This is not surprising, as capital is relatively rigid compared to labor

input and capital intensity is thus countercyclical. The important observation is that even

though measured TFP is in general more procyclical than labor productivity, its cyclicality

also decreased substantially between the two sub-periods, and the magnitude of the change is

comparable with the cyclicality of labor productivity.

The correlations are qualitatively in line with the previous literature. Correlations of pro-

ductivity measures with output are directly comparable to Wang (2014), who also uses annual

industry-level data set to construct the moments. Correlations are quantitatively in line with

Wang for most of the filtering methods, with minor differences attributable to the difference

in the sample lengths. The comparison of my results with the correlations reported in Wang

(2014) and the correlations based on quarterly aggregate data reported by Gaĺı and van Rens

(2019) is provided in Appendix B.

I omit the computation of standard errors for the aggregate second moments. The statistical

significance of the observed changes has been tested multiple times by the previous studies using

the quarterly data. The annual data set I work with contains fewer observations, hence the

statistical significance at the aggregate level is weaker. However, the purpose of this exercise is

to confirm the consistency with the existing empirical observations, not to provide new evidence

on changing aggregate correlations.

Table 2 reports another important set of moments, standard deviations and relative standard

7Both values of the smoothing parameter have been used in the literature to which I relate.
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1960-2005 1960-1983 1984-2005 Difference

corr(TFP, VA)
First Diff. 0.72 0.85 0.46 -0.39
CF 0.82 0.85 0.70 -0.14
HP par=100 0.68 0.86 0.15 -0.71
HP par=6.25 0.76 0.85 0.40 -0.45

corr(TFP, H)
First Diff. 0.22 0.52 -0.27 -0.79
CF 0.45 0.56 0.08 -0.48
HP par=100 0.23 0.61 -0.46 -1.06
HP par=6.25 0.37 0.60 -0.26 -0.86

corr(LP, VA)
First Diff. 0.32 0.49 0.11 -0.37
CF 0.40 0.49 0.20 -0.29
HP par=100 0.31 0.57 -0.01 -0.58
HP par=6.25 0.29 0.47 -0.03 -0.50

corr(LP, H)
First Diff. -0.29 0.04 -0.63 -0.66
CF -0.10 0.10 -0.49 -0.58
HP par=100 -0.23 0.20 -0.64 -0.85
HP par=6.25 -0.21 0.11 -0.67 -0.78

Table 1: Cyclical correlations between selected productivity measures and output, resp. hours.
Comparison pre- and post-1984. Each correlation is computed using four different detrending
methods.

Standard deviation 1960-2005 1960-1983 1984-2005 Difference

Value added (V A) 2.25 2.73 1.62 -1.12
Hours (H) 2.23 2.39 2.06 -0.33
std(H)/ std(V A) 0.99 0.87 1.27 0.40
std(TFP )/ std(V A) 0.63 0.58 0.71 0.13

Table 2: Volatility (in percent) and relative volatility of selected aggregate variables. Compar-
ison pre- and post-1984. Moments computed for growth rates of the variables.

deviations of selected aggregate variables, reported for the growth rates. In line with the existing

literature I find that while both volatility of output and hours has decreased, the relative

volatility of aggregate hours compared to output has increased between the two sub-periods.

The comparison with the moments reported in Gaĺı and van Rens (2019), as well as results for

other detrending methods, are provided in Appendix B.

2.3 Industry evidence

This section reports the moments at the industry level. Table 3 displays the correlations

analogous to table 1, but instead of aggregate correlations it displays weighted averages across

the 77 industry-level correlations. The correlations are weighted by industry nominal output

shares in the pre-1984 period. However, the results reported in table 3 are robust with respect

to alternative choices of weights.

The industry-level results in table 3 differ qualitatively from the patterns observed for the
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1960-2005 1960-1983 1984-2005 Difference

corr(TFP, VA)
First Diff. 0.80 0.81 0.79 -0.02
CF 0.82 0.81 0.84 0.03
HP par=100 0.78 0.79 0.76 -0.04
HP par=6.25 0.81 0.81 0.81 0.01

corr(TFP, H)
First Diff. -0.10 0.00 -0.21 -0.21
CF -0.02 0.08 -0.11 -0.19
HP par=100 -0.14 -0.03 -0.27 -0.24
HP par=6.25 -0.06 0.05 -0.17 -0.22

corr(LP, VA)
First Diff. 0.73 0.73 0.71 -0.02
CF 0.72 0.71 0.74 0.02
HP par=100 0.72 0.71 0.70 -0.01
HP par=6.25 0.72 0.71 0.71 0.00

corr(LP, H)
First Diff. -0.30 -0.22 -0.40 -0.18
CF -0.23 -0.13 -0.32 -0.19
HP par=100 -0.32 -0.22 -0.42 -0.21
HP par=6.25 -0.27 -0.16 -0.38 -0.21

Table 3: Average industry-level cyclical correlations between selected productivity measures
and output, resp. hours. Weighted averages using constant industry weights over time: average
nominal output share between 1960 and 1983. Comparison pre- and post-1984. Each correlation
is computed using four different detrending methods.

aggregate correlations. On average, the correlation of measured industry productivity with

industry output stayed virtually unchanged for both measures of productivity. Although there is

on average a decrease in the correlations between industry productivity and industry hours, the

difference between the two sub-periods is much smaller compared to the aggregate correlations.

Moreover, table 4 shows that the average relative volatility of industry hours in comparison to

industry output stayed virtually unchanged. This striking difference between the industry-level

and aggregate correlations is the main motivation for conducting an analysis of the changes in

cyclicality of productivity using the industry-level evidence.

Because the moments reported in tables 3 and 4 are crucial for the remainder of this paper,

I briefly discuss their robustness. Complementary evidence is reported in Appendix B. Firstly,

the stable industry-level correlations are not an artefact of the particular choice of weighting.

Standard deviation 1960-2005 1960-1983 1984-2005 Difference

Value added (V A) 7.82 8.02 7.62 -0.40
Hours (H) 4.79 5.04 4.33 -0.71
std(H)/ std(V A) 0.61 0.63 0.57 -0.06
std(TFP )/ std(V A) 0.92 0.92 0.93 0.01

Table 4: Average volatility (in percent) and average relative volatility of selected industry-level
variables, growth rates. Weighted averages using constant industry weights over time: average
nominal output share between 1960 and 1983. Comparison pre- and post-1984.
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Figure 2: Correlations between measured industry TFP and value added (left) resp. hours
(right). Comparison pre-1984 (x-axis) and post-1984 (y-axis). The red 45◦ line illustrates no
change in correlations between the two sub-periods. The yellow dashed line illustrates the
change in corresponding aggregate correlation.

The results are robust with respect to weighting by the nominal output shares in the second sub-

period, or computing simple averages. Figure 2 depicts the individual industry-level correlations

for periods pre- and post-1984 for the 77 industries. For many industries the correlations in

the first and second sub-period differ substantially. However, there is no clear pattern showing

a consistent decrease in correlations between output and measured productivity (left panel).

The correlations between hours and productivity depicted in the right panel decreased for the

majority of industries, however, the changes for most of the industries are relatively small.

Only in four cases has the correlation between industry hours and productivity decreased in

absolute value as much as the aggregate correlation, illustrated by the yellow dashed line. It is

worth noting that the puzzling evidence in table 3 cannot be explained by the possibility that a

small number of very big industries became more countercyclical in the second sub-period and

in turn, affected the aggregate correlations. The industry averages reported in the table are

already weighted by the industry size, thus taking this effect into account.

I use bootstrapping in order to compute the standard errors of the average correlations

reported in table 3. The bootstrapped standard errors are small, see Appendix B for details.

2.3.1 Industry composition

Figure 2 reveals a substantial heterogeneity of correlations at the industry level. A possible

explanation of how the aggregate correlations could have changed, even though the industry-

level correlations on average stayed the same, is that the composition of industries might have

changed. The procyclicality of aggregate productivity could decrease as a consequence of in-

dustries with countercyclical productivity growing bigger. I isolate the effect of composition by

constructing counterfactual aggregate series in which I keep the industry composition constant

over time. A comparison of the moments computed using the actual aggregate data versus the

fixed-composition aggregate series shows that composition only played a minor role in decreasing

the cyclicality of productivity.
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1960-2005 1960-1983 1984-2005 Difference

corr(TFP, VA)
Aggregate series 0.72 0.85 0.46 -0.39
Fixed composition 0.70 0.83 0.51 -0.32

corr(TFP, H)
Aggregate series 0.22 0.52 -0.27 -0.79
Fixed composition 0.22 0.53 -0.19 -0.72

corr(LP, VA)
Aggregate series 0.32 0.49 0.11 -0.37
Fixed composition 0.43 0.60 0.27 -0.33

corr(LP, H)
Aggregate series -0.29 0.04 -0.63 -0.66
Fixed composition -0.13 0.22 -0.46 -0.67

Table 5: Cyclical correlations between selected productivity measures and output, resp. hours.
Comparison of aggregate series and counterfactual fixed-composition aggregate series, pre- and
post-1984. Detrending method: growth rates.

According to the standard growth accounting, growth rate of any aggregate variable Xt can

be approximately expressed as

X̃t ≈
N∑
i=1

wi,tx̃i,t, (3)

where x̃i,t is the growth rate between periods t and t−1 of industry-level variable xi, and wi,t is

an appropriately chosen time varying weight of industry i. The derivation of the approximation,

weights, and a discussion on the quality of this approximation in the data set is provided in

Appendix C.

I examine the counterfactual scenario in which the composition of the U.S. economy stays

constant over time. I aggregate the industry level series using weights w̄i that are fixed over

time. I choose the weights to be the average shares of appropriately chosen nominal variables

over the pre-1984 period, although the results are robust with respect to alternative choices

of weighting. I plot the fixed-composition aggregate series and provide comparisons with the

original aggregate series in Appendix C. If the composition effect is big, fixing the aggregation

weights should substantially change the weighted average series, and consequently their second

moments.

However, industry composition seems to have a limited effect on the change in cyclicality

of aggregate productivity. Table 5 compares the correlations for aggregate growth rates from

table 1 with the analogous correlations computed using fixed composition aggregate series.

Composition has somewhat countercyclical effect in case of measured labor productivity, but

this effect is present in both sub-periods. Importantly, as the last column of table 5 shows,

the correlations between measured productivity and output resp. hours computed using the

fixed-composition series decrease between the two sub-periods. The decrease is comparable

with the actual aggregate series, reaching between 80% and 100% of the latter. The decrease

in cyclicality of measured TFP for fixed composition series is quantitatively very similar to the

results in table 1 in the case of growth rates and the Christiano-Fitzgerald band-pass filter,

and somewhat smaller for the Hodrick-Prescott filtered series. The results for other detrending
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methods are reported in table 16 of Appendix C. I omit the calculation of standard errors as

the point of the exercise is to isolate a component of observed changes in the actual realised

data.

I conclude that a substantial part of the decrease in cyclicality of productivity is not ex-

plained by changes in composition of industries, although I can not rule out that the composition

of industries had some effect on the observed changes. As I have already shown above that the

industry-level correlations also did not change between the two periods, the limited effect of

composition might be puzzling. In the next section, I shed more light on this issue by for-

mally decomposing the change in cyclicality of aggregate productivity into the contribution of

within-industry and cross-industry components.

2.3.2 Changing co-movement within industries and across industries

In what follows, I focus on the fixed-composition aggregate series described in the previous

section. I work with the growth rates series, which are straightforward to decompose into a

weighted sum of industry-level series. I defined the (growth rate of) fixed-composition aggregate

variable X̄t as

X̄t :=

N∑
i=1

w̄Xi x̃i,t ≈ X̃t, (4)

where tilde denotes growth rates of variables and w̄Xi are constant industry weights. For any pair

of aggregate series X̄, Ȳ defined as in equation 4, the correlation coefficient can be decomposed

into a within-industry and a cross-industry component as follows:

Corr
(
X̄, Ȳ

)
=

Cov(
∑N

i=1 w̄
X
i x̃i,

∑N
i=1 w̄

Y
i ỹi)

std
(
X̄
)

std
(
Ȳ
) (5)

=

∑N
i=1 w̄

X
i w̄

Y
i Cov(x̃i, ỹi)

std
(
X̄
)

std
(
Ȳ
) +

∑N
i=1

∑N
j 6=i w̄

X
i w̄

Y
j Cov(x̃i, ỹj)

std
(
X̄
)

std
(
Ȳ
) . (6)

The first term of equation 6 collects the diagonal elements and reflects the co-movement between

variables within individual industries. The second term collects all the off-diagonal elements

and reflects the co-movement pattern across industries. The decomposition makes it clear that

the aggregate correlation between variables might change as a consequence of changing co-

movement patterns between industries, even when the within-industry co-movement stays the

same.

Table 6 shows the result of the decomposition for the four aggregate correlations reported in

table 5 for periods pre- and post-1984. The decomposition shows that the bulk of the decrease

in cyclicality of productivity comes from the cross-industry component, reflecting the lower co-

movement between industries. The within-industry component is in fact again an alternatively

weighted average of the industry-level correlations. Its contribution to the change between the

sub-periods is small, in line with the evidence in table 3. The change of the contribution of

diagonal elements is very small for all four correlations, in two cases it is even positive. The

cross-industry component, on the other hand, constitutes the vast majority of the change in

aggregate correlations. The difference between the two components appears striking, but it
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1960-2005 1960-1983 1984-2005 Difference

corr(TFP, VA)
Total correlation 0.70 0.83 0.51 -0.32
Within-industry comp. 0.22 0.19 0.29 0.10
Cross-industry comp. 0.48 0.64 0.21 -0.43

corr(TFP, H)
Total correlation 0.22 0.53 -0.19 -0.72
Within-industry comp. -0.01 -0.00 -0.02 -0.02
Cross-industry comp. 0.23 0.53 -0.17 -0.70

corr(LP, VA)
Total correlation 0.43 0.60 0.27 -0.33
Within-industry comp. 0.22 0.22 0.24 0.02
Cross-industry comp. 0.21 0.38 0.03 -0.35

corr(LP, H)
Total correlation -0.13 0.22 -0.46 -0.67
Within-industry comp. -0.05 -0.05 -0.05 -0.00
Cross-industry comp. -0.09 0.26 -0.41 -0.67

Table 6: Decomposition of cyclical correlations between selected productivity measures and
output, resp. hours into within-industry and cross-industry component. Comparison pre- and
post-1984. Fixed-composition aggregate series constructed using average pre-1984 industry
weights.

requires a careful interpretation.

While the decompositions are in terms of numbers in line with Wang (2014), we differ in

terms of interpretation of the numbers. Wang computes the contribution of within- and cross-

industry term to the correlation between measured TFP and input aggregate (consisting of

appropriately weighted hours, capital, and intermediate inputs). She finds that the contribu-

tion of the within-industry component is 0.016 before 1984 and −0.078 after 1984. The change

in the contribution of within-industry component is therefore −0.094, higher than in my decom-

position. Nevertheless, it is smaller compared to −0.52, the contribution of the cross-industry

component. The somewhat bigger (in absolute value) contribution of diagonal elements is partly

attributable to a smaller number of industries used by Wang (2014).

Wang divides the contributions of diagonal and off-diagonal terms by the number of elements

in each of the sums in equation 6, effectively scaling down the contribution of the off-diagonal

component by the number of industries. She then interprets the result as within-industry

changes being much more (five times more) important for the change of cyclicality of produc-

tivity than the cross-industry changes. However, I argue that this interpretation has several

shortcomings:

• Normalizing the contribution of within- and cross-industry terms by the number of ele-

ments has no theoretical justification. In general, any change in co-movement of a single

industry variable affects both the within-industry and cross-industry term. However, rel-

ative importance of these effects depends on the properties of data generating process,

which are ex ante unknown. In my view, the best way to interpret the empirical results

is to build an industry-level model and analyse its predictions for within-industry and

cross-industry second moments.
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• The conclusion provided in Wang (2014) is not robust. The result is very sensitive with

respect to small changes in the contribution of the diagonal elements. My decomposition

results show that the contribution of within-industry elements is positive, not negative,

for two out of four correlations. This would completely reverse the conclusions of Wang

(2014), even though the differences are small in absolute terms.

In the next section, I build a simple industry-level model which nests different mechanisms

that are able to generate changes in the aggregate correlations. I compare the predictions of the

model for aggregate and industry-level moments with the evidence summarized in this section.

Most importantly, I assess the ability of the proposed mechanisms to generate the changes in

aggregate correlations, while keeping the industry-level moments stable in line with tables 3

and 4.

3 Model

This section presents a simple multi-industry general equilibrium model that nests several

explanations of the vanishing procyclicality of productivity that have been proposed in the liter-

ature. The procyclicality of measured productivity in the model decreases when the relative size

of aggregate demand shocks decreases compared to the shocks to productivity (as in Barnichon

2010), or when the observed labor input (hours) becomes more flexible (as in Gaĺı and van Rens

2019). The model is relatively close to Gaĺı and van Rens (2019), the main innovation being

that I model the economy at the level of industries. On the other hand, I keep the labor market

simpler, in that I abstract from the explicit labor market friction.

The most essential features of the model are:

• production sector consisting of industries, products of which are imperfectly substitutable

• observable and unobservable labor supply margins, which create a wedge between mea-

sured and actual productivity

• demand- and supply-side shocks which affect either the aggregate economy as a whole, or

have industry-specific effects

The economy is populated by a continuum of representative households and a continuum

of firms belonging to one of N symmetric industries. As there is no saving technology for the

households and no capital, both the households and the firms solve a static problem in each

period.

3.1 Firms

Each industry consists of a continuum of identical perfectly competitive firms represented by

the unit interval. A firm belonging to industry i produces output according to the production

function

yi = zil
1−α
i , (7)
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where zi is industry-specific technology, li is effective labor input of a firm in industry i, and

α ∈ (0, 1) is a parameter that measures diminishing returns to labor. The effective labor input

li depends on hours worked hi and effort per hour ei,

li = eihi. (8)

Effort in the model is the measure of workers’ performance that can include any unobserved

margins typically considered to be a part of labor utilization, e.g. unreported overtime hours or

idle workers’ time. Both hours and effort are provided by the households and are observable by

the firm. The key difference between the two margins is that effort is typically not observable

by the econometricians – standard measures of productivity therefore rely on the observable

hours.

Industry specific technology zi consists of two exogenous stochastic components, the idiosyn-

cratic industry technology z̄i and aggregate technology A

zi = Az̄i, (9)

where both components are random variables following ln(z̄i) ∼ N (0, σz) and ln(A) ∼ N (0, σA).

The problem of a representative firm in industry i is therefore to maximize profit

pizili
1−α − wili, (10)

taking as given the wage per unit of efficient labor input wi and the industry good price pi. An

optimizing firm chooses li such that the marginal profit of increasing the effective labor input

equals the marginal costs

(1− α)pizili
−α = wi. (11)

Firm profits di are distributed to households in terms of lump sum payments,

di = αpizili
1−α. (12)

3.2 Households

There is a continuum of identical households represented by the unit interval. Households

provide labor input and consume goods. The objective of the representative household is to

maximize its period utility

D · u(C)−
N∑
i=1

g(ei, hi). (13)

The consumption bundle C is defined as

C =

(
N∑
i=1

vi
1
σ ci

σ−1
σ

) σ
σ−1

, (14)
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where ci is the consumption of industry i good and vi is exogenous stochastic weight of industry

i in the consumption bundle. I interpret the weight vi as industry-specific demand shock.8

Parameter σ > 0 is the elasticity of substitution between goods produced in various industries.

The consumption bundle serves as the numeraire and all prices are expressed relative to its

price.

Function u(·) measures the utility derived from consumption. It is continuous, concave and

increasing in C. In all numerical exercises I assume CRRA preferences u(C) = C1−ρ

1−ρ , where

ρ > 0. Preference shock D is an exogenous stochastic variable that is again drawn from a

log-normal distribution. In line with Gaĺı and van Rens (2019) I interpret it as a stand in for

any non-technology aggregate disturbances.

Function g(·) measures the disutility of working. It is continuous, convex and increasing in

both hours hi and effort ei. The functional form used in this paper follows Barnichon (2010)

and Bils and Cho (1994), and nests the special case in Gaĺı and van Rens (2019):

g(e, h) = λhh
1+η + λehe

1+ε, (15)

where λh, λe, η, ε > 0. This form of g(·) implies that the disutility of effort per hour increases

with hours worked. Parameters η and ε determine the (inverse of) elasticity of hours and effort.

The households utility function (equation 13) is separable in labor supply across industries

and includes the special case in which the utility of consumption is also separable, σ = 1/ρ.

The separability assumption is not innocuous, but it allows me to keep the formulas simple and

derive some intuitive insights analytically.

The representative household faces a budget constraint,

N∑
i=1

wili +
N∑
i=1

di =
N∑
i=1

pici. (16)

In equilibrium, both labor and goods market must clear in each industry, thus

ci = yi. (17)

In the following sections I solve two sub-problems of optimal household behaviour: the optimal

composition of consumption bundle and the optimal mixture of labor supply margins.

3.2.1 Optimal composition of consumption bundle

Recall that all prices are expressed relative to the price of consumption bundle. Given the

price of industry i good, the optimal demand for the industry i good is given by a standard

formula

ci = vipi
−σC, (18)

8Aggregate effect of industry-level demand shock is neutralised, vi = v̄i/
∑N
i=1 v̄i, where ln v̄i ∼ N (0, σv).
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and the definition of price index ensures that

C =
N∑
i=1

pici. (19)

The elasticity of substitution σ determines the reaction of the nominal output share of good i

to the change in its price. In the case of σ being equal to one, the output share of each good is

independent of its relative price. A positive shock to technology zi reduces the optimal price set

by the competitive firms exactly by the size of the shock. Thus, the increase in the real demand

of good i caused by the reduced price is perfectly satisfied by the improvement in technology.

For σ equal to one, industry labor input does not respond to changes in industry technology.

3.2.2 Optimal composition of labor input

Given the firm demand for labor in each industry l̄i, household can provide any combination

of hours and effort that satisfies l̄i = eihi. Therefore, the representative household solves N

independent industry problems,

min
ei,hi

g(ei, hi) (20)

s.t. l̄i = eihi. (21)

The first order conditions of the problem give

∂g(ei, hi)/∂ei
∂g(ei, hi)/∂hi

=
hi
ei
. (22)

As function g is increasing in both ei and hi, the term on the left hand side is positive and the

households will always adjust both margins simultaneously in the same direction. Given the

functional form 15, equation 22 implies

ei =

(
λh
λe

(1 + η)

ε

) 1
1+ε

h
η

1+ε

i . (23)

The elasticity of effort with respect to hours thus depends on the term η
1+ε , which I somewhat

loosely refer to as the elasticity ratio.

3.2.3 Labor supply decision

Finally, the optimizing representative household chooses non-negative values for consump-

tion ci, effort ei, and hours hi that maximize the utility function 13 given the budget constraint

16. Using the optimal firm behaviour condition 11, the budget constraint can be expressed as

N∑
i=1

pizi(eihi)
1−α = C. (24)

Differentiating the Lagrangian associated with the household problem with respect to ci and

hi and combining the associated first order conditions leads to the first order condition which
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determines the labor supply in the economy,

wieiDC
−ρ =

∂g(ei, hi)

∂hi
=
∂g(ei, hi)

∂ei

ei
hi
, (25)

where the latter equation follows from 22. Similarly to many other RBC models, the response

of hours to a technology shock can be both positive or negative and depends on the value of

elasticity parameter ρ. In case of log-utility (ρ = 1), an increase in real wages following a

technology shock is exactly offset by a decrease in marginal utility of consumption, thus the

labor supply stays constant.

3.3 Equilibrium and model solution

The equilibrium in variables C, hi, ei, wi, pi, yi and ci is defined by the production function

7, firm optimality condition 11, household budget constraint 24, goods market clearing condition

17, optimal consumption choice 18, optimal composition of labor margins 23 and optimal labor

input condition 25.

Despite its relative parsimony, the model can not be solved analytically. The main results of

the paper follow from the numerical solution of the full non-linear version of the model presented

in this section. I use the analytical solution of the linearised version of the model to build the

basic intuition behind the results in sections 3.5 and 5.

3.4 Aggregation and measuring productivity

Aggregate output and hours are defined as simple sums of aggregate variables

Y =
N∑
i=1

yi, (26)

H =

N∑
i=1

hi. (27)

Because labor is the only production factor in the model, the single measure of productivity is

output per hour

LP = Y/H, (28)

lpi = yi/hi. (29)

I further refer to this measure as labor productivity or simply productivity. However, it is

important to notice that this measure of productivity does not reflect any variation in capital

services. Therefore, I consider measured total factor productivity to be the more suitable

empirical counterpart, and use measured TFP instead of empirical measured labor productivity

in the numerical execises.
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3.5 Implications for cyclicality of productivity and flexibility of labor

In this section, I use the log-linearised version of the model in order to demonstrate that

the cyclicality of measured aggregate productivity generated by my model depends both on the

relative flexibility of hours and effort and on the relative importance of aggregate shocks to

technology and demand. In what follows, I use the tilde symbol to denote the log-deviations of

variables from their steady states.

Firstly, I illustrate how flexibility of hours and effort in my model influences the cyclicality

of measured labor productivity, a mechanism similar to Gaĺı and van Rens (2019). In log-

deviations, production function 7 of industry i can be expressed as

ỹi = z̃i + (1− α)ẽi + (1− α)h̃i, (30)

l̃pi = ỹi − h̃i = z̃i + (1− α)ẽi − αh̃i. (31)

After a positive non-technology shock, the increased demand can only be satisfied by increasing

labor input. In the case when hours are relatively flexible and effort is very rigid, i.e. close to

the standard case with only one labor input margin, labor productivity falls due to diminishing

returns to labor. On the contrary, if hours are very rigid and effort is relatively flexible, measured

labor productivity increases with labor input due to the procyclical role of factor utilization.

Expressing the optimal effort from the optimality condition 23 and plugging it into equations

30 and 31 gives

ỹi = z̃i +Bh̃i, (32)

l̃pi = z̃i + Γh̃i, (33)

where constants B and Γ are defined as

B = (1− α)

(
1 +

η

1 + ε

)
, (34)

Γ = −α+ (1− α)
η

1 + ε
. (35)

The response of output and productivity to an increase in hours depends on the degree of

diminishing returns to labor α, and on the elasticity ratio η
1+ε . Importantly, parameter Γ

determines the response of productivity and can have both positive or negative values.

Let us first consider the implications of the extreme values of parameters η and ε. If ε is

very high compared to η, effort is very rigid and η
1+ε goes to zero. In that case, the response

of measured labor productivity to a change in hours is driven by the diminishing returns and

Γ is negative. This might be the case if effort is very rigid (ε→∞), or if hours are very elastic

(η → 0).

On the other hand, if η is very high in comparison to ε, adjusting hours is very costly in terms

of utility. The optimizing households and firms choose to rely less on adjusting hours and more

on adjusting effort. As a result, the observable labor input fluctuates less, but its correlation

with measured labor productivity is positive. In fact, the coefficient Γ becomes positive for any
η

1+ε >
1
2 in the case of the standard value of diminishing returns parameter α = 1/3. To sum
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up, an increase in the relative flexibility of hours leads to a decrease in correlation between

hours and measured productivity accompanied by an increase in relative volatility of hours.

Secondly, I discuss the role of the shock composition. Naturally, labor productivity in

equation 33 positively depends on exogenous technology zi. However, the reaction of hours to

an improvement in technology can be both positive or negative, depending on the parameter

values. Empirical estimates of the response of hours to technology improvements typically show

that it is relatively small in absolute value and negative, both at the aggregate and industry

level; see e.g. Gaĺı (1999) and Holly and Petrella (2012).

Taking into account the empirical literature, the standard values of consumption elasticity ρ

close to the log-utility case and the elasticity of substitution between goods of various industries

σ close to one appear plausible. For σ close to one, the model generates small conditional

volatility of industry hours and small (and possibly negative) covariance between industry hours

and productivity. The same is true for the corresponding aggregate moments in the case when

ρ is close to one. On the other hand, the previous paragraphs show that for a sufficiently high

elasticity ratio η
1+ε , the non-technology shocks in the model generate positive co-movement

between hours and productivity. Therefore, a shift in the composition of shocks from demand

to more important technology shocks may decrease the unconditional correlation.

Log-linearising the equations for aggregate output, hours, and labor productivity, it is

straightforward to derive that

L̃P = Ỹ − H̃ u Z̃ + ΓH̃, (36)

where Z̃ = 1
N

∑N
i=1 z̃i is the average growth rate of the industry technology. Notice that equation

36 is analogous to industry-level equation 33. Thus, the relationship between aggregate labor

productivity and hours depends on the parameters in a way that is similar to the industry-level

variables.

3.6 Discussion

It is straightforward to relate my model to Gaĺı and van Rens (2019), although there are

several differences. Gaĺı and van Rens interpret the measure of observable labor input in their

model as employment, assuming fixed hours per worker. They also use a special case of the

utility function featured in my model, with only one industry and linear disutility of working,

the case analogous to η = 0. Thus, without any other frictions at work, households in Gaĺı

and van Rens would optimally choose constant effort and would always satisfy the changes in

demand for labor by varying employment. Nevertheless, Gaĺı and van Rens introduce quadratic

hiring costs which ensure that workers’ effort indeed varies over time. Their main exercise is to

study the effect of the reduction of hiring costs on the cyclicality of labor productivity.

In order to keep the problem simple at the industry and aggregate level, I abstract from

the hiring frictions and study the effect of varying the value of elasticity η. Both approaches

generate changes in cyclicality of productivity through changing how flexibly observed labor

input responds. In an alternative formulation of my model which also features quadratic costs

of adjusting hours in a simple form, the close relationship between the two approaches is con-

firmed. The results are equivalent to the version presented in this paper, but the number of
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parameters that need to be identified increases and the formulas become more complicated and

less intuitive.

4 Quantitative analysis

4.1 Model calibration

I simulate the model at quarterly frequency and calibrate the parameters accordingly. I

subsequently convert the simulated series into annual frequency in order to obtain series which

are comparable with the industry-level data set. The benchmark calibration targets selected

second moments of the pre-1984 sample. I prefer to use the data moments computed using the

growth rates of fixed-weight aggregate variables, as these are the most directly comparable with

the model. The choice of aggregate series does not influence the main results. The benchmark

calibration is summarized in table 7.

The model economy consists of N = 77 industries. Some of the model parameters are set

to values that are standard in the macroeconomic literature. I set the curvature of production

function α to 1/3 and assume log-utility of consumption ρ = 1.9 The elasticity of substitution

between industry goods σ is chosen quite arbitrarily at 0.9. Robustness checks show that the

value of elasticity σ does not substantially influence the results. The elasticity of substitution

affects the strength of the response of industry-level variables to industry-specific shocks. Thus,

the main impact of choosing alternative values of σ is that it alters the size of industry-specific

shocks in the model necessary to generate the fluctuations of industry variables with a realistic

magnitude.

Utility function parameters λh and λe are scaling the model variables in a way that does

not influence the results. I normalize λe such that there is unit effort in the steady state and

choose λh to scale the size of steady state aggregate output. I calibrate the benchmark inverse

elasticity of hours η to be at the lower end, but yet consistent with the values used in the

macroeconomic literature. Macroeconomists typically focus on the elasticity of observed labor

input with respect to wages, referred to as Frisch elasticity. In my model, Frisch elasticity

depends on both parameters governing the flexibility of hours and effort and equals 1
η

(
1 + 1

ε

)
.

In line with the values used in modern DSGE models, I calibrate the Frisch elasticity to 0.5; see

e.g. de Walque et al. (2015). For any given effort elasticity parameter ε, the Frisch elasticity

pins down the value of hours elasticity parameter η.

The remaining preference parameter ε governs the elasticity of effort, thus pinning down

the strength of the factor utilization channel in my model. Effort is typically not directly

observed and I have little guidance from the literature concerning the value of the parameter. I

calibrate ε jointly with the relative variance of aggregate demand shock σ2
D targeting two second

moments from the pre-1984 sample: the relative volatility of hours with respect to output and

the correlation of aggregate hours with measured TFP. The analysis in section 3.5 shows that

the two parameters are well identified by the targets, as they have contrasting effects on the

target values. A higher share of demand shocks increases both relative volatility of hours and,

for elasticity ratio η
1+ε above a certain threshold, also the correlation of aggregate hours with

9I report the robustness exercises with respect to ρ, σ and Frisch elasticity of labor supply in Appendix D.
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Parameter Symbol Value Source or target

Number of industries N 77 data set, Jorgenson (2008)
Returns to labor α 1/3 standard
Consumption elasticity ρ 1 standard (robustness analysis)
Elasticity of substitution σ 0.9 standard (robustness analysis)
Utility weight, hours λh 3.7× 10−4 normalisation Y ss = 100
Utility weight, effort λe 1.5× 10−3 normalisation ess = 1
Hours elasticity η 2.68 Frisch elasticity 0.5 (robustness)
Effort elasticity ε 2.96 pre-1984 corr(TFP,H)
Variance agg. technology σ2

A pre-1984 Var(V A)
Variance agg. demand σ2

D pre-1984 ratio std(H)/ std(V A)
Variance ind. technology σ2

z pre-1984 mean std(tfpi)/ std(TFP )
Variance ind. demand σ2

v pre-1984 mean std(vai)/ std(V A)

Table 7: Benchmark calibration of the model parameters. The main exercise of this section is
to vary the values of key parameters, depicted in bold font.

productivity. A higher value of ε also increases the volatility of hours, as the agents rely more on

adjusting hours and less on adjusting effort. However, a higher value of ε at the same time brings

the correlation between aggregate hours and productivity down, due to a smaller contribution

of pro-cyclical effort. Thus, conditional on other parameter values, there exists a unique pair of

ε and σD matching both targets. The calibrated value of ε roughly equals 3 is in line with the

values used in Gaĺı and van Rens (2019) and Barnichon (2010).

Concerning the remaining shocks in the model, I calibrate their volatilities to roughly match

the standard deviations of variables in the pre-1984 sample period. The volatility of aggregate

technology shock σA is calibrated to match the volatility of aggregate output. The relative

volatilities of industry specific shocks are set to match the standard deviation of industry-level

fluctuations compared to the aggregate fluctuations in the pre-1984 period. Average (across

industries) standard deviation of industry productivity relative to the aggregate productivity

pins down σz. Average standard deviation of industry output relative to the aggregate output

pins down σv. The shocks are not autocorrelated, although adding autocorrelation does not

affect the results.

Table 8 shows the approximate variance decomposition of selected aggregate and industry-

level variables simulated by the model. The benchmark calibration implies that the preference

shock generates roughly 97% of the variance of the aggregate output and 29% of the variance

of the aggregate productivity. The decompostion also shows that the aggregate shocks are

relatively unimportant for the dynamics of the industry-level variables. Both aggregate shocks

together explain about 12% of the variance of industry hours and output, and about 3% of the

variance of industry productivity. Industry variables are mostly driven by the shocks affecting

their own industry-specific conditions.

The main exercise for which I use the calibrated model is to vary the key parameter values

in order to test the effects on the aggregate and industry-level moments. I vary the values of

the following:

• Parameter η, which pins down the flexibility of hours. I change η from 2.7 to 1.8, such that

the correlation of aggregate productivity with hours changes from the pre-1984 value (0.53)
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Variance decomposition Aggregate shocks Industry shocks
technology demand technology demand

Aggregate variables
Output 0.02 0.97 0.01 0.00
Productivity 0.43 0.29 0.28 0.00
Hours 0.00 1.00 0.00 0.00

Industry variables
Output 0.00 0.11 0.10 0.79
Productivity 0.02 0.01 0.89 0.08
Hours 0.00 0.13 0.00 0.87

Table 8: Variance decomposition of the selected model variables. Approximate share of variance
explained by each type of shock. For industry variables, the decomposition of the average
variance is reported. Benchmark calibration.

to the post-1984 value (-0.19). This corresponds to an increase in volatility of aggregate

hours by roughly 30%. The experiment demonstrates the effect of increased flexibility of

labor input in the period after 1984, and is roughly in line with the main exercise in Gaĺı

and van Rens (2019).

• Volatility of aggregate shock σD, such that the standard deviation of output changes from

the pre-1984 value (0.028) to the post-1984 value (0.018). This corresponds to a change

from aggregate demand shock explaining about 97% of the variance of output to explaining

about 92%. The volatility σD decreases by around 42%, in line with the decrease identified

in the literature; see e.g. Barnichon (2010).

4.2 Results

I solve the full non-linear model numerically and simulate the model economy for ten thou-

sand periods in each of the exercises described below. I compute the second moments from the

simulated series using the same detrending procedure as for their data counterparts.

The simulation results together with their data counterparts are summarized in tables 9 and

10. Top panel of table 9 displays again the key aggregate moments from the data for periods

pre- and post-1984. The bottom panel of table 9 shows the corresponding aggregate moments

generated by the model. The benchmark calibration matches the pre-1984 data moments very

well, as three out of four moments are actually targeted in the calibration. The bottom panel

of table 9 also reports the results for the two alternative parameter values: a lower value of η

corresponding to a higher flexibility of hours, and a lower volatility of aggregate demand shock

σD.

4.2.1 Change in flexibility of labor input

In the first exercise, I decrease η to two thirds of its benchmark value, such that the cor-

relation of hours with productivity matches its post-1984 value of −0.19. This alternative

calibration generates volatility of hours 30% higher and factor utilization volatility 13% smaller

compared to the benchmark case. As expected, decreasing η leads to a simultaneous decrease

in procyclicality of aggregate productivity and an increase in relative volatility of hours, in line
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Aggregate correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.83 0.53 0.89 0.028
Post-1984 0.51 -0.19 1.20 0.018

Model
Benchmark calibration 0.67 0.53 0.89 0.028
Flexible hours, η = 1.8 -0.05 -0.19 1.02 0.032
Smaller dem. shocks 0.59 0.34 0.85 0.018

Table 9: Selected aggregate second moments. Data (top panel) and model simulations (bottom
panel).

with the explanation proposed by Gaĺı and van Rens (2019). The drop in the correlation of

productivity with output overshoots its data counterpart, while the relative standard deviation

of hours increases less in comparison to the data. Qualitatively, the model successfully replicates

the post-1984 change in the aggregate moments.

However, table 10 reveals that the higher flexibility of hours generates counter-factual

changes in the average industry-level moments. The model simulation results show that:

• average volatility of industry hours relative to industry output in the model increases

compared to the benchmark case as much as for the aggregate hours. In the data, the

industry-level relative standard deviation actually mildly decreased between the two time

periods.

• average correlation of productivity with output in the model decreases substantially com-

pared to the benchmark case. Although the decrease in correlation of industry variables

generated by the model is somewhat smaller than for the aggregate variables, it is com-

parable in magnitude. In the data, the average industry-level correlation stayed virtually

unchanged between the two sub-samples.

• average correlation of industry-level productivity with industry hours in the model de-

creases substantially. Although the decrease in correlation of industry variables generated

by the model is somewhat smaller than for the aggregate variables, it is still twice as big

as the change between the two sub-samples in the data.

• standard deviation of output at both industry and aggregate level in the model increases,

as labor becomes more flexible. In the data, the period of Great Moderation is charac-

terised by a decrease in volatility of output.

The apparent problem with the change in flexibility of hours η is that it generates changes in

second moments that are too similar at the aggregate and industry level. In section 5 I provide

a detailed discussion of why this is the case.

4.2.2 Change in composition of aggregate shocks

Table 9 and table 10 also display the simulated moments for another alternative parameter

value, a lower volatility of the aggregate demand shock. Several authors, for example Barnichon
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Industry correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.81 0.00 0.63 0.080
Post-1984 0.79 -0.21 0.57 0.076

Model
Benchmark calibration 0.59 0.30 0.85 0.083
Flexible hours, η = 1.8 0.18 -0.11 0.99 0.093
Smaller dem. shocks 0.59 0.28 0.84 0.079

Table 10: Selected averages of industry-level second moments. Data (top panel) and model
simulations (bottom panel).

(2010) and Gaĺı and Gambetti (2009), have suggested that the Great Moderation period after

1984 was characterised by a different composition of shocks, especially smaller demand side

shocks, or muted effects of these shocks on the economy.

Recall that the benchmark calibration uses consumption elasticity ρ equals one, which im-

plies that hours do not respond to the technology shocks. Thus, both technology and non-

technology shocks generate a non-negative conditional correlation between hours and produc-

tivity. Consequently, as I further discuss in section 5, a change in the composition of shocks can

decrease the correlation between productivity and hours, but can not reverse the sign of the

correlation. Moreover, given the benchmark value of the elasticity ratio η
1+ε , there is a positive

lower bound on the correlation between productivity and output. For that reason, I can not

use the negative aggregate correlation between productivity and hours in the post-1984 sample

as the calibration target for this exercise. Instead, I choose to change the volatility of aggregate

demand shock σD such that the model roughly matches the volatility of aggregate output in

the post-1984 period. Such a decrease of σD is also consistent with the exercise conducted by

Barnichon (2010).

The alternative calibration changes the relative importance of the different types of shocks.

The preference shock generates roughly 92% of the variance of aggregate output and 13% of

the variance of aggregate productivity. The aggregate productivity is mostly explained by the

aggregate technology shock (52% of variance) and the industry technology shocks (35%).

The last row of table 9 shows that the decrease in σD indeed drives the cyclicality of mea-

sured aggregate productivity down. Although the changes in aggregate correlations are smaller

compared to the data, I argue that the results are sufficient in demonstrating the key insight

of the paper. The changes in the composition of aggregate shocks may decrease the aggregate

correlations, while keeping the industry-level moments virtually unchanged. The two types of

shocks within my model are clearly too simple to reflect the whole extent of the structural

changes happening during the Great Moderation period. However, the point of the exercise is

to show that the composition of aggregate shocks has qualitatively very different effects on the

aggregate and industry-level moments. The industry-level model simulation results with the

alternative value of σD are reported in the last row of table 10. The simulation results show

that:

• average correlation of industry productivity with industry output in the model stays vir-
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tually unchanged, in line with the empirical evidence.

• average correlation of industry productivity with industry hours in the model stays un-

changed, while in the data it slightly decreases.

• volatility of industry hours relative to industry output in the model stays virtually un-

changed, in line with the empirical evidence.

Notice that the model also predicts a small decrease in the relative volatility of aggregate

hours. Changing the composition of shocks in my model does not explain the increase in

the relative volatility. My results also in no way rule out the possibility that the increase

in the relative volatility of aggregate hours was driven by the higher flexibility in the labor

markets in the post-1984 period. I leave the question open for the ongoing research in the

Great Moderation literature.

• standard deviation of output in the model decreases, as aggregate shocks in total become

smaller, in line with the Great Moderation episode.

To summarize the main findings, both exercises (increasing the flexibility of hours and lower-

ing the relative size of aggregate demand shocks) are able to qualitatively replicate the decrease

in the procyclicality of aggregate productivity within my model framework. However, the change

in the relative size of shocks appears to be more successful in simultaneously replicating the

second moments at the industry level. The next section explains the intuition behind the results

based on the analytical formulas derived for the industry and aggregate second moments.

5 Analytical insights

In this section, I use the log-linearised model equations in order to build the intuition behind

the main results presented in section 4.2. I discuss the impact of the relative flexibility of hours

and effort and the impact of the relative importance of aggregate shocks to technology and

demand on the second moments of interest. I explain why the two mechanisms differ in their

implications for the industry-level moments. I follow the same notation as in the previous

sections and use the tilde symbol to denote the log-deviations of variables from their steady

states.

Recall that equations 32 and 33 state that

ỹi = z̃i +Bh̃i,

l̃pi = z̃i + Γh̃i,

where constants B and Γ are defined as

B = (1− α)

(
1 +

η

1 + ε

)
,

Γ = −α+ (1− α)
η

1 + ε
.

28



Coefficients B and Γ determine the response of output and productivity, respectively, to an

increase in hours. Moreover, for the aggregate variables it holds that

Ỹ u Z̃ +BH̃,

L̃P u Z̃ + ΓH̃,

where Z̃ = 1
N

∑N
i=1 z̃i is the average growth rate of the industry technology.

Using these equations it is straightforward to derive the approximate expressions for the key

aggregate and industry-level variances and correlations in the model. In the next section, I use

these expressions in order to build the intuition behind the key model properties reported in

section 4.2.

5.1 Relative volatility of hours

Property 1 Within the model environment, both a change in the relative flexibility of hours and

effort and a change in the relative composition of aggregate shocks can generate a variation in

the relative volatility of aggregate hours. However, an increase in the relative flexibility of hours

also necessarily increases the relative volatility of hours at the level of individual industries,

while a change in the composition of aggregate shocks does not.

The relative variance of industry hours and output in my model after detrending can be

expressed as
Var(h̃i)

Var(ỹi)
=

Var(h̃i)

Var(z̃i) +B2 Var(h̃i) + 2B Cov(z̃i, h̃i)
. (37)

Recall that in the case when the elasticity of substitution σ equals one, labor input does not

respond to changes in industry technology and the covariance between z̃i and h̃i is zero. In that

case, we can rewrite the previous equation as

Var(h̃i)

Var(ỹi)
=

1
Var(z̃i)

Var(h̃i)
+B2

. (38)

Equation 38 expresses the relative volatility of hours in terms of two factors: the parameter B,

and the relative variance of industry technology z̃i and hours h̃i.
10

I first discuss the role of the relative size of aggregate shocks. In equation 38, exogenous

shocks only influence term Var(z̃i)

Var(h̃i)
. While the numerator Var(z̃i) only reflects the shocks to

technology, the denominator only reflects the shocks to demand in the case when σ is one.

An increase in the relative variance of technology shocks z̃i decreases the relative variance of

industry hours and output.

Recall that equation 9 states that the industry technology depends on an aggregate and an

idiosyncratic industry-specific component, z̃i = Ã + ˜̄zi. Industry demand also depends on an

aggregate component (preference shock D) and an idiosyncratic component (stochastic weight

vi). The key piece of intuition is the property that the aggregate shocks explain a minor part

10The robustness exercise in Appendix D shows that the non-zero covariance term arising from choosing the
value of σ 6= 1 does not substantially alter the result.
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Figure 3: Comparison between the aggregate and industry relative volatility of hours (y-axis)
for varying elasticity of hours η (x-axis). Benchmark calibration.

of the fluctuations of industry-level variables, while the idiosyncratic component explains the

major part, see section 4.1. In other words, industry-level variables are mostly driven by shocks

specific to the own industry. This property is a typical result in the literature on industry

business cycles; see e.g. Horvath (2000), Acemoglu et al. (2012). Because aggregate technology

and demand shocks explain a very small fraction of the variance of industry variables z̃i and h̃i,

a change in their relative importance has a very limited effect on the term Var(z̃i)

Var(h̃i)
, and does not

change the relative volatility of industry hours significantly.

On the other hand, a change in the elasticity ratio η
1+ε influences both terms in the denom-

inator on the right hand side of equation 38. In the case of very rigid hours, when η
1+ε goes to

infinity, both terms in the denominator go to infinity. Thus, the relative variance of hours goes

to zero. In contrast to a change in the relative size of aggregate shocks, a change in the relative

flexibility of hours and effort generates a substantial change in the relative volatility of industry

hours.

The relative variance of aggregate hours and output can be derived analogously to equation

38. Recall that in the case when CRRA utility parameter ρ equals one, the covariance between

technology Z̃ and hours H̃ is again zero. In that case we get

Var(H̃)

Var(Ỹ )
u

1
Var(Z̃)

Var(H̃)
+B2

, (39)

where the approximation sign reflects the approximate relation in equation 36.11 A comparison

of equations 38 and 39 delivers the two main insights of the exercise.

Firstly, in contrast to the industry level, a change in the relative size of aggregate shocks

may change the relative volatility of aggregate hours. The key difference in comparison to

11The robustness exercise in Appendix D shows that the non-zero covariance term arising from choosing the
value of ρ 6= 1 does not substantially alter the result.
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the industry volatility is that the aggregate shocks explain a large part of the fluctuations of

aggregate macroeconomic variables. The idiosyncratic industry shocks on average cancel out to

a large extent and are less important in the aggregate. Thus, the relative variance of average

technology level Z̃ and aggregate hours H̃ is more strongly affected by changes in the relative

importance of aggregate technology and demand shocks.

Secondly, the similarity between equations 38 and 39 reveals that a change in the elasticity

ratio η
1+ε influences the relative variance of hours at the aggregate and industry level in an

analogous way. The only difference between the two expressions is the relative variance term
Var(z̃i)

Var(h̃i)
, resp. Var(Z̃)

Var(H̃)
, but the contribution of these terms occurs to be relatively small. Figure

3 plots the comparison between the aggregate and industry-level relative volatility of hours for

the benchmark model calibration, varying the value of utility parameter η which pins down the

flexibility of hours. The figure illustrates that changes in η generate changes in the relative

volatility of hours at the aggregate and industry level that are quite similar in magnitude.

5.2 Correlation between productivity and hours

Property 2 Within the model environment, both a change in the relative flexibility of hours

and effort and a change in the relative composition of aggregate shocks can generate changes in

the aggregate correlations qualitatively in line with the empirical evidence. However, an increase

in the relative flexibility of hours also necessarily decreases the correlations between productivity

and hours (resp. output) at the level of individual industries, while a change in the composition

of aggregate shocks does not.

In this section I focus on deriving the properties of the correlation between measured pro-

ductivity and hours, using equation 33. Appendix E.1 shows the derivations for the correlation

between measured productivity and output and discusses the analogous properties.

At the industry level, the correlation between measured productivity and hours can be

expressed as

Corr(l̃pi, h̃i) =

Cov(z̃i,h̃i)

Var(h̃i)
+ Γ√

Var(z̃i)

Var(h̃i)
+ Γ2 + 2ΓCov(z̃i,h̃i)

Var(h̃i)

. (40)

In the case when the elasticity of substitution σ equals one, the covariance between industry

technology and hours is zero. In that case, I obtain

Corr(l̃pi, h̃i) =
Γ√

Var(z̃i)

Var(h̃i)
+ Γ2

. (41)

Equation 41 expresses the correlation in terms of two factors: the parameter Γ, and the relative

variance of industry technology z̃i and hours h̃i.

Again, I first discuss the role of the relative size of aggregate shocks. In equation 41, the

exogenous shocks only influence term Var(z̃i)

Var(h̃i)
. An increase in the relative size of technology shock

zi decreases the absolute value of the correlation, but does not reverse its sign. As discussed

in detail above, a change in the relative size of the aggregate technology and demand shocks
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Figure 4: Comparison between the aggregate and industry correlation between labor produc-
tivity and hours (y-axis) for varying elasticity of hours η (x-axis). Benchmark calibration.

can not generate a big change in the term Var(z̃i)

Var(h̃i)
. The reason is that the aggregate shocks only

explain a small part of the variance of industry-level variables.

On the other hand, a change in the elasticity ratio η
1+ε influences all terms on the right hand

side of equation 41. Coefficient Γ defined in equation 35 determines the sign of the correlation.

In the case of very flexible hours, the elasticity ratio goes to zero and Γ is negative. In the

case when hours are extremely rigid, the elasticity ratio goes to infinity and the correlation

approaches one.

The correlation between aggregate productivity and hours can be derived analogously to

equation 41. In the case when the utility parameter ρ is equal to one, the covariance between

technology Z̃ and hours H̃ is zero and I get

Corr(L̃P , H̃) =
Γ√

Var(Z̃)

Var(H̃)
+ Γ2

. (42)

The comparison of equations 41 and 42 delivers another two insights which are key for the

results of this paper.

Firstly, a change in the relative size of aggregate technology and demand shocks can generate

a change in the correlation between productivity and hours at the aggregate level, but not at the

industry level. The key difference between the aggregate and the industry level is again that the

aggregate shocks explain a substantial part of the variance of the aggregate variables, but only

a minor part of the industry variables. Thus, the relative variance of average technology level Z̃

and aggregate hours H̃ is strongly affected by the relative importance of aggregate technology

and demand shocks, while the relative variance of industry technology z̃i and industry hours h̃i

is not.

Secondly, a change in the elasticity ratio η
1+ε influences the correlation at the aggregate and

industry level in an analogous way. The only difference between the two expressions is the
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Benchmark Higher flexibility Lower variance
calibration of hours demand shock

corr( ∗ , VA)
Technology Z 0.17 0.15 0.33
Utilization-adjusted productivity -0.76 -0.84 -0.36
Utilization component 0.99 0.99 0.95
corr( ∗ , H)
Technology Z 0 0 0
Utilization-adjusted productivity -0.86 -0.91 -0.65
Utilization component 1 1 1
Relative volatility
std(Utilization)/std(Adj. prod.) 1.2 0.8 0.6
std(Utilization)/std(Technology) 2.3 2.0 1.2

Table 11: Decomposition of the measured productivity into factor utilization component and
utilization-adjusted productivity. Simulated series with benchmark calibration and two alter-
native calibrations: higher flexibility of hours and lower variance of demand shock.

relative variance term Var(z̃i)

Var(h̃i)
, resp. Var(Z̃)

Var(H̃)
, but the contribution of this term seems to be rather

small. Figure 4 plots the comparison between aggregate and industry-level correlations for the

benchmark calibration, varying the value of parameter η that pins down the flexibility of hours.

The figure shows that changes in parameter η generate changes in the correlation between

productivity and hours at the aggregate and industry level that are similar in magnitude.

To summarize the key intuition provided in this section, an increase in the relative flexibility

of observable labor supply margin within my model leads to a decrease in procyclicality of

measured aggregate productivity in line with the literature. However, it also generates a decrease

(of a comparable magnitude) in the industry-level correlations, which is not in line with the

empirical evidence. On the contrary, a change in the relative variance of technology and non-

technology aggregate shocks generates a change in the aggregate correlations while the industry-

level correlations stay unaffected.

6 Role of factor utilization

Fernald and Wang (2016) make a handful of important observations about the nature of

change in cyclicality of productivity, see section 1.1. Given that these observations are an

important piece of evidence that may discriminate between various explanations suggested in

the literature, I briefly discuss how the two mechanisms in my model are able to replicate these

observations. I decompose the measured productivity in my model to the factor utilization

component and the utilization-adjusted measured productivity and report the moments for the

pre- and post-1984 period in table 11. Notice that the utilization-adjusted productivity in

my model again consists of two components: the average technology level Z and the effect of

diminishing returns to labor. Table 11 also reports the moments for the isolated technology

component Z.

The decomposition of the model variables confirms that both mechanisms comply with the

observations from Fernald and Wang (2016). Firstly, utilization-adjusted TFP was never really

pro-cyclical before the mid-1980s, and the correlation with inputs and output weakly increased
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after the mid-1980s. All three calibrations of my model generate countercyclical utility-adjusted

productivity. The reason is that the main driving force of the fluctuations in aggregate out-

put and hours is the aggregate demand shock, thus the effect of diminishing returns to labor

dominates the true productivity changes. Lower volatility σD generates slightly higher correla-

tions (in absolute value), because the relative importance of the procyclical technology shocks

increases. Secondly, factor utilization was the procyclical component of measured productivity

before the mid-1980s and it stayed procyclical.12 The model generates very high correlations of

the utilization component with output and hours. Third, the relative volatility of the factor uti-

lization compared to the utilization-adjusted productivity substantially decreased in the period

after 1984. The major part of the vanishing cyclicality of measured productivity is explained

by the decrease in the volatility of the utilization component. Both alternative choices of model

parameters, reported in the second and third column of table 11, deliver a significant decrease

in the relative volatility of the utilization component compared to the benchmark calibration.

For more flexible hours, the utilization component becomes less volatile as firms and households

adjust hours more easily and rely less on adjusting effort. In case of lower volatility of de-

mand shocks, the fluctuations of utilization component decrease together with the fluctuations

of hours, which increases the relative importance of the utilization-adjusted component.

7 Conclusion

In this paper I contribute to the discussion on the vanishing cyclicality of aggregate pro-

ductivity by bringing in the industry-level evidence, which can help to discriminate between

various explanations proposed in the literature. I first document the change in cyclical proper-

ties of productivity in the U.S. using industry-level data. I focus on a puzzling feature that the

correlations of industry productivity with industry output and labor input remained on aver-

age much more stable before and after the mid-1980s compared to the aggregate correlations.

The cyclical correlations of productivity decreased at the aggregate level, but much less at the

industry level.

I construct a simple industry-level RBC model that can generate changes in the cyclical co-

movement of measured aggregate productivity and other macroeconomic variables through two

distinct mechanisms. The procyclicality of aggregate productivity in the model, measured in

terms of correlations with labor input and output, decreases when the relative size of aggregate

demand side shocks decreases compared to technology shocks, as suggested, for example, in

Barnichon (2010). The procyclicality of aggregate productivity also decreases when the observed

labor input (hours) becomes more flexible in comparison to the unobserved labor input margin

(effort), as suggested in Gaĺı and van Rens (2019). I choose these two mechanisms from a wide

variety of explanations proposed in the literature as the most likely candidates after considering

the existing empirical evidence; e.g. Fernald and Wang (2016).

Although both mechanisms are able to reduce the correlations of aggregate productivity

with output and labor input, I show that they have qualitatively different predictions for the

cyclical properties of industry-level variables. Within my model framework, only the mechanism

12The correlation of the utilization measure with labor input actually decreased for brief periods between 1990
and 2005, but the effect is less important than the drop in the volatility of factor utilization.

34



based on a structural change in the composition of aggregate shocks is able to generate changes

in aggregate correlations without generating counterfactual changes at the industry level.

Although a change in the composition of the two aggregate shocks in my model can generate

a decrease in cyclicality of aggregate productivity, the change it can generate is smaller compared

to the data. I acknowledge that the model with two types of aggregate shocks and no frictions

is clearly too stylized to reflect the whole extent of the structural changes happening in the U.S.

in the mid-1980s. The contribution of this paper is mostly in providing the intuition for why

and how aggregate shocks can influence the moments at the aggregate and industry level in a

different way. The simple model framework in this paper is well suited to provide the comparison

between aggregate and industry-level second moments in an intuitive way. Nevertheless, there

are limitations to how well the model can match the moments for the two subperiods. For a

better match of pre- and post-1984 moments, and in order to answer the question of what kind

of aggregate shocks are responsible for the changes in dynamic properties of productivity, a more

complex model environment is necessary. Ideally, such a model should feature a more realistic

industry structure, but also dynamic effects and nominal rigidities, which are important factors

for generating the propagation of shocks across industries.

In addition to bringing a new piece of evidence to the rich literature on the vanishing

cyclicality of labor productivity, I view a secondary contribution of the paper as a means of

promoting the use of disaggregated data sets in macroeconomic research. The broadening

gap between the available disaggregated data and the aggregate macro perspective offers new

opportunities and challenges for researchers in the era of big data. In the first step, new and

growing industry-level data sources such as the World Input-Output Database could be exploited

more extensively to test existing macroeconomic theories.

35



References

Acemoglu, D., V. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012). The network origins of

aggregate fluctuations. Econometrica 80 (5), 1977–2016.

Arias, A., G. Hansen, and L. Ohanian (2007, July). Why have business cycle fluctuations

become less volatile? Economic Theory 32 (1), 43–58.

Atalay, E. (2017, October). How Important Are Sectoral Shocks? American Economic Journal:

Macroeconomics 9 (4), 254–280.

Barnichon, R. (2010). Productivity and unemployment over the business cycle. Journal of

Monetary Economics 57 (8), 1013 – 1025.

Basu, S., J. G. Fernald, and M. S. Kimball (2006). Are technology improvements contractionary?

American Economic Review, American Economic Association 96 (5), 1418–1448.

Berger, D. (2018). Countercyclical restructuring and jobless recoveries. Manuscript.

Bernanke, B. S. (2009). On the outlook for the economy and policy: a speech at the Economic

Club of New York, New York, New York, November 16, 2009. Speech 488, Board of Governors

of the Federal Reserve System (U.S.).

Bils, M. and J.-O. Cho (1994, April). Cyclical factor utilization. Journal of Monetary Eco-

nomics 33 (2), 319–354.

Carvalho, V. and X. Gabaix (2013, August). The great diversification and its undoing. American

Economic Review 103 (5), 1697–1727.
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Gaĺı, J. (1999). Technology, employment, and the business cycle: Do technology shocks explain

aggregate fluctuations? American Economic Review 89 (1), 249–271.
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A Data and construction of the moments

The primary data source that I use is the KLEMS growth accounting data set developed by

Dale Jorgenson and his co-authors (Jorgenson 2008). The data set provides annual information

on capital, labor and intermediate inputs and outputs of the U.S. economy between 1960 and

2005, disaggregated into 88 industries. This appendix describes in detail the construction of

data series, aggregates, and data moments.

In line with the literature, I focus on the private business sector which consists of 77 indus-

tries. I aggregate the industry-level series of the private business sector to obtain the aggregate

series. I exclude all government industries and the Private households industry. Government

industries are usually omitted from productivity exercises because market prices are not avail-

able for government industries and are set arbitrarily. In my data, an additional problem with

the government industries is that the information about intermediate inputs is often missing.

In one case, a private industry (59 Real estate - owner occupied dwellings) does not utilize all

inputs, as the only input is capital.

Table 12 lists the private sector industries and their relative shares in nominal output.

A.1 Data inputs

A.1.1 Gross output

Jorgenson database reports industry nominal gross output and producers price indexes nor-

malized in 1996. Therefore, I express real gross output (and other real variables) in 1996 dollars.

Aggregate real gross output is defined as the sum of real outputs across the 77 industries of the

private business sector.

A.1.2 Intermediate inputs

Real volumes of intermediate inputs can be expressed in 1996 dollars using the reported

purchasers price index. I use Fisher price index in order to aggregate the real intermediate

inputs delivered to a particular industry. This approach is consistent with the model economy,

where the variety of intermediate inputs mj,i,t is aggregated into input Mi,t according to a CES

function.

Notice that gross output and intermediate input goods are not counted in consistent real

units, as the two price indexes differ. Moreover, intermediate inputs reported in the database

include imports, but the information about exports is not available. For these reasons, the

goods market clearing identity at the industry level does not hold.

gross output 6= consumption + investment + intermediate inputs

The discrepancy is important for several reasons. First, value added can not be computed as

a simple difference between gross output and intermediate inputs. Second, as we will see later,

the measures of productivity are not comparable across industries.
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A.1.3 Labor input

The measure of labor input reported in the Jorgenson data set is effective hours. Effective

hours are defined as total hours adjusted for the composition of workforce, taking into account

basic observable characteristics (education, age and gender).

The Jorgenson database reports nominal costs of effective labor and a price index for each

industry, which allow to compute the real labor input series. However, the units are not com-

parable across industries. For the sake of easier interpretation, I rescale the real labor input

series to approximately reflect effective hours worked in each industry. I use the 72-industry

version of EU KLEMS data (based on SIC classification of industries) as an additional data

source in order to pin down the effective hours and hourly wages in each industry in 1996. I

apply these wages to the labor costs information in the Jorgenson data set in order to express

the real labor input in hours. The rescaling of labor input series does not affect the results, but

has the advantage that it allows me to define aggregate hours as a sum of industry hours.

Although the two data sets are based on the same accounting principles, there are several

issues with matching the EU KLEMS to Jorgenson KLEMS. I resolve these issues using ad-hoc

rules which try to minimize the effect of the discrepancies.

• The level of disaggregation in some cases differs between the two datasets. In case several

Jorgenson industries constitute a single EU KLEMS industry, I used the same wage level

for all the industries. In one case a Jorgenson industry (63 Business services excluding

computer services) corresponds to two EU KLEMS industries. I approximated the wage

in this industry by a weighted average of wages in both the EU KLEMS industries. Some

EU KLEMS service industries include both private and government sector, while I only

focus on the private sector in the Jorgenson data. It is likely that the wages in the private

and government sector differ, however, a large discrepancy is rather unlikely. In this

case, I consider the wages reported in the EU KLEMS data set to apply for the private-

sector industries in the Jorgenson data. In one case (51 Water and sanitation) the labor

compensation and hours data in the EU KLEMS are missing. I use the wage information

from the 50 Gas utilities industry, which I consider to be the closest approximation.

• I chose 1996 as the base year for pinning down the industry-level wages in the EU KLEMS

data. The results are robust with respect to the choice of base year.

A.1.4 Capital accounts

Measuring the capital stock and capital services is typically the most challenging part of

the growth accounting. Jorgenson database provides the nominal values and price index for the

capital services in each industry. The KLEMS growth accounting is based on the assumption of

perfect competition and zero profits. However, the nominal value of capital services is identified

as the residual between value added and labor compensation. Therefore, it includes both the

user cost of capital and profits.

The model abstracts from endogenous capital and assigns the non-labor income exclusively

to firm profits. Since labor productivity is potentially affected by the fluctuations in capital
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services, it is more suitable to compare the model outcomes with measured total factor produc-

tivity.

A.1.5 Value added

Because the data set does not allow to compute outputs and intermediate inputs in consistent

real units, I can not compute industry real value added as a simple difference between the two

series. I thus follow the standard growth accounting methodology and define real value added

using the so-called double deflation method (Timmer et al. 2007). The method provides growth

rates series of value added for each industry. Nevertheless, it does not provide level series in

units that are consistent across industries. I define aggregate real value added as aggregate

nominal value added divided by the Fisher price index associated with the industry-level prices.
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List of industries, private business sector, part 1
gross output value added

nominal share nominal share
1 Farms 2.48 2.43
2 Agricultural services, forestry 0.37 0.35
3 Fishing 0.12 0.12
4 Metal mining 0.12 0.14
5 Nonmetal mining 0.15 0.21
6 Coal mining 0.26 0.39
7 Oil and gas extraction 1.52 1.90
8 Construction 7.04 6.65
9 Lumber and wood 0.89 0.69

10 Furniture and fixtures 0.53 0.49
11 Nonmetallic mineral products 0.76 0.83
12 Primary metals 1.68 1.39
13 Fabricated metal production 1.91 1.94
14 Machinery excl. computers 2.17 2.33
15 Computers and office equipment 0.76 0.45
16 Insulated wire 0.21 0.23
17 Audio and video equipment 0.12 0.09
18 Other electrical machinery 0.73 0.78
19 Communications equipment 0.46 0.45
20 Electronic components 0.78 0.61
21 Motor vehicles 2.64 1.22
22 Aerospace 1.13 1.22
23 Ships and boats 0.17 0.22
24 Other transportation equipment 0.17 0.15
25 Measuring instruments 0.62 0.67
26 Medical equipment and opthalmic goods 0.39 0.32
27 Other instruments 0.21 0.28
28 Misc. manufacturing 0.41 0.43
29 Food 3.99 2.33
30 Tobacco 0.23 0.19
31 Textile 0.70 0.63
32 Apparel 0.65 0.73
33 Leather 0.11 0.16
34 Paper and allied 1.28 1.05
35 Publishing 0.88 0.98
36 Printing and reproduction 0.68 0.72
37 Chemicals excl. drugs 2.39 1.98
38 Drugs 0.65 0.54
39 Petroleum and coal products 1.83 0.54
40 Rubber and misc. plastics 1.10 0.86
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List of industries, private business sector, part 2
gross output value added

nominal share nominal share
41 Railroad transportation 0.43 0.75
42 Local passenger transit 0.22 0.40
43 Trucking and warehousing 1.75 1.83
44 Water transportation 0.34 0.34
45 Air transportation 0.83 0.67
46 Transportation services and pipelines 0.31 0.30
47 Telephone and telegraph 2.04 2.14
48 Radio and TV 0.53 0.39
49 Electric utilities (pvt) 2.05 2.28
50 Gas utilities 0.68 0.38
51 Water and sanitation 0.18 0.12
52 Wholesale trade 5.46 6.64
53 Retail trade excl. motor vehicles 4.40 5.78
54 Retail trade, motor vehicles 1.20 1.45
55 Eating and drinking 2.06 1.79
56 Depository institutions 2.74 2.40
57 Nondeposit; Sec-com brokers; Investment 1.76 1.51
58 Insurance carriers, agents, services 2.23 1.89
59 Real Estate - owner occupied 2.71 5.11
60 Real Estate - other 5.63 7.79
61 Hotels 0.77 0.88
62 Personal services 0.72 0.73
63 Business services excl. computer 2.48 2.70
64 Computer services 1.27 0.89
65 Auto services 1.01 0.86
66 Misc. repair services 0.42 0.58
67 Motion pictures 0.40 0.29
68 Recreation services 0.80 0.70
69 Offices of health practitioners 2.12 2.20
70 Nursing and personal care facilities 0.46 0.43
71 Hospitals, private 2.00 1.87
72 Health services, nec 0.53 0.47
73 Legal services 1.06 1.12
74 Educational services (private) 0.81 0.78
75 Social services and membership org. 1.49 1.34
76 Research 0.42 0.37
77 Misc professional services 2.38 2.11

Table 12: List of private industries, Jorgenson and coauthors. Percentage shares of industry
nominal gross output and value added in total gross output and value added, average for 1960-
2005.
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A.2 Measuring productivity

I rely on the standard KLEMS methodology (Timmer et al. 2007) for computing the two

standard measures of productivity: labor productivity and TFP. I define the measured labor

productivity as value added per effective hour and measured TFP as the usual Solow residual.

Industry accounts of the KLEMS type are based on the assumptions of perfectly measurable

factor inputs, constant returns to scale and perfect competition, such that the factors are paid

their marginal products. In the model, however, firms make profits and factor utilization is not

measurable. Therefore, the standard Solow residual formulas used in productivity accounting

deviate from the true technology in the model. Measured TFP is influenced not only by tech-

nology shocks, but also by changes in demand. At industry level, I compute the Solow residuals

following the methodology of the EU KLEMS database as

ˆTFPmit = v̂ait − sLitĥit − sKit k̂it, (43)

where sX is the cost share of input X in value added and hats denote growth rates of variables.

I refer to TFPm as measured productivity. I choose to report value added-based TFP over gross

output-based TFP at both aggregate and industry level because they are directly comparable

with their model counterparts. The difference between the two measures is only in rescaling the

productivity series by the share of cost share of value added in the gross output.13

The true technology in my model can be expressed as

ˆAtzit = v̂ait − sLit(ĥit + êit)− sKit k̂it, (44)

where the last term drops out in case of constant capital input. The technology is only equivalent

to measured productivity (eq. 43) in the case of constant effort.

Moreover, the levels of measured productivity are not comparable across industries, as value

added and inputs are not counted in consistent units. In line with the KLEMS methodology, I

define measured aggregate TFP using aggregate measures of inputs and output as

ˆTFPmt = ˆV A− sHt Ĥt − sKt K̂t. (45)

For all variables I always use the same procedure to construct them in the data and from

the model simulations.

A.3 Moments

Correlations between productivity and other aggregate variables and their standard devia-

tions are computed using the series described in the main text. Cross-industry weighted averages

of industry-level correlations and standard deviations are computed using nominal output shares

as weights. The benchmark weighting is based on the industries’ average nominal output share

in the first sub-period. I compute the cross-industry second moments using alternative weights

in order to check the robustness of the results.

13 ˆTFPmit = v̂ait − sLitĥit − sKit k̂it − sLitĥit = 1
sV A
it

(
ŷit − sKit k̂it − sLit l̂it − sMit M̂it

)
= 1

sV A
it

ˆTFPm
GO

it ,
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Standard deviation of measured value added and productivity in two of the industries in

the data sample is extremely volatile. Both industries (39 Petroleum and coal products and

50 Gas utilities) are likely to be affected by extremely volatile prices of their intermediate

inputs, especially in the first sub-period. Because these extreme values affect the averages

disproportionally and can not be captured by the model with ex ante homogeneous industries,

I winsorize the standard deviations at the maximum value across the remaining industries for

each variable.

B Additional empirical evidence

B.0.1 Comparison to previous studies

Figure 5: Aggregate correlations pre- and post-1984 in Wang (2014).
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Figure 6: Aggregate correlations and volatility pre- and post-1984 in Gaĺı and van Rens (2019).
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B.0.2 Robustness of industry-level correlations

1960-2005 1960-1983 1984-2005 Difference
corr(TFP, GDP)
First Diff. 0.80 0.81 0.79 -0.02

[0.02] [0.01] [0.03] [0.04]
CF 0.82 0.81 0.84 0.03

[0.01] [0.01] [0.02] [0.03]
HP par=100 0.78 0.79 0.76 -0.04

[0.03] [0.02] [0.07] [0.09]
HP par=6.25 0.81 0.81 0.81 0.01

[0.01] [0.02] [0.03] [0.04]
corr(TFP, H)
First Diff. -0.10 0.00 -0.21 -0.21

[0.05] [0.05] [0.05] [0.09]
CF -0.02 0.08 -0.11 -0.19

[0.04] [0.05] [0.03] [0.06]
HP par=100 -0.14 -0.03 -0.27 -0.24

[0.06] [0.07] [0.05] [0.10]
HP par=6.25 -0.06 0.05 -0.17 -0.22

[0.05] [0.06] [0.03] [0.08]
corr(LP, GDP)
First Diff. 0.73 0.73 0.71 -0.02

[0.02] [0.02] [0.03] [0.04]
CF 0.72 0.71 0.74 0.02

[0.02] [0.02] [0.03] [0.04]
HP par=100 0.72 0.71 0.70 -0.01

[0.03] [0.03] [0.07] [0.08]
HP par=6.25 0.72 0.71 0.71 0.00

[0.02] [0.02] [0.04] [0.04]
corr(LP, H)
First Diff. -0.30 -0.22 -0.40 -0.18

[0.04] [0.05] [0.04] [0.08]
CF -0.23 -0.13 -0.32 -0.19

[0.04] [0.05] [0.03] [0.07]
HP par=100 -0.32 -0.22 -0.42 -0.21

[0.05] [0.06] [0.04] [0.09]
HP par=6.25 -0.27 -0.16 -0.38 -0.21

[0.05] [0.06] [0.03] [0.07]

Table 13: [Table 3 with standard errors] Average industry-level cyclical correlations between
selected productivity measures and output, resp. hours. Weighted averages using constant
industry weights over time: average nominal output share between 1960 and 1983. Comparison
pre- and post-1984. Standard errors computed using bootstrapping (re-sampling the series 800
times using 6 years blocks).
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1960-2005 1960-1983 1984-2005 Difference

corr(TFPm, GDP)
First Diff. 0.76 0.77 0.73 -0.04
CF 0.78 0.77 0.78 0.00
HP par=100 0.75 0.75 0.71 -0.04
HP par=6.25 0.77 0.77 0.75 -0.01

corr(TFPm, H)
First Diff. -0.14 -0.03 -0.25 -0.22
CF -0.08 0.02 -0.19 -0.21
HP par=100 -0.14 -0.04 -0.25 -0.21
HP par=6.25 -0.10 0.01 -0.21 -0.22

corr(LP, GDP)
First Diff. 0.74 0.76 0.68 -0.08
CF 0.74 0.74 0.72 -0.02
HP par=100 0.73 0.74 0.67 -0.06
HP par=6.25 0.74 0.74 0.70 -0.04

corr(LP, H)
First Diff. -0.33 -0.23 -0.43 -0.20
CF -0.29 -0.19 -0.39 -0.20
HP par=100 -0.32 -0.24 -0.41 -0.18
HP par=6.25 -0.30 -0.21 -0.40 -0.20

Table 14: Average industry-level cyclical correlations between selected productivity measures
and output, resp. hours. Robustness: simple averages, unit industry weights. Comparison pre-
and post-1984. Each correlation is computed using four different detrending methods.

C Bottom-up construction of aggregate series

C.1 Time-varying industry weights

C.1.1 Approximation formulas

Let us assume that the aggregate variable Xt can be expressed (exactly) as

Xt =

N∑
i=1

ŵi,txi,t, (46)
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where xit are the industry level series and ŵit are time varying weights. Then, for the growth

rate of the aggregate variable it follows that

X̃t+1 =
Xt+1 −Xt

Xt

=
1

Xt

(
N∑
i=1

ŵi,t+1xi,t+1 −
N∑
i=1

ŵi,txi,t

)

=
1

Xt

(
N∑
i=1

ŵi,t+1xi,t+1 −
N∑
i=1

ŵi,txi,t+1 +
N∑
i=1

ŵi,txi,t+1 −
N∑
i=1

ŵi,txi,t

)

=
1

Xt

(
N∑
i=1

ŵi,t(xi,t+1 − xi,t) +

N∑
i=1

(ŵi,t+1 − ŵi,t)xi,t+1

)

=
1

Xt

(
N∑
i=1

ŵi,txi,tx̃i,t+1 +

N∑
i=1

w̃i,t+1ŵi,txi,t+1

)

=
N∑
i=1

wi,t+1x̃i,t+1 +
N∑
i=1

w̃i,t+1
ŵi,txi,t+1

Xt
,

where x̃i,t is the growth rate between periods t and t− 1 of industry-level variable xi, w̃i,t+1 is

the growth rate of weight ŵi and where in the last equation we have defined

wi,t+1 =
ŵi,txi,t
Xt

.

Notice that if the growth rate of weights w̃i,t+1 is small, the second term is negligible and we

obtain expression

X̃t ≈
N∑
i=1

wi,tx̃i,t. (47)

C.1.2 Weights

For gross output, value added, capital, hours and industry-level total intermediate inputs,

the aggregate nominal value is the sum of industry nominal values. Thus, I can substitute into

equation 46 directly with

Xreal
t =

N∑
i=1

pxi,t

PXt
xreali,t , (48)

where xi is the industry variable of interest, pxi,t is the price of xi,t and PXt is the corresponding

price index. It follows that I can substitute into 46 and 47

ŵit =
pxi,t

PXt
, (49)

wi,t+1 =
pxi,txi,t

PXt Xt
. (50)

Notice that wi,t+1 is the nominal cost share of industry i at time t.
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Flex. weights Constant weights
Variable rel. std. dev. relative std. dev.

sample mean pre-1984 mean

Value added 1.00 0.97 1.04
Gross output 1.00 0.98 1.04
Measured TFP 1.00 0.91 0.98
Labor productivity 1.00 0.94 1.01
Hours 1.00 1.02 1.05
Capital 1.00 1.12 1.08
Inter. inputs 1.00 1.00 1.02

Table 15: Relative standard deviations of weighted averages compared to the original aggregate
series. Weighted averages constructed using flexible time-varying weights and constant weights
(sample mean and pre-1984 mean weights).

For labor productivity it is straightforward to derive that

LPt =
V At
Ht

=

∑N
i=1

pV Ai,t
PV At

vai,t

Ht
(51)

=

N∑
i=1

pV Ai,t

P V At

vai,t
hi,t

hi,t
Ht

(52)

=
N∑
i=1

pV Ai,t

P V At

hi,t
Ht

lpi,t. (53)

Therefore, I can substitute in equations 46 and 47 with

ŵi,t =
pV Ai,t

P V At

hi,t
Ht

(54)

wi,t+1 =
pV Ai,t vai,t

P V At V At
. (55)

For measured TFP, I follow Hulten (1978) and use Domar weights for aggregating gross-output

based industry total factor productivity into value-added based aggregate series, which gives

me

wi,t+1 =
pi,tyi,t

P V At V At
, (56)

where yi stands for industry gross output and V A stands for aggregate value added.

C.1.3 Quality of approximation

To assess the quality of approximation of the aggregate series by the bottom-up formulas

I plot the comparison of different versions of the aggregate series in figure 7. The quality of

approximation by the formula with time-varying weights is very good. Table 15 reports the

relative standard deviation of weighted average series compared to the original aggregate series.

The relative standard deviation is very close to one for each of the series.
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Figure 7: Comparison between aggregate series and weighted averages: value added (V A),
gross output (OUT ), measured TFP (TFPm), labor productivity (LP ), hours (H) and capital
(CAP ). Flexible weights denote the series constructed using time-varying industry weights.
Fixed series are plotted for two alternative weighing options - based on the whole sample and
pre-1984 mean weights.
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1960-2005 1960-1983 1984-2005 Difference

corr(TFPm, GDP)
First Diff. 0.70 0.83 0.51 -0.32
CF 0.82 0.81 0.65 -0.16
HP par=100 0.68 0.81 0.35 -0.45
HP par=6.25 0.75 0.79 0.47 -0.32

corr(TFPm, H)
First Diff. 0.22 0.53 -0.19 -0.72
CF 0.47 0.52 0.04 -0.48
HP par=100 0.21 0.54 -0.28 -0.82
HP par=6.25 0.36 0.49 -0.15 -0.64

corr(LP, GDP)
First Diff. 0.43 0.60 0.27 -0.33
CF 0.54 0.59 0.25 -0.33
HP par=100 0.49 0.60 0.28 -0.32
HP par=6.25 0.46 0.55 0.14 -0.41

corr(LP, H)
First Diff. -0.13 0.22 -0.46 -0.67
CF 0.09 0.22 -0.41 -0.63
HP par=100 -0.05 0.27 -0.40 -0.67
HP par=6.25 -0.02 0.18 -0.50 -0.68

Table 16: Fixed industry composition over time: Cyclical correlation between selected produc-
tivity measures and output/hours. Aggregate series using constant industry weights (mean over
1960-1983).

C.2 Constant weights

The constant-weight or fixed-weight aggregate series are weighted averages defined as

X̃t ≈
N∑
i=1

w̄ix̃i,t, (57)

where constant weights w̄i are averages over weights wi,t defined in the previous section. The

benchmark weights are average shares over the pre-1984 period. The results are very robust

with respect to different choice od weights.

Figure 7 plots the comparison of fixed-weight series to the original aggregate series. The

fixed-weight series are still a very good approximation, although some differences are visible

especially for capital. Second and third column of table 15 report the relative standard deviation

of the fix-weight aggregate series compared to the aggregate series. For all variables with the

exception of capital, the relative volatility is closer than 5% away from the aggregate series.

Table 16 reports the correlation between selected variables computed using the fixed-weight

aggregate series for all detrending methods.
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D Robustness exercises

In each of the robustness exercises, parameter ε and the volatilities of all types of shocks are

recalibrated such that the targets listed in section 4.1 are matched.

D.1 Elasticity of substitution σ = 0.5

Aggregate correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.83 0.53 0.89 0.028
Post-1984 0.51 -0.19 1.20 0.018

Model
Benchmark calibration 0.67 0.53 0.88 0.028
Flexible hours -0.05 -0.19 1.02 0.032
Smaller dem. shocks 0.59 0.34 0.86 0.017

Table 17: Selected aggregate second moments, alternative value of the elasticity of substitution
σ = 0.5. Data (top panel) and model simulations (bottom panel).

Industry correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.81 0.00 0.63 0.080
Post-1984 0.79 -0.21 0.57 0.076

Model
Benchmark calibration 0.54 0.25 0.87 0.083
Flexible hours 0.12 -0.17 1.01 0.091
Smaller dem. shocks 0.54 0.24 0.87 0.080

Table 18: Selected averages of industry-level second moments, alternative value of the elasticity
of substitution σ = 0.5. Data (top panel) and model simulations (bottom panel).
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D.2 Elasticity ρ = 0.5

Aggregate correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.83 0.53 0.89 0.028
Post-1984 0.51 -0.19 1.20 0.018

Model
Benchmark calibration 0.66 0.53 0.89 0.028
Flexible hours -0.06 -0.19 1.02 0.032
Smaller dem. shocks 0.59 0.39 0.88 0.018

Table 19: Selected aggregate second moments, alternative value of the intertemporal elasticity
ρ = 0.5. Data (top panel) and model simulations (bottom panel).

Industry correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.81 0.00 0.63 0.080
Post-1984 0.79 -0.21 0.57 0.076

Model
Benchmark calibration 0.56 0.27 0.86 0.076
Flexible hours 0.18 -0.11 0.99 0.085
Smaller dem. shocks 0.56 0.26 0.86 0.073

Table 20: Selected averages of industry-level second moments, alternative value of the intertem-
poral elasticity of substitution ρ = 0.5. Data (top panel) and model simulations (bottom panel).
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D.3 Frisch elasticity of labor supply ηFrisch = 1

Aggregate correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.83 0.53 0.89 0.028
Post-1984 0.51 -0.19 1.20 0.018

Model
Benchmark calibration 0.65 0.53 0.89 0.028
Flexible hours -0.05 -0.19 1.02 0.030
Smaller dem. shocks 0.59 0.39 0.88 0.019

Table 21: Selected aggregate second moments, alternative value of the Frisch elasticity of labor
supply ηFrisch = 1. Data (top panel) and model simulations (bottom panel).

Industry correlation productivity rel. std.dev. std.dev.
with output with hours hours output

Data
Pre-1984 0.81 0.00 0.63 0.080
Post-1984 0.79 -0.21 0.57 0.076

Model
Benchmark calibration 0.56 0.29 0.86 0.081
Flexible hours 0.17 -0.11 0.99 0.087
Smaller dem. shocks 0.56 0.28 0.86 0.078

Table 22: Selected averages of industry-level second moments, alternative value of the Frisch
elasticity of labor supply ηFrisch = 1. Data (top panel) and model simulations (bottom panel).
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E Additional analytical results

E.1 Analytical derivation of corr(Y,LP)

At the industry level, the correlation between measured productivity and output can be

expressed as (for the elasticity of substitution σ equals one):

Corr(l̃pi, ỹi) =

Var(z̃i)

Var(h̃i)
+ ΓB√

Var(z̃i)

Var(h̃i)
+ Γ2

√
Var(z̃i)

Var(h̃i)
+B2

. (58)

Equation 58 expresses the correlation in terms of two factors: the parameter Γ (resp. B = Γ+1)

and the relative variance of industry technology z̃i and hours h̃i.

For the aggregate variables, it follows that (for the case when the elasticity ρ equals one):

Corr(L̃P , Ỹ ) =

Var(Z̃)

Var(H̃)
+ ΓB√

Var(Z̃)

Var(H̃)
+ Γ2

√
Var(Z̃)

Var(H̃)
+B2

. (59)

In equations 58 and 59, the exogenous shocks only influence the variance ratios. The corner

case in which the variance ratio approaches infinity implies unit correlation. Coefficient Γ

determines the sign of the correlation. For positive values of Γ, also the other corner case in

which the variance ratio is equal to zero implies unit correlation. Between the two corner cases,

the correlation decreases but can not switch signs. In fact, it can be shown that the correlation

is higher or equal to a positive constant cΓ = 2
√
BΓ

B+Γ for any positive value of the variance ratio.

The comparison of equations 58 and 59 delivers the key insights analogous to section 5.

E.2 Frisch elasticity of labor supply

As there are different margins of labor input in my model, I also have several differing

concepts of the labor supply elasticity. In what follows, I derive a measure that closely resembles

the standardly used Frisch elasticity of labor supply.

Using the functional form 15, equation 25 can be reformulated as

DwiC
−ρ = Θhi

εη
1+ε , (60)

where Θ is a constant. Thus, at the industry level, Frisch elasticity can be expressed as

ELFrisch =
1

ηFrisch
=

1 + ε

εη
=

1

η

(
1 +

1

ε

)
>

1

η
(61)

Since the elasticity is the same in all industries, it also apply to the aggregate labor supply.
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