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Abstract 

To incentivize workers and boost performance, firms often offer monetary bonuses for the 

achievement of production goals. Such bonuses appeal to two types of motivations of the 

worker. On the one hand, the existence of a goal, on its own, triggers an intrinsic 

motivation associated with the desire to not fall short of the goal. On the other hand, the 

money paid to achieve the goal constitutes an extrinsic motivation. This paper studies the 

possibility that these two effects are substitutes when workers set their own goals. We 

develop a theoretical model that predicts that if the worker is sufficiently loss averse and 

faces uncertainty about reaching a production goal, offering a monetary payment 

contingent on reaching such a goal is counterproductive. This is because under the 

presence of monetary bonuses, the loss averse worker prefers setting lower goals, which 

yield lower but more likely bonus payments. Lower goals, in turn, negatively affect 

subsequent performance. Results from a laboratory experiment corroborate this 

prediction. This paper highlights the limits of monetary bonuses as an effective incentive 

when workers are loss averse.  
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1. Introduction

Offering monetary bonuses for the achievement of milestones is a widespread practice 

used by firms to incentivize workers and company executives. According to Worldatwork 

(2018), close to 98% of publicly traded American companies use at least one 

compensation scheme that includes bonuses, and 73% of these companies report that 

these bonuses are given when an individual or organizational goal is reached. The 

rationale behind including bonuses in compensation packages is that the additional 

monetary incentives created by the bonus boost performance, as long as standard 

assumptions on the worker’s preferences and cost of effort hold (Gibbons & Roberts, 

2013).  

There is also ample empirical evidence from psychology showing that setting a 

challenging, but attainable, goal can lead to greater effort exertion, stronger attention, and 

higher endurance in physically and cognitively demanding tasks (Heath et al.,1999; Wu 

et al., 2008). This is because the goal attains the status of a reference point, making the 

loss averse worker exert great effort to avoid experiencing the losses in utility that would 

result from falling short of the goal (Heath et al.,1999). Additionally, economists have 

shown that fully informed principals can take advantage of this feature by including 

performance goals in workers’ contracts (Corgnet et al., 2018; Corgnet et al., 2015; 

Gómez-Miñambres, 2012). If this intrinsic motivation to achieve a goal is sufficiently 

strong, monetary bonuses for goal achievement may not provide an additional incentive, 

and money spent in this manner would be wasteful expenditure for an employer. 

We consider an environment in which workers can set their own goals, rather than having 

them specified by an employer or another party. Allowing the worker to set own goals is 

particularly convenient when the principal knows less about workers’ potential 

performance than the worker herself, and also in settings where there is potential 

heterogeneity regarding workers’ ability in the task, but it is inappropriate or illegal for the 

employer to impose different contracts on different workers. Moreover, evidence shows 

that workers who set their own target feel they have more control over outcomes, and feel 

more involved with the firm (Groen et al., 2012).1 

It is not clear, however, whether the achievement of a self-chosen goal should be 

monetarily rewarded. On one hand, offering higher monetary bonuses contingent on the 

achievement of more challenging production goals can incentivize accurate goal setting, 

1 Setting one’s own goal is also common outside the workplace. Fitness apps allow the user to set her 
own target for minutes exercised or steps walked each day. Many banks offer a calculator in which the 
account holder sets a savings goal and the amount that has to be saved each month is calculated for 
them. Apps such as Goals-on-Track and Lifetick permit the user to set their goals in a variety of areas 
and to track their progress.  
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which guarantees that workers self-select into a contract that benefits both herself and 

the principal (Laffont & Tirole, 1993; Myerson, 1981; Green & Laffont, 1977).2 On the 

other hand, if the monetary bonus does not yield enough additional benefit to the principal 

than a goal with no monetary bonus, the employer will be better off not including a 

monetary component. This is a distinct possibility in view of the literature showing that 

offering monetary incentives can be counterproductive since they can crowd-out sources 

of intrinsic motivation (Gneezy et al., 2011;  Ariely et al., 2009a; Ariely et al., 2009b, 

Gneezy & Rustichini, 2000).  

 

This paper aims to understand, using both theoretical and experimental methods, 

whether, and under which conditions, offering a monetary bonus for the achievement of 

a self-chosen goal crowds out the motivational benefits of goal setting.  To study this 

question, we develop a theoretical model and test its predictions in a laboratory 

experiment. The main result of the paper, supported both by theoretical reasoning and 

the experimental data, is the following: when workers have reference-dependent 

preferences and do not have complete information about their own ability, offering 

monetary bonuses for the achievement of self-chosen goals can yield lower performance 

compared to a situation where bonuses are not offered. This is because a worker facing 

monetary bonuses will set more conservative goals to increase her chances of obtaining 

the bonus. These lower goals are less challenging and impair performance relative to 

goals where no money is involved. Workers with greater loss-aversion, that is, who are 

more sensitive to the losses associated with not attaining the bonus, set lower goals and 

exhibit a steeper decrease in performance. In contrast, workers with standard 

preferences, that is, those who do not weight psychological losses heavily, do not exhibit 

such effects.  

 

We design a laboratory experiment to test our model’s predictions. In the experiment, 

subjects have to complete a task that requires effort and attention. To incentivize subjects, 

we use four different contracts assigned at random across subjects. The design of the 

experiment can be viewed from the perspective of a firm that is considering changes to a 

simple piece rate contract. The baseline treatment is a low-powered price rate contract, 

called LOPR. A second treatment is a high-powered piece rate contract, HIPR. 

Comparing the LOPR and HIPR conditions can indicate how much more (or less) 

performance one can get from increasing the piece rate, and whether it is worth the extra 

expenditure imposed by the higher piece rate. The third treatment, GOAL+BONUS, is a 

contract in which the low-powered piece rate is complemented with a self-chosen goal 

that yields a monetary bonus in the event that the goal is achieved. Comparing 

                                                 
2 Indeed, self-chosen goals contracts have been shown to be more cost-effective than pure piece rate 
contracts, both in the field (Groen et al., 2015; Brookins et al., 2017) and in the laboratory (Dalton et al., 
2016a). Due to its many desirable features, firms are increasingly using this practice (Groen et al., 2012, 
Bourne et all., 2013). 
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GOAL+BONUS to LOPR provides a measure of whether there is sufficient improvement 

in performance from adding a self-chosen GOAL to more than offset the bonuses that are 

paid. The final contract, GOAL, adds a self-chosen goal without any monetary bonus to 

the low piece rate. This contract represents no extra expenditure on the part of the 

employer, and has the possibility of inducing better performance at the least cost. Our 

model predicts that if individuals are sufficiently loss averse, GOAL would yield better 

performance than GOAL+BONUS. If this turns out to be the case, GOAL would dominate 

GOAL + BONUS because it would involve lower employer expenditure for higher output.    

 

Since our theoretical predictions greatly depend on the extent of individuals’ loss 

aversion, and because goal setting can also depend on subjects’ curvature of the utility 

function, we elicit subjects’ risk and loss attitudes. We implement the parameter-free 

elicitation method developed by Abdellaoui et al. (2008). This elicitation method has the 

advantage that it allows elicitation of the curvature of subjects’ utility functions, as well as 

of their degree of loss-aversion, while accounting for the possibility that subjects might 

exhibit probability weighting (Abdellaoui, 2000; Gonzalez & Wu, 1999; Tversky & 

Kahneman, 1992).  

 

The experimental data confirm the main prediction of the model: subjects assigned to the 

GOAL treatment set more ambitious goals than those assigned to GOAL+BONUS and 

exhibit higher performance than subjects assigned to any of the other three contracts. 

Specifically, a non-paid goal contract leads to 11% more output, an increase in 

performance of 0.36 standard deviations, over a paid goal contract. Moreover, as 

predicted by the model, we find that performance of loss averse subjects in particular is 

greater when goals are not rewarded monetarily. In addition, we find that loss aversion is 

a relevant determinant of goal setting, while concavity of the utility function is not. Finally, 

we observe that performance under non-paid goals is 8% higher than performance under 

the piece rate contract that offers the same linear monetary incentives without goals. We 

conclude that a GOAL contract with no monetary incentives is the cheapest way to 

improve performance among the contracts we study. 

 

This paper relates to several strands of literature. First, it adds to the literature on 

incentives and contracting (Gibbons & Roberts, 2013; Laffont & Martimort, 2002; Laffont 

& Tirole, 1993). We show that offering monetary bonuses can be counterproductive when 

they are linked to a production goal that is set by the workers. This goes against standard 

theories of incentives and constitutes a proof of principle that in certain environments, 

offering monetary incentives could inhibit psychological motives that would otherwise 

stimulate effort.  

 



 4 

Second, our paper contributes to the emerging literature on goal setting in economics 

(Wu et al., 2008; Gómez-Miñambres, 2012; Corgnet et al., 2015; Dalton et al. 2016a, 

Kaur et al. 2015, Brookins et al., 2017, Hsiaw, 2018; Koch & Nafziger, 2011, 2019). We 

propose a model of self-chosen goals in which workers have reference-dependent 

preferences with the goal as the reference point, as is common in the literature. We depart 

from the existing literature in two fundamental ways. First, we do not assume dynamic 

inconsistency as in Hsiaw (2013), Kaur et al. (2015), Hsiaw (2018) and Koch & Nafziger 

(2011; 2019). Second, we relax the assumption of certainty about reaching the goal as 

assumed by Wu et al. (2008), Corgnet et al. (2015), and Dalton et al. (2016a, 2016b). In 

a setting with certainty, the property of diminishing sensitivity is necessary to make effort 

increase with goals.3 We show that when the worker faces uncertainty about reaching a 

goal, loss aversion alone motivates higher effort. This motivational aspect of loss aversion 

was highlighted in early work by Heath et al. (1999, p. 85): “people who are below their 

goal by x units will perceive their current performance as a loss relative to their goal; thus 

they will work harder to increase their performance by a given increment than people who 

are above their goal by x units”. Thus, our model captures the idea of loss aversion as a 

motivating device.  

 

In addition, including uncertainty about reaching a self-chosen goal yields the novel and 

perhaps counterintuitive prediction that adding monetary bonuses for the achievement of 

a goal may lead to lower performance. This occurs because in our setting, the level of 

goal that is chosen determines how likely it is that the agent receives the bonus, with less 

ambitious goals more likely to be achieved. Hence, there is a trade-off based on the 

likelihood of reaching the goal, the monetary payment if reached and the psychological 

loss if not reached.  

 

This paper also contributes to the goal-setting literature as it is, to our knowledge, the first 

to quantify loss aversion and utility curvature parameters elicited in an incentive 

compatible way to study its association with goal-setting, monetary incentives, and 

individual performance. Eliciting these preference parameters allows us to empirically 

validate the mechanisms of the model.  

 

Finally, this paper contributes to the literature that examines how extrinsic incentives 

crowd-out intrinsic incentives (see Gneezy et al., 2011 and Bowles & Polanía-Reyes, 

2012 for reviews and Benabou & Tirole, 2003, for a theoretical framework). In this 

literature, crowding-out effects appear when monetary incentives inhibit individuals from 

signaling to others, or even themselves, a favorable attribute such as intelligence (Ariely, 

et al., 2009b), pro-sociality (Ariely et al., 2009a; Mellstrom & Johannesson, 2016) or norm-

                                                 
3 Kahneman and Tversky (1979) refer to the property that the value function is convex over losses and 
concave over gains as diminishing sensitivity. 
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conforming behavior (Frey & Oberholzer-Gee, 1997; Gneezy & Rustichini, 2000). We 

demonstrate the existence of a crowding-out effect through a completely different 

channel: intrinsic incentives that stem from individual preferences, such as loss aversion, 

can be offset by the presence of monetary incentives.  

 

Similarly, some work in behavioral and experimental economics has shown that stronger 

monetary incentives could induce lower labor supply if workers have reference-dependent 

preferences (Crawford & Meng, 2011; Farber, 2008; Fehr & Goette, 2007; Camerer et al., 

2002;). While our findings are similar, our suggested mechanism is fundamentally 

different in at least two aspects. First, in our setup, it is a self-chosen goal rather than 

expected earnings which act as the reference point. Second, we show that the crowding-

out effect goes beyond offering higher-powered monetary incentives and instead stems 

from the interaction between goal setting and loss aversion.  

 

 

2. Theoretical Framework  

 

2.1. The Model4 

 

Consider a worker who chooses to deliver a level of output 0 ≤ 𝑦 ≤ 1. The worker 

experiences disutility from producing output. We assume that this disutility is captured by 

the cost function 𝑐(𝑦, 𝜃) with the following functional form: 

 

Assumption 1 (Cost of output):  𝑐(𝑦, 𝜃) = (1 − 𝜃)
𝑦2

2 
. 

The parameter 0 < 𝜃 < 1  captures the worker’s ability on the task. The higher her ability 

is, the lower is her associated cost of producing output. We assume that this parameter 

is unknown to the worker. Instead, she knows the distribution from which is drawn.5 

Specifically, we assume that this parameter is drawn from a uniform distribution that is 

normalized to the [0,1] interval.   

Assumption 2 (Distribution of the ability parameter): 𝜃 ∼ 𝑢𝑛𝑖𝑓[0,1]. 

This assumption holds in a variety of settings. Examples include situations where workers 

face new tasks, or where learning about own abilities fully is not possible, either because 

                                                 
4 The proofs of all results of the model are in Appendix A.  
5 In Dalton et al. (2016a), we present a model in which the worker knows 𝜃. The predictions of that model 
differ greatly from the model presented in this paper. In Proposition 2, Dalton et al. (2016a) show that when 
the worker knows her ability, she sets a goal ensuring that she ends up in the domain of gains and increases 
performance with respect to the bonus associated with reaching her self-chosen goal.  
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it is not in the interest of the principal to give reliable feedback (Benabou & Tirole, 2003) 

or because unfavorable feedback is not assimilated by the individual in order to maintain 

a degree of confidence that is effort-enhancing (Benabou & Tirole, 2002). Furthermore, 

even if reliable feedback was provided, empirical evidence shows that individuals find it 

difficult to estimate their own skills and may fail to update their beliefs in an unbiased way 

(Eil and Rao, 2011; Mobius et al., 2015 and Gonzalez-Jimenez, 2019). A manifestation 

of such bias in belief updating is the existence of systematic overconfidence or 

underconfidence (Benoit et al, 2015; Grossman and Owens, 2012 and Clark & Friesen, 

2008) which reveals imperfect knowledge of own ability.  

We assume that performing the task yields pecuniary benefits to the worker, which 

translate into utility gains. The monetary incentives are determined by the contract that 

the principal offers. We begin by analyzing a case, in which the principal offers a piece-

rate contract,  𝑤(𝑦, 𝛼) = 𝑎𝑦. The contract 𝑤(𝑦, 𝛼) has the property of offering constant 

marginal incentives, which guarantees that the worker receives the amount 0 < 𝜖𝑎 ≤
1

2
  

when the she decides to increase her output supply on 0 < 𝜖 < 1, irrespective of how 

much output she may have already delivered. As described in Section 4, this type of one-

dimensional piece rate contract is in effect in two of the treatments of our experiment, 

LOPR and HIPR. 

When offered this contract, the utility of the worker is: 

𝐸(𝑈(𝑦)) = ∫ 𝑎𝑦
1

0

− (1 − 𝜃)
𝑦2

2 
 𝑓(𝜃)𝑑𝜃 = 𝑎𝑦 −

𝑦2

4
.              (1) 

The last equality uses the fact that ∫ 𝜃
1

0
𝑓(𝜃)𝑑𝜃 =

1

2
 , the worker’s expectation about her 

ability on the task under the assumption that 𝑓(𝜃) is a uniform distribution on [0,1]. In 

addition, an assumption made in equation (2) is that the monetary incentives enter into 

the worker’s utility linearly. This assumption captures the notion that individuals facing 

small monetary amounts do not exhibit curvature in their utility functions (see Abdellaoui, 

2000; Abdellaoui et al., 2008; Wakker & Deneffe, 1996) and the discussion in Rabin, 

2000).6  

The worker chooses an output level 𝑦𝑝 that maximizes (3), supplying a production level 

that satisfies the following first-order condition: 

𝑎 −
1

2
𝑦𝑝 = 0.                               (2) 

                                                 
6 Later, we will show that this assumption holds for most participants in our experiment. 
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The output level 𝑦𝑝  is the optimal production level under the piece rate. Thus, the optimal 

output level has the closed-form solution 𝑦𝑝 = 2𝑎, with the property that higher monetary 

incentives 𝑎 yield higher output.7 

We now study a case in which the worker is incentivized with a goal contract, which in 

addition to offering a piece rate 𝑎, also offers a bonus 𝐵(𝑦, 𝑔). The bonus pays a monetary 

amount in the event that the worker attains or surpasses a production goal,  𝑔, which 

belongs to the same domain as her output, so that 0 ≤ 𝑔 ≤ 1.  

Specifically, the payoff of the agent offered the goal contract is 

𝑤(𝑦, 𝐵(𝑦, 𝑔)) = 𝑎𝑦 + 𝐵(𝑦, 𝑔),       (3) 

where  

𝐵(𝑦, 𝑔) = {
0 𝑖𝑓 𝑦 < 𝑔,

𝑏𝑔 𝑖𝑓 𝑦 ≥ 𝑔,
                 (4) 

and 0 > 𝑏 > 1. Thus, the worker receives a larger bonus for achieving more ambitious 

goals, and the bonus is not awarded if the goal is not attained. This type of contract is not 

novel. According to Chung et al. (2014), it is classified as a combination of linear 

commission and a bonus with overachievement commission at quota. Similar incentive 

schemes are commonly used by firms (Kaur et al, 2015; Larkin, 2014; Oyer, 1998). 

For a given goal, �̂�, under the incentive scheme 𝑤(𝑦, 𝐵(𝑦, �̂�)), the worker must choose 

whether to work toward the bonus or not. She must compare her expected utility from the 

optimal level of output below the target level to that resulting from exceeding or just 

achieving the target. Denote the optimal choice of output below the goal as 𝑦 and the 

resulting expected utility level as 

 

𝐸 (𝑈 (𝑦 , �̂�)) = 𝑎𝑦 −
 𝑦2

4
.            (5) 

 

Similarly, let the optimal output above or equal to the goal be �̅� and the corresponding 
expected utility be 
 

𝐸(𝑈(�̅� , �̂�)) = 𝑎�̅� + 𝑏�̂� −
�̅�2

4
 .                    (6)         

 

                                                 
7 The restriction 0 ≤ 𝑎 ≤

1

2
  guarantees 0 ≤ 𝑦 ≤ 1. 
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When the goal is set too high, it is optimal not to try to achieve it since its achievement 

can be prohibitively costly, i.e. 𝐸 (𝑈 (𝑦 , �̂�)) ≥ 𝐸(𝑈(�̅� , �̂�)). This is the case when the 

marginal cost of achieving the goal, 
 𝑦2

4
−

�̅�2

4
, is larger than the associated marginal benefit 

𝑎�̅� + 𝑏�̂� − 𝑎𝑦. Thus, working toward the achievement of a high goal is more likely as 𝑏 

becomes larger. Also note that when 𝐸 (𝑈 (𝑦 , �̂�)) < 𝐸(𝑈(�̅� , �̂�)) and  �̅� > 𝑦𝑝 , the worker 

exerts extra effort to attain the goal beyond the amount she would have exerted if there 

were no bonus in place. Hence, with the contract 𝑤(𝑦, 𝐵(𝑦, �̂�)), a challenging but 

attainable goal has the potential to increase output.  

Thus far, we have examined the incentives of 𝑤(𝑦, 𝐵(𝑦, 𝑔))  under exogenous goals, that 

is a goal �̂� given by the principal or a third party. However, our interest is in goals that are 

set by the worker herself. In Proposition 1, we show that when the contract in (3) allows 

for self-chosen goals, a worker with standard preferences will set her goal exactly equal 

to her optimal level of expected output. We use the term standard preferences to describe 

an individual who derives no utility from achieving or failing to achieve the goal, other than 

from the monetary payment that it yields.  

Proposition 1:  A worker with standard preferences, who is incentivized with a self-

chosen goals contract, chooses 𝑔∗ = 𝑦∗, where 𝑦∗ =
2(𝑎+𝑏)

𝑏+1
.  

Under standard preferences, it is optimal to set a goal that is exactly equal to the expected 

output level. Moreover, the goal and output levels are higher, the higher the piece rate 

𝑎, and the bonus 𝑏. Note that, under standard preferences, the self-chosen goal contract 

yields higher output than the piece rate as long as 𝑏 > 0. When 𝑏 = 0, the two contracts 

have the same monetary incentives and the worker delivers the same output 𝑦∗ = 𝑦𝑝.  

Reference-dependent preferences 

Let us now suppose that the worker has reference-dependent preferences. This captures 

the notion that she does not only derive utility from the monetary incentives offered by the 

contract, but also that the presence of a goal induces a psychological (dis) utility from 

(not) achieving it. Following Wu et al. (2008) and Heath et al. (1999), we assume that the 

goal acquires the status of a reference point, dividing the output space into gains, which 

is the region of the output space where the goal is attained or exceeded, and losses, the 

region of the output space where the goal is not attained. Hence, a production goal 

induces an intrinsic, non-monetary, psychological utility that satisfies the properties of 

Kahneman and Tversky’s (1979) value function. We assume the following representation 

of this psychological utility,  
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Assumption 3 (Psychological utility) 𝑣(𝑦, 𝑔) = {
 𝜇(𝑦 − 𝑔)   𝑖𝑓 𝑦 ≥ 𝑔

−𝜇𝜆(𝑔 − 𝑦)   𝑖𝑓   𝑦 < 𝑔 
, with 𝜇 > 0 and 

𝜆 > 1. 

The parameter 𝜆 > 1  reflects the notion that the worker is loss averse, i.e. the 

psychological losses of failing short of a goal by some amount looms larger than the gains 

from surpassing the goal by the same amount. The parameter  𝜇 ≥ 0 represents the 

weight of the psychological component on the worker’s overall utility. If  𝜇 = 0,   the 

worker’s utility collapses to the case of standard preferences. Finally, note that we do not 

include diminishing sensitivity. Not including this property is consistent with our 

assumption that individuals do not exhibit curvature of the utility function and implies that 

in our setting the degree of loss aversion is the worker’s only source of risk aversion 

(Wakker, 2010). 

The expected utility of the worker with goal-dependent preferences under a set-your-own 

goal contract is 

𝐸(𝑈(𝑦, 𝑔)) = ∫ (𝑎𝑦 − (1 − 𝜃)
𝑦2

2 
)

1

0

𝑓(𝜃)𝑑𝜃 + ∫ (𝑏𝑔 + 𝜇(𝑦 − 𝑔))𝑓(𝜃)
1

𝑔

𝑑𝜃

− ∫ (𝜇𝜆(𝑔 − 𝑦))𝑓(𝜃)
𝑔

0

𝑑𝜃.                              (7)              

The first term of (7) is the expected monetary utility of producing 𝑦. The second term is 

the expected utility from producing 𝑦 above the goal. Note that this term includes both 

monetary (if 𝑏 > 0) and psychological gains. The third term is the expected psychological 

disutility from producing 𝑦 below the goal. It is informative to present (7)  after solving for 

the integrals:  

𝐸(𝑈(𝑦, 𝑔)) = 𝑎𝑦 −
𝑦2

4 
+ (1 − 𝑔)(𝑏𝑔 + 𝜇(𝑦 − 𝑔)) + 𝑔𝜇𝜆(𝑦 − 𝑔)             (8)     

From (8) we can see that the worker faces different tradeoffs when setting a goal. These 

tradeoffs change with the size of the bonus offered. Let us first assume there is no bonus, 

i.e. 𝑏 = 0. Then, for some given production level, �̂�, the worker will want to set a goal level 

such that �̂�  > 𝑔 holds, since such a goal guarantees utility gains stemming from 

psychological utility as depicted by the last two expressions in (8). Thus, from this 

perspective, she has reasons to set a low goal. However, setting a too low goal will not 

be optimal either. To understand why, note that by setting the lowest possible goal 𝑔 = 0, 

the last expression in (8) disappears, leading to the loss of a relevant source of utility if 𝜆 

is large and 𝑦 > 𝑔. Thus, the problem of the worker is to set a goal that guarantees 
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psychological gains and, at the same time, takes advantage of the motivational boost of 

𝜆 in the last expression. 

Now, if 𝑏 > 0, then the worker does not only want to set an achievable goal such that  𝑦 >

𝑔 holds to gain psychological utility, but she has additional reasons to set a lower goal so 

that she achieves the monetary bonus of 𝑏𝑔. Again, it is important to stress that the worker 

will not want to set the lowest goal because then she will derive lower utility.  

To solve the model, we let the worker choose output and goals simultaneously, as we did 
in the case with standard preferences. This implies that the worker is rational and 
internalizes the effect that the goal has on her expected performance and vice-versa.  

The worker chooses output and goals according to the following first order conditions:  

𝑎 −
1

2
𝑦 + (1 − 𝑔)𝜇 + 𝜇𝜆𝑔 = 0,                                       (9) 

(1 − 𝑔)𝑏 − 𝑏𝑔 − (1 − 𝑔)𝜇 − 𝜇(𝑦 − 𝑔) − 𝜆𝜇(𝑔 − 𝑦) − 𝜇𝜆𝑔 = 0.                  (10) 

Which in turn yield:  

𝑦(𝑔) = 2(𝑎 + 𝜇 + 𝜇𝑔(𝜆 − 1)),                (11) 
and 
 
 

𝑔(𝑦) =
𝑏 − 𝜇 + 𝜇(𝜆 − 1)𝑦

2(𝑏 + 𝜇(𝜆 − 1))
,                  (12) 

 
 
where eq. (11) describes the optimal output for a given goal level and parameters 𝑎, 𝜇 

and 𝜆 while eq. (12) describes the optimal goal for a given output level and parameters 

𝑏, 𝜇 and 𝜆.The following remarks are based on equations (11) and (12) and are useful to 

understand the way that goals and output relate to each other and how they respond to 

changes in parameters of the model.  

 

Remark 1. Let 𝜇 >0. Output and goals are complementary. That is, output increases with 
higher goals, and goals increase with higher output. 
 
The complementarity between goals and output presented in Remark 1 is captured in 
various models in the goal-setting literature, for instance in Corgnet et al. (2015) or Wu et 
al. (2008). However, in these models the property of diminishing sensitivity creates the 
complementarity. Our model shows that in the absence of diminishing sensitivity, this 
positive relationship between goals and output is still present under imperfect information 
about own ability.  
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Remark 2. Let 𝜇 > 0.The optimal output for a given goal level, 𝑦(𝑔),  increases in the 
piece rate, 𝑎 and loss aversion, 𝜆. The monetary bonus, 𝑏, does not influence 𝑦(𝑔). 
 

Remark 2 shows how parameters of the model affect output given some goal level. The 

fact that the degree of loss aversion boosts performance is typically present in models 

where goals act as a self-control device (Koch and Nafziger, 2011; 2019). In our model, 

the degree of loss aversion increases performance even when the decision maker does 

not exhibit dynamic inconsistency.  

 
Remark 3. Let 𝜇 > 0. The optimal goal for a given output level, 𝑔(𝑦), increases in the 

monetary bonus, 𝑏, and decreases in loss aversion, 𝜆,  if 𝑏 >
𝜇

(1−𝑦)
. The piece rate, 𝑎,  

does not influence 𝑔(𝑦). 
 

Remark 3 describes how the parameters of the model affect goals given an output level. 

Note that the way that loss aversion affects goals for a given output depends on the 

magnitude of 𝑏 relative to 𝜇. In the absence of monetary bonuses (i.e. 𝑏 = 0), highly loss 

averse workers will set higher goals for a given output level. However, if the monetary 

bonus is bigger than 
𝜇

(1−𝑦)
, highly loss averse workers will set lower goals.  

 

Finally, it is interesting to observe that, in this setting, a monetary bonus does not directly 

increase output (Remark 2). If there is an effect of a monetary bonus on output, it will 

come from the effect of the bonus on goals (Remark 3), and then on the subsequent effect 

of goals on output (Remark 1). 

 

 
2.2. Solution of the Model  
 
In this sub-section we express the optimal output and goal level in closed form and study 
the comparative statics at the solution with respect to the parameters we vary or measure 

in the experiment. These are the monetary bonus 𝑏 and the loss aversion parameter 𝜆. 
 
Proposition 2: A worker with the preferences given in eq. (7), with 𝜇 > 0, and who is 
incentivized with a self-chosen goals contract, chooses an output level and a goal level 
equal to:  
 

𝑦∗∗ =
2(𝜇 + 𝑎)(𝑏 + 𝜇(𝜆 − 1)) + 𝜇(𝑏 − 𝜇)(𝜆 − 1)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
,       

 

𝑔∗∗ =

(𝑏 − 𝜇)
2  + 𝜇(𝜆 − 1)(𝛼 + 𝜇)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
.      
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From Proposition 2, it is evident that when 𝜇 = 0, then  𝑦∗∗ collapses to 𝑦𝑝 (the optimal 

output under standard preferences). We now consider the influence of the exogenous 

parameters of the model on 𝑦∗∗ and 𝑔∗∗. The following corollary presents the comparative 

statics with respect to the monetary incentives of the contract.  

 

 

Corollary 1: for a worker with the preferences given in eq. (7), with 𝜇 > 0, and who is 
incentivized with a self-chosen goals contract: 
 

i) output, 𝑦∗∗, and goals, 𝑔∗∗, increase in the piece rate, 𝑎,  

ii) output, 𝑦∗∗, and goals, 𝑔∗∗, are decreasing in the level of monetary bonus, 

𝑏, if 𝜇 >
 λ

(𝜆+1)(𝜆−1) 
. 

 


From Remarks 2 and 3 we know that the first part of the corollary comes from a direct 

effect of 𝑎 on output, which, given the complementarity between goals and output 

(Remark 1), also raises the optimal goal in equilibrium. The positive association of piece-

rate, goals and output is empirically and theoretically documented by Corgnet et al. 

(2015), in the context of exogenous and deterministic goals.   

 

The second part of Corollary 1 states the main message of this paper: a monetary bonus 

can decrease performance. Specifically, when the worker exhibits  𝜇 >
 λ

(𝜆+1)(𝜆−1)
 , she 

sets lower goals and attains lower performance in the presence of larger bonuses. Note 

that the condition 𝜇 >
 λ

(𝜆+1)(𝜆−1)
 becomes less stringent the more loss averse the worker 

is, or, alternatively, the more weight she gives to her psychological utility.8 Hence, workers 

that give more importance to loss aversion in their utility function, either through large 

values of 𝜇 or through large values of 𝜆, are more likely to set lower goals and deliver 

lower output the greater the bonus is.  

 

Remarks 2 and 3 also indicate that the negative effect of bonuses on output emerges 

from the direct and negative effect of bonuses on goal setting, which emerges whenever 

bonuses are sufficiently large. This negative effect ultimately influences output by means 

of the complementarity between goals and output (Remark 1).  Appendix B presents a 

graphical representation of simulations of the model to illustrate the role of loss aversion 

                                                 
8 Note that the condition μ >

 λ

(λ+1)(λ−1) 
 ,  and the condition guaranteeing that (y∗∗, g∗∗) is a local 

maximum, μ <
1

(λ−1)
, can both be satisfied. That these two conditions hold simultaneously is less stringent 

at higher levels of loss aversion.  
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in moderating the effect of monetary bonuses on performance when the parameters of 

the model attain different values.9  

 
2.3. Comparison of the Contracts 
 
In this subsection, we compare performance when the worker faces a piece rate contract 
to performance when the worker faces a self-chosen goal contract.  Proposition 3 shows 
that the self-chosen goal contract improves performance, and that output strictly exceeds 
the goal. 
 
Proposition 3: for a worker with preferences as in eq. (7) with 𝜇 > 0, and who faces the 

same 𝑎 > 0 across contracts:  
 

i) 𝑦∗∗ > 𝑦𝑝, ∀ 𝑏 ≥ 0 

ii) 𝑦∗∗ − 𝑔∗∗ > 0 if either  𝜇 ≥ 𝑏 and  𝜇 ≤
1

2(𝜆−1)
, or if 𝑏 > 𝜇 and 𝜇 >

1

2(𝜆−1)
. 

 
 
In words, the self-chosen goal contract generates higher performance than the piece rate 

for any offered monetary bonus, 𝑏. Proposition 3 also shows that piling up, defined as the 
amount of output that exceeds the goal, is guaranteed when the weight given to 
psychological utility is larger than the bonus and when weight to the psychological utility 

is 𝜇 ≤
1

2(𝜆−1)
.10  This constraint is more stringent for higher levels of loss aversion. Instead, 

when the bonus is larger than the weight given to psychological utility, piling up appears 
under less stringent conditions at higher levels of loss aversion. Namely, when the weight 

given to psychological utility exceeds the lower bound 𝜇 >
1

2(𝜆−1)
.11 

 

The special case in which 𝑏 = 0 is of particular interest. If 𝑏 = 0, then  𝜇 > 𝑏 holds even if 
the worker exhibits arbitrarily small 𝜇 > 0. If subjects have goal-dependent preferences, 
this particular setting captures the condition of participants who are assigned to the GOAL 
treatment described in Section 4.  
 

When 𝑦∗∗ and 𝑔∗∗  from Proposition 2 are evaluated at 𝑏 = 0 we have, 
  

𝑦∗∗|𝑏=0 =
𝜇 + 2𝑎

1 − 𝜇(𝜆 − 1)
 ,             (13) 

                                                 
9 Similarly, it can be shown that output, y∗∗, and goals, g∗∗, are decreasing in the level of loss aversion,  λ, 

when b attains a lower bound that depends on μ.  
10 Note that the condition ≤

1

2(𝜆−1)
 , and the condition guaranteeing that 𝑦∗∗ and 𝑔∗∗ are local maxima, 𝜇 <

1

(𝜆−1)
, can coexist. When 𝜇 ≤

1

2(𝜆−1)
  holds, then 𝜇 <

1

(𝜆−1)
 is satisfied making the former condition more 

stringent than the latter.  
11 Note that the condition >

1

2(𝜆−1)
 , and the condition guaranteeing that 𝑦∗∗ and 𝑔∗∗ are local maxima, 𝜇 <

1

(𝜆−1)
, can coexist. This coexistence becomes less stringent at lower levels of loss aversion.  
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𝑔∗∗|𝑏=0 =
(𝛼 + 𝜇) −

1
2(𝜆 − 1)

1 − 𝜇(𝜆 − 1)
 .                (14) 

 
 

Corollary 2 shows that as long as 𝜇 > 0, the self-chosen goal contract yields higher 
performance than the piece rate, even when it does not offer a monetary bonus. 
 
 
Corollary 2: for a worker with preferences as in equation (7) with  𝜇 > 0, who faces the 

same 𝑎 > 0 across contracts, and  who is offered a self-chosen goal contract with 𝑏 = 0, 

then 𝑦∗∗|𝑏=0 > 𝑦𝑝. 

 
Corollary 2 demonstrates that the psychological utility from letting the worker set a goal 
is, on its own, able to motivate the worker to a greater extent than a piece rate contract 
offering the same monetary incentives.  
 

To conclude this section, we study the relationship between 𝑦∗∗|𝑏>0 and 𝑦∗∗|𝑏=0.  
Proposition 4 states that a worker who assigns large weights to psychological utility will 
perform better under a self-chosen goal contract without bonus (the GOAL treatment in 
our experiment) than under a similar contract with a bonus (GOAL+BONUS treatment). 
 
 
Proposition 4: for a worker with preferences as in equation (7) with 𝜇 > 0, who faces the 

same 𝑎 > 0 across contracts, produces greater output when 𝑏 = 0 than when  𝑏 > 0. That 

is, 𝑦∗∗|𝑏=0 >  𝑦∗∗|𝑏>0, if 𝜇 >
𝜆

(𝜆−1)(𝜆+1)
. 

 
Proposition 4 shows that a worker who gives sufficient weight to the psychological utility 
and/or is sufficiently loss averse, delivers higher output when the self-chosen goal 

contract is offered with 𝑏 = 0, compared to the situation in which she was offered the 
same contract, but with 𝑏 > 0. This is due to the result presented in Corollary 2: the 
negative relationship between output and bonuses, and the negative relationship 
between goals and bonuses when the worker exhibits a sufficient degree of loss aversion, 

so that 𝜇 >
𝜆

(𝜆−1)(𝜆+1)
 holds. 

 
Therefore, according to our analysis, offering a monetary bonus is only beneficial to the 
employer when the worker exhibits at most a mild degree of loss aversion. When workers 
are sufficiently loss averse, or alternatively give sufficiently large weight to the 

psychological utility, 𝜇, offering a bonus for the achievement of a self-chosen goal 

backfires. In such cases, it is better for the employer to offer a contract with 𝑏 = 0, which 
generates higher output at a lower cost. 
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3. Hypotheses  

 

The theoretical model presented in Section 2 yields a set of hypotheses that we test in a 
laboratory experiment. First, according to Proposition 4, the introduction of monetary 
incentives in a self-chosen goal contract leads to lower goals and, consequently, lower 
output, if participants are sufficiently loss averse. Instead, Proposition 1 states that under 
standard preferences, bonuses boost output and goals. Because we expect a sizable 
fraction of participants to be loss averse, our first hypothesis is:  
 
Hypothesis 1: Goals and performance are greater under GOAL than under  
GOAL+BONUS. 
 
The second hypothesis concerns the interaction between the degree of loss aversion of 
individuals and the introduction of monetary bonuses. From Proposition 4 and Corollary 
1, we hypothesize:  
 
Hypothesis 2: Goals and performance in the GOAL treatment exceed those in 
GOAL+BONUS by a greater difference, the more loss averse the individual is.   
 
From Proposition 3 and Corollary 2 we derive the third hypothesis, which states that a 
contract including a system of goal setting, regardless of whether it offers a bonus for the 
achievement of a self-chosen goal, outperforms a cost-equivalent piece rate contract: 
 
Hypothesis 3: Performance in GOAL and in GOAL+BONUS is greater than in LOPR. 
 
Proposition 1 shows that with no goal setting, output is increasing in the piece rate. This 
constitutes our fourth hypothesis.  
 
Hypothesis 4: Performance in HIPR is greater than in LOPR.  
 
Finally, Proposition 3 predicts that under the self-chosen goal contracts, output exceeds 
the goal, i.e. there exists piling up. In the presence (absence) of bonuses, piling up is 
more (less) likely to occur when individuals are loss averse. Because, we expect a sizable 
fraction of participants to be loss averse, our last hypothesis is: 
 
Hypothesis 5: Performance exceeds goals in GOAL+BONUS, and this is less likely to 
happen in GOAL. 
 
 

4. Experimental Procedures 
 
4.1 General Procedures 
 
The experiment was conducted at the University of Arizona’s Economic Science 
Laboratory in May 2018. Participants were all students at the university and were 
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recruited using an electronic system. The dataset consists of 12 sessions with a total of 
161 subjects. On average, a session lasted approximately 70 minutes. Between 3 and 20 
subjects took part in each session. The currency used in the experiment was US Dollars. 
We used Otree (Chen, et al., 2016) to implement and run the experiment. Subjects earned 
on average 20.7 US Dollars. The instructions of the experiment are given in Appendix E.  
 
The experiment consisted of two parts: A and B. Upon arrival, participants were informed 
that their earnings from either Part A or Part B would be their earnings for the session, 
and that this would be decided by chance at the end of the session. Whether subjects 
faced Part A or Part B first was determined at random by the computer.  
 
4.2. Treatment Structure: Comparison of the Contracts 
 
In Part A, subjects performed a task that required their effort and attention. The task 
consisted of counting the number of zeros in a table of 100 randomly distributed zeros 
and ones. This task has been widely used by other researchers (e.g. Abeler et al., 2011, 
Gneezy et al., 2017, and Koch and Nafzinger, 2019). Subjects submitted their answers 
using the computer interface. Immediately after submission, a new table appeared on the 
computer screen and the subject was invited again to count the number of zeros in the 
new table.  
 
Subjects had six rounds of five minutes each to complete as many tables correctly as 
they could. To get acquainted with the task, subjects also had a five-minute practice round 
where it was clear that their performance did not count toward their earnings.  After each 
round ended, subjects were given feedback about the number of tables they solved 
correctly, their earnings for that round. If applicable, they were reminded of their goal for 
that round and were told whether that goal was achieved. Thus, aside from the practice 
round, subjects had 30 minutes to work on the task and where given small intervals in-
between whereby they could assess their past performance. Since the time between goal 
setting and performance was almost immediate, we rule out by design any self-control 
problems, which have shown to affect goal-setting behavior. 
  
There were four treatments, LOPR, HIPR, GOAL, and GOAL+BONUS. The treatments 
differed only with respect to the incentives offered to subjects. Each participant was 
randomly assigned to one of the four treatments. We ensured randomization in our design 
by having subjects in any experimental session face the same chance of being assigned 
to any of the treatments. The incentives in effect in each treatment were the following. 
 
- LOPR: Subjects were paid 0.20 dollars for each correctly solved table.  
- HIPR: Subjects were paid 0.50 dollars for each correctly solved table.  
- GOAL: Subjects were paid 0.20 dollars for each correctly solved table and were asked 
at the beginning of each round to set a personal goal regarding the number of tables that 
they aimed to solve in that round.  
- GOAL+BONUS: Identical to the GOAL treatment, with the exception that subjects were 
offered a monetary bonus for reaching their goals. The bonus in dollars was equivalent 
to the goal set by the subject multiplied by a factor of 0.20.  
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LOPR can be viewed as a baseline condition to which different features that may improve 
performance are added. HIPR includes an increase in the piece rate, while GOAL adds 
a goal set by the worker. GOAL+BONUS adds the goal, as well as a monetary payment 
for reaching it, which is larger the more ambitious the goal. 
 
4.3 Elicitation of Risk Attitudes 
 
In Part B of the experiment, the task was to choose between two binary lotteries in multiple 
trials. This part of the experiment was designed to elicit subjects’ loss aversion and utility 
curvature. The lotteries yielded either only gains, or were mixed in the sense that either 
gains or losses were possible. We used the Abdellaoui et al. (2008) method, which has 
the advantage of eliciting risk and loss attitudes without making any assumptions about 
the way in which subjects evaluate outcomes or probabilities.  

Our implementation of Abdellaoui et al.’s (2008) method consisted of 10 decision sets. 
Each decision set was designed to elicit indifference between two initial lotteries through 
bisection. The algorithm was programmed so that the subject’s choice between two initial 
lotteries determines the next choice problem that the subject faces. Specifically, in the 
next choice trial either the lottery chosen in the preceding trial was replaced by a less 
attractive alternative, or the one not chosen was replaced by a more attractive alternative, 
while the other choice remained the same. The subject was again invited to choose 
between the two available options. This process was repeated four times.  

Decision sets 1 to 5 elicited subjects’ utility curvature. In each decision set, the algorithm 

elicited the certainty equivalent 𝑥𝑗 of a lottery of the form  𝐿𝑜𝑡𝑡𝑒𝑟𝑦𝑗 = (𝐻𝑗 , 0.5; 𝐿𝑗 , 0.5)  with 

𝑗 = 1,2,3,4,5, 𝐻𝑗 ≥ 0, and 𝐿𝑗 ≥ 0. We chose the values of 𝐻𝑗 and 𝐿𝑗  so that the outcomes 

of the lottery were close to the payoffs that we expected in Part A of the experiment. This 
allowed us to correlate the elicited risk preferences at comparable financial stakes with 
their behavior in the real-effort task. The values of 𝐻𝑗 and 𝐿𝑗  used in each decision set 

are given in Table 1. 

      Table 1:  High and Low Values Used in Lotteries to Measure Utility Curvature 

Lottery 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 

𝐻𝑗 4 8 12 20 20 

𝐿𝑗 0 0 0 0 12 

Panel A of Table 2 below details an example of the bisection algorithm used to find 𝑥1, the 

certainty equivalent of 𝐿1. Note that initially, option 𝑅 is a degenerate lottery that pays the 
expected value of option L, which, in turn, is equal to  𝐿1. The example shows that after 
having made a first choice, the subject faces a new problem whereby R, the option that 
was chosen before, becomes less attractive. In the remaining repetitions, the individual’s 
preferred option is L, even though lottery R becomes more attractive. The certainty 
equivalent was determined finally as 𝑥2 =1.625, the midpoint between 1.75 and 1.5.  
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Decision sets 6 to 10 elicited subjects’ loss aversion. The program was designed to find 
the outcome 𝑧𝑗 < 0  that made an individual indifferent between a sure outcome of zero 

and a mixed lottery of the form (𝑘𝑗 , 0.5; 𝑧𝑗 , 0.5), with 𝑘𝑗 > 0 for 𝑗 = 1,2,3,4,5. A loss averse 

subject would require low values of 𝑧𝑗  to be indifferent, whereas a gain-seeking subject 

would require large values of 𝑧𝑗 to be indifferent. The starting values of the program were 

set at the certainty equivalent of a decision set 𝑗, i.e. 𝑘𝑗 = 𝑥𝑖, and its mirror image, that is  

𝑧𝑗 = −𝑥𝑗  . Panel B of Table 2 presents an example of the bisection algorithm used to find 

these negative outcomes. Note that in this example the certainty equivalent elicited in 

Panel A, 𝑥1 =1.625, is used as an outcome of the mixed lottery. Also, note that the mirror 

image of , 𝑥1, e.g.-1.625, is used initially as the other outcome of the mixed lottery. The 
elicited value in this example, 𝑧1 =-1.40, was the value that made the subject indifferent 
between the lottery (1.625𝑗 , 0.5; −1.40, 0.5) and zero.  

Table 2. Example of the elicitation procedure for certainty equivalents 

 Panel A Panel B 

Repetition Lottery L Lottery R Choice Lottery L Lottery R Choice 

Initial 
lottery 

(4,0.5;0,0.5) 2 R (1.62,0.5; 
-1.62,0.5) 

0 R 

1 (4,0.5;0,0.5) 1 L (1.62,0.5; 
-0.81,0.5) 

0 L 

2 (4,0.5;0,0.5) 1.5 L (1.62,0.5; 
-1.20,0.5) 

0 L 

3 (4,0.5;0,0.5) 1.75 L (1.62,0.5; 
-1.40,0.5) 

0 R 

Final 
Elicitation 

 𝒙𝟏 =1.625  𝒛𝟏 =-1.40   

 
This table presents an example of Abdellaoui et al.’s (2008) algorithm used to find certainty equivalents {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} 
and the sequence of negative numbers {𝑧1𝑧2, 𝑧3, 𝑧4, 𝑧5}.The left panel presents how 𝑥2 is elicited with the algorithm. The 
right panel shows how  𝑧2 could be elicited.  

 

Once subjects finished both parts, they were reminded about their performance in each 
round of the real-effort task, as well as whether they achieved their goal in that round, if 
any. Also, subjects were informed about the lottery that was chosen for potential 
compensation for Part B and its realization. They were also informed about which part of 
the experiment (Part A or B) was chosen to become their final earnings. Finally, 
participants completed a questionnaire about their general willingness to take risks, as 
well as specific risks (health, job, and driving related). These questions were taken from 
Dohmen et al. (2011). The questionnaire also included a measure of self-efficacy. The 
questionnaire can be found in Appendix E. 
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5. Results 

 

5.1 Goal Setting 

 
Our first hypothesis stated that goals would be higher in GOAL than in GOAL+BONUS.  
Table 3 presents the descriptive statistics regarding the goals set by subjects throughout 
the experiment, by treatment. Figure 1a presents the distribution of goals in these two 
treatments.  
 
We find indeed that subjects assigned to GOAL set significantly higher goals than 
subjects assigned to GOAL+BONUS (t(53.069)= 2.61297, p=0.005).12 Participants 
assigned to GOAL set an average goal of 48.82 tables, while those in the GOAL+BONUS 
treatment averaged 37.48 tables. This represents a difference of 30.2%, or 0.57 standard 
deviations, between the two treatments. This result supports the first part of Hypothesis 
1: Goals are higher under GOAL than under the GOAL+BONUS. 
 

Table 3. Goals by Treatment 
 

Treatment   N
         

Mean Median S.D. 25th  
perc.       

75th 
perc. 

Max. Min. 

GOAL +BONUS    39 37.487        38 10.308                29 43 64 20 

GOAL 41 48.829 45 25.706 34 54 180 18 

Total 80 44.3          40 22.758 31 48.5          180 18 

 
 

 
Figure 1a. Distribution of Goals by Treatment 

 
 

  
 
In Appendix D, we show that the difference between the treatments becomes greater over 
the rounds, indicating that not only do subjects adjust their goals after being provided with 

                                                 
12 A Wilcoxon-Mann-Whitney test yields the same conclusion (U=2.842, p=0.004).  
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feedback, but also that this adjustment induces a larger difference in goal setting between 
the treatments.  
 
We regress the goal level set by individuals on assignment to the treatments, while 
controlling for loss aversion for some specifications.  We use Poisson count regressions 
to account for the count nature of the goals data. The estimates confirm Hypothesis 1: 
subjects set higher average goals when goals are not monetarily rewarded with a bonus. 
Table 4 (col. 2 and 3) also shows that loss averse individuals set on average higher goals, 
another pattern predicted by our model.  
 
 

Table 4. Goals as Function of Treatment and Preference Parameters 
 

 (1) (2) (3) 

 Goal Level 
(all 

participants) 

Goal Level  
(all 

participants) 

Goal Level 
(linear utility 

only) 

GOAL 0.264*** 0.262*** 0.378*** 

 (0.034) (0.034) (0.045) 

Loss Averse  0.133*** 0.241*** 

  (0.038) (0.054) 

Constant 3.624*** 3.530*** 3.426*** 

 (0.026) (0.038) (0.053) 

Log-Likelihood -475.870 -469.699 -280.819 

N 80 80 44 
 
Note: This table presents the estimates of Poisson regressions of the statistical model Goal Level =  β0 + β1GOAL +
Γ′Controls + ℇi with ℇi~Poisson (ω).  “Goal Level” equals the sum of a subject’s goals in the real-effort task. Subjects 

were randomly assigned either to the “GOAL” or the “GOAL+BONUS” treatment. The latter is the benchmark condition 
of the regression. ``Loss Averse’’ is a dummy variable that captures whether a subject is loss averse or not. A subject 
is classified as loss averse when at least four variables 𝜆𝑗 , where  𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗, are larger than one.  Model (3) presents 

estimates of a regression including only subjects classified as having linear utility. Standard errors presented in 
parenthesis.  * indicates a p-value <0.1, ** indicates a p-value <0.05, ***indicates a p-value <0.01. 

 
 

5.2 Performance  

 

Hypothesis 1 also asserts that performance in the GOAL treatment would be higher than 
in GOAL+BONUS. Also, Hypothesis 3 states that GOAL and GOAL+BONUS leads to 
higher performance than LOPR, and Hypothesis 4 proposes that performance would be 
higher in HIPR than in LOPR. In this subsection, we examine how performance compares 
across treatments. Recall that we define performance in the experiment as the total 
number of tables an individual solves correctly.  
 
Table 5 reports the descriptive statistics of performance by treatment. Figure 1b also 
shows the distribution of performance in GOAL and GOAL+BONUS. We find that paying 
a monetary bonus for achieving a goal does indeed backfire. Subjects assigned to GOAL 
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solve a higher average number of tables, on average 47.58 tables, than subjects assigned 
to GOAL+BONUS, who solve 42.897 tables on average (t(77.88)= 1.485, p=0.07).13 The 
size of this effect is 11.1%, or 0.36 standard deviations.14 According to our model, this 
implies that most of our subjects are loss averse. We consider, in Section 6, whether this 
is the case, using the data from our independent measure of loss aversion.  
 

Table 5. Performance by treatment 
 

Treatment   N
         

Mean Median S.D. 25th       75th Max Min Mean 
Cost 

GOAL +BONUS    39 42.897   43 13.480          34 48 80 17 9.74 

GOAL 41 47.585   47 14.747          39 56 86 17 9.517 

HIPR 41 42.073 43 15.408          31 48.5          72 5 21.036 

LOPR 39 42.179 41 15.022          27 55 72 16 8.436 

Total 160 44.3          43.5 14.734          34 54 86 5 12.259 

 
 

 
Figure 1b. Distribution of Performance in the Treatments with Goal Setting 

 
 

 
 
In addition, we observe that subjects assigned to GOAL display higher average 
performance than those assigned to either of the piece rate treatments, LOPR (t(75.99)= 
1.520, p= 0.066) or HIPR (t(73.69)= 1.805, p=0.037).15 The effect size of the mean 
differences between the treatments is 0.401 standard deviations and 0.406 standard 
deviations, respectively. The fact that output is higher under GOAL than under HIPR 
shows that an employer setting up a GOAL contract rather than a higher piece rate can 

                                                 
13 A Wilcoxon-Mann-Whitney test generates the same conclusion (U= 1.584, p=0.056). 
14 The power of this test is 0.671. The design of the experiment aimed at a power of 0.8 with an effect 
size of 0.5 standard deviations. However, the sizeable variation in performance on the task, evident in 
larger-than anticipated standard deviations of performance, led to lower power.  
15  Wilcoxon-Mann-Whitney tests of these differences yield U= 1.494 (p=0.074) and U= 1.512 (p=0.065), 
respectively.  
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extract higher output from workers at lower cost. Overall, these results partially support 
Hypothesis 3. 
 
However, Hypothesis 3 is not fully supported in our data. We do not find significant 
differences in average performance between GOAL+BONUS and LOPR (t(72.24)= -
0.0477, p= 0.962), GOAL+BONUS and HIPR (t(73.668)= -0.316, p= 0.752) or LOPR and 
HIPR (t(73.668)= -0.316, p= 0.752).16 Raising the piece rate or adding a set-your-own-
goal contract with a bonus did not improve performance over LOPR. These findings are 
similar to those in Fehr & Goette (2007). 
 
We also perform Poisson count regressions of individual performance on treatment 
dummies and relevant controls. Table 6 presents the regression estimates, which confirm 
the aforementioned findings. Specifically, the coefficient associated with GOAL is 
significant at the 5% level for all specifications: subjects in GOAL exhibit higher average 
performance than subjects in GOAL+BONUS. Similarly, the coefficient of GOAL is 

significantly larger than the coefficient associated with LOPR (𝜒2 = 13.28, p= 0.001) and 

also larger than that for HIPR (𝜒2 = 16.79, p= 0.001).17  
 

Table 6.   Performance as Function of Treatment and Preference Parameters 
   

 (1) (2) (3) 

 Performance 
(all participants) 

Performance (all 
participants) 

Performance 
(linear utility only) 

GOAL 0.104*** 0.102*** 0.176*** 

 (0.033) (0.033) (0.045) 

HIPR -0.019 -0.034 0.098** 

 (0.034) (0.034) (0.038) 

LOPR -0.017 -0.020 -0.134*** 

 (0.035) (0.035) (0.048) 

Loss Averse  0.135*** 0.169*** 

  (0.028) (0.038) 

Constant 3.759*** 3.664*** 3.585*** 

 (0.024) (0.032) (0.043) 

Log-Likelihood -846.727 -834.826 -442.010 

N 160 160 91 
 
Note: This table presents the estimates of Poisson regressions of the statistical model Performancei =  β0 + β1GOAL +
β2HIPR + β3LOPR + β4Loss Averse + ℇi with ℇi~Poisson (ω).  “Performance” measures the total number of tables a 

subject solves correctly over the six rounds of the real-effort task.  Subjects were assigned either to the GOAL, HIPR, 
LOPR, or GOAL+BONUS treatment. The GOAL+BONUS treatment is the benchmark category of the regression. ̀ `Loss 
Averse’’ is a dummy variable that indicates whether a subject is loss averse or not. A subject is classified as loss averse 

when at least four of her variables 𝜆𝑗 , where  𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗, are greater than one. Model (3) presents estimates of a 

regression including only those subjects classified as having linear utility.  Standard errors are in parenthesis. * indicates 
a p-value <0.1, ** indicates a p-value <0.05, ***indicates a p-value <0.01 

                                                 
16 These conclusions are also confirmed by Wilcoxon-Mann-Whitney tests. The U-statistics of these 
comparisons and their respective p-values are U= 0.110 (p= 0.912), U= 0.048 (p= 0.961), and U= 0.034 
(p= 0.973), respectively.   
17 We use the estimates of column (2) in Table 6 for statistical inference.  
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Additionally, the coefficients for the LOPR and HIPR treatments are not significant for the 
specification in columns (1) and (2), corroborating the findings of the pairwise tests that 

performance in LOPR, HIPR and GOAL+BONUS are statistically indistinguishable (𝜒2 = 
0.16, p= 0.6887).18  
 
However, when the regression is performed including only subjects with linear utility, 
significant differences among the treatments emerge.19 Column (3) of Table 6 shows that 
subjects with linear utility assigned to GOAL+BONUS exhibit higher average performance 
than those in LOPR. This suggests that a system of goal setting with monetary bonus is 
more effective than increasing the piece rate. Thus, when all assumptions of the model 
hold, including the requirement that workers are risk neutral for monetary payments, there 
is support for Hypothesis 3.20 As in the analyses reported previously, these estimates 
show that subjects assigned to GOAL exhibit higher average performance than those 
assigned to any other treatment.   
 
 

Table 7. Difference between Performance and Goals by Round  
 

 Round 
 1        

Round 
2      

Round 
3        

Round 
4     

Round 
5     

Round 
6 

Average 

GOAL+BONUS        

Mean    0.410 0.948                 1 0.641 1.282 1.128 0.901 

Median 0  1 1 1 1 1 1 

S.D. 2.435 1.848 1.933 2.590 1.972 2.154 1.141 

GOAL        

Mean -1.463 -1.073 0.073 0.317 0.512 0.536 -0.207 

Median 0 0 0 1 1 1 0.166 

S.D. 5.532 4.880 4.797 4.687 4.675 4.135 4.123 

 

 

Furthermore, Hypothesis 5 predicts pilling-up in GOAL+BONUS, as well as to a lesser 

extent in GOAL. Table 7 shows that for subjects in GOAL, the average piling up is 

negative in the first round and becomes not significantly different from zero in subsequent 

                                                 
18 These results and those presented in Subsection 5.1 are robust to adding an ability variable in the 
regression, measured by the number of correct tables that subjects completed in the 5-minute practice 
round. 
19  Details of these classifications are given in Section 6 and Appendix C. To classify subjects according 
to their curvature we constructed variables ∆𝑖𝑗≡ 𝑥𝑖𝑗 − 𝐸𝑉𝑗, where 𝑥𝑖𝑗  is the certainty equivalent of subject 𝑖 

for lottery 𝑗, 𝐸𝑉𝑗  stands for the expected value of the lottery, and 𝑗 = {1, … ,5} is an indicator of the used 

lottery. A subject was classified as having a linear utility function when for at least four ∆𝑖𝑗s the null 

hypothesis that they are equal to zero was not rejected.  
20 The estimates presented in column (3) of Table 6 confirm that there is no empirical evidence in our 
data to support the notion that higher-powered piece rates yield higher output, even if only individuals 
who have linear utility are considered. This corroborates the results of the pairwise tests and the 
regression estimates using the full sample.   
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rounds. This finding implies that subjects in the treatment in which goals are not 

incentivized on average meet their self-chosen goal. In contrast, for subjects in 

GOAL+BONUS, piling up is positive after round 1. The average piling up level over is 

significantly positive for subjects in GOAL+BONUS (t(38)= 4.934, p<0.001) and not 

different from zero for participants in GOAL (t(40)=-0.322,p=0.749) When comparing 

piling up between these treatments, we find a significant difference (t(78)=-1.62, p= 

0.054). These findings support Hypothesis 5. 

 

 

6. Risk Attitudes and their Relationship to Crowding out 

 

The aim of this section is to describe the attitudes of participants toward risk and losses, 

and to test Hypothesis 2, which proposes that the crowding-out effect of the monetary 

bonus is more pronounced for more loss averse participants.  

 

6.1. Risk Attitudes 

 

To measure subjects’ attitudes towards risky monetary payments, we use data from part 

B of the experiment, where we elicit the certainty equivalents of five lotteries that offer 

positive payments,  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, and the sequence of negative outcomes, 

{𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5}, each of them making subjects indifferent between receiving zero and a 

mixed lottery (𝑥𝑗 , 0.5; 𝑧𝑗 , 0.5) for any 𝑗 = {1,2,3,4,5}. We classify participants according to 

the curvature of their utility function, e.g. concave, convex or linear, as well as according 

to their sensitivity toward losses.  

 

We find that the majority of subjects in our sample have linear utility functions in the 

domain of gains. Specifically, 91 subjects are classified as having a linear utility function 

(proportion test against 0.5, p=0.048), while 65 have a concave utility function, and only 

five have a convex utility function. Details of this classification are included in Appendix 

C. When a power utility function is assumed, 𝑥𝑠𝑗 = 𝐸𝑉𝑠𝑗
𝜃 where 𝐸𝑉 is the expected value 

of lottery 𝑗 and 𝑠 indicates the individual, we find the pooled estimate across participants 

to be 𝜃 = 0.95, reflecting that the majority of individuals in the sample have linear utility 

and that those classified as having a concave utility typically have only modest concavity. 

In Appendix C, we show that similar conclusions are reached when other families of utility 

functions are assumed. These results confirm that our assumption that subjects have 

linear utility functions is reasonable.  

 

In addition, we find that most subjects are loss averse. Specifically, 134 subjects are 

classified as loss averse and only 27 are gain-seeking (more sensitive to gains than 
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losses of the same magnitude). Appendix C presents further details of this classification. 

Importantly, participants are balanced across treatments with respect to both the mean 

level of loss aversion and the proportion of loss averse participants.21  

 

Table 8 presents descriptive statistics of the loss aversion coefficients, 𝜆𝑗, obtained by 

computing 𝜆𝑗 = 𝑥𝑗  /𝑧𝑗, for 𝑗 = 1, … ,5. Following Abdellaoui et al. (2008), we compute one 

loss aversion coefficient for each mixed lottery that we implement. We find that, on 

average, subjects exhibit loss aversion for every mixed lottery. The null hypothesis that 

the loss aversion coefficient is equal to one is rejected for each lottery. Moreover, we 

cannot reject the null that the five loss aversion coefficients are equal to each other 

(F(4,805)=0.26, sphericity-corrected p-value=0.613), corroborating the notion that sign-

dependence, rather than the magnitude of the loss, determines loss aversion.  

 

 

Table 8. Loss Aversion Estimations 
 

 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝝀𝒂𝒗𝒆𝒓𝒂𝒈𝒆 

Mean 3.459 3.676 3.712 3.548 3.945 3.668 

Median 1.777 1.777 1.777 1.777 2.285 2.136 

S.D. 4.798 4.716 4.699 4.166 4.566 3.752 

25th perc. 0.516 1.066 1.066 1.230 1.066 1.208 

75th perc, 3.2 3.2                   3.2 5.333 5.333 4.48 

 
 

Aggregating the coefficients across lotteries and individuals, subjects exhibit an average 

loss aversion coefficient of 3.7 and a median coefficient of 2.13. This implies that, for our 

subjects, losses loomed on average 3.7 times larger than equally-sized gains. Previous 

studies that used the same definition of loss aversion found a median loss aversion 

parameter of similar magnitude. For instance, Tversky and Kahneman’s (1992) median 

estimate was 2.25, Abdellaoui et al. (2007) reported a median estimate of 2.54,  

Abdellaoui et al. (2016) observed a median estimate of 1.88, and Abdellaoui et al. (2008), 

using the same method to elicit loss aversion, obtained a median loss aversion parameter 

equal to 2.61. As in our study, Abdellaoui et al. (2008) found considerable heterogeneity, 

                                                 
21 The proportion of loss averse subjects is 0.717 in LOPR, 0.6923 in GOAL, 0.6923 in GOAL+BONUS and 
0.804 in HIPR. We use a two-sample test of proportions and find that these proportions are not significantly 
different from each other (LOPR vs. GOAL (p=0.786), HIPR vs. GOAL (p= 0.230), GOAL+BONUS vs. 
GOAL (p= 0.985)). Mean loss aversion is on average 3.44 for GOAL, 3.94 for GOAL+BONUS, 3.55 for 
HIPR and 3.75 for LOPR. The distribution of loss aversion is not significantly different between pairs of 
treatments, according to t-tests (LOPR vs. GOAL (p= 0.7046), HIPR vs. GOAL (p= 0.889), GOAL+BONUS 
vs. GOAL (p= 0.564)). 
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reflected in the size of the interquartile range (the difference between the 25th and 75th 

percentile).   

 

6.2. Interaction of Loss Aversion with the Bonus Treatment 

 

Next, we examine the role of loss aversion in explaining the treatment effects. We first 

evaluate the strength of the treatment effects among loss averse subjects. According to 

Hypothesis 1, sufficiently loss averse subjects would set higher goals and exhibit higher 

performance when assigned to GOAL than to GOAL+BONUS.  Moreover, according to 

Hypothesis 2, more loss averse subjects would exhibit a larger positive difference in both 

goals and performance between GOAL than to GOAL+BONUS. 

 

To perform a conclusive test of Hypotheses 1 and 2, we extend the OLS regression 

specifications presented in Tables 4 and 6 by adding an interaction dummy for whether a 

subject is both loss averse and is assigned the GOAL treatment. In this manner, we 

evaluate whether relatively loss averse subjects display greater positive differences in 

performance and the goals they set when assigned to GOAL rather than to 

GOAL+BONUS. 

 

Table 9 presents results of these regressions.  Columns (1) and (3) show that the 

estimates of “GOAL”, as well as those of the interaction between ``Loss averse’’ and 

``GOAL’’, are positive and significant. Hypothesis 1 is supported by the estimates on the 

interaction term: Loss averse subjects assigned to GOAL exhibit higher performance and 

set higher goals compared to those assigned to GOAL+BONUS, and the treatment 

difference is larger than for individuals in GOAL who are not loss averse ((𝜒2(1) =7.76, 

p=0.005) and (𝜒2(1) =15.37, p<0.001), respectively). 

 

To distinguish participants with a high degree of loss aversion from those who are only 

mildly loss averse, we use a median split. That is, we classify subjects as having a high 

degree of loss aversion if their average loss aversion coefficient is above the median (of 

2.136). Subjects with an average loss aversion coefficient below the median but higher 

than 1 are classified as mildly loss averse. We use the same count regression 

specifications as in Tables 4 and 6 but we replace ``Loss Averse’’ with dummies for “High 

Loss Averse” and “Mild Loss Averse”. Also, we interact the dummy variables for the 

different degrees of loss aversion with GOAL treatment.  

 

 

 

 

 



 27 

Table 9. Heterogeneity of Treatment Effects by Participant Loss Aversion Level  
 

 (1) (2)  (3) (4 ) 

 Performance 
 

Performance 
 

Goal 
Level 

 

Goal 
Level 

GOAL 0.093* 0.136** 0.148** 0.159* 

 (0.056) (0.064) (0.067) (0.083) 

GOAL*Loss Averse 0.236***  0.351***  

 (0.043)  (0.054)  

GOAL*High Loss Averse  0.188***  0.327*** 

  (0.054)  (0.076) 

GOAL* Mild Loss Averse  0.136**  0.151** 

  (0.063)  (0.060) 

Loss Averse 0.131***  0.045  

 (0.033)  (0.057)  

High Loss Averse  0.144***  0.074 

  (0.043)  (0.079) 

Mild Loss Averse  0.051  -0.015 

  (0.045)  (0.078) 

HIPR -0.034 -0.013   

 (0.034) (0.034)   

LOPR -0.020 -0.014   

 (0.035) (0.035)   

Constant 3.666*** 3.663*** 3.593*** 3.602*** 

 (0.034) (0.043) (0.048) (0.067) 

Log-Likelihood -834.808 -836.584 -
467.624 

-
470.959 

N 160 160 80 80 
 
Note: This table presents the estimates of the Poisson regression of the specification Performancei =  β0 + β1GOAL ∗
Loss Averse + β2GOAL + β3LOPR + β4LOPR + β5Loss Averse + ℇi with ℇi~Poisson (ω) as well as the Poisson regression 

of the specification Goal leveli =  β0 + β1GOAL ∗ Loss Averse + β2GOAL + β3LOPR + β4LOPR + β5Loss Averse + 𝐼 with 

ℇi~Poisson (ω) . “Performance” is the total number of correctly solved tables by a subject over all rounds and “Goal 

level” is the sum of the goals set by the subject over all rounds.  Subjects were assigned either to the GOAL, HIPR, 
LOPR, or the GOAL+BONUS treatment. GOAL+BONUS is the benchmark category for the regression. ``Loss Averse’’ 
is a dummy variable that captures whether a subject is loss averse or not. A subject is loss averse when at least four 
of her variables 𝜆𝑗 , where  𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗, are greater than one, ``Mild Loss averse’ equals 1 if a subject is loss averse and 

her average 𝜆 is lower than the median subject in the sample, and equals 0 otherwise. ``High Loss averse’ equals 1 if 

a subject is loss averse and her average 𝜆 is lower than the median participant in the sample and 0 otherwise. See 

Appendix C for a detailed explanation of these measurements. Standard errors are in parenthesis. * indicates a p-value 
<0.1, ** indicates a p-value <0.05, ***indicates a p-value <0.01. 

 

The estimates in Columns (2) and (4) of Table 9 show that subjects with a high degree of 

loss aversion set relatively higher goals when assigned to GOAL than to GOAL+BONUS 

(𝜒2(1) = 22.30, p= 0.001). As with goals, there is a difference in performance between 

the two treatments for subjects with high degrees of loss aversion (𝜒2(1) = 4.89, p= 
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0.027), with those in GOAL exhibiting better performance. Mildly loss averse subjects also 

exhibit a treatment difference, but the coefficient is smaller and less significant. Thus, the 

superior performance and higher goals under GOAL compared to GOAL+BONUS are 

primarily driven by highly loss averse individuals. 

 

Moreover, Table D.2 in Appendix D corroborates the pattern that subjects with both a 

linear utility for money and a high degree of loss aversion exhibit a stronger treatment 

effect. Overall, these findings are all supportive of Hypothesis 2. Additionally, in Table D.3 

of Appendix D, we present evidence suggesting that there is no interaction between 

exhibiting a concave utility function for money and the presence of monetary bonuses in 

explaining goal levels. Thus, if concave utility functions have an effect in performance, 

this effect is not driven by the influence of concave utility on goal setting.     

 

7. Conclusion 

 

This paper shows that offering monetary bonuses for the achievement of self-chosen 

goals can significantly reduce performance.  If a worker exhibits loss aversion and does 

not have perfect knowledge about her own ability, setting an ambitious goal can boost 

performance since she would exert high effort to avoid the psychological losses from 

falling short of her goal. The introduction of monetary bonuses for meeting a self-chosen 

goal crowds out this motivational effect, since the worker will prefer setting lower goals to 

increase the likelihood that the monetary bonus is achieved. This behavior is detrimental 

to performance since lower goals correlate with lower effort. Thus, a goal contract with no 

monetary payment can lead to better performance than one where achieving the goal 

comes with a monetary bonus. The results of the experiment demonstrate that this 

theoretical possibility can be observed in a real, incentivized task that requires cognitive 

effort.   

 

The theoretical framework allows us to pin down the conditions guaranteeing these 

results. The presence of loss aversion determines whether introducing bonuses is 

detrimental to performance. The experiment corroborates the theoretical proposition that 

loss averse individuals set lower goals and perform particularly worse when their self-

chosen goal carries monetary consequences. Moreover, the theory also predicts that 

more loss averse individuals exhibit this crowding out effect more strongly. Indeed, in our 

sample, participants who exhibit a greater degree of loss aversion display a larger 

difference in performance between the GOAL and GOAL+BONUS treatments.  

 

Insofar as our empirical findings generalize to less controlled non-laboratory 

environments, this paper suggests that including monetary bonuses in a worker’s 

compensation scheme does not necessarily guarantee better worker performance. 
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Similarly, increasing the piece rate may also not improve performance. A scheme in which 

individuals set their own goals, when achieving the goal carries no monetary bonus, is 

the most effective incentive scheme that we have studied. From an employer’ s point of 

view, given that there is already a piece rate in place, a GOAL scheme dominates all 

others in that it extracts the highest output with no increase in unit wage costs. It is 

plausible that these results hold for a broad class of environments, though obviously 

further research would be required in order to make stronger claims about the generality 

of our results. 

 

This paper opens promising avenues for future research. First, although laboratory 

experiments ensure internal validity, it would be interesting to replicate our experiment in 

a more natural environment with different pools of subjects. Second, future research could 

study the emergence and size of the crowding out effect under more general conditions. 

This may require giving-up on closed-form theoretical solutions and require the use of 

other methods to derive predictions. Finally, we restricted our study to the optimal choice 

of goals and output when monetary incentives are kept constant. It would be relevant to 

examine the optimal choice of monetary incentives (i.e. magnitude of the piece rate and 

eventual combination with bonus) in light of the crowding out effect that we have 

documented here.  
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Appendix A. Proofs  
 
Proposition 1 
 

PROOF: We first show that at an optimum, it must be the case that 𝑦∗ = 𝑔∗. Second, we 

show that 𝑦∗ must satisfy 𝑦∗ =
𝑎+𝑏

2𝑏+
1

2

. First, when 𝑦 ≠ 𝑔 either 𝑦 or 𝑔 is not optimal. Consider 

𝑦𝑙 such that 𝑦𝑙 < 𝑔. Then, 𝐸(𝑈(𝑦𝑙,𝑔)) = 𝑎𝑦 −
𝑦𝑙

2

4
. By reducing her goal and setting 𝑦𝑙 = 𝑔 

the agent achieves a strictly greater payoff, 𝐸(𝑈(𝑦𝑙,𝑔)) = 𝑎𝑦𝑙 + 𝑔𝑙 −
𝑦𝑙

2

4
. Now consider a 

given 𝑦ℎ, such that 𝑔 < 𝑦ℎ, The agent's payoff is 𝐸(𝑈(𝑦ℎ,𝑔)) = 𝑎𝑦ℎ + 𝑏𝑔 −
𝑦ℎ

2

4
. By 

increasing the goal to 𝑔 = 𝑦ℎ the agent's payoff increases to 𝐸(𝑈(𝑦ℎ,𝑦ℎ)) = 𝑎𝑦ℎ + 𝑔ℎ −
𝑦ℎ

2

4
. Therefore,  𝑦 must be set to be equal to 𝑔.  

 
The second step is to derive the optimal goal. By the first step of the proof, we know that 
the agent will always work exactly as much as needed to receive the bonus. Her expected 
utility is then  

𝐸(𝑈(𝑦, 𝑔)) = ∫ 𝑎𝑦 − (1 − 𝜃)
𝑦2

2

1

0

𝑓(𝜃)𝑑𝜃 + ∫ 𝑏𝑦
1

𝑦

𝑓(𝜃)𝑑𝜃                (𝐴. 1) 

 

=  𝐸(𝑈(𝑦, 𝑔)) = 𝑎𝑦 −
𝑦2

4
+ 𝑏𝑦(1 − 𝑦)                                 (𝐴. 2) 

 
 
To derive the optimal goal, we consider the first order condition for the maximization of 
earnings with respect to output, 
 

𝑎 + 𝑏 −
𝑦∗

2
− 2𝑏𝑦∗ = 0.                 (𝐴. 3) 

 

The above implies that 𝑦∗ = 𝑔∗, with 𝑦∗ =
𝑎+𝑏

2𝑏+
1

2

 . Note that  
∂y∗

∂a
=  

∂y∗

∂a
> 0 and  

∂y∗

∂b
=

∂g∗

∂b
=

1−2a

(b+1)2 , which is non-negative as long as 0 ≤ a ≤
1

2
, the piece rate interval that guarantees 

0 ≤ 𝑦𝑝 ≤ 1 .∎ 

 
Proposition 2 
 
PROOF: The expected utility of the worker facing the self-chosen goals contract is given 
by eq. (8). The optimal output and effort are given by the first order conditions depicted 
by eq. (9) and eq. (10) respectively.  
 
We first show that the solution to the system of equations is a local maximum. To that 

end we compute the second derivatives with respect to y and g, which are 
𝜕2𝐸(𝑈(𝑦,𝑔))

𝜕𝑦2 =
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−
1

2
 and 

𝜕2𝐸(𝑈(𝑦,𝑔))

𝜕𝑔2
= −2(𝑏 + 𝜇(𝜆 − 1)). The cross derivative between goals and output is 

𝜕2𝐸(𝑈(𝑦,𝑔))

𝜕𝑦 𝜕𝑔
=  𝜇(𝜆 − 1). Thus, the Hessian matrix of this system of equations is  

 

𝐷 = (
−

1

2
 𝜇(𝜆 − 1)

 𝜇(𝜆 − 1) −2(𝑏 + 𝜇(𝜆 − 1))
)          (𝐴. 4) 

 

 The determinant of 𝐷 is  |𝐷| = 𝑏 + 𝜇(𝜆 − 1)  −  𝜇2(𝜆 − 1)2.  Therefore, a sufficient 

condition for |𝐷| > 0  is 𝜇 <
1

(𝜆−1)
, and the necessary condition for this system to yield a 

global maximum is 𝑏 + 𝜇(𝜆 − 1) >  𝜇2(𝜆 − 1)2 > 0.  
 
We are now in a position to solve the system of equations. Substituting eq. (10) into eq. 
(9) yields 

𝑦∗∗ =
2(𝜇 + 𝑎)(𝑏 + 𝜇(𝜆 − 1)) + 𝜇(𝑏 − 𝜇)(𝜆 − 1)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
         (𝐴. 5) 

 
Substituting eq. (9) in eq. (10) yields: 
 

𝑔∗∗ =

(𝑏 − 𝜇)
2  + 𝜇(𝜆 − 1)(𝛼 + 𝜇)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
.         (𝐴. 6) 

 

The sufficient condition for the tuple (𝑦∗∗, 𝑔∗∗) to be a local maximum, 𝜇 <
1

(𝜆−1)
  

guarantees that 𝑦∗∗ ≥ 0 and 𝑔∗∗ ≥ 0. ∎ 
 
Corollary 1. 
 

PROOF:  From 𝑦∗∗ presented in eq. (𝐴. 5) and 𝑔∗∗ given in eq. (𝐴. 6), we show that 
𝜕𝑦∗∗

𝜕𝑎
>

0 and 
𝜕𝑔∗∗

𝜕𝑎
> 0, for all 𝑎 > 0. The partial derivative of  𝑦∗∗ with respect to 𝑎 is 

 

𝜕𝑦∗∗

𝜕𝑎
=

2(𝑏 + 𝜇(𝜆 − 1))

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
,                  (𝐴. 7) 

 

and the partial derivative of 𝑔∗∗ with respect to 𝑎 is: 

 

 
𝜕𝑔∗∗

𝜕𝑎
=

𝜇(𝜆 − 1)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
.                (𝐴. 8) 

 

Note that (A.7) ad (A.8) are always positive since 𝜆 > 1 and  𝑏 + 𝜇(𝜆 − 1) > 𝜇2(𝜆 − 1)2.  

The latter is the necessary condition guaranteeing that 𝑦∗∗ and 𝑔∗∗ are local maxima, as 
shown in Proposition 2.  
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Similarly, from 𝑦∗∗, given in equation (𝐴. 5) and 𝑔∗∗ presented in equation (𝐴. 6), we show 

that 
𝜕𝑦∗∗

𝜕𝑏
< 0 and 

𝜕𝑔∗∗

𝜕𝑏
< 0 conditional on 𝜇 and 𝜆 attaining certain values. The partial 

derivative of 𝑦∗∗ with respect to 𝑏 is: 
 

𝜕𝑦∗∗

𝜕𝑏
=

−2𝜇2(𝜆 − 1 )2(𝛼 + 𝜇) − 𝜇3  (𝜆 − 1)3 + 𝜇2(𝜆 − 1)𝜆

[𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2]2
,                  (𝐴. 9) 

 

and the partial derivative of 𝑦∗∗ with respect to 𝑏 is: 

 

 
𝜕𝑔∗∗

𝜕𝑏
=

𝜆𝜇 − 𝜇2(𝜆 − 1)(𝜆 + 1) − 2𝑎𝜇(𝜆 − 1)

2[𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2]2
.                (𝐴. 10) 

 

A necessary condition for (𝐴. 9) to be negative is that 𝜇2(𝜆 − 1)𝜆 − 2𝜇3(𝜆 − 1 )2 −

𝜇3(𝜆 − 1 )3 < 0, which can be rewritten as 𝜇 >
𝜆

(𝜆+1)(𝜆−1)
. A necessary condition for 

equation (𝐴. 10) to be negative is that 𝜆𝜇 − 𝜇2(𝜆 − 1)(𝜆 + 1) < 0, which can be rewritten 

as 𝜇 >
 λ

(𝜆+1)(𝜆−1)
. ∎  

 
Proposition 3. 
 
PROOF: We start by demonstrating part i). Suppose instead that 𝑦∗∗ ≤ 𝑦𝑝. Using 

(𝐴. 5) and 𝑦𝑝 = 2𝑎, the assumed inequality yields  
2(𝜇+𝑎)(𝑏+𝜇(𝜆−1))+𝜇(𝑏−𝜇)(𝜆−1)

(𝑏+𝜇(𝜆−1))−𝜇2(𝜆−1)2
 ≤ 2𝑎. This 

inequality can be rewritten as  2𝜇𝑏 + 𝜇2(𝜆 − 1) + 𝜇𝑏(𝜆 − 1) + 2𝑎𝜇2(𝜆 − 1)2 ≤ 0, which is 
an impossibility given that 𝜆 > 1. Then, it must be the case that 𝑦∗∗ > 𝑦𝑝.    

 
Now we demonstrate ii). We subtract (𝐴. 5) from (𝐴. 6), which yields 
 

𝑦∗∗ − 𝑔∗∗ =
(𝜇 + 𝑎)(𝜇(𝜆 − 1) + 2𝑏) + (𝑏 − 𝜇) (𝜇(𝜆 − 1) −

1
2)

𝑏 + 𝜇(𝜆 − 1) − 𝜇2(𝜆 − 1)2
.     (𝐴. 11) 

 

First, note that the denominator in (𝐴. 11) is always positive, since 𝜇 <
1

(𝜆−1)
 is a necessary 

condition to guarantee that (𝑦∗∗, 𝑔∗∗) is a local maximum.  If 𝑏 > 𝜇 and 𝜇 ≥
1

2(𝜆−1)
, then 

𝑦∗∗ − 𝑔∗∗ > 0. Additionally, 𝑦∗∗ − 𝑔∗∗ >  0 if 𝜇 ≥ 𝑏 and 𝜇 <
1

2(𝜆−1)
. Note that 𝜇 <

1

2(𝜆−1)
 is 

more stringent than 𝜇 <
1

(𝜆−1)
. Thus, more stringent conditions are required to guarantee 

piling up when 𝜇 ≥ 𝑏.  
 
 

In contrast, 𝑦∗∗ − 𝑔∗∗ < 0 holds if   
𝑎+𝜇

𝜇−𝑏
<

𝜇(𝜆−1)−
1

2

𝜇(𝜆−1)+2𝑏
, which requires 𝜇 ≥ 𝑏 to maintain the 
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inequality, and, as is evident from the left-hand side of the inequality, it becomes less 

stringent as 𝑏 decreases. However, for  𝑏 = 0, the smallest value that 𝑏 can attain, the 

condition becomes 
𝑎+𝜇

𝜇
<

𝜇(𝜆−1)−
1

2

𝜇(𝜆−1)
, which never holds since 

𝑎+𝜇

𝜇
> 1 and  

𝜇(𝜆−1)−
1

2

𝜇(𝜆−1)
< 1.  

When 𝑏 > 𝜇, the condition for negative piling up becomes 
𝑎+𝜇

𝜇−𝑏
>

𝜇(𝜆−1)−
1

2

𝜇(𝜆−1)+2𝑏
. Then, if  𝜇 <

1

2(𝜆−1)
 holds, which is a more stringent condition than   𝜇 <

1

(𝜆−1)
, it is possible to find values 

of 𝑏 and 𝜇 such that negative piling up occurs. Hence, negative piling up is only possible 

when 𝑏 > 𝜇  together with 𝜇 <
1

2(𝜆−1)
. ∎ 

 
 
Corollary 2 
 
PROOF: We first demonstrate i). Suppose that 𝑦∗∗|𝑏=0 < 𝑦𝑝. Using equation  

(13) and 𝑦𝑝 = 2𝑎, the assumed inequality yields 𝑦∗∗|𝑏=0 =
(𝜇+2𝑎)

1−𝜇(𝜆−1)
< 2𝑎, and some 

rewriting leads to 𝜇 + 2𝑎𝜇(𝜆 − 1) < 0, which is a contradiction since 𝜆 > 1. Then, it must 
be the case that 𝑦∗∗|𝑏=0 > 𝑦𝑝.     

 
To prove ii) we subtract (13) from (14), which yields 
 

𝑦∗∗|𝑏=0 − 𝑔∗∗|𝑏=0 =
𝑎 +

1
2(𝜆 − 1)

1 − 𝜇(𝜆 − 1)
.                (𝐴. 12) 

 
For the feasible values that these parameters can attain, and since the tuple 

(𝑦∗∗|𝑏=0, 𝑔∗∗|𝑏=0) is a local maximum guaranteed by 𝜇 <
1

(𝜆−1)
, it must be that  𝑦∗∗|𝑏=0 −

𝑔∗∗|𝑏=0 > 0. ∎ 
 
 
Proposition 4.  
 

PROOF: Suppose instead that 𝑦∗∗|𝑏=0 ≤ 𝑦∗∗|𝑏>0, while 𝜇 >
𝜆

(𝜆−1)(𝜆+1)
. Using equations 

 (16) and (17), the assumed inequality yields 
2(𝜇+𝑎)(𝑏+𝜇(𝜆−1))+𝜇(𝑏−𝜇)(𝜆−1)

(𝑏+𝜇(𝜆−1))−𝜇2(𝜆−1)2 ≥
𝜇+2𝑎

1−𝜇(𝜆−1)
 .   

Rewriting, we get  𝜆 − 2(𝜆 − 1)(𝜇 + 𝑎) − 𝜇(𝜆 − 1)2 ≥ 0, which is a contradiction since it 

requires 𝜆 > (𝜆 − 1)𝜇(1 + 𝜆), which cannot hold for 𝜆 > 1 and 𝜇 > 0. Therefore, it must be 

that 𝑦∗∗|𝑏=0 >  𝑦∗∗ |𝑏>0 if 𝜇 >
𝜆

(𝜆−1)(𝜆+1)
 ∎ 
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Appendix B. Simulation of the Model 

 

In this appendix, we report the results of simulations to illustrate the role of loss aversion 

in moderating the effect of monetary bonuses on performance. We plot 𝑦∗∗ against 

different levels of b and we let 𝜆 take different values. We keep 𝑎 = 0.2 fixed.  

 

We start by assuming low values of 𝜇, so that the psychological utility has a small weight 

relative to the utility of the monetary payments. Figure B.1 shows that for 𝜇 = 0.01 and 

𝜇 = 0.1, the higher the level of the bonus, b, the greater the output, for 1 < 𝜆 ≤ 2.  

 

    
Figure B.1. a) Simulation with 𝜇 = 0.01     b) Simulation with 𝜇 = 0.1 

 

In contrast, Figure B.2 shows that for relatively high values of 𝜇, namely 𝜇 = 0.2 and 𝜇 =

0.3, it is possible that output decreases as the bonus offered increases. Specifically, when 

the worker has 𝜆 ≥ 3 in Figure 2a and 𝜆 ≥ 2.5 in Figure 2b, higher bonuses yield lower 

output than lower bonuses.  

 

Finally, Figure B.3 shows that for large values of 𝜇, such as for the value of 0.5 shown in 

the figure, output is greater when the bonus offered 𝑏 is lower, even when the loss 

aversion coefficients are not too large.  
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Figure B.2. a) Simulation with 𝜇 = 0.2     b) Simulation with 𝜇 = 0.3 
 

              
  
 

Figure B.3. Simulation with 𝜇 =0.5 
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Appendix C. Details of the Risk Attitude Classifications 

 

In this appendix, we report some additional analysis of the data of part B of the 

experiment, in which utility curvature and loss-aversion are measured. These elicited data 

consist of a vector of certainty equivalents {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} for five different lotteries, and 

the vector of offsetting loss outcomes {𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5} for each subject. These values can 

be analyzed to understand (1) the risk attitudes of subjects when outcomes are restricted 

to the gain domain, (2) whether risk attitudes have a sign-dependent component as 

proposed in prospect theory, and (3) how loss averse a participant is. 

 

C.1. Risk attitudes towards gains  

 

We begin by studying the elicited sequence  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} which informs us about the 

risk attitudes of subjects in the domain of gains. We classify each subject according to 

their risk attitude. To that end we compute the difference ∆𝑖𝑗≡ 𝑥𝑖𝑗 − 𝐸𝑉𝑗, where the index 

𝑗 indicates the lottery number, and 𝐸𝑉𝑗 stands for the expected value of that lottery. 

Formally, 𝐸𝑉𝑗 = 0.5𝐻𝑗 + 0.5𝐿𝑗 . The sign of ∆𝑖𝑗 is a non-parametric measure of the risk 

attitude of subject 𝑖 with respect to lottery 𝑗. If the subject exhibits ∆𝑖𝑗> 0, the lowest price 

at which she is willing to sell the lottery is larger than its expected value, denoting a risk-

seeking attitude. If ∆𝑖𝑗< 0, the subject has a risk averse attitude toward that lottery. Also, 

whenever ∆𝑖𝑗= 0, the subject is risk neutral.  

 

We perform a classification of subjects based on the statistical significance of their 

elicited ∆𝑖𝑗. We compute confidence intervals around zero to determine whether a ∆𝑖𝑗 is 

statistically relevant given the overall variation in the data. Specifically, we calculate the 

standard deviation of ∑ ∆𝑖𝑗𝑖  for each lottery 𝑗, and multiply it by the factors 0.64 and -0.64. 

A significantly positive ∆𝑖𝑗 indicates that subject 𝑖 is risk seeking with respect to lottery 𝑗, 

while a significantly negative ∆𝑖𝑗 indicates risk aversion. Under the assumption that the 

data follow a normal distribution, then at least 50% of the data must lie within this 

confidence interval. Furthermore, to account for response error, we classify a subject to 

have a risk averse attitude when at least four of her ∆𝑖𝑗s are negative. A subject is risk 

seeking when at least four of her  ∆𝑖𝑗s are positive, and a subject has linear utility when 

at least four ∆𝑖𝑗s are not different from zero. This is also the approach followed by 

Abdellaoui (2000) and Abdellaoui et al. (2008).    

 

Table C.1 shows that, by this criterion, the majority of subjects, 57%, are classified as 

having linear utility (proportions test against 0.5 results in p=0.048). While 40% of 

participants are classified as having concave utility (proportions test against 0.5 yields 

p=0.003) and only five as having convex utility.  
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Table C.1 Classification of individuals’ risk attitudes towards lotteries with gains 
 

Lottery/Classification Concave 
Utility 

Convex 
 Utility 

Linear 
Utility 

Lottery 1 60 24 77 
Lottery 2 80 15 66 

Lottery 3 98 16 47 
Lottery 4 77 9 75 
Lottery 5 100 11 50 

Total num. subjects 65 5 91 
 

Note: This table presents the classification of individuals according to their risk attitudes in the domain of gains. Each 

row presents the number of subjects classified as having concave, convex or linear utility, which is equivalent to saying 

that they are risk averse, risk seeking, or risk neutral, respectively. A subject 𝑖 is classified as having concave utility for 

lottery 𝑗 whenever the difference  ∆𝑖𝑗 ≡ 𝑥𝑖𝑗 − 𝐸𝑉𝑗 < 0.  A subject 𝑖 is classified as having convex utility for lottery 𝑗 

whenever the difference ∆𝑖𝑗 > 0. A subject 𝑖 is classified as having linear utility for lottery 𝑗 whenever the difference ∆𝑖𝑗 

is not significantly different from zero. The last row presents the number of subjects classified as having concave, 

convex, and linear utility over all lotteries. A subject is classified to have concave utility if she displays risk averse 

attitudes toward at least four lotteries. A subject is classified to have convex utility if she displays risk seeking attitudes 

toward at least four lotteries. Having risk neutral attitudes for at least four lotteries classify a subject as having linear 

utility.  

 

The second analysis we conduct on these data assumes that the utility function of 

subjects follows a particular functional form. We fit the certainty equivalents to these 

functionals to examine the subjects’ risk attitudes.  Specifically, we assume that the utility 

of subjects is of the power utility form, 𝑥𝑖𝑗 = 𝐸𝑉𝑗
𝛼 , which belongs to the CRRA family, or 

of the exponential utility form, 𝑥𝑖𝑗 = 1 − exp (−𝜌𝐸𝑉𝑗) , which belongs to the CARA family. 

We estimate the parameters of these functionals, using the non-linear least squares 

method, for the pooled data of all participants. 

  

Table C.2 presents the estimates of the parameters. We find that the estimate �̂� is 

significantly less than one, though only modestly so. This implies a utility function for a 

representative agent that has slightly risk averse attitudes (F(1,160)=127.651, p<0.001). 

Similarly, we find that the estimate �̂� is significantly greater than zero, though still fairly 

small in magnitude. This also reveals a small degree of risk aversion on the part of the 

representative individual (F(1,160)= 3.4e+05, p<0.001). Thus, we find that subjects in 

aggregate display slight risk aversion, when functional forms with CARA and CRRA are 

estimated. This is in line with the statistical analysis of the data at the individual level, 

which found that the majority of participants were risk-neutral, but that there were also 

some subjects more appropriately classified as risk averse.  

 

C.2 Loss aversion 
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Next, we analyze the sequence of negative outcomes {𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5} that made the 

subjects indifferent between receiving zero for sure and a lottery consisting of 

(𝑧𝑗 , 0.5; 𝑥𝑗 , 0.5), where 𝑥𝑗 was an elicited certainty equivalent of one of the lotteries 

containing only positive outcomes. The analysis of this data reveals the degree of a 

subject’s loss aversion. The measure of loss aversion is the coefficient 𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗. When 

the 𝜆𝑖 coefficient takes the value of one, the subject is indifferent between accepting and 

declining a lottery that consists of a gain and a loss of equal magnitude, each occurring 

with probability 0.5, and thus the subject exhibits no loss aversion or gain seeking.  If the 

coefficient 𝜆𝑖 takes on a value larger than one, it indicates the presence of loss aversion. 

 

 

Table C.2 Estimates of parameters of the utility function of the representative participant 
 

Parametric form  Coefficient St. Error 𝑹𝟐 
 

𝑥𝑖𝑗 = 𝐸𝑉𝑗
𝛼 𝛼 =.9480115 .0048 0.946 

𝑥𝑖𝑗 =
1 − exp(−𝜌𝐸𝑉𝑗)

𝜌
 

 

𝜌 =. 01854 .0016 0.942 

 

 

We first analyze the loss aversion coefficients at the individual level. A subject is classified 

as loss averse when at least four (out of five) of her loss aversion coefficients satisfy 𝜆𝑖 >

1.  A subject is classified as gain-seeking when at least four (out of five) of her loss 

aversion coefficients have 𝜆𝑖 < 1. Finally, a subject is classified as having mixed attitudes 

toward losses if she cannot be classified as either loss averse or gain seeking.  Table C.3 

shows that the large majority of subjects is loss averse. Specifically, 72% of participants 

are classified as loss averse and 14% as gain-seeking.   

 

Table C.3 Individuals classified as loss averse for each xj 
 

Classification Loss Averse  Gain-Seeking Mixed  

Lottery 6 106 55 - 

Lottery 7 125   36   - 

Lottery 8 128 33   - 

Lottery 9 128 33 - 

Lottery 10 124 37 - 

Total 117 23 21 

Averaged  134 27 0 
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We also perform a second analysis of these data featuring the average of the loss 
aversion coefficient that an individual exhibits over all five lotteries. The last row in Table 
C.3 shows that according to this analysis, 134 subjects, or 85% of participants, are loss 
averse and the remaining 27 subjects are gain-seeking. Thus, both analyses conclude 
that the great majority of the subjects are loss averse.  
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Appendix D. Additional Tables and Analyses  
 
Table D.1 Descriptive statistics of goals set by round in the GOAL+BONUS and GOAL 

treatments 
 

 round 1 round 2 round 3 round 4 round 5 round 6 

GOAL+BONUS       

mean 6.076 5.948 6.179 6.205 6.461 6.615 

median 6 5 6 6 6.5 6 

S.D. 2.056 1.986 2.186 2.142 1.889 2.034 

GOAL       

mean 8.658 8.024 7.902 8 7.829 8.414 

median 7 7 7 7 7 8 

S.D. 4.908 4.345 4.353 4.399 4.371 4.549 
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Table D.2 Effect of treatment and loss aversion on performance and goals for subjects 

with linear utility only 
 

 (1) (2) (3) (4) 

 Performance Performance Goal Level Goal Level 

GOAL* Loss 
Averse 

0.346*** 
 

0.555*** 
 

 (0.058)  (0.073)  

GOAL* High Loss 
Averse 

 
0.231*** 

 
0.543*** 

  (0.077)  (0.107) 

GOAL*Mild Loss 
Averse  

 
0.048 

 
0.176*  

  (0.093)  (0.097) 

Loss Averse 0.170***  0.134*  

 (0.045)  (0.077)  

High Loss Averse  0.220***  0.114 

  (0.056)  (0.109) 

Mild Loss Averse  0.048  -0.038 

  (0.093)  (0.111) 

GOAL 0.181** 0.309** 0.218** 0.211 

 (0.082) (0.099) (0.095) (0.1306) 

HIPR 0.098*** 0.145***   

 (0.044) (0.044)   

LOPR -0.134** -0.129***   

 (0.048) (0.048)   

Constant 3.584*** 3.588*** 3.505*** 3.564*** 

 (0.464)  (0.056) (0.065) (0.097) 

Log-Likelihood -442.008 -437.376 -278.999    -282.066 

N 91 91 44 44 
 
Note: This table presents the estimates of the Poisson regression of the specification  Performance𝑖 =  β0 + β1GOAL ∗
Loss Averse + β2GOAL + β3LOPR + β4LOPR + β5Loss Averse + ℇi with ℇi~Poisson (ω), as well as the Poisson 

regression of the statistical model Goal leveli =  β0 + β1GOAL ∗ Loss Averse + β2GOAL + β3LOPR + β4LOPR +
β5Loss Averse + ℇi with ℇi~Poisson (ω) . “Performance” is the total number of tables a subject solves correctly over all 
rounds and “Goal setting” is the sum of the goals set by the subject over all rounds.  Subjects were assigned either to 
the GOAL, HIPR, LOPR, or GOAL+BONUS treatment. GOAL+BONUS is the benchmark category for the regression. 
``Loss Averse’’ is a dummy variable that captures whether a subject is loss averse or not. A subject is loss averse when 
at least four variables 𝜆𝑗 , where  𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗, are greater than one, ``Loss averse Mild’ equals 1 if a subject is loss averse 

and her average 𝜆 is lower than the median subject in the sample, and 0 otherwise. ``Loss averse High’ equals 1 if a 

subject is loss averse and her average 𝜆 is lower than the median subject in the sample and 0 otherwise. All models 

include only subjects classified as having linear utility.  Standard errors presented in parenthesis. * indicates a p-value 
<0.1, ** indicates a p-value <0.05, ***indicates a p-value <0.01. 

 



 46 

Table D.3 Association of concave utility, loss aversion and treatment, with goals and 
performance  

 

 (1) (2) (4) (5) 

 Performance Performance Goal Level Goal Level 

GOAL*Concave 
Utility 

-0.024 -0.021 0.014 0.015 

 (0.021) (0.021) (0.027) (0.026) 

Concave Utility -0.019* -0.012 -0.013 -0.01 

 (0.011) (0.011) (0.020) (0.072) 

GOAL 0.073* 0.075* 0.280*** 0.280*** 

 (0.042) (0.042) (0.046) (0.046) 

LOPR -0.016 -0.019   

 (0.034) (0.034)   

HIPR -0.020 -0.033   

 (0.034) (0.034)   

Loss Averse  0.123***  0.139*** 

  (0.028)  (0.039) 

Constant 3.735*** 3.657*** 3.61*** 3.552*** 

 (0.027) (0.033) (0.035) (0.043) 

Log-Likelihood -841.956 -832.509 -475.665 -469.368 

N 160 160 80 80 
 
Note: This table presents the estimates of the Poisson regression of the specification Performancei =  β0 + β1GOAL ∗
Concave Utility + β2GOAL + β3LOPR + β4LOPR + β5Loss Averse + ℇi with ℇi~Poisson (ω), as well as the Poisson 

regression of the statistical model Goal leveli =  β0 + β1GOAL ∗ Concave Utility + β2GOAL + β3LOPR + β4LOPR +
β5Loss Averse + ℇi with ℇi~Poisson (ω) . “Performance” is the number of tables a subject correctly solves over all rounds 

and “Goal setting” the sum of the goals set by the subject over all rounds.  Subjects were assigned either to the 
GOAL,“HIPR, LOPR, or GOAL+BONUS treatment. The last is the benchmark category for the regression. ``Loss 
Averse’’ is a dummy variable that indicates whether a subject is loss averse or not. A subject is loss averse when at 
least four of her 𝜆𝑗 , where  𝜆𝑗 ≡ 𝑥𝑗/𝑧𝑗, are greater than one.  ``Concave Utility” is a dummy variable that equals 1 if a 

subject exhibits concave utility and zero otherwise. A subject exhibits concave utility when at least four of her variables 
∆j, where  ∆j ≡ 𝑥𝑗 − 𝐸𝑉𝐽, are less than zero. Standard errors are in parenthesis. * indicates a p-value <0.1, ** indicates 

a p-value <0.05, ***indicates a p-value <0.01. 
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Appendix E. Experimental Instructions  
 

E.1  Welcome  

This is an experiment in the economics of decision-making. The instructions are simple 
and if you follow them and make good decisions, you might earn a considerable amount 
of money, which will be paid to you at the end of the experiment. The amount of payment 
you receive depends on your decisions, your effort, and partly on luck. The currency used 
throughout the experiment is Dollars. 

Once the experiment has started, no one is allowed to talk to anybody other than the 
experimenter. Anyone who violates this rule will lose his or her right to participate in this 
experiment. If you have further questions when reading these instructions please do not 
hesitate to raise your hand and formulate the question to the experimenter. 

The experiment consists of two parts. A counting task part and a decision-making part. 
Both tasks will count towards your final earnings. 

E.2  Part A: Counting task 

This part of the experiment consists of a sequence of 6 rounds of 5 minutes each. In 
each round you need to complete as many tasks as possible. A task is completed when 
you count the correct number of zeros in a table that contains 100 zeros and ones. 

As soon as you know the correct number of zeros contained in a table, you have to input 
your answer using the keyboard. Once you have entered the number, click "Next". 
Immediately afterwards a new table will be displayed and, again, you have to count the 
number of zeros in this new table. This procedure is repeated until the time is up. A timer 
is displayed in the upper part of your screen. After each round is over you receive 
feedback about your performance in that round. 

Counting Tips: Of course you can count the zeros in any way you want. Speaking from 
experience, however, it is helpful to always count two zeros at once and multiply the 
resulting number by two at the end. In addition, you miscount less frequently if you track 
the number you are currently counting with the mouse cursor. 

you will see an example when you press "Next". 

(example is displayed) 

Payments  

(LOPR treatment) 

For each correct task that you complete you receive 0.20 Dollars, but if your answer was 
wrong you receive nothing. 
 
The formula we use to calculate your earnings is Earnings = # correct tasks * 0.20 Dollars. 

(HIPR treatment) 

For each correct task that you complete you receive 0.50 Dollars, but if your answer was 
wrong you receive nothing. 
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The formula we use to calculate your earnings is Earnings = # correct tasks * 0.50 Dollars. 

 (GOAL treatment) 

For each correct task that you complete you receive 0.20 Dollars, but if your answer was 
wrong you receive nothing. 
 
Goal: At the beginning of each round you will be asked to set a goal in terms of the number 
of tables you aim at solving correctly in that specific round. Provide this target at this best 
ability, we would like to see how accurate is your prediction 

The formula we use to calculate your earnings is Earnings = # correct tasks * 0.20 Dollars  

 (GOAL+BONUS treatment) 

For each correct task that you complete you receive 0.20 Dollars, but if your answer was 
wrong you receive nothing. 

Goal: At the beginning of each round you will be asked to set a goal in terms of the 
number of tables you aim at solving correctly in that specific round. If you achieve your 
goal or you surpass it, you will be paid an additional bonus. The bonus is larger the 
large the goal is set. If your goal is high and you achieve it or surpass you will be given 
a high monetary reward. But, if your goal is low and you accomplish it or surpass it you 
will be given a low monetary reward. Also be aware that if you set a very high goal and 
you cannot accomplish it you will get no bonus. 

The formula we use to calculate your earnings is Earnings = # correct tasks * 0.20 
Dollars + goal * 20 cents.  

Are you ready to start now? As soon as you press "Next" the task will start. 

 
E.3 Part B: decision-making part 

 
 the following, you will face a series of decisions. Your task in each decision is to choose 
among two possible alternatives. Your earnings on this part of the experiment depend on 
your choices. 

You will be faced with 10 decision sets. Each decision set contains several choices. In 
each of decision you need to choose between the option R, that delivers a sure amount 
of money, and the option L that results in one of two different monetary amounts. 

Note that in each decision set you need to choose between L and R multiple times. 
But, you need to be careful since the offered amounts of money could change from one 
decision to the next. 

you will see an example when you press "Next" 

Payments 



 49 

At the end of this part of the experiment one randomly chosen decision will be played and 
paid. Hence, a random number chosen by the program will be drawn to determine which 
decision counts towards your earnings. 

This means that each choice that you make might be chosen and paid. 
If it is clear what you have to do in this part of the experiment, press "Next" to start. 

 

E.4 Exit Questionnaire.  
 
This is the last part of the experiment. Please answer the following questions at your best 
ability. 

Enter the computer (Letter plus digit) you are at. 
Enter your age. 
What is the program you are studying? 
Enter your gender. 
Male Female 
What is your nationality? 
 
 

 

 

 

 

 

 

 

 

 

 
 




