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Abstract

We point out that the equilibrium definition applied by Miao and Wang [8] in
their model of stock price bubbles involves an implicit assumption about the for-
mulation of an endogenous credit constraint. By dropping this assumption, one
can construct infinitely many additional equilibria for the Miao-Wang economy,
all of which exhibit stock price bubbles. The underlying reason for this result is
informational non-uniqueness, a phenomenon known from the literature on dy-
namic games. Neither the original equilibria discussed by Miao and Wang [8] nor
the additional ones which exist due to informational non-uniqueness are Markov-
perfect. For this reason we propose a recursive equilibrium definition for the
Miao-Wang economy and show how it can be used to construct Markov-perfect
equilibria with stock price bubbles.
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1 Introduction

During the last two decades, macroeconomists have increasingly analyzed how financial
market imperfections affect the business cycle and the functionality of monetary policy.
In many of these studies, the market imperfections take the form of an endogenous
credit constraint; see, e.g., Albuquerque and Hopenhayn [1], Alvarez and Jermann [2],
Carli and Modesto [4], Gertler and Karadi [5], Jermann and Quadrini [6], Kiyotaki
and Moore [7], and Miao and Wang [8]. Such a constraint limits the size of a loan by
an endogenous function of the borrower’s own choice variables. The aforementioned
papers differ from each other, however, in the way how this constraint is formulated
and how equilibria are defined. Jermann and Quadrini [6], for example, use a recursive
equilibrium definition, according to which the decisions of all agents as well as the
credit constraint are described by functions of the individual and aggregate states of
the economy. Similarly, Albuquerque and Hopenhayn [1] consider fully state contingent
contracts. Equilibria defined in this way are Markov-perfect by construction, that is,
the agents’ decision rules describe their optimal behavior not only in equilibrium but
also off the equilibrium path. Carli and Modesto [4], Kiyotaki and Moore [7], and Miao
and Wang [8], on the other hand, define equilibria as sets of time-dependent functions,
which satisfy the feasibility, optimality, and market clearing conditions in all periods
(perfect foresight equilibria). These equilibria normally fail to be Markov-perfect and,
in addition, the phenomenon of informational non-uniqueness may arise.

Informational non-uniqueness was first detected by Başar [3] in dynamic games but has
not received a lot of attention. It originates from the fact that, in a deterministic model,
an agent’s action can be described in infinitely many different ways as a function of both
time and individual states. The information set is so big that it allows for redundancies.
But this is not the end of the story. Because different representations of the actions of
one agent lead to different incentives for other agents, the resulting equilibrium paths
differ from each other as well. In the case of endogenous credit constraints, for example,
the lenders can – through the choice of the representation of the constraint – affect
the behavior of the borrowers. We explain and analyze the effects of informational
non-uniqueness in a slightly modified version of the model from Miao and Wang [8].

In contrast to most of the other papers in the macroeconomic literature on bubbles
the paper by Miao and Wang [8] deals with stock price bubbles, i.e., with bubbles on
productive assets. Moreover, it is a model with infinitely-lived agents. The endogenous
credit constraint restricts a borrowing firm’s investment rate, i(t), by the stock price
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value of a hypothetical firm that owns the fraction ξ of the borrowing firm’s capital
stock, k(t):

i(t) ≤ V (ξk(t), t). (1)

The function V is the value function of the firm’s optimization problem, i.e., its correct
evaluation on the stock market. Every firm takes this function as given when it chooses
its investment policy, but V is of course endogenously determined in the model. Miao
and Wang [8] show that there exist two different stationary equilibria in which the credit
constraint (1) is binding. In the first one, the market value of each firm coincides with
the value of its capital stock and Tobin’s average Q equals marginal Q. In the second
stationary equilibrium the firm’s stock market value exceeds the value of its capital
stock and marginal Q falls short of average Q. This situation is interpreted as a stock
price bubble.

Now suppose that the constraint (1) is replaced by

i(t) ≤ I(k(t), t)

for some function I, which can be chosen by the lenders. The only goal of the lenders
is to ensure that (1) holds. If the function I satisfies

I(k(t), t) = V (ξk(t), t) (2)

for all t, then the lenders have obviously achieved their goal. Miao and Wang [8]
implicitly assume that the function I is defined by the property that

I(κ, t) = V (ξκ, t) (3)

holds for all pairs (κ, t). In this case (2) is trivially satisfied. However, the lenders
can ensure the validity of condition (2) by infinitely many other functions I as well.
Moreover, since different choices of I generate different incentives for the borrowers,
one obtains infinitely many different equilibria. This is the essence of informational
non-uniqueness.

The rest of the paper is organized as follows. In section 2 we review the model of
Miao and Wang [8] and describe how we modify it. The modification is solely done for
analytical convenience and does not affect the underlying economic assumptions. After
describing the decision problems of households and firms and stating all market clearing
conditions, we provide a detailed discussion of the endogenous credit constraint. To
highlight the emergence of informational non-uniqueness, we first present the original
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equilibrium definition used by Miao and Wang [8] and point out that it includes the
implicit assumption (3). Then we state an equilibrium definition, which we call relaxed
Miao-Wang equilibrium and which does not impose assumption (3). In section 3 we
show that there exists a continuum of stationary relaxed Miao-Wang equilibria, all of
which are mutually different from each other and also different from the equilibria in
[8]. Interestingly, all of them have the property that there exists a stock price bubble.
Finally, in section 4 we argue that none of the original or relaxed Miao-Wang equilibria
are Markov-perfect. To ensure Markov-perfection we propose a recursive equilibrium
definition for the Miao-Wang economy, in which decision rules are functions on the state
space of the model rather than functions on the time domain. Section 5 concludes the
paper. All proofs are relegated to the appendix.

2 Model formulation

In this section we describe the model which will be analyzed in the rest of the paper. It
is very similar to the model used by Miao and Wang [8]. The only essential difference
is that we do not assume that investment opportunities arrive randomly at discrete
instants of time (lumpy investment) but that we use a simpler and fully deterministic
approach.

Time is modelled as a continuous variable on the domain T = R+. The economy is
populated by a unit interval of households and a unit interval of firms. Firms use the
input factors capital and labor to produce a single output good. The latter can be
used for consumption and for investment and it serves as numeraire. Households are
endowed with labor and they own the firms. Firms own their capital and rent labor
services from the households. There a two assets in the economy: bonds, which are
available in zero net supply, and firm equity. Only the households have access to the
two asset markets.

2.1 Households

There exists a unit interval of identical and infinitely-lived households. The representa-
tive household is endowed with a constant flow of one unit of labor per period. Initially
at time t = 0 it owns equally many shares of all firms in the economy and holds no
bonds. The household has the instantaneous utility function U : R+ 7→ R and the
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time-preference rate ρ > 0.1 Let us denote by c(t), s(t), and b(t) the rate of consump-
tion, the share holdings, and the bond holdings of the representative household at time
t ∈ T. Furthermore, we denote by r(t), w(t), π(t), and v(t) the real interest rate, the
wage rate, the dividend flow, and the share price at time t ∈ T. The household takes
the functions r : T 7→ R, w : T 7→ R, π : T 7→ R, and v : T 7→ R as given and chooses
the functions c : T 7→ R, s : T 7→ R, and b : T 7→ R so as to maximize its lifetime
utility ∫ +∞

0

e−ρtU(c(t)) dt (4)

subject to the flow budget constraint

ḃ(t) + v(t)ṡ(t) + c(t) = r(t)b(t) + π(t)s(t) + w(t) (5)

and the initial conditions
s(0) = 1 and b(0) = 0. (6)

2.2 Firms

There exists a unit interval of identical and infinitely-lived firms which produce output
from capital and labor. The firms own their capital stocks and they rent the labor
services from the households. We denote the capital stock and the labor demand of
the representative firm at time t ∈ T by k(t) and ℓ(t), respectively. Output of the
representative firm at time t ∈ T is given by F (k(t), ℓ(t)) and its rate of investment
is denoted by i(t). The production function F : R2

+ 7→ R+ satisfies all standard
assumptions (including, in particular, linear homogeneity) and will later be chosen to
be of Cobb-Douglas form. The flow of profits of the firm at time t ∈ T is therefore
given by

π(t) = F (k(t), ℓ(t))− w(t)ℓ(t)− i(t) (7)

and the capital stock evolves according to

k̇(t) = i(t)− δk(t), (8)

where δ > 0 is the rate of capital depreciation. The initial capital stock is given by

k(0) = k̄, (9)
1Later on we will assume the utility function to be linear.
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where k̄ > 0 is an exogenous parameter. It is assumed that investment is non-negative
and that it is bounded from above by a constraint of the form

i(t) ≤ I(k(t), t). (10)

This constraint is the result of (unmodelled) credit market imperfections and will be
discussed in much more detail in subsection 2.4.

For notational convenience we introduce the state space K = [0, K̄] and assume that
the initial capital endowment satisfies k̄ ∈ K.2 The representative firm takes the
functions r : T 7→ R, w : T 7→ R, and I : K ×T 7→ R as given and chooses functions
k : T 7→ R+, ℓ : T 7→ R+, and i : T 7→ R+ so as to maximize its shareholder value∫ +∞

0

e−
∫ t
0 r(τ) dτπ(t) dt (11)

subject to (7)-(10). The optimal value function of this optimization problem will be
denoted by V : K×T 7→ R, that is,

V (κ, τ) = max

{∫ +∞

τ

e−
∫ t
τ r(t′) dt′π(t) dt

∣∣∣∣ subject to (7)-(8), (10), and k(τ) = κ

}
.

(12)

2.3 Market clearing

The labor market clears at time t ∈ T if

ℓ(t) = 1, (13)

the asset markets clear if

b(t) = 0, (14)

s(t) = 1, (15)

v(t) = V (k(t), t), (16)

and the output market clears if

F (k(t), ℓ(t)) = c(t) + i(t).

2For the time being, the reader may assume that K̄ is a sufficiently large real number or even that
K̄ = +∞. In the latter case, one can identify K with R+. The actual value of K̄ will only be relevant
in theorem 3.
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Due to Walras’ law, one of the market clearing conditions is redundant and we will
therefore disregard the output market clearing condition in the analysis.

Finally, we have to make sure that households keep their firms running. This will be the
case if the market value of the firms, which are held by the representative household,
is at least as large as the market value of the capital installed in those firms. Since the
value of capital outside the firms is equal to 1, this means that

V (k(t), t) ≥ k(t) (17)

must hold for all t ∈ T.

2.4 The endogenous credit constraint and equilibrium defini-
tions

The most crucial element of the model is the investment constraint (10). Miao and
Wang [8] devote considerable space to the foundation of this constraint by explicitly
modelling a credit market on which firms can get loans to finance their investment
projects. We do not include the credit market in our model at all, but simply impose
condition (10) on the firms. We shall refer to (10) alternatively as a credit constraint
or an investment constraint. The present subsection points out that there are differ-
ent ways of implementing this constraint and that they lead to different equilibrium
definitions.

It will be helpful to start with the case (neither considered by Miao and Wang [8] nor
treated later in the present paper) where the function I appearing in (10) is exogenous
to the model.

Definition 1 Let I : K×T 7→ R be a given function and let k̄ ∈ K \ {0} be a given
initial capital stock. An I-equilibrium from k̄ is a 10-tuple of real-valued functions
(c, s, b, k, ℓ, i, r, w, π, v) with domain T and a function V : K × T 7→ R such that the
following conditions are satisfied.
(a) Given (r, w, π, v) it holds that (c, s, b) maximizes (4) subject to (5)-(6).
(b) Given (r, w) it holds that (k, ℓ, i) maximizes (11) subject to (7)-(10) and the func-
tion V satisfies (12).
(c) The market clearing conditions (13)-(17) hold.

In the model of Miao and Wang [8] condition (10) takes the form

i(t) ≤ V (ξk(t), t), (18)
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where V is the optimal value function from (12) and ξ ∈ (0, 1] is a fixed parameter.
More specifically, Miao and Wang [8] assume that the function I appearing in (10)
satisfies

I(κ, t) = V (ξκ, t) (19)

for all (κ, t) ∈ K × T. This turns the function I into an endogenous element of the
model and, correspondingly, condition (10) is called an endogenous credit constraint.
Note, however, that even if the function I is endogenously determined in the model,
it is still taken as exogenous by the firms when they maximize their shareholder value
subject to (7)-(10).

The justification of the constraint (18) provided by Miao and Wang [8] is that the
firms can finance their investments only via an imperfect credit market. Investment
opportunities arrive in the form of idiosyncratic shocks at the firms, and firms with
an investment opportunity can borrow from those without such an opportunity. But
they can do so only by pledging part of their capital as collateral. Miao and Wang [8]
assume that the maximal fraction of capital that can be used as collateral is ξ. If a
borrowing firm with capital stock k(t) defaults on the loan, the creditor can seize the
amount ξk(t) of the borrowing firm’s capital and can set up its own firm, which has
the market value V (ξk(t), t). For this reason, the creditors are not willing to lend more
than V (ξk(t), t).

We apply a modelling shortcut by using a completely deterministic framework in which
firms can invest at all times but are restricted to do so by condition (18). An equilibrium
in this setting which is based on assumption (19) from Miao and Wang [8] can therefore
be defined as follows.

Definition 2 Let k̄ ∈ K \ {0} be a given initial capital stock. A Miao-Wang equilib-
rium from k̄ is a 10-tuple of real-valued functions (c, s, b, k, ℓ, i, r, w, π, v) with domain
T and a function V : K × T 7→ R such that there exists a function I : K × T 7→ R
satisfying the following conditions:
(a) (c, s, b, k, ℓ, i, r, w, π, v, V ) is an I-equilibrium from k̄.
(b) Equation (19) holds for all (κ, t) ∈ K×T.

The key point made in the present paper is that specifying the function I according
to (19) is not the only way to ensure that (18) holds.3 Indeed, there exist infinitely

3In this regard, it is essential to point out that Miao and Wang [8] state condition (18) explicitly
(see their equations (16)-(17)), but that they assume our condition (19) only implicitly (for example
in their formula (24)).
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many alternative specifications of I which are equally suitable. This is a consequence
of two properties, namely, (i) that the function V on the right-hand side of (18) is
an endogenous object and (ii) that the right-hand side of (18) depends on the rep-
resentative firm’s individual capital stock at time t, k(t), and on the time variable t

itself. Moreover, because (10) does not only constrain current investment at time t but
determines also the incentives for capital accumulation after time t, it turns out that
different specifications of I typically generate different equilibrium trajectories. This
phenomenon is known from the dynamic games literature, where it is referred to as
informational non-uniqueness; see, Başar [3] for the original reference and Sorger [9,
chapter 7] for a more recent textbook presentation. Before we demonstrate the effects
of informational non-uniqueness in the present model, we need to provide the formal
equilibrium definition that we are going to use.

Definition 3 Let k̄ ∈ K \ {0} be a given initial capital stock. A relaxed Miao-Wang
equilibrium from k̄ is a 10-tuple of real-valued functions (c, s, b, k, ℓ, i, r, w, π, v) with
domain T and a function V : K×T 7→ R such that there exists a function I : K×T 7→ R
satisfying the following conditions:
(a) (c, s, b, k, ℓ, i, r, w, π, v, V ) is an I-equilibrium from k̄.
(b) The equation I(k(t), t) = V (ξk(t), t) holds for all t ∈ T.

The only difference between definitions 2 and 3 is that, in a Miao-Wang equilibrium, the
condition I(κ, t) = V (ξκ, t) must hold for all feasible pairs (κ, t) ∈ K×T whereas, in
a relaxed Miao-Wang equilibrium, it has to hold only along the equilibrium trajectory,
i.e, for all (κ, t) ∈ {(k(τ), τ) | τ ∈ T}. It is obvious that every Miao-Wang equilibrium
is a relaxed Miao-Wang equilibrium. The converse, however, is not true as will become
evident in the following section.

3 Informational non-uniqueness

In this section we construct relaxed Miao-Wang equilibria under the assumptions of
risk neutral households and a Cobb-Douglas technology.4 More specifically, we assume
that U(γ) = γ and F (κ, λ) = καλ1−α hold for all (γ, κ, λ) ∈ R3

+, where α ∈ (0, 1) is

4The main part of the original paper by Miao and Wang [8] also restricts the analysis to the case
of risk neutrality. The case of risk averse households is treated in appendix D of Miao and Wang [8]
and in Sorger [10]. Both of these papers assume also a Cobb-Douglas technology.
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a constant. Following Miao and Wang [8] we look for equilibria in which the value
function V : K×T 7→ R takes the linear form

V (κ, t) = Q(t)κ+ q(t) (20)

with Q : T 7→ R and q : T 7→ R satisfying

Q(t) ≥ 1 and q(t) ≥ 0 (21)

for all t ∈ T. As for the constraint function I, we restrict ourselves to the linearly
parameterized family {Iµ : K×T 7→ R+ |µ ∈ R} defined by

Iµ(κ, t) = (1− µ)V (ξk(t), t) + µV (ξκ, t) = ξQ(t)[(1− µ)k(t) + µκ] + q(t). (22)

In order to avoid misunderstanding, let us emphasize that the borrowing firm’s in-
dividual capital stock enters the constraint function Iµ as its first argument; see the
investment constraint (10). The variable in definition (22) that corresponds to the
individual capital stock is therefore κ. The variable k(t) on the right-hand side of (22),
on the other hand, refers to the equilibrium value of the borrowing firm’s capital stock
at time t as it is perfectly foreseen by the creditors. Since there exists a unit interval of
identical firms, k(t) in (22) could also be interpreted as the aggregate capital stock in
the economy. In the present section it does not make a difference whether we interpret
k(t) as the representative firm’s capital stock or as the aggregate capital stock. What
is important, though, is that k : T 7→ R is the equilibrium trajectory, i.e., a correctly
foreseen and, hence, known function of time.

Since the representative firm’s own capital stock enters the right-hand side of the credit
constraint (10), capital accumulation does not only influence the firm’s production pos-
sibilities but also its investment possibilities. According to (22), the marginal relaxation
of constraint (10) by one additional unit of capital in period t is given by µξQ(t), which
is the partial derivative of Iµ(κ, t) with respect to κ. Note that the marginal relaxation
is an increasing function of µ and that it is negative whenever µ is negative. In other
words, if the parameter µ is positive, the firm can enhance its future investment possi-
bilities via capital accumulation. In the case where µ = 0 holds, the firm cannot affect
its investment possibilities at all, as the function I0(κ, t) is a pure time-function that is
independent of κ. In accordance with the dynamic games literature one could refer to
µ = 0 as the open-loop case. Finally, if µ < 0 holds, accumulating more capital makes
the credit constraint for the borrowers even tighter, i.e., capital accumulation at some
time t reduces the maximal investment volume after time t.
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It is obvious that the specification (22) ensures the validity of condition (b) in defi-
nition 3 and that the Miao-Wang equilibrium from definition 2 arises as the special
case µ = 1.5 The following theorem presents a characterization of relaxed Miao-Wang
equilibria by means of a three-dimensional boundary value problem.

Theorem 1 Let a triple of real-valued functions (k,Q, q) on the time domain T and
a function V : K×T 7→ R be given such that (20)-(21) hold for all t ∈ T.
(a) If (c, s, b, k, ℓ, i, r, w, π, v, V ) is a relaxed Miao-Wang equilibrium and the constraint
function I is given by Iµ from (22), then it follows that the functions k, Q, and q satisfy
the dynamical system

k̇(t) ≤ ξQ(t)k(t) + q(t)− δk(t), (23)

[Q(t)− 1][ξQ(t)k(t) + q(t)− δk(t)− k̇(t)] = 0, (24)

Q̇(t) = (δ + ρ)Q(t)− µξQ(t)[Q(t)− 1]− αk(t)α−1, (25)

q̇(t) = ρq(t)− [Q(t)− 1][ξ(1− µ)k(t)Q(t) + q(t)] (26)

for all t ∈ T as well as the boundary conditions

k(0) = k̄, (27)

lim
t→+∞

e−ρt[Q(t)k(t) + q(t)] = 0. (28)

(b) Conversely, if the functions k, Q, and q satisfy (23)-(28), then there exist real-
valued functions (c, s, b, ℓ, i, r, w, π, v) on the domain T such that (c, s, b, k, ℓ, i, r, w, π, v, V )

is a relaxed Miao-Wang equilibrium with the constraint function I = Iµ from (22).

With the help of the above theorem we can now study for which values of the parameter
µ a relaxed Miao-Wang equilibrium with constraint function Iµ exists. In a first step,
we disregard the initial condition (27) and look for constant solutions of (21) and (23)-
(26).6 We shall refer to such solutions as stationary equilibria. To formulate our next
main result, we need the following auxiliary lemma.

5The specification proposed in (22) is just one of many possibilities which ensure the validity
of condition (b) in definition 3. Indeed, for every function G : R2 7→ R+ satisfying G(x, x) = x

one could define I(κ, t) = G(V (ξk(t), t), V (ξκ, t)). Equation (22) arises as the special case where
G(x, y) = (1− µ)x+ µy.

6Note that any constant solution trivially satisfies the transversality condition (28).
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Lemma 1 Assume that ξ ≤ δ is satisfied and define

µ̄ =
δ(1 + 2ρ)− ρξ − 2

√
δρ(1 + ρ)(δ − ξ)

ξ
,

Q−(µ) =


δ + (µ+ ρ)ξ −

√
[δ + (µ+ ρ)ξ]2 − 4δµξ(1 + ρ)

2µξ
if µ ̸= 0

δ(1 + ρ)

δ + ρξ
if µ = 0,

Q+(µ) =
δ + (µ+ ρ)ξ +

√
[δ + (µ+ ρ)ξ]2 − 4δµξ(1 + ρ)

2µξ
for µ ̸= 0.

(a) The inequality µ̄ ≥ 1 holds, and it holds with equality if and only if ξ = δ/(1 + ρ).
(b) For all µ ≤ µ̄ it holds that Q−(µ) is a real number and the function Q− : (−∞, µ̄] 7→
R is continuous and strictly increasing. Moreover, it holds that

lim
µ→−∞

Q−(µ) = 1,

Q−(1) =


δ

ξ
if ξ ≥ δ

1 + ρ
,

1 + ρ if ξ <
δ

1 + ρ
.

(c) For all µ ∈ (−∞, 0) ∪ (0, µ̄] it holds that Q+(µ) is a real number and the function
Q+ : (0, µ̄] 7→ R is continuous and strictly decreasing. Moreover, it holds that

lim
µ↘0

Q+(µ) = +∞,

Q+(1) =


δ

ξ
if ξ <

δ

1 + ρ
,

1 + ρ if ξ ≥ δ

1 + ρ
.

(d) It holds that Q−(µ̄) = Q+(µ̄).

The graphs of the functions Q− and Q+ are shown in figures 1 and 2, respectively.
Figure 1 applies to the case ξ > δ/(1 + ρ) whereas figure 2 illustrates the situation
when ξ < δ/(1 + ρ) holds. The bold curves in these two figures represent the continua
of stationary equilibria that will be discussed in the following theorem.

Theorem 2 (a) If ξ ≥ δ is satisfied then there exists a stationary equilibrium defined
by

k(t) = k∗ =

(
α

δ + ρ

)1/(1−α)

, Q(t) = 1 , q(t) = 0.
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Q- )

Q+ )

+ 1

1

μ1

A

μ

Q

Figure 1: Illustration of lemma 1 in the case where δ/(1 + ρ) < ξ < δ/ρ.

This equilibrium is independent of the parameter µ and it is the only stationary equi-
librium satisfying Q(t) = 1.
(b) If ξ < δ holds, then there exists a stationary equilibrium for every µ ∈ (−∞, 1].
This stationary equilibrium is given by

k(t) = k−(µ) , Q(t) = Q−(µ) , q(t) = q−(µ),

where

k−(µ) =

[
α

δ(1 + ρ) + ρ(1− ξ)Q−(µ)

]1/(1−α)

,

q−(µ) = k−(µ)[δ − ξQ−(µ)].

(c) If ξ < δ/(1+ ρ) holds, then there exist in addition to the stationary equilibria from
part (b) two stationary equilibria for every µ ∈ (1, µ̄]. These stationary equilibria are
given by

k(t) = k−(µ) , Q(t) = Q−(µ) , q(t) = q−(µ),

and
k(t) = k+(µ) , Q(t) = Q+(µ) , q(t) = q+(µ),

respectively, where k−(µ) and q−(µ) have been defined in part (b) above and where

k+(µ) =

[
α

δ(1 + ρ) + ρ(1− ξ)Q+(µ)

]1/(1−α)

,

q+(µ) = k+(µ)[δ − ξQ+(µ)].
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Q

Figure 2: Illustration of lemma 1 in the case where ξ < δ/(1 + ρ).

For µ ∈ (1, µ̄) it holds that the two stationary equilibria differ from each other whereas
for µ = µ̄ they coincide.

Let us pause for a moment to make a number of comments on the above theorem. In
the stationary equilibrium from part (a) of the theorem, the credit constraint is not
binding and Tobin’s Q is equal to 1. Hence, capital inside a firm is as valuable as capital
outside of firms. The more interesting cases are those in which the credit constraint
is binding. These equilibria are described in parts (b) and (c) of the theorem. For
µ = 1 we obtain (not surprisingly) the same stationary equilibria that have already
been identified by Miao and Wang [8]. Whenever ξ < δ holds, there exists a stationary
Miao-Wang equilibrium with Q(t) = δ/ξ. This equilibrium has the label A in figures 1
and 2. If the credit constraint is so tight that ξ < δ/(1 + ρ) is satisfied, then a second
stationary Miao-Wang equilibrium occurs, in which Q(t) = 1 + ρ holds and which
has the label B in figure 2. Theorem 2 demonstrates that there exist infinitely many
other stationary equilibria as well, albeit relaxed Miao-Wang equilibria. As a matter
of fact, there exist stationary relaxed Miao-Wang equilibria for all µ ∈ (−∞, 1] if
δ/(1 + ρ) ≤ ξ < δ holds, and for all µ ∈ (−∞, µ̄] in the case where ξ < δ/(1 + ρ) is
satisfied. In figures 1 and 2 the Q-values corresponding to these stationary equilibria
are indicated by the bold curves.

Next we add a few observations on the possible stationary equilibrium values of the
key variables, whereby we restrict the discussion to those equilibria with Q(t) > 1.
We see from lemma 1 that Tobin’s marginal Q can take any value between 1 and δ/ξ.
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Correspondingly, the stationary equilibrium capital stocks can take any value between[
α

δ(1 + ρ) + ρ(1− ξ)

]1/(1−α)

and
[

αξ

δ(ρ+ ξ)

]1/(1−α)

.

As in Miao and Wang [8] it holds that higher values of Q(t) go along with lower
values of the capital stock. It is moreover straightforward to see that consumption
in the stationary equilibrium is also a decreasing function of Q(t). Hence, we obtain
the interesting result that both consumption and the capital stock in a stationary
equilibrium can be increased by making the parameter µ in the constraint function Iµ

smaller. More specifically, very negative values of µ generate consumption and capital
values close to their respective suprema. This is surprising, because a very negative
value of µ means that the credit constraint provides strong disincentives to capital
accumulation.

Finally, we consider the stationary equilibrium values of q(t). Since q(t) = k(t)[δ −
ξQ(t)] holds for all stationary equilibria with Q(t) > 1 and since both k(t) and δ−ξQ(t)

are positive and decreasing functions of Q(t), it follows that q(t) is also a decreasing
function of Q(t). The minimal value of q(t) is zero and is attained when µ = 1 and
Q(t) = Q−(1) or Q(t) = Q+(1) depending on whether ξ ≥ δ/(1 + ρ) or ξ < δ/(1 + ρ)

is satisfied. In all other cases it holds that q(t) > 0. Adopting the interpretation of
Miao and Wang [8], we therefore see that all but one of the infinitely many stationary
equilibria described in parts (b) and (c) of theorem 2 feature stock price bubbles. From
the stated monotonicity properties it follows also that higher values of the bubble
component q(t) go along with higher values of capital and consumption. This shows
that the bubbles are productive ones.

We close the present section by analyzing the dynamic stability of the stationary equi-
libria listed in theorem 2. Since the dynamical system (23)-(26) has one predetermined
variable (k(t)) and two jump variables (Q(t) and q(t)), a stationary equilibrium is
locally asymptotically stable and determinate if the Jacobian matrix has exactly one
stable eigenvalue and it is locally asymptotically stable and indeterminate if it has
more than one stable eigenvalue. Miao and Wang [8] and Sorger [10] have proved that
(k−(1), Q−(1), q−(1)) is locally asymptotically stable and determinate (one stable eigen-
value) whereas (k+(1), Q+(1), q+(1)) is locally asymptotically stable and indeterminate
(two stable eigenvalues). These facts give rise to the following conjecture:

Conjecture 1 (a) Whenever it exists, the stationary equilibrium (k−(µ), Q−(µ), q−(µ))

is locally asymptotically stable and determinate.
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(b) Whenever it exists, the stationary equilibrium (k+(µ), Q+(µ), q+(µ)) is locally
asymptotically stable and indeterminate.

Unfortunately, we have not been able to find a complete proof of this conjecture.
However, the conjecture can be verified analytically in certain special cases and there
is numerical confirmation for many other cases. If Q(t) > 1 holds, which is the case in
all the stationary equilibria mentioned in parts (b)-(c) of theorem 2, then the Jacobian
matrix is given by

M(µ) =

 ξQ− δ ξk 1

α(1− α)kα−2 δ + ρ+ µξ(1− 2Q) 0

−(1− µ)ξQ(Q− 1) (1− µ)ξk(1− 2Q)− q 1 + ρ−Q

 , (29)

where we have omitted the time variable from k(t), Q(t), and q(t) for simplicity of
presentation. Using the facts that

kα−2 =
δ(1 + ρ) + ρ(1− ξ)Q

αk

and
q = k(δ − ξQ)

hold in all stationary equilibria from theorem 2(b-c) one can rewrite the Jacobian
matrix as

M(µ) =


ξQ− δ ξk 1

(1− α)[δ(1 + ρ) + ρ(1− ξ)Q]

k
δ + ρ+ µξ(1− 2Q) 0

−(1− µ)ξQ(Q− 1) k[(1− µ)ξ(1− 2Q)− δ + ξQ] 1 + ρ−Q

 .

Now consider for example the open-loop case µ = 0 and Q = Q−(0) = δ(1 + ρ)/(δ +

ρξ). Substituting the value of Q into the expression for M(0) and computing the
characteristic polynomial P(z) we obtain

P(z) = D0 +D1z +D2z
2 − z3,

where

D0 = −(1− α)δ(1 + ρ)(δ + ρ) < 0,

D1 =
(δ + ρ)[δ2 − ρξ(1 + ρ)− δξ(α + αρ− ρ)]

δ + ρξ
,

D2 =
ρξ(1 + 2ρ) + δ[ρ+ ξ(1 + ρ)]

δ + ρξ
> 0.
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Using the results from Strelitz [11] and Weisstein [12] it has been argued in Sorger [10]
that D0 < 0 and D2 > 0 together are sufficient for the matrix M(0) to have exactly
one stable eigenvalue. This confirms conjecture (a) in the case µ = 0.

Next consider the case where µ = µ̄ and Q = Q−(µ̄) = Q+(µ̄) = [δ + (µ̄ + ρ)ξ]/(2µ̄ξ).
Substituting the Q-value into the expression for M(µ̄) we find that the determinant
of M(µ̄) is zero, which supports both conjectures, as it shows that µ̄ is a bifurcation
point.

As has already been mentioned, the case µ = 1 has been dealt with in Miao and
Wang [8] and Sorger [10].

Finally, we have numerically checked the above conjecture for many parameter values
and found it always to be confirmed.

4 Markov-perfection and recursive equilibrium

In all of the infinitely many relaxed Miao-Wang equilibria identified in the previous
section (including the Miao-Wang equilibria corresponding to µ = 1) the constraint
function I depends on the individual capital stock of the firm, k(t), and on the time
variable t. In the language of dynamic game theory, this is called a closed-loop repre-
sentation. Equilibria of this form fail to be Markov-perfect: if a shock at some time
τ changes the aggregate state of the economy (i.e., the aggregate capital stock), the
constraint i(t) ≤ I(k(t), t) for t > τ does no longer serve its intended purpose, namely
to limit the firm’s investment by the market value of a hypothetical firm owning the
fraction ξ of the borrower’s capital. To explain this formally, we have to distinguish
between the individual capital stock of the representative firm and the aggregate cap-
ital stock. We will continue to denote the time path of the individual capital stock by
k : T 7→ R and a particular value of it by κ. As for the aggregate capital stock we
will use the notations K : T 7→ R and K, respectively. For simplicity, we present the
argument only for Miao-Wang equilibria (i.e., for µ = 1).

The constraint function I : K×T 7→ R in the previous section was defined by I(κ, t) =

ξQ(t)κ+ q(t), where the triple (K,Q, q) is defined by

K̇(t) ≤ I(K(t), t)− δK(t),

[Q(t)− 1][I(K(t), t)− δK(t)− K̇(t)] = 0,

Q̇(t) = (δ + ρ)Q(t)− ξQ(t)[Q(t)− 1]− αK(t)α−1,
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q̇(t) = ρq(t)− [Q(t)− 1]q(t),

K(0) = k̄,

lim
t→+∞

e−ρt[Q(t)K(t) + q(t)] = 0.

Now suppose that a shock at time τ changes the aggregate capital stock from K(τ) to
K(τ)+∆. If the constraint function I is maintained, the market value as of time t > τ

of a firm with κ units of capital would be Q̃(t)κ + q̃(t), where the triple (K̃, Q̃, q̃) is
defined by

˙̃K(t) ≤ I(K̃(t), t)− δK̃(t),

[Q̃(t)− 1][I(K̃(t), t)− δK̃(t)− ˙̃K(t)] = 0,
˙̃Q(t) = (δ + ρ)Q̃(t)− ξQ̃(t)[Q̃(t)− 1]− αK̃(t)α−1,

˙̃q(t) = ρq̃(t)− [Q̃(t)− 1]q̃(t),

K̃(τ) = K(τ) + ∆,

lim
t→+∞

e−ρt[Q̃(t)K̃(t) + q̃(t)] = 0.

It is quite obvious that, whenever ∆ is different from 0, the conditions Q(t) ̸= Q̃(t)

and q(t) ̸= q̃(t) will generically be true for t > τ . Consequently, it will be the case that

I(k(t), t) = ξQ(t)k(t) + q(t) ̸= ξQ̃(t)k(t) + q̃(t) = V (ξk(t), t).

In words, the upper bound on investment at time t for a firm that owns at that time
κ = k(t) units of capital does not coincide with the value of a firm owning ξk(t) units
of capital. The reason for this result is quite obvious. Since the constraint function
depends on time but not on the aggregate state of the economy, an aggregate shock is
not reflected by a corresponding change of the constraint function. In order to obtain a
Markov-perfect equilibrium, we therefore have to replace the dependence of I on time
t by a dependence on the aggregate state K(t). This is the purpose of the present
section.

We have to develop a recursive equilibrium definition solely in terms of the (individual
and aggregate) states of the model. In particular, the credit constraint for the firms
should take the form

i(t) ≤ I(k(t), K(t)),

where k(t) and K(t) denote the individual and aggregate capital stock at time t, re-
spectively, and where I : K2 7→ R is the constraint function.7

7We continue to use the same symbols I, V , Q, and q to denote the constraint function, the value
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We maintain the assumptions of linear utility (risk neutrality) and a Cobb-Douglas
technology. The wage rate as a function of the aggregate capital stock K is given by
(1 − α)Kα and the operating profit (revenue net of the wage cost) for a firm with κ

units capital amounts to αKα−1κ. Noting that the real interest rate continues to be
equal to ρ at all times, the Hamilton-Jacobi-Bellman equation (HJB equation) for the
representative firm’s optimization problem can be written as

ρV (κ,K) (30)

= max{αKα−1κ− ι+ V1(κ,K)(ι− δκ) + V2(κ,K)[H(K)− δK] | 0 ≤ ι ≤ I(κ,K)},

where V : K2 7→ R is the value function of the representative firm and where H : K 7→
R is a function that expresses aggregate investment as a function of the aggregate
capital stock.

Definition 4 A recursive equilibrium is a triple (V, h,H) of real-valued functions,
where V and h are defined on K2 and H is defined on K such that the following con-
ditions hold.
(a) The HJB equation (30) is satisfied and the maximum on the right-hand side of this
equation is attained at ι = h(κ,K).
(b) The equilibrium conditions h(K,K) = H(K) and I(κ,K) = V (ξκ,K) hold for all
(κ,K) ∈ K2.
(c) The aggregate state dynamics K̇(t) = H(K(t))− δK(t) has a globally asymptoti-
cally stable fixed point in K.

Condition (a) of the above definition essentially says that the optimal investment rate
of a firm with κ units of capital equals h(κ,K) when the aggregate stock of capital
equals K. Condition (b) requires that the aggregate investment rate H(K) is the
integral of the individual investment rates h(κ,K) over all (identical) firms and that
the maximally allowed investment rate I(κ,K) equals the value of a firm with ξκ units
of capital. Finally, condition (c) is added in order to ensure that the transversality
conditions hold.

It will be convenient to define

KA =

[
αξ

δ(ρ+ ξ)

]1/(1−α)

. (31)

function, Tobin’s Q, and the bubble component, respectively. The reader should be aware of the fact
that these functions are different from those denoted by the same symbols in the previous sections.
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Note that

KA =


k−(1) if ξ ≥ δ

1 + ρ
,

k+(1) if ξ <
δ

1 + ρ

holds, where k−(µ) and k+(µ) have been defined in theorem 2. In other words, KA

is the individual or aggregate capital stock in the stationary Miao-Wang equilibrium
corresponding to point A in figures 1 and 2.

As in the previous section we look for equilibria with a linear value function of the
form

V (κ,K) = Q(K)κ+ q(K), (32)

where the functions Q : K 7→ R and q : K 7→ R satisfy

Q(K) ≥ 1 and q(K) ≥ 0 (33)

for all K ∈ K.

Theorem 3 Assume that ξ < δ holds and that K̄, the upper limit of the state space
K, satisfies the condition

KA < K̄ ≤ k∗, (34)

where k∗ has been defined in theorem 2.8 There exists a recursive equilibrium (V, h,H)

satisfying (32)-(33) and q(K) = 0 for all (κ,K) ∈ K2. In this equilibrium, the aggregate
capital stock satisfies limt→+∞ K(t) = KA.

This theorem demonstrates that there exists a recursive equilibrium that generates the
same long-run capital stock as the Miao-Wang equilibrium with µ = 1 and Tobin’s
marginal Q equal to δ/ξ. Not only do the long-run capital stocks coincide between
the two equilibria but also the steady-state prices. This follows from Q(KA) = δ/ξ

and q(K) = 0 for all K ∈ K; see the proof of theorem 3 in the appendix. The crucial
difference between the Miao-Wang equilibrium and the recursive one is that the former
is a set of time paths whereas the recursive equilibrium consists of functions defined
on the state space. In contrast to the (relaxed) Miao-Wang equilibria, the recursive
equilibrium is Markov-perfect by construction.

Assumption (34) about the upper bound of the state space is made in order to facilitate
the proof of the theorem. What is actually required is only KA < K̄. The additional

8Note that KA < k∗ follows from ξ < δ such that the interval (KA, k∗] is non-empty.
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condition K̄ ≤ k∗ ensures that the recursive equilibrium satisfies Q(K) > 1 for all
K ∈ K. If one would drop the assumption K̄ ≤ k∗, one would have to allow the
function Q to take the value 1 for sufficiently large values of K and a rigorous proof of
the theorem would become much more cumbersome. Since the purpose of the above
theorem is primarily to illustrate how Markov-perfect equilibria can be constructed in
the present situation, we have included the simplifying constraint K̄ ≤ k∗.

Since q(K) = 0 holds for all K ∈ K in the recursive equilibrium described in theorem 3,
this equilibrium does not give rise to a stock price bubble. It would be interesting to
see whether there exist also recursive equilibria with bubbles. We believe that this is
true and therefore make another conjecture. To formulate it, we define

KB =

{
α

(1 + ρ)[δ + ρ(1− ξ)]

}1/(1−α)

.

Note that KB = k−(1) holds whenever ξ < δ/(1+ ρ) so that KB is the capital stock in
the stationary Miao-Wang equilibrium corresponding to point B in figure 2.

Conjecture 2 If ξ < δ/(1+ρ) holds, then there exists a recursive equilibrium (V, h,H)

satisfying (32)-(33) for which q(K) > 0 holds for all K sufficiently close to KB. The
aggregate capital stock generated by this equilibrium satisfies limt→+∞ K(t) = KB.

In order to support this conjecture, we follow essentially the same arguments that
have been used to prove theorem 3. In the proof of that theorem we have derived the
equilibrium conditions

Q′(K) =
(δ + ρ)Q(K)− ξQ(K)[Q(K)− 1]− αKα−1

ξQ(K)K + q(K)− δK
, (35)

q′(K) =
[1 + ρ−Q(K)]q(K)

ξQ(K)K + q(K)− δK
. (36)

We define the following two-dimensional manifolds in the three-dimensional (K, Q, q)-
space:

dK = 0 : {(K, Q, q) | ξQK + q − δK = 0},
dQ = 0 : {(K, Q, q) | (δ + ρ)Q− ξQ(Q− 1)− αKα−1 = 0},
dq = 0 : {(K, Q, q) | 1 + ρ−Q = 0}.

The unique intersection of these manifolds occurs at the point Y = (K, Q, q) = (KB, 1+

ρ, [δ−(1+ρ)ξ]KB). Obviously, it holds at this point that Q > 1 and, since ξ < δ/(1+ρ)
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has been assumed, also q > 0. The linearization of (35)-(36) has the Jacobian matrix

M =

 ξQ− δ ξK 1

α(1− α)Kα−2 δ + ρ+ ξ(1− 2Q) 0

0 −q 1 + ρ−Q

 ,

which is structurally the same as M(1) from (29). It is known from Miao and Wang [8]
that M(1) has exactly one stable eigenvalue if (K, Q, q) = (KB, 1 + ρ, [δ − (1 +

ρ)ξ]KB). The stable/unstable manifold theorem implies therefore that there exists a
one-dimensional stable manifold passing through the intersection point Y . This man-
ifold defines real-valued functions Q̂ and q̂ which are defined (at least) locally around
K = KB and which satisfy equations (35)-(36). Using these functions, one can com-
pute the value function V from (32), the function h from h(κ,K) = V (ξκ,K), and
the function H from H(K) = h(K,K). By construction, these functions satisfy the
equilibrium conditions stated in definition 4 locally around KB. What remains to be
shown in order to turn the conjecture into a theorem is that this local solution can be
extended to the entire state space.

5 Concluding remarks

In this paper we have argued that the equilibrium definition in Miao and Wang [8]
involves an implicit assumption about the formulation of the crucial endogenous credit
constraint. By dropping this implicit assumption, the equilibrium set is considerably
enlarged. The underlying reason for such a strong form of equilibrium indeterminacy is
the possibility of representing the constraint in infinitely many different ways as a func-
tion of time and states (closed-loop representations). The phenomenon is known in the
dynamic games literature by the name of informational non-uniqueness; see Başar [3].
It would also arise in other models with endogenous credit constraints provided that
the constraint is formulated in a closed-loop form. As demonstrated in section 4 one
can avoid informational non-uniqueness by applying a recursive equilibrium definition.
This has the additional advantage of leading to Markov-perfect equilibria.
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Appendix

Proof of theorem 1

(a) From definition 3 it follows that (c, s, b, k, ℓ, i, r, w, π, v, V ) must be an Iµ-equili-
brium. Because of (13)-(16) and (20) this implies that ℓ(t) = 1, b(t) = 0, s(t) = 1, and
v(t) = Q(t)k(t) + q(t) hold for all t ∈ T. This, in turn, shows that the representative
household’s wealth at time t is equal to b(t)+v(t)s(t) = Q(t)k(t)+q(t). Since the triple
(c, s, b) solves the representative household’s optimization problem, the Euler equation
and the transversality condition must hold. Due to risk neutrality the Euler equation
boils down to r(t) = ρ for all t ∈ T. Because of this result and the fact that the
household’s wealth at time t is equal to Q(t)k(t) + q(t), the transversality condition is
given by (28).

Let us no turn to the representative firm’s optimization problem. Condition (27) follows
from (9). The Hamilton-Jacobi-Bellman (HJB) equation for the firm’s problem is given
by

ρV (κ, t)− V2(κ, t)

= max
{
καλ1−α − w(t)λ− ι+ V1(κ, t)(ι− δκ) | 0 ≤ λ, 0 ≤ ι ≤ Iµ(κ, t)

}
,

where we have already used r(t) = ρ. Noting that V1(κ, t) = Q(t) ≥ 1 holds according
to (20)-(21), the necessary and sufficient first-order conditions for the maximization on
the right-hand side of this equation are

λ =

[
1− α

w(t)

]1/α
κ (37)

and
Iµ(κ, t) ≥ ι and [Q(t)− 1][Iµ(κ, t)− ι] = 0. (38)

Substituting these relations back into the HJB equation we obtain

ρV (κ, t)− V2(κ, t) = α

[
1− α

w(t)

](1−α)/α

κ+ [Q(t)− 1]Iµ(κ, t)− δQ(t)κ. (39)

For κ = k(t) we obtain from (8), (13), (22), and (37)-(38) that (23)-(24) and

ℓ(t) =

[
1− α

w(t)

]1/α
k(t) = 1
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must hold for all t ∈ T. The latter condition can be solved as w(t) = (1 − α)k(t)α.
Substituting this result and (20)-(22) into (39) we obtain

ρ[Q(t)κ+ q(t)]− Q̇(t)κ− q̇(t)

= αk(t)α−1κ+ [Q(t)− 1] {ξQ(t)[(1− µ)k(t) + µκ] + q(t)} − δQ(t)κ.

Since this equation has to hold for all (κ, t) ∈ K × T it is straightforward to derive
(25)-(26). This completes the proof of part (a).

(b) It has already been mentioned that condition (22) ensures that Iµ(k(t), t) =

V (ξk(t), t) holds for all t ∈ T so that condition (b) of definition 3 is satisfied. It remains
to be shown that there exist functions (c, s, b, ℓ, i, r, w, π, v) such that (c, s, b, k, ℓ, i, r, w, π, v, V )

is an Iµ-equilibrium. To this end we define the functions c, s, b, ℓ, i, r, w, π, and v by

s(t) = 1 , b(t) = 0

r(t) = ρ , w(t) = (1− α)k(t)α ,

ℓ(t) = 1 , i(t) = k̇(t) + δk(t) ,

v(t) = Q(t)k(t) + q(t) , π(t) = ρv(t)− v̇(t) ,

c(t) = π(t) + w(t).

Obviously, (c, s, b) is a feasible solution for the representative household’s optimiza-
tion problem. The Euler equation of this problem holds due to r(t) = ρ, and the
transversality condition due to v(t) = Q(t)k(t) + q(t) and (28). Finally, because of
π(t) = ρv(t) − v̇(t) the two assets have the same return at all times t ∈ T so that
the household is indifferent regarding its portfolio. This shows that condition (a) of
definition 1 holds.

To verify condition (b) of definition 1 one needs to show that the HJB equation holds
and that (λ, ι) = (ℓ(t), i(t)) maximizes its right-hand side. This follows by noting that
the first-order optimality conditions for the representative firm’s optimization problem
presented in the proof of part (a) above are necessary and sufficient.

The market clearing conditions (13)-(16) hold because of (20) and the specification of
the functions (c, s, b, ℓ, i, r, w, π), and condition (17) follows from (20) and (21). This
proves that condition (c) of definition 1 is satisfied as well. The proof of the theorem
is now complete.
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Proof of lemma 1

(a) The inequality µ̄ ≥ 1 is equivalent to

δ(1 + 2ρ)− ξ(1 + ρ) ≥ 2
√

δρ(1 + ρ)(δ − ξ).

Because of δ ≥ ξ, the left-hand side is non-negative. Taking squares on both sides is
therefore an equivalence transformation which leads after simplifications to [δ − (1 +

ρ)ξ]2 ≥ 0. This proves part (a).

(b) The discriminant in the definitions of Q−(µ) and Q+(µ) is non-negative whenever
µ ≤ µ̄. This proves that Q−(µ) is a real number for all µ ≤ µ̄. The continuity of
the function Q− on (−∞, µ̄] is obvious for all µ ̸= 0 and it follows from the rule of de
l’Hopital for µ = 0. Let us denote the square root appearing in the definition of Q−(µ)

by S. Then we can write the derivative of Q−(µ) as

1

2µ2ξ

{
S − δ − (µ+ ρ)ξ + µξ

[
1 +

δ(1 + 2ρ)− (µ+ ρ)ξ

S

]}
.

This expression is positive if and only if

S[S − δ − (µ+ ρ)ξ] + µξ[S + δ(1 + 2ρ)− (µ+ ρ)ξ]

is positive. Using the fact that S2 = [δ + (µ + ρ)ξ]2 − 4δµξ(1 + ρ), this condition can
be written as

S <
(δ + ρξ)2 − µξ[δ(1 + 2ρ)− ρξ]

δ + ρξ
. (40)

Note that the assumption δ ≥ ξ implies that the term δ(1 + 2ρ) − ρξ is positive.
Combining this with µ ≤ µ̄ it follows that the right-hand side of (40) is positive provided
that (δ + ρξ)2 − µ̄ξ[δ(1 + 2ρ)− ρξ] is positive which, according to the definition of µ̄,
is the case if and only if

[δ(1 + 2ρ)− ρξ]2 − (δ + ρξ)2 < 2[δ(1 + 2ρ)− ρξ]
√
δρ(1 + ρ)(δ − ξ)

holds. Straightforward algebraic manipulations show that this inequality is indeed true.
Hence, we can take squares on both sides of (40) without changing the inequality. Doing
that shows that (40) holds and it follows that Q− is strictly increasing on (−∞, µ̄].

As µ approaches −∞ the square root appearing in the definition of Q−(µ) behaves
asymptotically as −µξ. Hence, Q−(µ) behaves asymptotically as (µξ+ µξ)/(2µξ) = 1.
The formula for Q−(1) can easily be verified by substitution of µ = 1 into the definition
of Q−(µ).
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(c) Analogously to the proof of part (b) we see that Q+(µ) is real for all µ ≤ µ̄ except
possibly for µ = 0. It is also clear that the function Q+ is continuous on the interval
(0, µ̄]. The derivative of Q+(µ) is

− 1

2µ2ξ

[
S + δ + (µ+ ρ)ξ − µξ

(
1− δ(1 + 2ρ)− (µ+ ρ)ξ

S

)]
.

Following the same steps as in part (b) we see that this expression is negative if and
only if

S > −(δ + ρξ)2 − µξ[δ(1 + 2ρ)− ρξ]

δ + ρξ
.

We have shown in the proof of part (b) that the right-hand side of this inequality is
negative. Since S is positive, the inequality holds and it follows that the function Q+

is strictly decreasing on (0, µ̄]. It is obvious from its definition that Q+(µ) approaches
+∞ as µ approaches 0 from above and that the value Q+(1) is as stated in the lemma.

(d) This statement follows immediately from the observation that S = 0 holds for
µ = µ̄.

Proof of theorem 2

(a) It is easy to verify that (k(t), Q(t), q(t)) = (k∗, 1, 0) satisfies conditions (21) and
(23)-(26) independently of the value of µ. Moreover, if Q(t) = 1 holds for all t ∈ T,
then it follows from (25) and (26) that q(t) = 0 and k(t) = k∗ must hold. This proves
that there cannot be any other stationary equilibrium satisfying Q(t) = 1.

Now suppose that Q(t) > 1 is satisfied in a stationary equilibrium. Then it follows
from (23)-(24) that (23) holds with equality. Because of stationarity, (23) implies that
q(t) = k(t)[δ − ξQ(t)]. Substituting this result into (26) one obtains k(t) = 0 or

µξQ(t)2 − [δ + (µ+ ρ)ξ]Q(t) + δ(1 + ρ) = 0. (41)

We can rule out k(t) = 0, because this is inconsistent with (25). The above quadratic
equation for Q(t) has the solutions Q−(µ) and Q+(µ). Combining the observations
q(t) = k(t)[δ − ξQ(t)], k(t) > 0, and Q(t) > 1 with the equilibrium condition q(t) ≥ 0

we see that δ > ξ must be satisfied.

(b) Assume that ξ < δ holds. From lemma 1 it follows that 1 < Q−(µ) ≤ δ/ξ holds for
all µ ≤ 1. Furthermore, we have

(δ + ρ)Q−(µ)− µξQ−(µ)[Q−(µ)− 1] = δ(1 + ρ) + ρ(1− ξ)Q−(µ) > 0,
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where we have used the fact that Q−(µ) is a root of equation (41). Hence, by defining
k(t) = k−(µ) and q(t) = q−(µ) for all t ∈ T it follows that conditions (23)-(26) of
theorem 1 are satisfied.

(c) This case can be proved analogously to case (b) by noting that lemma 1 implies
that for all µ ∈ (1, µ̄] we have

1 < Q−(µ) ≤ Q+(µ) <
δ

ξ
,

where the weak inequality holds strictly unless µ = µ̄.

Proof of theorem 3

If (32) and Q(K) > 1 hold for all (κ,K) ∈ K2, then we have V1(κ,K) = Q(K) > 1

and it follows that the maximum on the right-hand side of the HJB equation (30) is
attained at ι = I(κ,K). Hence, we define

h(κ,K) = I(κ,K) = V (ξκ,K) = ξQ(K)κ+ q(K)

and
H(K) = h(K,K) = ξQ(K)K + q(K)

for all (κ,K) ∈ K2. Obviously, condition (b) of definition 4 is satisfied. Moreover, by
substituting these relations and (32) into (30), the HJB equation turns into

ρQ(K)κ+ ρq(K) = αKα−1κ+ [Q(K)− 1][ξQ(K)κ+ q(K)]− δQ(K)κ

+[Q′(K)κ+ q′(K)][ξQ(K)K + q(K)− δK].

This equation holds for all (κ,K) ∈ K2 if and only if Q and q satisfy the system of two
differential equations

Q′(K) =
(δ + ρ)Q(K)− ξQ(K)[Q(K)− 1]− αKα−1

ξQ(K)K + q(K)− δK
, (42)

q′(K) =
[1 + ρ−Q(K)]q(K)

ξQ(K)K + q(K)− δK
. (43)

It is therefore sufficient to prove that there exist functions Q and q satisfying Q(K) > 1

and q(K) ≥ 0 for all K ∈ K such that (42)-(43) hold for all (κ,K) ∈ K2. Defining
q(K) = 0 for all K ∈ K, equation (43) and q(K) ≥ 0 are trivially satisfied and equation
(42) simplifies to

Q′(K) =
(δ + ρ)Q(K)− ξQ(K)[Q(K)− 1]− αKα−1

ξQ(K)K − δK
.
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Figure 3: The phase diagram of equation (44).

It will be convenient to define the function Z : K 7→ R by Z(K) = Q(K)K. With this
definition, the above equation is equivalent to

Z ′(K) =
(ρ+ ξ)Z(K)− αKα

ξZ(K)− δK
(44)

and the condition Q(K) > 1 can be written as

Z(K) > K. (45)

We analyze the system (44)-(45) in a (K, Z)-phase diagram; see figure 3. The isoclines
Z ′(K) = 0 and Z ′(K) = ∞ are given by

Z =
αKα

ρ+ ξ

and
Z =

δK
ξ
,

respectively. The isoclines intersect at the origin and at the point X = (KA, δKA/ξ),
where KA is defined in (31). The Jacobian of (44) is(

−δ ξ

−α2Kα−1 ρ+ ξ

)
,

which can be evaluated at the fixed point X as −δ ξ

−αδ(ρ+ ξ)

ξ
ρ+ ξ

 .
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The determinant of this matrix is −(1 − α)δ(ρ + ξ) < 0, which proves that the fixed
point X is saddle point. The eigenvectors are (1, y+)

⊤ and (1, y−)
⊤, where

y+,− =
2αδ(ρ+ ξ)

ξ
[
δ + ρ+ ξ ±

√
δ2 + 2(1− 2α)δ(ρ+ ξ) + (ρ+ ξ)2

] .
It is straightforward to show that

0 < y+ <
αδ

ξ
<

δ

ξ
< y−.

Since the slope of the isocline Z ′(K) = 0 at the fixed point X is equal to αδ/ξ and that
of the isocline Z ′(K) = ∞ is equal to δ/ξ everywhere, we conclude that there exists
a solution of (44) that passes through X (the saddle path passing through X in the
direction of the eigenvector (1, y+)

⊤) and which is positively sloped at X but flatter
than the isocline Z ′(K) = 0. This solution will be referred to as Ẑ : K 7→ R and its
graph is depicted in figure 3 as a bold curve.9

Since ξ < δ has been assumed it follows that the isocline Z ′(K) = ∞ lies above the line
Z = K. This implies in particular that the fixed point X is located in the interior of
the area defined by (45). Now consider the graph of Ẑ to the right of the fixed point
X. This graph must remain below the isocline Z ′(K) = 0. Since the latter intersects
the line Z = K at K̂ = [α/(ρ+ ξ)]1/(1−α), it follows that the graph of Ẑ must intersect
the line Z = K at some point K+ ∈ (KA, K̂). At that point it must therefore hold that
Ẑ ′(K+) < 1. Since Ẑ is a solution of the differential equation (44) and Ẑ(K+) = K+,
it follows that

Ẑ ′(K+) =
(ρ+ ξ)K+ − α(K+)α

ξK+ − δK+
< 1.

This inequality implies that K+ > k∗. Assumption (34) in the theorem therefore
ensures that Ẑ(K) > 1 holds for all K ∈ K. Defining Q(K) = Ẑ(K)/K completes the
proof of the first statement in the theorem.

Since aggregate investment at time t is equal to H(K(t)) it follows immediately that
the aggregate capital stock evolves according to K̇(t) = H(K(t)) − δK(t). By the
definition of the functions H, Z, and q we have H(K) = ξẐ(K) so that the aggregate
state dynamics is K̇(t) = ξẐ(K(t)) − δK(t). It is easily seen from figure 3 that this
differential equation has a unique fixed point at K = KA and that this fixed point is
globally asymptotically stable. This completes the proof of the theorem.

9The existence of the solution Ẑ locally around K̂ follows from the stable/unstable manifold the-
orem. Its global existence can be inferred from the phase diagram.
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