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Abstract

The theory of laboratory federalism hypothesizes that, in a decentralized multi-

jurisdictional system, policies follow an evolutionary learning process with innova-

tion and imitation. This paper studies the role of public funds sharing in such

a setting. As a guiding framework we consider a model of decentralized, rich-to-

poor redistribution with labor mobility. Uncorrected learning dynamics here lead

to a drastic erosion of the welfare state. Suitably designed public funds sharing

can correct this failure and may even restore efficiency. Surprisingly, the necessary

properties of the sharing scheme for efficiency in the learning model are the same

as those that make decentralized Nash play efficient (and vice versa). Public funds

sharing, thus, is a powerful corrective device in fiscally decentralized settings for a

variety of behavioral modes of government interaction.
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1 Introduction

In federal systems, horizontal public funds sharing, also known as fiscal equalization,

does not only redistribute resources across jurisdictions but also shapes jurisdictions’

incentives in policy decisions. On the negative, such incentive effects show up as moral

hazard since relying on interjurisdictional transfers may crowd out the efforts of local

governments to generate revenues out of their own tax potential (Quian and Roland, 1998).

On the positive, fiscal equalization schemes can serve as Pigouvian mechanisms that

help to correct interjurisdictional externalities and potentially restore efficiency (Boadway

and Flatters, 1982). This property has found great attention and support both in the

theoretical and the empirical literature on fiscal federalism and tax competition (surveyed,

e.g., in Boadway, 2004).1

The present paper addresses the efficiency-enhancing potential of public funds sharing

from a different angle. It offers an evolutionary perspective on fiscal competition, rather

than the best-response, Nash equilibrium approach that predominates in the literature.

Our approach is motivated by the concept of laboratory federalism which views fiscal

descentralization as a Hayekian “discovery procedure” where individual jurisdictions in

a decentralized federal system act as “laboratories” in the search for good policies. The

proponents of laboratory federalism optimistically hypothesize that fiscally decentralized

federal systems converge towards efficiency through a process of innovation and mutual

learning (see, e.g., Hayek, 1978; Oates, 1999; 2008; North, 1981; Kollman et al., 2000;

Vanberg and Kerber, 1994; Vihanto, 1992; Baybeck et al., 2011).

Here, we want to capture the idea of laboratory federalism explicitly in a model with

fiscal descentralization where governments observe the performance of policies adopted

elsewhere. Better-performing policies are adopted and tend to spread out at the expense

1Early contributions study how federal matching grants can address externalities (e.g., Wildasin, 1989;
1991; DePeter and Myers, 1994). Smart (1998) and Pfingsten and Wagener (1997) extend this idea to
general public funds sharing schemes (adding an aggregate budget constraint). Subsequent theoretical
studies such as Janeba and Peters (1999), Koethenbuerger (2002), Bucovetsky and Smart (2006), Hindriks
et al. (2008), Kotsogiannis (2010), Becker and Kriebel (2017), Sas (2017), or Liesegang and Runkel
(2018) discuss and, by and large, corroborate the efficiency-enhancing role of suitably designed public
funds sharing; robust empirical evidence is given by Dahlby and Warren (2003), Buettner (2006), Smart
(2007), or Egger et al. (2010). Insurance (or stabilization) effects provide an additional rationale for funds
sharing; see, e.g., Konrad and Seitz (2003) or Boadway and Hayashi (2004).
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of less successful ones. Policy decisions will therefore be driven by relative performance

comparisons across jurisdictions. This distinguishes the evolutionary perspective from

standard Nash play, which relies on absolute payoff maximization.

Game theoretic results on learning and imitation dynamics (Fudenberg and Imhof, 2006;

Alós-Ferrer and Schlag, 2009) show that an iterated process of imitation and innovation

converges to a so-called evolutionarily stable strategy (ESS) of the underlying stage game.

In our context, a policy is called an ESS if, once it has spread out to the entire federation, it

cannot be outperformed by any other policy. Unfortunately, the efficiency properties of an

ESS are often less positive than hoped for. In fact, standard models of fiscal competition

belong to the large class of games where ESS leads to “perfectly competitive” outcomes

(Alós-Ferrer and Ania, 2005) in the sense that players behave as if they had no impact

on aggregate variables that affect all players simultaneously.2 For fiscal federalism, this

means that governments ignore all effects of their policies on economic variables that

are common to the entire federation, such as price levels, equilibrium rates of return,

or federation-wide public goods. The rationale is that for relative payoff comparisons

among jurisdictions all aggregate effects are irrelevant – precisely because they affect all

jurisdictions in the same way.

In many cases, such “aggregate-taking behavior” leads to extremely sharp races to the

bottom or over the top, amplifying the inefficiencies already prevailing in best-response

play. Consequently, the need for a corrective device in a fiscal federation appears even

more urgent from an evolutionary point of view than under Nash play. What then is

the role of public funds sharing mechanisms in an evolutionary context? Specifically,

given that the funds sharing schemes discussed in the literature are tailored to steer Nash

equilibria towards efficiency, what will be their effect if jurisdictions are instead guided

by relative performance concerns?

Our answer to these questions is at first glance surprising and, by and large, optimistic.

First, public funds sharing mechanisms, as prominently discussed in standard settings of

fiscal competition, can also support efficiency under evolutionary pressures. Second, the

2Observations of highly inefficient ESS have been made in the literature for standard models of capital
tax competition (Sano, 2012; Wagener, 2013; Philipowski, 2015), public infrastructure (Wagener, 2013),
or decentralized redistribution (Ania and Wagener, 2016).
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characteristics that these mechanisms need to possess to restore efficiency coincide with

those for efficient Nash play. Hence, public funds sharing can be a powerful corrective

device in decentralized fiscal interaction for different types of government interaction.

The present paper considers an evolutionary version of the classical model of decentralized

redistribution from rich to poor with free labor mobility due to Wildasin (1991). Local

redistributive policies exert positive interjurisdictional externalities. Consequently, Nash

equilibria of decentralized redistribution involve an under-provision of redistribution—

the standard decline of the welfare state in the presence of labor mobility. Evolutionary

processes based on relative performance fare dramatically worse: redistributive policies

break down completely (Ania and Wagener, 2016). The intuition is simple: whenever a

jurisdiction lowers the subsidy to the poor, this makes the rich of the jurisdiction better

off while worsening the situation of the poor in the entire federation. The latter, aggregate

effect cancels out in relative payoff comparisons. What matters is only the positive income

effect for the rich. Hence, cutting back transfers to the poor improves a jurisdiction’s

relative position, triggering an unstoppable erosion of rich-to-poor redistribution.

Now add a public funds sharing scheme that implements transfers across jurisdictions to

this setting. Such a scheme can be designed so as to restore efficiency under Nash play, by

internalizing externalities of local redistributive policies. Specifically, the sharing scheme

needs to compensate jurisdictions for the external costs and benefits that a unilateral

change in redistributive policies causes in other jurisdictions (for a formal statement see

Proposition 1). Analogously, a public funds sharing scheme under evolutionary play

needs to compensate for the relative disadvantage of subsidizing the poor. More generous

jurisdictions worsen their relative position by reducing the net income of their rich; the

federation-wide increase in the consumption of the poor favors all jurisdictions equally, but

is irrelevant for relative performance. Thus, to support a positive level of redistribution

from rich to poor public funds sharing needs to compensate jurisdictions for the widening

gap in the incomes of their rich (see Proposition 2).

Given that the inefficiency is larger and of a different nature in evolutionary instead of

Nash play, it would be plausible if public funds sharing required stronger and different

mechanisms to restore efficiency in each of the two approaches. Surprisingly, this is not
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the case: the necessary properties are the same for both settings. The intuition is as

follows. Starting in a symmetric Nash equilibrium, consider a unilateral increase in one

jurisdiction’s subsidy. To the detriment of its rich, the more generous jurisdiction receives

a migration inflow and incurs on extra spending on redistribution while the non-deviating

jurisdictions will start saving on the provision of social policy—to the benefit of their rich

(positive externalities). An efficient funds sharing scheme exactly offsets this income gap

that opens between the rich in the deviating and the non-deviating jurisdictions. However,

this gap exactly coincides with the gap that an efficient scheme would also have to close

under relative performance concerns. Hence, to restore efficiency, a public funds sharing

scheme must satisfy the same properties both under Nash and under evolutionary play.

This observation implies that a public funds sharing mechanism that results in the same

policy choices when jurisdictions maximize their absolute payoffs and when they maximize

their relative payoffs must be taking account of all externalities. Consequently, if a policy

in a (corrected) Nash equilibrium is also a (corrected) ESS, then it will indeed be efficient

(Proposition 3). This is not to say that Nash and evolutionary play yield the same

prediction for any given funds sharing scheme. It means that if the scheme is tailored to

make the Nash equilibrium evolutionarily stable, then the equilibrium is efficient.

A positive message from our results for the design of funds sharing is that there is no

necessary contradiction in targeting for efficiency under payoff maximization or in the

presence of relative performance concerns, which underlie yardstick competition, best

practice adoption, imitative learning and other forms of fiscal interaction. In general, it

may be possible to have a single fix for all of them. Mutatis mutandis, these observations

apply to all symmetric frameworks of fiscal interaction with a single policy variable and

cross-border externalities due to mobility, such as tax and expenditure competition à

la Zodrow and Mieszkowski (1986), or decentralized redistribution if the rich players or

capital owners (and not the beneficiaries) are mobile (cf. Section 7).

The following important caveat must be added. The results discussed so far refer only

to the necessary marginal conditions. We show that a widely discussed and applied

public funds sharing scheme, the Representative Tax System (RTS), indeed internalizes all

interjurisdictional externalities and satisfies the necessary conditions for efficient policies
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to be sustained both under Nash and evolutionary play. This picture changes, however,

once bigger-than-marginal deviations are considered. Under evolutionary pressures, an

RTS may turn the redistribution game into an unstoppable race over the top, with ever

higher subsidies (see Example 1 in Section 6). In general, an RTS will be associated

with multiple evolutionarily stable solutions, which may or may not contain the efficient

one (see Example 2). Sharper predictions can only be made with an explicit dynamic

analysis—a topic left for future research.

The rest of the paper is organized as follows: In Section 2 we shortly review the model

of decentralized income redistribution with labor mobility due to Wildasin (1991). In

Section 3 public funds sharing is added to this basic model. Sections 4, 5, and 6 contain

the analysis, respectively studying efficient outcomes, Nash, and evolutionary equilibria.

There, we also explore the conditions for efficiency with different public funds sharing

schemes. Section 7 concludes and discusses our findings. Proofs are relegated to the

Appendix.

2 Decentralized redistribution with perfect mobility

We consider an evolutionary version of the classical model of decentralized rich-to-poor

redistribution with free mobility of the poor due to Wildasin (1991).

Basic framework. In an economically integrated area there is a finite number n ≥ 2 of

identical jurisdictions. Each jurisdiction j ∈ {1, . . . , n} is populated by a rich household,

who owns the immobile fixed factors of production, and by a number `j of workers, who are

perfectly mobile across jurisdictions. Their total number in the economy is exogenously

fixed to n · ¯̀.

Each worker inelastically supplies one unit of labor wherever he resides. Production in

each jurisdiction follows a Ricardian technology f(`) with f ′(`) > 0 > f ′′(`) for all ` ≥ 0.

The fixed factors are already embodied in f . To ensure that every jurisdiction is always

populated with some workers we assume that f(0) = 0 and f ′(0) → ∞. Workers in

jurisdiction j are paid their marginal product f ′(`j) plus a subsidy sj ∈ [0, smax] such
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that their net income and consumption equal

cj = f ′(`j) + sj. (1)

Here, smax is an exogenous maximum subsidy level, assumed to be higher than the efficient

level introduced below.

The rich in jurisdiction j consumes the residual income at this location plus the net

payments, Tj ∈ R, that j receives through an interjurisdictional public funds sharing

scheme:

yj = f(`j)− [f ′(`j) + sj] · `j + Tj. (2)

Negative [positive] values of Tj mean that jurisdiction j is a net contributor [beneficiary]

of public funds sharing. We will describe sharing mechanisms in more detail below.

Migration equilibrium. Workers are costlessly mobile and will settle wherever their

consumption is highest. In a migration equilibrium, consumption levels will be equal

across jurisdictions (ci = cj = c). Formally, given subsidies s = (s1, . . . , sn), a migration

equilibrium is a distribution (`1(s), . . . , `n(s)) of workers across jurisdictions with full

employment and consumption equalization:

n∑
i=1

`i(s) = n · ¯̀ (3)

f ′(`i(s)) + si = f ′(`j(s)) + sj =: c(s) for all i, j ∈ {1, . . . , n}. (4)

Obviously, if two jurisdictions pay the same subsidy they attract equally many poor.

Moreover, since all jurisdictions use the same technology, `j only depends on sj and

the collection of subsidies chosen by the jurisdictions s−j = (s1, . . . , sj−1, sj+1, . . . , sn),

independent of their order. I.e., the number of poor located in jurisdiction j can be

expressed as `j(s) = `(sj, s−j), where `(sj, ·) is invariant to permutations of the elements

of s−j.
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Comparative statics. The response of (`1(s), . . . , `n(s)) and c(s) to changes in any of

the subsidies sj can be obtained by totally differentiating (3) and (4) with respect to sj.

Specifically, for i, j = 1, . . . , n and i 6= j, an increase in the subsidy in jurisdiction j leads

to an inflow of workers into j, to an outflow from every i 6= j, and to an economy-wide

increase in workers’ consumption:3

∂c

∂sj
=

1/f ′′(`j)∑n
k=1 1/f ′′(`k)

> 0,

∂`j
∂sj

= − 1

f ′′(`j)
·

(
1− 1/f ′′(`j)∑n

j=k 1/f ′′(`k)

)
> 0,

∂`i
∂sj

=
1

f ′′(`i)
· 1/f ′′(`j)∑n

k=1 1/f ′′(`k)
< 0.

Policy objectives. With respect to political preferences, we follow Wildasin (1991) in

assuming that each jurisdiction cares for its social welfare that depends on consumption

of the rich (yj) and of the poor (c) and can be represented by the function

Uj = U(yj, c) (5)

with yj, c ≥ 0. Since consumption of the poor equalizes across jurisdictions in a migration

equilibrium, we drop the subscript on c. We assume that u is strictly quasi-concave with

strictly positive partial derivatives uy := ∂U/∂y > 0 and uc := ∂U/∂c > 0 everywhere.

3 Public funds sharing

General description. We now add public funds sharing to the economy just described.

A funds sharing schemes redistributes resources across jurisdictions depending on their

subsidies. At subsidies s = (sj, s−j) the funds sharing scheme determines transfer pay-

ments, {Tj(s)}j=1,...,n, which can be positive or negative. We assume that the funds

3 Later on we evaluate effects at symmetric strategy profiles, where s1 = . . . = sn and `j = ¯̀ for all j.
Then the comparative statics simplifies to

∂c

∂sj
=

1

n
,

∂`j
∂sj

= −n− 1

n

1

f ′′
(
¯̀
) , and

∂`i
∂sj

=
1

nf ′′
(
¯̀
) .
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sharing mechanism has basic anonymity and symmetry properties. In particular, it is

represented by a single function

Tj(s) = T (sj, s−j)

that is independent of the names of the jurisdictions and robust to permutations of the

subsidy values in other jurisdictions, s−j. Focusing on purely horizontal funds sharing

without flows of resources to or from other tiers of government in the federation, the

sharing mechanisms runs a balanced budget: for all s,

n∑
j=1

Tj(s) = 0. (6)

Symmetry implies that any two jurisdictions with identical subsidies to the poor, si =

sj = s, face the same payment if s−i is just a permutation of s−j, i.e., if they face the same

collection of subsidies in all other jurisdictions. Moreover, for jurisdictions with identical

subsidies the transfer function rewards or punishes changes in the subsidy identically; i.e,

if si = sj = s and s−i and s−j are permutations of one another, then

∂T (s, s−i)

∂si
=
∂T (s, s−j)

∂sj
and

∂T (s, s−i)

∂sk
=
∂T (s, s−j)

∂sk
for k 6= i, j. (7)

With a balanced budget symmetry also implies Tj = 0 for all j whenever sj = s for all

j. Finally, the total change in the transfer payments across jurisdictions must equal zero

following any change in any subsidy:

n∑
j=1

∂Tj(s)

∂sk
= 0 for all k. (8)

These properties of T appear plausible given that jurisdictions are identical and no addi-

tional funds to support social policy are available in the federation. Our general formula-

tion of public funds sharing is compatible with many different schemes. Two prominent

examples, which will also help to illustrate our results, are the following:
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Subsidy Equalization Schemes (SES). SES aim at equalizing the subsidy levels

across jurisdictions by rewarding above-average subsidy levels and punishing below-average

ones. Formally, an SES is represented by:

Tj(s) = α(sj − s̄(s)) (9)

where j = 1, . . . , n, s̄(s) = 1
n

∑
k sk is the average subsidy level in the economy, and α > 0

is a positive parameter that shapes the responsiveness of the funds sharing scheme with

respect to deviations from the mean.

Representative Tax System (RTS). RTS is a widely studied and promising way

of funds sharing under Nash play (Koethenbuerger, 2002; Bucovetsky and Smart, 2006;

Kotsogiannis, 2010; Liesegang and Runkel, 2018; Sas, 2017).4 Generally, an RTS aims at

equalizing tax bases. In the present framework of income redistribution, it amounts to

equalizing the volume of redistribution. Formally, an RTS can be represented by:

Tj(s) = S̄(s) · (`j(s)− ¯̀) (10)

for j = 1, . . . , n, where

S̄(s) =

∑
k sk`k(s)∑
k `k(s)

=
1

n¯̀ ·
n∑

k=1

sk`k(s) (11)

is a weighted average of current subsidies with weights equal the number of beneficiaries

in each location. This average S̄ can be interpreted as a representative subsidy level, the

one that would yield the same volume of redistribution when applied to all poor in the

federation. The value of S̄ is endogenous to the policies chosen. To illustrate, consider

a symmetric situation with identical subsidies and the same number of poor everywhere.

If one jurisdiction lowers its subsidy it would make a fiscal gain (lower sj and lower `j).

The RTS fully redistributes this gain to all other jurisdictions. Hence, the net effect of

cutting back subsidies is zero, leaving no incentive for individual jurisdictions to do so.

4The idea of RTS and its equalization approach is part of the funds sharing schemes among Canadian
provinces (Boadway, 2004) or German local municipalities (Buettner, 2006; Egger et al., 2010).
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4 Efficient outcomes

An efficient allocation {(y∗j , `∗j , c∗)}j=1,...,n distributes labor units and consumption levels

across jurisdictions so as to maximize total welfare in the federal system. As shown in Ap-

pendix A.1, it is characterized by production efficiency and a federation-wide Samuelson

condition for c (the equalized consumption level of the poor has the characteristics of a

public good to the entire federation). Production efficiency requires that labor yields the

same marginal product everywhere. Since all jurisdictions use the same technology, this

holds when `j = ¯̀ for all j. A symmetric efficient allocation additionally assigns the same

consumption levels (y∗, c∗) in all jurisdictions, satisfying y∗ = f(¯̀) − c∗ · ¯̀ by feasibility

and the Samuelson condition

uc(y
∗, c∗)

uy(y∗, c∗)
= ¯̀, (12)

that equates the (symmetric) marginal rate of substitution between the public good c and

the private good y to the federation-wide costs of providing one additional unit of c.

The symmetric efficient allocation does not involve any transfers between jurisdictions.

It can be decentralized by having every jurisdiction set its subsidy to s∗ = c∗− f ′(¯̀). We

henceforth call s∗ the efficient subsidy level and denote the symmetric profile where all

jurisdictions choose this subsidy level by s∗.

5 Nash equilibrium with funds sharing

In a migration equilibrium with subsidies s, the payoff to jurisdiction j is given by

Uj(s) = U (f(`j(s))− [f ′(`j(s)) + sj]`j(s) + Tj(s), c(s)) . (13)

where f ′(`j(s)) + sj = c(s) for all j. Payoffs are symmetric since all jurisdictions have

the same utility and production functions and migration flows, public funds sharing and

social welfare of any jurisdiction are invariant to permutations of the subsidies chosen in

other jurisdictions.
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A vector of subsidies sN = (sN1 , . . . , s
N
n ) is a Nash equilibrium of the decentralized redis-

tribution game if

Uj(s
N
j , s

N
−j) ≥ Uj(sj, s

N
−j)

for all sj ∈ S and all j. At a Nash equilibrium, each jurisdiction maximizes its own

payoffs (including payments out of public funds sharing), taking the subsidies elsewhere

as given. In Appendix A.2 we show that an interior symmetric Nash equilibrium satisfies

the following condition for all j:

uc(y
N , cN)

uy(yN , cN)
= ¯̀+

1

∂c/∂sj

(
sN · ∂`j(s

N)

∂sj
− ∂Tj(s

N)

∂sj

)
. (14)

In the absence of public funds sharing, when Tj(s) = ∂Tj(s)/∂sj = 0 for all s, condition

(14) involves uc/uy > ¯̀. Compared with the efficiency condition (12), this implies an

inefficiently low equilibrium value of cN . This is the classical underprovision result by

Wildasin (1991).

In the presence of public funds sharing, conditions (14) and (12) coincide if and only if

∂Tj(s
∗)

∂sj
= s∗ · ∂`j(s

∗)

∂sj
. (15)

The next proposition follows.

Proposition 1. (i) Without public funds sharing, a symmetric Nash equilibrium, sN =

(sN , . . . , sN), involves inefficiently low subsidies, sN < s∗, resulting in an ineffi-

ciently low consumption level for the poor, cN < c∗.

(ii) A public funds sharing scheme that supports the efficient subsidy s∗ as a symmetric

Nash equilibrium needs to satisfy condition (15) for all j.

Condition (15) requires that equalization payments be aligned with the migration reac-

tions to unilateral deviations. It asks each jurisdiction to pay an amount equal to the

fiscal gain (i.e., saved payouts to the poor) from setting a subsidy below the efficient level.

Appendix A.2 shows that a public funds sharing scheme satisfying (15) indeed internalizes
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all interjurisdictional externalities in the symmetric, efficient Nash equilibrium; i.e.,

∑
k 6=j

∂Uk(sN)

∂sj
= 0 (16)

for sN = s∗ and all j (see also Smart, 1998; Bucovetsky and Smart, 2006). In particular,

this implies that

∂(yk − yj)
∂sj

= 0 (17)

must hold for any two j, k with j 6= k (cf. equation (A.7)). Hence, equalization payments

for an efficient funds sharing scheme must exactly offset the income differential between

jurisdictions that result from unilateral deviations from the efficient Nash equilibrium.

This observation plays an important role later on when we compare Nash equilibrium and

ESS.

We now apply Proposition 1 to the specific funds sharing schemes introduced in Section 3.

Details are provided in Appendix A.4.

Corollary 1. The SES defined by equation (9) supports s∗ as a Nash equilibrium only if

α = −s∗/f ′′(¯̀). The RTS defined by equations (10) and (11) always satisfies the necessary

conditions to support s∗ as a Nash equilibrium.

While an SES can only support efficiency for a suitably chosen parameter α, the second

item of Corollary 1 confirms the efficiency-promoting features of an RTS as obtained,

for example, by Koethenbuerger (2002), Bucovetsky and Smart (2006) and Kotsogiannis

(2010) for tax competition models. The advantage of RTS over SES is that it does not

require knowledge of the efficient subsidy or the production technology for its implemen-

tation. A RTS just lets s∗ emerge as a decentralized equilibrium – but no other subsidy

level. By contrast, by suitably choosing α, an SES can support any desired subsidy rate

(and not just the efficient one) as a Nash equilibrium.
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6 Evolutionary stability

Notation. Evolutionary analysis starts from symmetric situations where some strat-

egy s has spread out to the entire population of players and then considers deviations of

the form

s = (
m

r, . . . , r,
n−m

s, . . . , s),

where a number m of players (also called mutants) simultaneously deviate to some other

strategy r while the remaining n − m players stick to the initial s. The analysis then

compares the payoffs of a mutant and a non-mutant. Since the game we are discussing is

symmetric, it is not necessary for the analysis to keep track of the order in which strategies

are chosen. Moreover, only one alternative strategy is considered at a time. Thus, for

notational convenience, we define the functions `m(r, s) and `n−m(r, s) as the number of

workers located in the m jurisdictions choosing r and in the n−m jurisdictions choosing

s, respectively. We also use this kind of notation for the funds sharing payments, Tm(r, s)

and T n−m(r, s), as well as for the residual income levels of the rich, ym(r, s) and yn−m(r, s).

Denote by

c(r, s) = f ′ (`m(r, s)) + r = f ′
(
`n−m(r, s)

)
+ s

the resulting consumption level of the poor. The payoff difference between deviators and

non-deviators is then given by

ϕ(r, s) := U (ym(r, s), c(r, s))− U
(
yn−m(r, s), c(r, s)

)
. (18)

Roughly speaking, a strategy s is m-stable if for any group of m players that simultane-

ously deviate to any other strategy r 6= s the payoffs for these mutants falls short of the

non-mutants’ payoffs. If s resists deviations to any r for any number m = 1, 2, . . . , n− 1

of mutants, then s is called globally stable. Global stability is a very stark property,

implying that no alternative strategy can destabilize the status quo, no matter how large

the group of deviating players is.
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Definition of ESS. In this paper, we only consider single deviations, restricting our-

selves to m = 1. Robustness to single deviations is called evolutionary stability. In

the context of our model, a subsidy sE is called a finite-population evolutionarily stable

strategy (ESS) if

ϕ(s, sE) ≤ 0 for all s ∈ [0, smax] and m = 1. (19)

In a situation where all jurisdictions set subsidy sE, a unilateral deviation to some ar-

bitrary s earns lower payoffs than sE after deviation (Schaffer, 1988). Formally, this is

equivalent to sE maximizing the payoff difference, given that all other jurisdictions stick

with sE; i.e., sE = arg maxs ϕ(s, sE) for m = 1.

With a finite number of players, the concepts of ESS and of Nash equilibrium are not

related in general. On the one hand, it may be possible to improve payoffs when deviating

from an ESS, but in that case the payoffs of non-deviators would improve even more. On

the other hand, a strategy played in a symmetric Nash equilibrium is not necessarily an

ESS. Deviating lowers the deviator’s payoff by definition, but it may reduce the payoffs

of the non-deviators even more, resulting in a relative advantage for the deviator.5

Characterization of ESS. Small unilateral deviations change relative payoffs at a

symmetric profile as follows (see Appendix A.3):

∂ϕ(r, s)

∂r

∣∣∣∣
r=s

= uy(y, c) ·
(
∂ym(s, s)

∂r
− ∂yn−m(s, s)

∂r

)
. (20)

Equation (20) makes the simple but crucial statement that relative payoffs change in the

same direction as differences in the incomes of the rich: starting at a symmetric profile,

a small unilateral change in the subsidy changes relative payoffs in favor of jurisdictions

where the residual income of the rich is higher after deviation.

5The concept of finite-population ESS is in the same spirit but behaves differently from the classical
concept for a continuum population (Maynard Smith and Price, 1973). The latter is actually a refinement
of Nash equilibrium (see, e.g., Vega-Redondo, 1996, Chapter 2).
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In Appendix A.3 we show that (20) is equal to

∂ϕ(r, s)

∂r

∣∣∣∣
r=s

= uy(y, c) ·
n

n− 1
·
(
−s∂`

m

∂r
+
∂Tm

∂r

)
. (21)

To understand (21) consider a small subsidy increase; recall that this attracts more poor

to the deviating jurisdiction. After deviation, the rich in the more generous jurisdiction

have relatively higher expenses of redistribution policy by an amount −s · n
n−1
· ∂`m

∂r
) but

they may also get relatively larger payments out of funds sharing amounting to n
n−1
· ∂Tm

∂r
.6

The rich in the deviating jurisdiction end up with an income [dis-]advantage over those in

non-deviating jurisdictions if the funds sharing scheme more [less] than fully compensates

them for the increase in the costs of subsidizing the poor. The next proposition follows.

Proposition 2. (i) In the absence of public funds sharing, the unique ESS in the de-

centralized redistribution game is sE = 0.

(ii) To sustain some positive subsidy level s > 0 as an ESS, the public funds sharing

mechanism needs to satisfy:

∂Tj(s)

∂sj
= s · ∂`j(s)

∂sj
, (22)

where s = (s, . . . , s).

Item (i) of Proposition 2 directly follows from the fact that, in the absence of public funds

sharing (i.e., if Tj(s) = ∂Tj(s)/∂sj = 0 for all s), expression (21) is strictly negative for

s > 0 (Ania and Wagener, 2016). Item (i) predicts a long-run breakdown of redistribution

in the absence of public funds sharing. Jurisdictions that base their policy choices on

relative instead of absolute performance adopt policies that lead to higher incomes for

their rich (the common consumption level c of the poor does not affect jurisdictions’

6Observe that we are indeed measuring relative effects here. For example, starting from a symmetric
situation, a marginal subsidy increase imposes on the rich of the m deviating jurisdictions additional

costs of −s · ∂`
m

∂r , while it saves an amount of s · ∂`
n−m

∂r for the rich in any non-mutant jurisdiction. Since,

by symmetry and the constant overall population size, we have (n − 1) · ∂`
n−m

∂r = −∂`
m

∂r , the resulting

relative income gap is −s · n
n−1 ·

∂`m

∂r . A similar argument applies to payments from funds sharing; see
(8).
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relative positions). The income of the rich in j is, however, higher the lower the subsidies

paid to the poor there, which brings in a tendency to cut back on sj over time.

Item (ii) of Proposition 2 states a condition on a funds sharing scheme to sustain a positive

level of redistribution; for this to happen, expression (21) must equal zero. Condition (22)

requires that the funds sharing scheme compensates the rich for the relative disadvantage

that they would suffer when their jurisdiction increased its subsidy to the poor; as ex-

plained, this relative disadvantage comes from the fact that the migration inflow opens a

gap between the incomes of the rich in the mutant and the non-mutant jurisdictions.

ESS and Nash Equilibrium. Ideally, we would target s > 0 in Proposition 2 to be

the efficient level, s∗. Comparing conditions (15) and (22), we observe that the necessary

conditions to sustain s∗ as a Nash equilibrium and as an ESS actually coincide: funds

sharing schemes that restore efficiency have to satisfy the same marginal requirement,

irrespective of whether jurisdictions care for absolute or relative payoffs. Obviously, the

fact that first-order conditions coincide does not mean that the solutions always coincide

and are efficient. In each case, one needs to check second-order conditions and there

may be multiple solutions for any of the two equilibrium concepts. Still, our findings

imply that whenever an ESS happens to be played in a symmetric Nash equilibrium, the

corresponding subsidy must be s∗ and all externalities must have been neutralized by the

funds sharing scheme. The next proposition captures this result formally.

Proposition 3. If, for the decentralized redistribution game with public funds sharing,

subsidy s is both a Nash equilibrium strategy and an ESS, then s = s∗.

At first sight, this result may seem surprising. Technically, it is an instance of a more

general observation made by Hehenkamp et al. (2010, Corollary 2). In any symmetric

game with differentiable payoffs and compact strategy sets, in order for a Nash equilibrium

strategy, sN , to be an ESS we need to have ∂Uk(sN)/∂sj = 0 for all k 6= j, since a Nash

equilibrium satisfies ∂Uj(s
N)/∂sj = 0 for all j. If sN is also an ESS, it must then be

efficient because it satisfies ∂/∂sj
(∑

k Uk(sN)
)

= 0. Since we craft public funds sharing

as a steering device towards efficiency, the marginal properties of Tj(s) at s = s∗ must

coincide for evolutionary and for Nash play.
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To understand the relationship between Nash equilibrium, ESS, and efficiency in our

framework, recall from equation (17) that the sum of all fiscal externalities at a symmetric

Nash equilibrium sN = (sN , . . . , sN) under an arbitrary public funds sharing scheme

is given by (n − 1) · uy(yN , cN) · ∂
∂sj

(
yk(sN)− yj(sN)

)
, where k and j are any pair of

jurisdictions (see also the derivation of (A.7) in Appendix A.2). As equation (20) reveals,

a necessary condition for strategy sN to be an ESS as well is ∂
∂sj

(
yk(sN)− yj(sN)

)
= 0,

where j now corresponds to the deviating mutant jurisdiction (cf. expression (A.12)).

Therefore, when sN is both a Nash equilibrium strategy and an ESS, the sum of all fiscal

externalities following any unilateral deviation is zero and it must be that sN = s∗.

ESS under a Subsidy Equalization Scheme (SES). Appendix A.4 shows that, once

the parameter α is fixed, there is a unique evolutionary equilibrium with an SES. Suitably

chosen, α can support any desired subsidy level (including the efficient one) as an ESS.

Corollary 2. With a SES (9), the unique candidate for an interior ESS is sE = −αf ′′(¯̀).

ESS under a Representative Tax System (RTS). Somewhat surprisingly, an RTS

as defined by (10) and (11) does not always support the efficient outcome as an ESS.

This appears confusing since an RTS formally satisfies the necessary condition (22) for

an efficient ESS at every symmetric profile s = (s, . . . , s). In particular,

∂Tj(s)

∂sj
= (`j(s)− ¯̀) · ∂S̄(s)

∂sj
− S̄(s) · ∂`j(s)

∂sj
= s · ∂`j(s)

∂sj
, (23)

since at a symmetric profile `j = ¯̀ for all j and S = s. While this means all s ∈ [0, smax]

(and in particular s∗) are ESS candidates with an RTS, closer inspection reveals that (23)

is not always sufficient to characterize a global relative payoff maximum and, even when

it is, it does not imply efficiency. The following examples illustrate these points.

Overshooting. Suppose that there are only two jurisdictions (n = 2). In Appendix A.5

we show that the payoff difference ϕ defined in (18) also has a zero second-order derivative

at every symmetric profile. Hence, an interior ESS may not exist with an RTS. The next

example provides a case in point where the maximization of relative payoffs leads to a
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permanent increase in the subsidy levels over time. In this sense, an RTS may be an

over-powered mechanism with the potential to turn the much feared race to the bottom

in rich-to-poor redistribution to an unstoppable race over the top.

Example 1. Consider the production function f(`) = `(1 − `). Assume that political

preferences are of the Cobb-Douglas type, U(y, c) = y · c, and an RTS is in place. For

n = 2, Appendix A.6 shows that ϕ(r, s) = ∆(r, s) · c with

∆(r, s) =
(r − s)3

8
.

We see that ∆ is strictly increasing with r everywhere, except at r = s. Thus, at every

symmetric profile where s is chosen, either jurisdiction can obtain a relative advantage by

increasing its subsidy beyond s. This will only stop at the maximum admissible subsidy

level, smax, which is the ESS.

Multiple ESS. With more than two jurisdictions, the RTS guarantees that the payoff

difference ϕ is locally concave at every symmetric profile (see Appendix A.5). Thus, all

s ∈ [0, smax] (and also s∗) are robust to unilateral local deviations with an RTS. However,

as the example below illustrates, sufficiently low subsidies can be discarded since they are

not robust to larger deviations (still leaving a continuum of ESS). In general, it is unclear

whether the discarded subsidy levels include s∗. Hence, not every time that the RTS has

the potential to steer Nash play towards efficiency it will also do so under evolutionary

play.7

Example 2. Consider the same setting as in Example 1 but suppose now that n = 3. In

Appendix A.6 we show that the symmetric efficient solution can be decentralized with

s∗ = 0. In this case, jurisdictions also implement efficient subsidy and consumption

levels in a decentralized way at a Nash equilibrium and, by Proposition 2(i), as an ESS.

If an RTS is in place, however, the value of equalization payments is given by

Tj(s) =
sj − s̄

2

(
s̄+

3

2
· σ2

s

)
,

7This does not contradict Proposition 3, since the symmetric Nash equilibrium fails to be ESS here.
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Figure 1: Single deviations from (s, s, s) to (r, s, s).

where s̄ is the average and σ2
s the variance of the subsidies chosen at s. This expression

makes clear that the volume of RTS transfers rises with the dispersion of the policies

chosen. This results in a double rewarding of jurisdictions that considerably raise their

subsidy above average. Relative payoffs following a unilateral deviation are given by

ϕ(r, s) = ∆(r, s) · c with

∆(r, s) =
(r − s)2 [2(r − s)− 1]

12
.

Recall that ∆(r, s) is the relative advantage in residual income that any single jurisdiction

can reap by unilaterally deviating from a symmetric (s, s, s) to some (r, s, s). The charac-

teristics of ∆ are summarized in Figure 1. Confirming (23), every symmetric profile with

r = s is a local maximum of ∆. Here the RTS will exactly offset any relative gain or loss

of a small deviation from the symmetric profile, so that after equalization all jurisdictions

are again equally well-off. This suggests that every subsidy level is a potential candidate

ESS. Notice, however, that at r = s+ 1
2

we also have ∆ = 0. It is, thus, possible to have

situations where one jurisdiction pays much higher subsidies and gets fully compensated

through the RTS, again leaving all jurisdictions equally well-off. If this is feasible, mean-

ing that the compensating jurisdictions can afford the corresponding transfer payments

out of their now weakened economic position, the symmetric situation with r = s is not a

global maximum of ∆; as Figure 1 illustrates, any jurisdiction can attain a strict relative

advantage by deviating to r > s+ 1/2, whenever this is feasible. As a matter of fact, the
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RTS overcompensates a jurisdiction that creates this kind of large disparities in subsidy

levels. The analysis in Appendix A.6 shows, however, that this kind of deviations is only

feasible for low values of the subsidy, with s < 1
8
; otherwise the non-deviating jurisdictions

do not generate enough income to pay the corresponding transfers. It follows that the

set of ESS is SESS =
[

1
8
, smax

]
. Notice the efficient subsidy level s∗ = 0 does not belong

to SESS in this example and all ESS are inefficient, indeed involving an over-provision of

decentralized redistribution.

7 Discussion and conclusions

Public funds sharing schemes correctly designed to implement efficient Nash equilibria

may also be used to steer behavior towards efficiency when policy choices are driven by

relative performance comparisons. In a framework of rich-to-poor income redistribution

with perfect mobility of the poor, we have argued that evolutionary play based on relative

payoffs is a strong source of inefficiency, far more dramatic than Nash play. The fact

that the same necessary conditions must hold for funds sharing to restore efficiency in

both cases is quite surprising. It shows that public funds sharing can be a powerful

corrective device with decentralized fiscal interaction and tax competition under a variety

of assumptions on how government play the game.

Dynamics. Although we analyze a one-shot game with relative payoff concerns, the

evolutionary stability of fiscal interactions is conceptually inspired by the dynamic idea of

laboratory federalism; decentralization is suggested to be superior to policy centralization

as it allows for policy experimentation and effective learning of successful policies in

repeated interaction over time. Perturbed imitative learning processes can take different

forms; yet as long as the most successful policies are followed with positive probability

while unsuccessful policies with lower payoffs are discarded, being an ESS is a necessary

requirement for a policy to be immune against rare experiments and to survive in the long

run. However, as our RTS example shows, in general there may be multiple ESS and a

further analysis with multiple deviations would be needed to explore their robustness.

20



Multiple deviations. Our focus on single deviations is for expositional convenience.

Propositions 2 and 3 hold irrespective of the number of jurisdictions who simultaneously

experiment with a new policy.

Efficiency. In our model of decentralized redistribution, the uncorrected ESS is bound

for disaster – and public funds sharing can be a remedy. Other papers, however, show

that evolutionary play and imitative learning do not always preclude efficient play. For

oligopolistic price competition, Alós-Ferrer et al. (2000) show that evolutionary stability

can serve as a selection criterion when there are multiple Nash equilibria. In a context

more closely related to this paper, Ania and Wagener (2014) show that when jurisdictions

in a federal system try to learn about good policies through imitation and innovation, it

will be crucial for the long-run outcome whether the selected policies are sustainable by a

simple majority of states in the federation. If the efficient policy happens to be strongly

robust in this sense, it will survive in the long run; otherwise, it will be abandoned if

enough jurisdictions simultaneously adhere to a more attractive policy experiment. It is

an interesting topic for future research how public funds sharing affects such scenarios,

both with respect to the set of policies that survives and their efficiency properties.

Knowledge. In contrast to best-response play, which requires players to know the exact

mapping from strategies to payoffs, the imitative learning process underlying our analysis

only requires observability of past policies and some summary statistic of success; exact

knowledge of the economic environment is not needed. From the perspective of laboratory

federalism, this makes evolutionary stability a suitable concept to study decentralized

fiscal interaction whenever knowledge about the economy (say, about mobility patterns

or tax bases) is too limited to allow for best-response behavior. Policy mimicking and

occasional innovations turn out to be a viable, though boundedly rational way of policy-

making. Against this backdrop, one might question the usefulness of Proposition 2, which

argues that an efficient outcome can be implemented in a learning context. After all, it

seems to presuppose knowledge of the efficient solution. Moreover, condition (22) uses the

reaction of local labor supply to subsidy changes. This is not as severe as it sounds. First,

the design and implementation of public funds sharing mechanisms does not in general

21



require any structural knowledge of the economy or specific observabilities. Second, as

the SES example shows, any public funds sharing scheme in that class helps to avoid

the dismal uncorrected ESS with a complete breakdown of redistribution. Third, even if

multiplicity may be an issue, an RTS may support efficiency in evolutionary play—and

this is a mechanism that does not presuppose any knowledge of the economic structure. It

therefore seems promising to study when exactly can efficiency be reached in evolutionary

play without additional information built into the public funds sharing mechanism.

Alternative settings. The present paper focuses on decentralized, rich-to-poor redis-

tribution with labor mobility. This framework is practically relevant (think of interna-

tional migration), drastically clear in its theoretical predictions, and well-understood in

terms of public funds sharing. In addition, the framework is generic in a large class of set-

tings with decentralized fiscal interaction as long as the mobile factors respond to policy

changes smoothly. This class encompasses tax competition of various brands, uncoordi-

nated environmental policies, or infrastructural competition. As in the current setting,

Nash equilibria are typically inefficient due to fiscal spillovers, public funds sharing may

remedy this, and evolutionarily stable strategies lead to aggregate-taking behavior and

competitive outcomes (see, e.g., Sano, 2012; Wagener, 2013). Mutatis mutandis, our anal-

ysis applies to all such scenarios: appropriately designed, public funds sharing schemes

can help correct the efficiency failures of evolutionary play.
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Appendix

A.1 Symmetric efficient allocation

An efficient allocation {(y∗j , `∗j , c∗)}j=1,...,n solves the following maximization problem:

max{(yj ,`j ,c)}j
∑n

j=1 λju(yj, c)

s.t.
∑n

j=1 f(`j) =
∑n

j=1 (yj + c · `j)∑n
j=1 `j = n¯̀,

(A.1)

where (λ1, . . . , λn) is a vector of positive weights. Efficient allocations, thus, maximize

total welfare subject to the feasibility constraint (A.1) and the fact that the total number

of poor in the federation is constant and equal to n¯̀. Without consequences, the feasibility

constraint could be augmented by a balanced funds sharing scheme (with
∑

j Tj = 0).

The first-order conditions of this problem imply production efficiency with

f ′(`1) = . . . = f ′(`n) (A.2)

and a Samuelson condition of the form

n∑
j=1

uc(yj, c)

uy(yj, c)
= n¯̀. (A.3)

Since f ′′ < 0 < f ′, condition (A.2) is satisfied if and only if `1 = . . . = `n = ¯̀. Hence, at

an efficient allocation output f(¯̀) must be the same in every jurisdiction. The incomes of

the rich, yj, could nevertheless vary across jurisdictions (if Tj 6= 0). Confining ourselves

to symmetric allocations (where Tj = 0 for all j), feasibility requires yj = y∗ = f(¯̀)−c∗ · ¯̀

for all j. From (A.3) it then follows that (y∗, c∗) must satisfy uc(y∗,c∗)
uy(y∗,c∗)

= ¯̀.
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A.2 Nash equilibrium and efficient funds sharing

An interior Nash equilibrium in pure strategies solves
∂Uj(sN )

∂sj
= 0 for all j = 1, . . . , n.

Differentiating the payoffs (13) of jurisdiction j with respect to sj we obtain

∂Uj

∂sj
= uy(yj, c)

(
−sj

∂`j
∂sj
− `j

∂c

∂sj
+
∂Tj
∂sj

)
+ uc(yj, c) ·

∂c

∂sj
. (A.4)

If a pure-strategy symmetric equilibrium exists with sNj = sN for all j, it will be associated

with `j = ¯̀, Tj = 0, cN = f ′(¯̀) + sN and equal values yj = yN = f(¯̀) − cN · ¯̀ for all j.

Rearranging (A.4) we see that a symmetric Nash equilibrium must satisfy

uc(y
N , cN)

uy(yN , cN)
= ¯̀+

1

∂c/∂sj

(
sN · ∂`j(s

N)

∂sj
− ∂Tj(s

N)

∂sj

)
. (A.5)

Supporting an efficient equilibrium with sN = s∗ therefore requires

∂Tj(s
∗)

∂sj
= s∗ · ∂`j(s

∗)

∂sj
. (A.6)

To check that a funds sharing mechanism satisfying (A.6) internalizes all external effects

in the efficient equilibrium, consider a unilateral deviation of any j, take derivatives in

the payoffs of all other k 6= j with respect to sj using expression (13), and add up all

these derivatives to obtain

∑
k 6=j

∂Uk(sN)

∂sj
=

∑
k 6=j

(
uy(y

N , cN)
∂yk
∂sj

+ uc(y
N , cN)

∂c

∂sj

)
=

∑
k 6=j

uy(y
N , cN) ·

(
∂yk
∂sj
− ∂yj
∂sj

)
= (n− 1) · uy(yN , cN) · ∂(yk − yj)

∂sj
. (A.7)

The second line uses the first-order conditions for jurisdiction j in equilibrium and the

third line uses symmetry. Consider now any symmetric vector s = (s, . . . , s) and let c =

f ′(`) + s be the level of the poor’s consumption resulting in the corresponding migration
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equilibrium. We have that for any s

∂yk(s)

∂sj
− ∂yj(s)

∂sj
=

(
f ′(¯̀)− c

)
·
(
∂`k
∂sj
− ∂`j
∂sj

)
+
∂Tk
∂sj
− ∂Tj
∂sj

= − n

n− 1

(
−s · ∂`j

∂sj
+
∂Tj
∂sj

)
, (A.8)

where the second line in (A.8) follows from the fact that changes in migration flows as

well as in transfers always add up to zero: the total number of workers in the federa-

tion is constant (
∑

k `k = n¯̀) and the public funds sharing scheme is self-financing (see

(8)). These two identities imply that, respectively, ∂`k/∂sj = −(∂`j/∂sj)/(n − 1) and

∂Tk/∂sj = −(∂Tj/∂sj)/(n− 1) for all k 6= j. We see that a public funds sharing scheme

satisfying (A.6) guarantees that (A.8) and, thus, (A.7) equal zero at s = s∗, confirming

that it internalizes all interjurisdictional externalities at the symmetric efficient equilib-

rium.

A.3 Evolutionary stability

We include here the details for the derivation of expressions (20) and (21) in the main

text and obtain the first-order conditions for an interior ESS. At any vector of subsidies

of the form s = (r, s, . . . , s), after a unilateral deviation from s to r, relative payoffs to

the deviator as defined by (18) are given by

ϕ(r, s) := U (ym(r, s), c(r, s))− U
(
yn−m(r, s), c(r, s)

)
, (A.9)

where

ym = f(`m)− c(r, s) · `m + Tm and (A.10)

yn−m = f(`n−m)− c(r, s) · `n−m + T n−m (A.11)

respectively denote the income of the rich in the deviating and in the non-deviating

jurisdictions, while c(r, s) = f ′(`m) + r = f ′(`n−m) + s is the resulting consumption level

of the poor in a migration equilibrium.
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We say that s is an ESS if ϕ(r, s) ≤ 0 for all r; i.e., if r = s maximizes ϕ(·, s). Taking

derivatives in (A.9) with respect to r, we obtain

∂ϕ

∂r
= uy(y

m, c) · ∂y
m

∂r
− uy(yn−m, c) ·

∂yn−m

∂r
+
∂c

∂r
·
[
uc(y

m, c)− uc(yn−m, c)
]
.

For r = s we have `m = `n−m = ¯̀ and Tm = T n−m = 0. Hence, also ym = yn−m = y and

(marginal) utilities are evaluated at the same value for deviating and the non-deviating

jurisdictions. Analogously to (A.8), this implies

∂ϕ

∂r

∣∣∣∣
r=s

= uy(y, c) ·
(
∂ym

∂r
− ∂yn−m

∂r

)
= uy(y, c) ·

((
f ′(¯̀)− c

)
·
(
∂`m

∂r
− ∂`n−m

∂r

)
+
∂Tm

∂r
− ∂T n−m

∂r

)
= uy(y, c) ·

n

n− 1
·
(
−s · ∂`

m

∂r
+
∂Tm

∂r

)
. (A.12)

Here, the second line follows after taking derivatives in expressions (A.10) and (A.11)

with respect to r and evaluating at r = s. The third line follows from (8) and the fact

that
∑

k `k = n¯̀.

It, thus, follows that maximization of ϕ(r, s) with respect to r requires ∂
∂r

(ym − yn−m) = 0,

which is satisfied for any subsidy s > 0 if only if

∂Tm(s, s)

∂r
= s · ∂`

m(s, s)

∂r
.

A.4 Proof of Corollaries 1 and 2

Proof of Corollary 1. For SES, defined as Tj = α · (sj − s̄), we have that

∂Tj(s
∗)

∂sj
= α ·

(
1− 1

n

)
= s∗ · ∂`j(s

∗)

∂sj

if and only if α = − s∗

f ′′(¯̀)
, where we use that

∂`j(s)

∂sj
= − n−1

n·f ′′(¯̀)
at any symmetric vector s

(cf. Footnote 3).

30



Instead, the RTS is defined by Tj = S̄
(
`j − ¯̀

)
with S̄ = 1

n¯̀

∑
k sk`k. Thus,

∂Tj(s
∗)

∂sj
= (`j(s

∗)− ¯̀) · ∂S̄(s∗)

∂sj
+ S̄(s∗) · ∂`j(s

∗)

∂sj
= s∗ · ∂`j(s

∗)

∂sj
, (A.13)

since at any symmetric s = (s, . . . , s) we have `j = ¯̀ and S̄ = s. Condition (15) actually

holds for all s and not just for s∗.

Proof of Corollary 2. It follows from (A.12), the definition of SES, and Footnote 3

that an interior ESS must satisfy

∂ (ym − yn−m)

∂r

∣∣∣∣
r=s

=
n

n− 1

(
−s · ∂`

m

∂r
+
∂Tm

∂r

)
=

s

f ′′(¯̀)
+ α = 0.

For s = 0 this derivative equals α > 0. The only value of the subsidy that solves the

former equation and the only candidate for an ESS is thus s = −α · f ′′(¯̀), which can be

targeted by an appropriate choice of α. This is indeed an ESS if

∂2ϕ

∂r2

∣∣∣∣
r=s

= uy(y, c) ·
∂2 (ym(r, s)− yn−m(r, s))

∂r2

∣∣∣∣
r=s

< 0.

Using ∂c(r, s)/∂r = −1/n for r = s (cf. Footnote 3) and `m + (n− 1)`n−m = n¯̀ we obtain

∂2 (ym − yn−m)

∂r2

∣∣∣∣
r=s

= − n

n− 1
· ∂`

m

∂r
− s · ∂

2(`m − `n−m)

∂r2
+
∂2(Tm − T n−m)

∂r2
. (A.14)

Since an SES is linear, the last bracket in this expression is zero and the expression itself

reduces to

∂2 (ym − yn−m)

∂r2

∣∣∣∣
r=s

= − n

n− 1
·
(
∂`m

∂r
+ s · ∂

2`m

∂r2

)
(A.15)

A sufficient condition for (A.15) to be strictly negative is that `m is a strictly convex

function which holds if f ′′′ > 0.8

8Note that
∂2`m

∂r2

∣∣∣∣
r=s

=
n

n− 1
· f ′′′(¯̀)[
f ′′(¯̀)

]2 · ∂`m∂r
∣∣∣∣
r=s

.
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A.5 ESS with RTS

Expression (23) shows that with an RTS the first-order conditions (22) in Proposition 2(ii)

is satisfied for all s ∈ [0, smax]. Here we want to check the second-order conditions,

requiring that the payoff difference ϕ be locally concave. From the proof of Corollary 2

it suffices to check that expression (A.14) is strictly negative; i.e. that the difference

ym − yn−m is locally concave.

Now note that with an RTS we have

∂2 (Tm − T n−m)

∂r2
= S̄ · ∂

2 (`m − `n−m)

∂r2
+ 2 · ∂S̄

∂r
· ∂(`m − `n−m)

∂r
+ (`m − `n−m) · ∂

2S̄

∂r2
.

Evaluating at any symmetric profile with r = s, so that S̄ = s and `m = `n−m = ¯̀, and

using ∂S̄/∂r = 1/n, this expression reduces to

∂2 (Tm − T n−m)

∂r2
= s · ∂

2 (`m − `n−m)

∂r2
+

2

n− 1
· ∂`

m

∂r

Substituting in (A.14) and rearranging we obtain

∂2 (ym − yn−m)

∂r2

∣∣∣∣
r=s

= −n− 2

n− 1
· ∂`

m

∂r
,

which is zero for n = 2 and strictly negative for all n > 2.

A.6 Examples

Setting. In our examples, we assume that the production function in each jurisdiction

is quadratic, f(`) = `(A− b`), with positive parameters A, b > 0. We normalize the total

number of mobile poor to one: ¯̀= 1/n. To ensure meaningful solutions, we assume that

2b ≤ nA ≤ 3b. We consider political preferences of the Cobb-Douglas type: Uj = yj · c.

The set of admissible subsidies is common to all jurisdictions and given by s ∈ [0, smax].

Migration equilibrium. The net income and consumption of workers in jurisdiction j

is cj = A−2b`j+sj. At subsidies s = (s1, . . . , sn), a migration equilibrium is characterized
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by cj = c, which results in

`j =
1

n
+
sj − s̄

2b
(A.16)

where s̄ =
∑

k sk/n denotes the average subsidy level in the federation. The poor’s

consumption in all jurisdictions is then given by

c = A− 2b/n+ s̄. (A.17)

The consumption of the rich in location j is given by

yj = b

(
1

n
+

1

2b
(sj − s̄)

)(
1

n
− 1

2b
(sj + s̄)

)
+ Tj. (A.18)

While interjurisdictional transfers Tj may be positive or negative, we restrict yj to be non-

negative. I.e., neither must subsidies be too high to be unaffordable nor must outgoing

transfers exceed the value of the net income generated at location j.9

Symmetric efficient solution. Since ¯̀= 1/n in this example, the Samuelson condition

for a symmetric efficient allocation with Cobb-Douglas utility amounts to yj/c = 1/n.

Production efficiency requires that `j = 1/n, so that the output per jurisdiction equals

f(1/n). Using the feasibility constraint, y = f(1/n)− c/n, gives

c∗ =
1

2

(
A− b

n

)
.

This level can be attained in a decentralized way if all jurisdictions set subsidy

s∗ =
3b

2n
− A

2
.

9Even if we are able to define some meaningful upper bound smax, interior solutions for `j ∈ [0, 1] and
yj ≥ 0 may impose additional restrictions on the parameter values. Furthermore, using expression (A.17),
we see that aggregate feasibility requires

∑
j f (`j) − c = 2b

n − s̄ − b
∑
j `

2
j ≥ 0. Adding up the squares

of expression (A.16) and denoting σ2
s the variance of the subsidies chosen at any vector s, we obtain∑

j `
2
j = 1

n +
nσ2

s

4b2 . Substituting this expression in the aggregate feasibility condition above, we see that

feasible subsidy vectors s must satisfying 4bs̄+ nσ2
s ≤ 4b2/n.
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Public funds sharing. We consider an RTS, which for ¯̀ = 1/n is defined through

Tj = S̄(`j − 1/n) with S̄ =
∑

k(sk`k). Using expression (A.16), it is easy to check that

S̄ = s̄+
n

2b
· σ2

s ,

where σ2
s =

∑
k(sk−s)2

n
corresponds to the variance of the subsidies chosen at s = (s1, . . . , sn).

We can see that this results in equalization payments of the form

Tj(s) =
sj − s̄

2b

(
s̄+

n

2b
· σ2

s

)
. (A.19)

Evolutionarily stable strategies. To characterize the ESS, we compute the payoff

differential between jurisdictions j and i, which is Uj − Ui = (yj − yi) · c. As c is a public

good, we can work with the income differential ∆ := yj−yi as an indicator for the relative

payoff advantage to jurisdiction j. In the absence of public funds sharing we have

∆0 = yj − yi =
s2
i − s2

j

4b
,

which obviously decreases with sj, rendering s = 0 the unique ESS irrespective of the

number n of jurisdictions.

With an RTS, the income differential becomes

∆ = ∆0 + Tj − Ti =
s2
i − s2

j

4b
+
(
s̄+

n

2b
· σ2

s

)
·
(
sj − si

2b

)
=

sj − si
2b

·
{(

s̄− si + sj
2

)
+
n

2b
· σ2

s

}
. (A.20)

Example 1: two jurisdictions

Assuming n = 2 and A = b = 1, we have s̄ = (si + sj)/2 and σ2
s = (sj − si)2/4, so that

∆ =
(sj − si)3

8
.

This income differential is strictly increasing with sj everywhere except at sj = si, when

both jurisdictions choose the same subsidy. Every symmetric profile, however, can be
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destabilized if one of the jurisdictions increases its subsidy, provided this is admissible.

Hence, the unique ESS is sE = smax.

Example 2: three jurisdictions

Now suppose that n = 3 and A = b = 1. In this case the efficient subsidy s∗ = 0 is also

played in the unique, symmetric Nash equilibrium and as an uncorrected ESS. Starting

from a symmetric profile (s, s, s) we consider subsidy vectors of the form s = (s1, s2, s3) =

(r, s, s). From (A.20) we obtain the relative payoff difference of the deviating jurisdiction

as

∆(r, s) =
s2 − r2

4
+
r − s

2

{
r + 2s

3
+

(r − s)2

3

}
=

(r − s)2 [2(r − s)− 1]

12
. (A.21)

Note that, for any given s, ∆ = 0 if r = s or if r = r̃ := s + 1
2

and ∆ > 0 if and only if

r > r̃. The first- and second-order partial derivatives of ∆ with respect to the subsidy of

the deviating jurisdiction are as follows:

∂∆

∂r
=

(r − s) [r − s− 1/3]

2
∂2∆

∂r2
=

2(r − s)− 1/3

2
.

Observe that with RTS every symmetric profile with r = s has ∂∆
∂r

= 0 and ∂2∆
∂r2

< 0

and is, thus, a local maximum of ∆ for any s. However, at r = r̃ we also have ∆ = 0.

Thus, r = s is not a global maximum. Using (A.16), (A.18) and (A.19), it can be

checked that, at s = (r̃, s, s), we have `1 = 1
2

and `2 = `3 = 1
4
, while incomes are given by

y1 = y2 = y3 = 1
3

(
1
8
− s
)
, equal for all jurisdictions and positive if and only if s ≤ s := 1

8
.10

Starting at a symmetric profile with s < s, if any jurisdiction deviates to r = r̃ + ε with

ε > 0 sufficiently small, it obtains a strictly positive relative advantage. It follows that

s ∈ [0, s) are not evolutionarily stable. For s = s a deviation to r = s+ 1
2

results in exactly

10It can be easily checked that subsidy vectors of the form (s+ 1/2, s, s) satisfy the aggregate feasibility
condition introduced in Footnote 9 if an only if s ≤ 1/8.
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zero residual income in all jurisdictions after deviation. For s > s it is not possible to

find feasible values of r that exploit the transfer mechanism in this way. All ESS with an

RTS, thus, satisfy sE ≥ s. It follows that the efficient policy s∗ = 0 < s is not an ESS in

this case and laboratory federalism, augmented by an RTS, will systematically result in

overly generous redistribution.
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1 Introduction


In federal systems, horizontal public funds sharing, also known as fiscal equalization,


does not only redistribute resources across jurisdictions but also shapes jurisdictions’


incentives in policy decisions. On the negative, such incentive effects show up as moral


hazard since relying on interjurisdictional transfers may crowd out the efforts of local


governments to generate revenues out of their own tax potential (Quian and Roland, 1998).


On the positive, fiscal equalization schemes can serve as Pigouvian mechanisms that


help to correct interjurisdictional externalities and potentially restore efficiency (Boadway


and Flatters, 1982). This property has found great attention and support both in the


theoretical and the empirical literature on fiscal federalism and tax competition (surveyed,


e.g., in Boadway, 2004).1


The present paper addresses the efficiency-enhancing potential of public funds sharing


from a different angle. It offers an evolutionary perspective on fiscal competition, rather


than the best-response, Nash equilibrium approach that predominates in the literature.


Our approach is motivated by the concept of laboratory federalism which views fiscal


descentralization as a Hayekian “discovery procedure” where individual jurisdictions in


a decentralized federal system act as “laboratories” in the search for good policies. The


proponents of laboratory federalism optimistically hypothesize that fiscally decentralized


federal systems converge towards efficiency through a process of innovation and mutual


learning (see, e.g., Hayek, 1978; Oates, 1999; 2008; North, 1981; Kollman et al., 2000;


Vanberg and Kerber, 1994; Vihanto, 1992; Baybeck et al., 2011).


Here, we want to capture the idea of laboratory federalism explicitly in a model with


fiscal descentralization where governments observe the performance of policies adopted


elsewhere. Better-performing policies are adopted and tend to spread out at the expense


1Early contributions study how federal matching grants can address externalities (e.g., Wildasin, 1989;
1991; DePeter and Myers, 1994). Smart (1998) and Pfingsten and Wagener (1997) extend this idea to
general public funds sharing schemes (adding an aggregate budget constraint). Subsequent theoretical
studies such as Janeba and Peters (1999), Koethenbuerger (2002), Bucovetsky and Smart (2006), Hindriks
et al. (2008), Kotsogiannis (2010), Becker and Kriebel (2017), Sas (2017), or Liesegang and Runkel
(2018) discuss and, by and large, corroborate the efficiency-enhancing role of suitably designed public
funds sharing; robust empirical evidence is given by Dahlby and Warren (2003), Buettner (2006), Smart
(2007), or Egger et al. (2010). Insurance (or stabilization) effects provide an additional rationale for funds
sharing; see, e.g., Konrad and Seitz (2003) or Boadway and Hayashi (2004).
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of less successful ones. Policy decisions will therefore be driven by relative performance


comparisons across jurisdictions. This distinguishes the evolutionary perspective from


standard Nash play, which relies on absolute payoff maximization.


Game theoretic results on learning and imitation dynamics (Fudenberg and Imhof, 2006;


Alós-Ferrer and Schlag, 2009) show that an iterated process of imitation and innovation


converges to a so-called evolutionarily stable strategy (ESS) of the underlying stage game.


In our context, a policy is called an ESS if, once it has spread out to the entire federation, it


cannot be outperformed by any other policy. Unfortunately, the efficiency properties of an


ESS are often less positive than hoped for. In fact, standard models of fiscal competition


belong to the large class of games where ESS leads to “perfectly competitive” outcomes


(Alós-Ferrer and Ania, 2005) in the sense that players behave as if they had no impact


on aggregate variables that affect all players simultaneously.2 For fiscal federalism, this


means that governments ignore all effects of their policies on economic variables that


are common to the entire federation, such as price levels, equilibrium rates of return,


or federation-wide public goods. The rationale is that for relative payoff comparisons


among jurisdictions all aggregate effects are irrelevant – precisely because they affect all


jurisdictions in the same way.


In many cases, such “aggregate-taking behavior” leads to extremely sharp races to the


bottom or over the top, amplifying the inefficiencies already prevailing in best-response


play. Consequently, the need for a corrective device in a fiscal federation appears even


more urgent from an evolutionary point of view than under Nash play. What then is


the role of public funds sharing mechanisms in an evolutionary context? Specifically,


given that the funds sharing schemes discussed in the literature are tailored to steer Nash


equilibria towards efficiency, what will be their effect if jurisdictions are instead guided


by relative performance concerns?


Our answer to these questions is at first glance surprising and, by and large, optimistic.


First, public funds sharing mechanisms, as prominently discussed in standard settings of


fiscal competition, can also support efficiency under evolutionary pressures. Second, the


2Observations of highly inefficient ESS have been made in the literature for standard models of capital
tax competition (Sano, 2012; Wagener, 2013; Philipowski, 2015), public infrastructure (Wagener, 2013),
or decentralized redistribution (Ania and Wagener, 2016).
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characteristics that these mechanisms need to possess to restore efficiency coincide with


those for efficient Nash play. Hence, public funds sharing can be a powerful corrective


device in decentralized fiscal interaction for different types of government interaction.


The present paper considers an evolutionary version of the classical model of decentralized


redistribution from rich to poor with free labor mobility due to Wildasin (1991). Local


redistributive policies exert positive interjurisdictional externalities. Consequently, Nash


equilibria of decentralized redistribution involve an under-provision of redistribution—


the standard decline of the welfare state in the presence of labor mobility. Evolutionary


processes based on relative performance fare dramatically worse: redistributive policies


break down completely (Ania and Wagener, 2016). The intuition is simple: whenever a


jurisdiction lowers the subsidy to the poor, this makes the rich of the jurisdiction better


off while worsening the situation of the poor in the entire federation. The latter, aggregate


effect cancels out in relative payoff comparisons. What matters is only the positive income


effect for the rich. Hence, cutting back transfers to the poor improves a jurisdiction’s


relative position, triggering an unstoppable erosion of rich-to-poor redistribution.


Now add a public funds sharing scheme that implements transfers across jurisdictions to


this setting. Such a scheme can be designed so as to restore efficiency under Nash play, by


internalizing externalities of local redistributive policies. Specifically, the sharing scheme


needs to compensate jurisdictions for the external costs and benefits that a unilateral


change in redistributive policies causes in other jurisdictions (for a formal statement see


Proposition 1). Analogously, a public funds sharing scheme under evolutionary play


needs to compensate for the relative disadvantage of subsidizing the poor. More generous


jurisdictions worsen their relative position by reducing the net income of their rich; the


federation-wide increase in the consumption of the poor favors all jurisdictions equally, but


is irrelevant for relative performance. Thus, to support a positive level of redistribution


from rich to poor public funds sharing needs to compensate jurisdictions for the widening


gap in the incomes of their rich (see Proposition 2).


Given that the inefficiency is larger and of a different nature in evolutionary instead of


Nash play, it would be plausible if public funds sharing required stronger and different


mechanisms to restore efficiency in each of the two approaches. Surprisingly, this is not
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the case: the necessary properties are the same for both settings. The intuition is as


follows. Starting in a symmetric Nash equilibrium, consider a unilateral increase in one


jurisdiction’s subsidy. To the detriment of its rich, the more generous jurisdiction receives


a migration inflow and incurs on extra spending on redistribution while the non-deviating


jurisdictions will start saving on the provision of social policy—to the benefit of their rich


(positive externalities). An efficient funds sharing scheme exactly offsets this income gap


that opens between the rich in the deviating and the non-deviating jurisdictions. However,


this gap exactly coincides with the gap that an efficient scheme would also have to close


under relative performance concerns. Hence, to restore efficiency, a public funds sharing


scheme must satisfy the same properties both under Nash and under evolutionary play.


This observation implies that a public funds sharing mechanism that results in the same


policy choices when jurisdictions maximize their absolute payoffs and when they maximize


their relative payoffs must be taking account of all externalities. Consequently, if a policy


in a (corrected) Nash equilibrium is also a (corrected) ESS, then it will indeed be efficient


(Proposition 3). This is not to say that Nash and evolutionary play yield the same


prediction for any given funds sharing scheme. It means that if the scheme is tailored to


make the Nash equilibrium evolutionarily stable, then the equilibrium is efficient.


A positive message from our results for the design of funds sharing is that there is no


necessary contradiction in targeting for efficiency under payoff maximization or in the


presence of relative performance concerns, which underlie yardstick competition, best


practice adoption, imitative learning and other forms of fiscal interaction. In general, it


may be possible to have a single fix for all of them. Mutatis mutandis, these observations


apply to all symmetric frameworks of fiscal interaction with a single policy variable and


cross-border externalities due to mobility, such as tax and expenditure competition à


la Zodrow and Mieszkowski (1986), or decentralized redistribution if the rich players or


capital owners (and not the beneficiaries) are mobile (cf. Section 7).


The following important caveat must be added. The results discussed so far refer only


to the necessary marginal conditions. We show that a widely discussed and applied


public funds sharing scheme, the Representative Tax System (RTS), indeed internalizes all


interjurisdictional externalities and satisfies the necessary conditions for efficient policies
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to be sustained both under Nash and evolutionary play. This picture changes, however,


once bigger-than-marginal deviations are considered. Under evolutionary pressures, an


RTS may turn the redistribution game into an unstoppable race over the top, with ever


higher subsidies (see Example 1 in Section 6). In general, an RTS will be associated


with multiple evolutionarily stable solutions, which may or may not contain the efficient


one (see Example 2). Sharper predictions can only be made with an explicit dynamic


analysis—a topic left for future research.


The rest of the paper is organized as follows: In Section 2 we shortly review the model


of decentralized income redistribution with labor mobility due to Wildasin (1991). In


Section 3 public funds sharing is added to this basic model. Sections 4, 5, and 6 contain


the analysis, respectively studying efficient outcomes, Nash, and evolutionary equilibria.


There, we also explore the conditions for efficiency with different public funds sharing


schemes. Section 7 concludes and discusses our findings. Proofs are relegated to the


Appendix.


2 Decentralized redistribution with perfect mobility


We consider an evolutionary version of the classical model of decentralized rich-to-poor


redistribution with free mobility of the poor due to Wildasin (1991).


Basic framework. In an economically integrated area there is a finite number n ≥ 2 of


identical jurisdictions. Each jurisdiction j ∈ {1, . . . , n} is populated by a rich household,


who owns the immobile fixed factors of production, and by a number `j of workers, who are


perfectly mobile across jurisdictions. Their total number in the economy is exogenously


fixed to n · ¯̀.


Each worker inelastically supplies one unit of labor wherever he resides. Production in


each jurisdiction follows a Ricardian technology f(`) with f ′(`) > 0 > f ′′(`) for all ` ≥ 0.


The fixed factors are already embodied in f . To ensure that every jurisdiction is always


populated with some workers we assume that f(0) = 0 and f ′(0) → ∞. Workers in


jurisdiction j are paid their marginal product f ′(`j) plus a subsidy sj ∈ [0, smax] such
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that their net income and consumption equal


cj = f ′(`j) + sj. (1)


Here, smax is an exogenous maximum subsidy level, assumed to be higher than the efficient


level introduced below.


The rich in jurisdiction j consumes the residual income at this location plus the net


payments, Tj ∈ R, that j receives through an interjurisdictional public funds sharing


scheme:


yj = f(`j)− [f ′(`j) + sj] · `j + Tj. (2)


Negative [positive] values of Tj mean that jurisdiction j is a net contributor [beneficiary]


of public funds sharing. We will describe sharing mechanisms in more detail below.


Migration equilibrium. Workers are costlessly mobile and will settle wherever their


consumption is highest. In a migration equilibrium, consumption levels will be equal


across jurisdictions (ci = cj = c). Formally, given subsidies s = (s1, . . . , sn), a migration


equilibrium is a distribution (`1(s), . . . , `n(s)) of workers across jurisdictions with full


employment and consumption equalization:


n∑
i=1


`i(s) = n · ¯̀ (3)


f ′(`i(s)) + si = f ′(`j(s)) + sj =: c(s) for all i, j ∈ {1, . . . , n}. (4)


Obviously, if two jurisdictions pay the same subsidy they attract equally many poor.


Moreover, since all jurisdictions use the same technology, `j only depends on sj and


the collection of subsidies chosen by the jurisdictions s−j = (s1, . . . , sj−1, sj+1, . . . , sn),


independent of their order. I.e., the number of poor located in jurisdiction j can be


expressed as `j(s) = `(sj, s−j), where `(sj, ·) is invariant to permutations of the elements


of s−j.
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Comparative statics. The response of (`1(s), . . . , `n(s)) and c(s) to changes in any of


the subsidies sj can be obtained by totally differentiating (3) and (4) with respect to sj.


Specifically, for i, j = 1, . . . , n and i 6= j, an increase in the subsidy in jurisdiction j leads


to an inflow of workers into j, to an outflow from every i 6= j, and to an economy-wide


increase in workers’ consumption:3


∂c


∂sj
=


1/f ′′(`j)∑n
k=1 1/f ′′(`k)


> 0,


∂`j
∂sj


= − 1


f ′′(`j)
·


(
1− 1/f ′′(`j)∑n


j=k 1/f ′′(`k)


)
> 0,


∂`i
∂sj


=
1


f ′′(`i)
· 1/f ′′(`j)∑n


k=1 1/f ′′(`k)
< 0.


Policy objectives. With respect to political preferences, we follow Wildasin (1991) in


assuming that each jurisdiction cares for its social welfare that depends on consumption


of the rich (yj) and of the poor (c) and can be represented by the function


Uj = U(yj, c) (5)


with yj, c ≥ 0. Since consumption of the poor equalizes across jurisdictions in a migration


equilibrium, we drop the subscript on c. We assume that u is strictly quasi-concave with


strictly positive partial derivatives uy := ∂U/∂y > 0 and uc := ∂U/∂c > 0 everywhere.


3 Public funds sharing


General description. We now add public funds sharing to the economy just described.


A funds sharing schemes redistributes resources across jurisdictions depending on their


subsidies. At subsidies s = (sj, s−j) the funds sharing scheme determines transfer pay-


ments, {Tj(s)}j=1,...,n, which can be positive or negative. We assume that the funds


3 Later on we evaluate effects at symmetric strategy profiles, where s1 = . . . = sn and `j = ¯̀ for all j.
Then the comparative statics simplifies to


∂c


∂sj
=


1


n
,


∂`j
∂sj


= −n− 1


n


1


f ′′
(
¯̀
) , and


∂`i
∂sj


=
1


nf ′′
(
¯̀
) .
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sharing mechanism has basic anonymity and symmetry properties. In particular, it is


represented by a single function


Tj(s) = T (sj, s−j)


that is independent of the names of the jurisdictions and robust to permutations of the


subsidy values in other jurisdictions, s−j. Focusing on purely horizontal funds sharing


without flows of resources to or from other tiers of government in the federation, the


sharing mechanisms runs a balanced budget: for all s,


n∑
j=1


Tj(s) = 0. (6)


Symmetry implies that any two jurisdictions with identical subsidies to the poor, si =


sj = s, face the same payment if s−i is just a permutation of s−j, i.e., if they face the same


collection of subsidies in all other jurisdictions. Moreover, for jurisdictions with identical


subsidies the transfer function rewards or punishes changes in the subsidy identically; i.e,


if si = sj = s and s−i and s−j are permutations of one another, then


∂T (s, s−i)


∂si
=
∂T (s, s−j)


∂sj
and


∂T (s, s−i)


∂sk
=
∂T (s, s−j)


∂sk
for k 6= i, j. (7)


With a balanced budget symmetry also implies Tj = 0 for all j whenever sj = s for all


j. Finally, the total change in the transfer payments across jurisdictions must equal zero


following any change in any subsidy:


n∑
j=1


∂Tj(s)


∂sk
= 0 for all k. (8)


These properties of T appear plausible given that jurisdictions are identical and no addi-


tional funds to support social policy are available in the federation. Our general formula-


tion of public funds sharing is compatible with many different schemes. Two prominent


examples, which will also help to illustrate our results, are the following:
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Subsidy Equalization Schemes (SES). SES aim at equalizing the subsidy levels


across jurisdictions by rewarding above-average subsidy levels and punishing below-average


ones. Formally, an SES is represented by:


Tj(s) = α(sj − s̄(s)) (9)


where j = 1, . . . , n, s̄(s) = 1
n


∑
k sk is the average subsidy level in the economy, and α > 0


is a positive parameter that shapes the responsiveness of the funds sharing scheme with


respect to deviations from the mean.


Representative Tax System (RTS). RTS is a widely studied and promising way


of funds sharing under Nash play (Koethenbuerger, 2002; Bucovetsky and Smart, 2006;


Kotsogiannis, 2010; Liesegang and Runkel, 2018; Sas, 2017).4 Generally, an RTS aims at


equalizing tax bases. In the present framework of income redistribution, it amounts to


equalizing the volume of redistribution. Formally, an RTS can be represented by:


Tj(s) = S̄(s) · (`j(s)− ¯̀) (10)


for j = 1, . . . , n, where


S̄(s) =


∑
k sk`k(s)∑
k `k(s)


=
1


n¯̀ ·
n∑


k=1


sk`k(s) (11)


is a weighted average of current subsidies with weights equal the number of beneficiaries


in each location. This average S̄ can be interpreted as a representative subsidy level, the


one that would yield the same volume of redistribution when applied to all poor in the


federation. The value of S̄ is endogenous to the policies chosen. To illustrate, consider


a symmetric situation with identical subsidies and the same number of poor everywhere.


If one jurisdiction lowers its subsidy it would make a fiscal gain (lower sj and lower `j).


The RTS fully redistributes this gain to all other jurisdictions. Hence, the net effect of


cutting back subsidies is zero, leaving no incentive for individual jurisdictions to do so.


4The idea of RTS and its equalization approach is part of the funds sharing schemes among Canadian
provinces (Boadway, 2004) or German local municipalities (Buettner, 2006; Egger et al., 2010).
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4 Efficient outcomes


An efficient allocation {(y∗j , `∗j , c∗)}j=1,...,n distributes labor units and consumption levels


across jurisdictions so as to maximize total welfare in the federal system. As shown in Ap-


pendix A.1, it is characterized by production efficiency and a federation-wide Samuelson


condition for c (the equalized consumption level of the poor has the characteristics of a


public good to the entire federation). Production efficiency requires that labor yields the


same marginal product everywhere. Since all jurisdictions use the same technology, this


holds when `j = ¯̀ for all j. A symmetric efficient allocation additionally assigns the same


consumption levels (y∗, c∗) in all jurisdictions, satisfying y∗ = f(¯̀) − c∗ · ¯̀ by feasibility


and the Samuelson condition


uc(y
∗, c∗)


uy(y∗, c∗)
= ¯̀, (12)


that equates the (symmetric) marginal rate of substitution between the public good c and


the private good y to the federation-wide costs of providing one additional unit of c.


The symmetric efficient allocation does not involve any transfers between jurisdictions.


It can be decentralized by having every jurisdiction set its subsidy to s∗ = c∗− f ′(¯̀). We


henceforth call s∗ the efficient subsidy level and denote the symmetric profile where all


jurisdictions choose this subsidy level by s∗.


5 Nash equilibrium with funds sharing


In a migration equilibrium with subsidies s, the payoff to jurisdiction j is given by


Uj(s) = U (f(`j(s))− [f ′(`j(s)) + sj]`j(s) + Tj(s), c(s)) . (13)


where f ′(`j(s)) + sj = c(s) for all j. Payoffs are symmetric since all jurisdictions have


the same utility and production functions and migration flows, public funds sharing and


social welfare of any jurisdiction are invariant to permutations of the subsidies chosen in


other jurisdictions.
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A vector of subsidies sN = (sN1 , . . . , s
N
n ) is a Nash equilibrium of the decentralized redis-


tribution game if


Uj(s
N
j , s


N
−j) ≥ Uj(sj, s


N
−j)


for all sj ∈ S and all j. At a Nash equilibrium, each jurisdiction maximizes its own


payoffs (including payments out of public funds sharing), taking the subsidies elsewhere


as given. In Appendix A.2 we show that an interior symmetric Nash equilibrium satisfies


the following condition for all j:


uc(y
N , cN)


uy(yN , cN)
= ¯̀+


1


∂c/∂sj


(
sN · ∂`j(s


N)


∂sj
− ∂Tj(s


N)


∂sj


)
. (14)


In the absence of public funds sharing, when Tj(s) = ∂Tj(s)/∂sj = 0 for all s, condition


(14) involves uc/uy > ¯̀. Compared with the efficiency condition (12), this implies an


inefficiently low equilibrium value of cN . This is the classical underprovision result by


Wildasin (1991).


In the presence of public funds sharing, conditions (14) and (12) coincide if and only if


∂Tj(s
∗)


∂sj
= s∗ · ∂`j(s


∗)


∂sj
. (15)


The next proposition follows.


Proposition 1. (i) Without public funds sharing, a symmetric Nash equilibrium, sN =


(sN , . . . , sN), involves inefficiently low subsidies, sN < s∗, resulting in an ineffi-


ciently low consumption level for the poor, cN < c∗.


(ii) A public funds sharing scheme that supports the efficient subsidy s∗ as a symmetric


Nash equilibrium needs to satisfy condition (15) for all j.


Condition (15) requires that equalization payments be aligned with the migration reac-


tions to unilateral deviations. It asks each jurisdiction to pay an amount equal to the


fiscal gain (i.e., saved payouts to the poor) from setting a subsidy below the efficient level.


Appendix A.2 shows that a public funds sharing scheme satisfying (15) indeed internalizes
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all interjurisdictional externalities in the symmetric, efficient Nash equilibrium; i.e.,


∑
k 6=j


∂Uk(sN)


∂sj
= 0 (16)


for sN = s∗ and all j (see also Smart, 1998; Bucovetsky and Smart, 2006). In particular,


this implies that


∂(yk − yj)
∂sj


= 0 (17)


must hold for any two j, k with j 6= k (cf. equation (A.7)). Hence, equalization payments


for an efficient funds sharing scheme must exactly offset the income differential between


jurisdictions that result from unilateral deviations from the efficient Nash equilibrium.


This observation plays an important role later on when we compare Nash equilibrium and


ESS.


We now apply Proposition 1 to the specific funds sharing schemes introduced in Section 3.


Details are provided in Appendix A.4.


Corollary 1. The SES defined by equation (9) supports s∗ as a Nash equilibrium only if


α = −s∗/f ′′(¯̀). The RTS defined by equations (10) and (11) always satisfies the necessary


conditions to support s∗ as a Nash equilibrium.


While an SES can only support efficiency for a suitably chosen parameter α, the second


item of Corollary 1 confirms the efficiency-promoting features of an RTS as obtained,


for example, by Koethenbuerger (2002), Bucovetsky and Smart (2006) and Kotsogiannis


(2010) for tax competition models. The advantage of RTS over SES is that it does not


require knowledge of the efficient subsidy or the production technology for its implemen-


tation. A RTS just lets s∗ emerge as a decentralized equilibrium – but no other subsidy


level. By contrast, by suitably choosing α, an SES can support any desired subsidy rate


(and not just the efficient one) as a Nash equilibrium.
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6 Evolutionary stability


Notation. Evolutionary analysis starts from symmetric situations where some strat-


egy s has spread out to the entire population of players and then considers deviations of


the form


s = (
m


r, . . . , r,
n−m


s, . . . , s),


where a number m of players (also called mutants) simultaneously deviate to some other


strategy r while the remaining n − m players stick to the initial s. The analysis then


compares the payoffs of a mutant and a non-mutant. Since the game we are discussing is


symmetric, it is not necessary for the analysis to keep track of the order in which strategies


are chosen. Moreover, only one alternative strategy is considered at a time. Thus, for


notational convenience, we define the functions `m(r, s) and `n−m(r, s) as the number of


workers located in the m jurisdictions choosing r and in the n−m jurisdictions choosing


s, respectively. We also use this kind of notation for the funds sharing payments, Tm(r, s)


and T n−m(r, s), as well as for the residual income levels of the rich, ym(r, s) and yn−m(r, s).


Denote by


c(r, s) = f ′ (`m(r, s)) + r = f ′
(
`n−m(r, s)


)
+ s


the resulting consumption level of the poor. The payoff difference between deviators and


non-deviators is then given by


ϕ(r, s) := U (ym(r, s), c(r, s))− U
(
yn−m(r, s), c(r, s)


)
. (18)


Roughly speaking, a strategy s is m-stable if for any group of m players that simultane-


ously deviate to any other strategy r 6= s the payoffs for these mutants falls short of the


non-mutants’ payoffs. If s resists deviations to any r for any number m = 1, 2, . . . , n− 1


of mutants, then s is called globally stable. Global stability is a very stark property,


implying that no alternative strategy can destabilize the status quo, no matter how large


the group of deviating players is.
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Definition of ESS. In this paper, we only consider single deviations, restricting our-


selves to m = 1. Robustness to single deviations is called evolutionary stability. In


the context of our model, a subsidy sE is called a finite-population evolutionarily stable


strategy (ESS) if


ϕ(s, sE) ≤ 0 for all s ∈ [0, smax] and m = 1. (19)


In a situation where all jurisdictions set subsidy sE, a unilateral deviation to some ar-


bitrary s earns lower payoffs than sE after deviation (Schaffer, 1988). Formally, this is


equivalent to sE maximizing the payoff difference, given that all other jurisdictions stick


with sE; i.e., sE = arg maxs ϕ(s, sE) for m = 1.


With a finite number of players, the concepts of ESS and of Nash equilibrium are not


related in general. On the one hand, it may be possible to improve payoffs when deviating


from an ESS, but in that case the payoffs of non-deviators would improve even more. On


the other hand, a strategy played in a symmetric Nash equilibrium is not necessarily an


ESS. Deviating lowers the deviator’s payoff by definition, but it may reduce the payoffs


of the non-deviators even more, resulting in a relative advantage for the deviator.5


Characterization of ESS. Small unilateral deviations change relative payoffs at a


symmetric profile as follows (see Appendix A.3):


∂ϕ(r, s)


∂r


∣∣∣∣
r=s


= uy(y, c) ·
(
∂ym(s, s)


∂r
− ∂yn−m(s, s)


∂r


)
. (20)


Equation (20) makes the simple but crucial statement that relative payoffs change in the


same direction as differences in the incomes of the rich: starting at a symmetric profile,


a small unilateral change in the subsidy changes relative payoffs in favor of jurisdictions


where the residual income of the rich is higher after deviation.


5The concept of finite-population ESS is in the same spirit but behaves differently from the classical
concept for a continuum population (Maynard Smith and Price, 1973). The latter is actually a refinement
of Nash equilibrium (see, e.g., Vega-Redondo, 1996, Chapter 2).
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In Appendix A.3 we show that (20) is equal to


∂ϕ(r, s)


∂r


∣∣∣∣
r=s


= uy(y, c) ·
n


n− 1
·
(
−s∂`


m


∂r
+
∂Tm


∂r


)
. (21)


To understand (21) consider a small subsidy increase; recall that this attracts more poor


to the deviating jurisdiction. After deviation, the rich in the more generous jurisdiction


have relatively higher expenses of redistribution policy by an amount −s · n
n−1
· ∂`m


∂r
) but


they may also get relatively larger payments out of funds sharing amounting to n
n−1
· ∂Tm


∂r
.6


The rich in the deviating jurisdiction end up with an income [dis-]advantage over those in


non-deviating jurisdictions if the funds sharing scheme more [less] than fully compensates


them for the increase in the costs of subsidizing the poor. The next proposition follows.


Proposition 2. (i) In the absence of public funds sharing, the unique ESS in the de-


centralized redistribution game is sE = 0.


(ii) To sustain some positive subsidy level s > 0 as an ESS, the public funds sharing


mechanism needs to satisfy:


∂Tj(s)


∂sj
= s · ∂`j(s)


∂sj
, (22)


where s = (s, . . . , s).


Item (i) of Proposition 2 directly follows from the fact that, in the absence of public funds


sharing (i.e., if Tj(s) = ∂Tj(s)/∂sj = 0 for all s), expression (21) is strictly negative for


s > 0 (Ania and Wagener, 2016). Item (i) predicts a long-run breakdown of redistribution


in the absence of public funds sharing. Jurisdictions that base their policy choices on


relative instead of absolute performance adopt policies that lead to higher incomes for


their rich (the common consumption level c of the poor does not affect jurisdictions’


6Observe that we are indeed measuring relative effects here. For example, starting from a symmetric
situation, a marginal subsidy increase imposes on the rich of the m deviating jurisdictions additional


costs of −s · ∂`
m


∂r , while it saves an amount of s · ∂`
n−m


∂r for the rich in any non-mutant jurisdiction. Since,


by symmetry and the constant overall population size, we have (n − 1) · ∂`
n−m


∂r = −∂`
m


∂r , the resulting


relative income gap is −s · n
n−1 ·


∂`m


∂r . A similar argument applies to payments from funds sharing; see
(8).
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relative positions). The income of the rich in j is, however, higher the lower the subsidies


paid to the poor there, which brings in a tendency to cut back on sj over time.


Item (ii) of Proposition 2 states a condition on a funds sharing scheme to sustain a positive


level of redistribution; for this to happen, expression (21) must equal zero. Condition (22)


requires that the funds sharing scheme compensates the rich for the relative disadvantage


that they would suffer when their jurisdiction increased its subsidy to the poor; as ex-


plained, this relative disadvantage comes from the fact that the migration inflow opens a


gap between the incomes of the rich in the mutant and the non-mutant jurisdictions.


ESS and Nash Equilibrium. Ideally, we would target s > 0 in Proposition 2 to be


the efficient level, s∗. Comparing conditions (15) and (22), we observe that the necessary


conditions to sustain s∗ as a Nash equilibrium and as an ESS actually coincide: funds


sharing schemes that restore efficiency have to satisfy the same marginal requirement,


irrespective of whether jurisdictions care for absolute or relative payoffs. Obviously, the


fact that first-order conditions coincide does not mean that the solutions always coincide


and are efficient. In each case, one needs to check second-order conditions and there


may be multiple solutions for any of the two equilibrium concepts. Still, our findings


imply that whenever an ESS happens to be played in a symmetric Nash equilibrium, the


corresponding subsidy must be s∗ and all externalities must have been neutralized by the


funds sharing scheme. The next proposition captures this result formally.


Proposition 3. If, for the decentralized redistribution game with public funds sharing,


subsidy s is both a Nash equilibrium strategy and an ESS, then s = s∗.


At first sight, this result may seem surprising. Technically, it is an instance of a more


general observation made by Hehenkamp et al. (2010, Corollary 2). In any symmetric


game with differentiable payoffs and compact strategy sets, in order for a Nash equilibrium


strategy, sN , to be an ESS we need to have ∂Uk(sN)/∂sj = 0 for all k 6= j, since a Nash


equilibrium satisfies ∂Uj(s
N)/∂sj = 0 for all j. If sN is also an ESS, it must then be


efficient because it satisfies ∂/∂sj
(∑


k Uk(sN)
)


= 0. Since we craft public funds sharing


as a steering device towards efficiency, the marginal properties of Tj(s) at s = s∗ must


coincide for evolutionary and for Nash play.
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To understand the relationship between Nash equilibrium, ESS, and efficiency in our


framework, recall from equation (17) that the sum of all fiscal externalities at a symmetric


Nash equilibrium sN = (sN , . . . , sN) under an arbitrary public funds sharing scheme


is given by (n − 1) · uy(yN , cN) · ∂
∂sj


(
yk(sN)− yj(sN)


)
, where k and j are any pair of


jurisdictions (see also the derivation of (A.7) in Appendix A.2). As equation (20) reveals,


a necessary condition for strategy sN to be an ESS as well is ∂
∂sj


(
yk(sN)− yj(sN)


)
= 0,


where j now corresponds to the deviating mutant jurisdiction (cf. expression (A.12)).


Therefore, when sN is both a Nash equilibrium strategy and an ESS, the sum of all fiscal


externalities following any unilateral deviation is zero and it must be that sN = s∗.


ESS under a Subsidy Equalization Scheme (SES). Appendix A.4 shows that, once


the parameter α is fixed, there is a unique evolutionary equilibrium with an SES. Suitably


chosen, α can support any desired subsidy level (including the efficient one) as an ESS.


Corollary 2. With a SES (9), the unique candidate for an interior ESS is sE = −αf ′′(¯̀).


ESS under a Representative Tax System (RTS). Somewhat surprisingly, an RTS


as defined by (10) and (11) does not always support the efficient outcome as an ESS.


This appears confusing since an RTS formally satisfies the necessary condition (22) for


an efficient ESS at every symmetric profile s = (s, . . . , s). In particular,


∂Tj(s)


∂sj
= (`j(s)− ¯̀) · ∂S̄(s)


∂sj
− S̄(s) · ∂`j(s)


∂sj
= s · ∂`j(s)


∂sj
, (23)


since at a symmetric profile `j = ¯̀ for all j and S = s. While this means all s ∈ [0, smax]


(and in particular s∗) are ESS candidates with an RTS, closer inspection reveals that (23)


is not always sufficient to characterize a global relative payoff maximum and, even when


it is, it does not imply efficiency. The following examples illustrate these points.


Overshooting. Suppose that there are only two jurisdictions (n = 2). In Appendix A.5


we show that the payoff difference ϕ defined in (18) also has a zero second-order derivative


at every symmetric profile. Hence, an interior ESS may not exist with an RTS. The next


example provides a case in point where the maximization of relative payoffs leads to a
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permanent increase in the subsidy levels over time. In this sense, an RTS may be an


over-powered mechanism with the potential to turn the much feared race to the bottom


in rich-to-poor redistribution to an unstoppable race over the top.


Example 1. Consider the production function f(`) = `(1 − `). Assume that political


preferences are of the Cobb-Douglas type, U(y, c) = y · c, and an RTS is in place. For


n = 2, Appendix A.6 shows that ϕ(r, s) = ∆(r, s) · c with


∆(r, s) =
(r − s)3


8
.


We see that ∆ is strictly increasing with r everywhere, except at r = s. Thus, at every


symmetric profile where s is chosen, either jurisdiction can obtain a relative advantage by


increasing its subsidy beyond s. This will only stop at the maximum admissible subsidy


level, smax, which is the ESS.


Multiple ESS. With more than two jurisdictions, the RTS guarantees that the payoff


difference ϕ is locally concave at every symmetric profile (see Appendix A.5). Thus, all


s ∈ [0, smax] (and also s∗) are robust to unilateral local deviations with an RTS. However,


as the example below illustrates, sufficiently low subsidies can be discarded since they are


not robust to larger deviations (still leaving a continuum of ESS). In general, it is unclear


whether the discarded subsidy levels include s∗. Hence, not every time that the RTS has


the potential to steer Nash play towards efficiency it will also do so under evolutionary


play.7


Example 2. Consider the same setting as in Example 1 but suppose now that n = 3. In


Appendix A.6 we show that the symmetric efficient solution can be decentralized with


s∗ = 0. In this case, jurisdictions also implement efficient subsidy and consumption


levels in a decentralized way at a Nash equilibrium and, by Proposition 2(i), as an ESS.


If an RTS is in place, however, the value of equalization payments is given by


Tj(s) =
sj − s̄


2


(
s̄+


3


2
· σ2


s


)
,


7This does not contradict Proposition 3, since the symmetric Nash equilibrium fails to be ESS here.
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Figure 1: Single deviations from (s, s, s) to (r, s, s).


where s̄ is the average and σ2
s the variance of the subsidies chosen at s. This expression


makes clear that the volume of RTS transfers rises with the dispersion of the policies


chosen. This results in a double rewarding of jurisdictions that considerably raise their


subsidy above average. Relative payoffs following a unilateral deviation are given by


ϕ(r, s) = ∆(r, s) · c with


∆(r, s) =
(r − s)2 [2(r − s)− 1]


12
.


Recall that ∆(r, s) is the relative advantage in residual income that any single jurisdiction


can reap by unilaterally deviating from a symmetric (s, s, s) to some (r, s, s). The charac-


teristics of ∆ are summarized in Figure 1. Confirming (23), every symmetric profile with


r = s is a local maximum of ∆. Here the RTS will exactly offset any relative gain or loss


of a small deviation from the symmetric profile, so that after equalization all jurisdictions


are again equally well-off. This suggests that every subsidy level is a potential candidate


ESS. Notice, however, that at r = s+ 1
2


we also have ∆ = 0. It is, thus, possible to have


situations where one jurisdiction pays much higher subsidies and gets fully compensated


through the RTS, again leaving all jurisdictions equally well-off. If this is feasible, mean-


ing that the compensating jurisdictions can afford the corresponding transfer payments


out of their now weakened economic position, the symmetric situation with r = s is not a


global maximum of ∆; as Figure 1 illustrates, any jurisdiction can attain a strict relative


advantage by deviating to r > s+ 1/2, whenever this is feasible. As a matter of fact, the
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RTS overcompensates a jurisdiction that creates this kind of large disparities in subsidy


levels. The analysis in Appendix A.6 shows, however, that this kind of deviations is only


feasible for low values of the subsidy, with s < 1
8
; otherwise the non-deviating jurisdictions


do not generate enough income to pay the corresponding transfers. It follows that the


set of ESS is SESS =
[


1
8
, smax


]
. Notice the efficient subsidy level s∗ = 0 does not belong


to SESS in this example and all ESS are inefficient, indeed involving an over-provision of


decentralized redistribution.


7 Discussion and conclusions


Public funds sharing schemes correctly designed to implement efficient Nash equilibria


may also be used to steer behavior towards efficiency when policy choices are driven by


relative performance comparisons. In a framework of rich-to-poor income redistribution


with perfect mobility of the poor, we have argued that evolutionary play based on relative


payoffs is a strong source of inefficiency, far more dramatic than Nash play. The fact


that the same necessary conditions must hold for funds sharing to restore efficiency in


both cases is quite surprising. It shows that public funds sharing can be a powerful


corrective device with decentralized fiscal interaction and tax competition under a variety


of assumptions on how government play the game.


Dynamics. Although we analyze a one-shot game with relative payoff concerns, the


evolutionary stability of fiscal interactions is conceptually inspired by the dynamic idea of


laboratory federalism; decentralization is suggested to be superior to policy centralization


as it allows for policy experimentation and effective learning of successful policies in


repeated interaction over time. Perturbed imitative learning processes can take different


forms; yet as long as the most successful policies are followed with positive probability


while unsuccessful policies with lower payoffs are discarded, being an ESS is a necessary


requirement for a policy to be immune against rare experiments and to survive in the long


run. However, as our RTS example shows, in general there may be multiple ESS and a


further analysis with multiple deviations would be needed to explore their robustness.
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Multiple deviations. Our focus on single deviations is for expositional convenience.


Propositions 2 and 3 hold irrespective of the number of jurisdictions who simultaneously


experiment with a new policy.


Efficiency. In our model of decentralized redistribution, the uncorrected ESS is bound


for disaster – and public funds sharing can be a remedy. Other papers, however, show


that evolutionary play and imitative learning do not always preclude efficient play. For


oligopolistic price competition, Alós-Ferrer et al. (2000) show that evolutionary stability


can serve as a selection criterion when there are multiple Nash equilibria. In a context


more closely related to this paper, Ania and Wagener (2014) show that when jurisdictions


in a federal system try to learn about good policies through imitation and innovation, it


will be crucial for the long-run outcome whether the selected policies are sustainable by a


simple majority of states in the federation. If the efficient policy happens to be strongly


robust in this sense, it will survive in the long run; otherwise, it will be abandoned if


enough jurisdictions simultaneously adhere to a more attractive policy experiment. It is


an interesting topic for future research how public funds sharing affects such scenarios,


both with respect to the set of policies that survives and their efficiency properties.


Knowledge. In contrast to best-response play, which requires players to know the exact


mapping from strategies to payoffs, the imitative learning process underlying our analysis


only requires observability of past policies and some summary statistic of success; exact


knowledge of the economic environment is not needed. From the perspective of laboratory


federalism, this makes evolutionary stability a suitable concept to study decentralized


fiscal interaction whenever knowledge about the economy (say, about mobility patterns


or tax bases) is too limited to allow for best-response behavior. Policy mimicking and


occasional innovations turn out to be a viable, though boundedly rational way of policy-


making. Against this backdrop, one might question the usefulness of Proposition 2, which


argues that an efficient outcome can be implemented in a learning context. After all, it


seems to presuppose knowledge of the efficient solution. Moreover, condition (22) uses the


reaction of local labor supply to subsidy changes. This is not as severe as it sounds. First,


the design and implementation of public funds sharing mechanisms does not in general
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require any structural knowledge of the economy or specific observabilities. Second, as


the SES example shows, any public funds sharing scheme in that class helps to avoid


the dismal uncorrected ESS with a complete breakdown of redistribution. Third, even if


multiplicity may be an issue, an RTS may support efficiency in evolutionary play—and


this is a mechanism that does not presuppose any knowledge of the economic structure. It


therefore seems promising to study when exactly can efficiency be reached in evolutionary


play without additional information built into the public funds sharing mechanism.


Alternative settings. The present paper focuses on decentralized, rich-to-poor redis-


tribution with labor mobility. This framework is practically relevant (think of interna-


tional migration), drastically clear in its theoretical predictions, and well-understood in


terms of public funds sharing. In addition, the framework is generic in a large class of set-


tings with decentralized fiscal interaction as long as the mobile factors respond to policy


changes smoothly. This class encompasses tax competition of various brands, uncoordi-


nated environmental policies, or infrastructural competition. As in the current setting,


Nash equilibria are typically inefficient due to fiscal spillovers, public funds sharing may


remedy this, and evolutionarily stable strategies lead to aggregate-taking behavior and


competitive outcomes (see, e.g., Sano, 2012; Wagener, 2013). Mutatis mutandis, our anal-


ysis applies to all such scenarios: appropriately designed, public funds sharing schemes


can help correct the efficiency failures of evolutionary play.
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Appendix


A.1 Symmetric efficient allocation


An efficient allocation {(y∗j , `∗j , c∗)}j=1,...,n solves the following maximization problem:


max{(yj ,`j ,c)}j
∑n


j=1 λju(yj, c)


s.t.
∑n


j=1 f(`j) =
∑n


j=1 (yj + c · `j)∑n
j=1 `j = n¯̀,


(A.1)


where (λ1, . . . , λn) is a vector of positive weights. Efficient allocations, thus, maximize


total welfare subject to the feasibility constraint (A.1) and the fact that the total number


of poor in the federation is constant and equal to n¯̀. Without consequences, the feasibility


constraint could be augmented by a balanced funds sharing scheme (with
∑


j Tj = 0).


The first-order conditions of this problem imply production efficiency with


f ′(`1) = . . . = f ′(`n) (A.2)


and a Samuelson condition of the form


n∑
j=1


uc(yj, c)


uy(yj, c)
= n¯̀. (A.3)


Since f ′′ < 0 < f ′, condition (A.2) is satisfied if and only if `1 = . . . = `n = ¯̀. Hence, at


an efficient allocation output f(¯̀) must be the same in every jurisdiction. The incomes of


the rich, yj, could nevertheless vary across jurisdictions (if Tj 6= 0). Confining ourselves


to symmetric allocations (where Tj = 0 for all j), feasibility requires yj = y∗ = f(¯̀)−c∗ · ¯̀


for all j. From (A.3) it then follows that (y∗, c∗) must satisfy uc(y∗,c∗)
uy(y∗,c∗)


= ¯̀.
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A.2 Nash equilibrium and efficient funds sharing


An interior Nash equilibrium in pure strategies solves
∂Uj(sN )


∂sj
= 0 for all j = 1, . . . , n.


Differentiating the payoffs (13) of jurisdiction j with respect to sj we obtain


∂Uj


∂sj
= uy(yj, c)


(
−sj


∂`j
∂sj
− `j


∂c


∂sj
+
∂Tj
∂sj


)
+ uc(yj, c) ·


∂c


∂sj
. (A.4)


If a pure-strategy symmetric equilibrium exists with sNj = sN for all j, it will be associated


with `j = ¯̀, Tj = 0, cN = f ′(¯̀) + sN and equal values yj = yN = f(¯̀) − cN · ¯̀ for all j.


Rearranging (A.4) we see that a symmetric Nash equilibrium must satisfy


uc(y
N , cN)


uy(yN , cN)
= ¯̀+


1


∂c/∂sj


(
sN · ∂`j(s


N)


∂sj
− ∂Tj(s


N)


∂sj


)
. (A.5)


Supporting an efficient equilibrium with sN = s∗ therefore requires


∂Tj(s
∗)


∂sj
= s∗ · ∂`j(s


∗)


∂sj
. (A.6)


To check that a funds sharing mechanism satisfying (A.6) internalizes all external effects


in the efficient equilibrium, consider a unilateral deviation of any j, take derivatives in


the payoffs of all other k 6= j with respect to sj using expression (13), and add up all


these derivatives to obtain


∑
k 6=j


∂Uk(sN)


∂sj
=


∑
k 6=j


(
uy(y


N , cN)
∂yk
∂sj


+ uc(y
N , cN)


∂c


∂sj


)
=


∑
k 6=j


uy(y
N , cN) ·


(
∂yk
∂sj
− ∂yj
∂sj


)
= (n− 1) · uy(yN , cN) · ∂(yk − yj)


∂sj
. (A.7)


The second line uses the first-order conditions for jurisdiction j in equilibrium and the


third line uses symmetry. Consider now any symmetric vector s = (s, . . . , s) and let c =


f ′(`) + s be the level of the poor’s consumption resulting in the corresponding migration
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equilibrium. We have that for any s


∂yk(s)


∂sj
− ∂yj(s)


∂sj
=


(
f ′(¯̀)− c


)
·
(
∂`k
∂sj
− ∂`j
∂sj


)
+
∂Tk
∂sj
− ∂Tj
∂sj


= − n


n− 1


(
−s · ∂`j


∂sj
+
∂Tj
∂sj


)
, (A.8)


where the second line in (A.8) follows from the fact that changes in migration flows as


well as in transfers always add up to zero: the total number of workers in the federa-


tion is constant (
∑


k `k = n¯̀) and the public funds sharing scheme is self-financing (see


(8)). These two identities imply that, respectively, ∂`k/∂sj = −(∂`j/∂sj)/(n − 1) and


∂Tk/∂sj = −(∂Tj/∂sj)/(n− 1) for all k 6= j. We see that a public funds sharing scheme


satisfying (A.6) guarantees that (A.8) and, thus, (A.7) equal zero at s = s∗, confirming


that it internalizes all interjurisdictional externalities at the symmetric efficient equilib-


rium.


A.3 Evolutionary stability


We include here the details for the derivation of expressions (20) and (21) in the main


text and obtain the first-order conditions for an interior ESS. At any vector of subsidies


of the form s = (r, s, . . . , s), after a unilateral deviation from s to r, relative payoffs to


the deviator as defined by (18) are given by


ϕ(r, s) := U (ym(r, s), c(r, s))− U
(
yn−m(r, s), c(r, s)


)
, (A.9)


where


ym = f(`m)− c(r, s) · `m + Tm and (A.10)


yn−m = f(`n−m)− c(r, s) · `n−m + T n−m (A.11)


respectively denote the income of the rich in the deviating and in the non-deviating


jurisdictions, while c(r, s) = f ′(`m) + r = f ′(`n−m) + s is the resulting consumption level


of the poor in a migration equilibrium.
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We say that s is an ESS if ϕ(r, s) ≤ 0 for all r; i.e., if r = s maximizes ϕ(·, s). Taking


derivatives in (A.9) with respect to r, we obtain


∂ϕ


∂r
= uy(y


m, c) · ∂y
m


∂r
− uy(yn−m, c) ·


∂yn−m


∂r
+
∂c


∂r
·
[
uc(y


m, c)− uc(yn−m, c)
]
.


For r = s we have `m = `n−m = ¯̀ and Tm = T n−m = 0. Hence, also ym = yn−m = y and


(marginal) utilities are evaluated at the same value for deviating and the non-deviating


jurisdictions. Analogously to (A.8), this implies


∂ϕ


∂r


∣∣∣∣
r=s


= uy(y, c) ·
(
∂ym


∂r
− ∂yn−m


∂r


)
= uy(y, c) ·


((
f ′(¯̀)− c


)
·
(
∂`m


∂r
− ∂`n−m


∂r


)
+
∂Tm


∂r
− ∂T n−m


∂r


)
= uy(y, c) ·


n


n− 1
·
(
−s · ∂`


m


∂r
+
∂Tm


∂r


)
. (A.12)


Here, the second line follows after taking derivatives in expressions (A.10) and (A.11)


with respect to r and evaluating at r = s. The third line follows from (8) and the fact


that
∑


k `k = n¯̀.


It, thus, follows that maximization of ϕ(r, s) with respect to r requires ∂
∂r


(ym − yn−m) = 0,


which is satisfied for any subsidy s > 0 if only if


∂Tm(s, s)


∂r
= s · ∂`


m(s, s)


∂r
.


A.4 Proof of Corollaries 1 and 2


Proof of Corollary 1. For SES, defined as Tj = α · (sj − s̄), we have that


∂Tj(s
∗)


∂sj
= α ·


(
1− 1


n


)
= s∗ · ∂`j(s


∗)


∂sj


if and only if α = − s∗


f ′′(¯̀)
, where we use that


∂`j(s)


∂sj
= − n−1


n·f ′′(¯̀)
at any symmetric vector s


(cf. Footnote 3).


30







Instead, the RTS is defined by Tj = S̄
(
`j − ¯̀


)
with S̄ = 1


n¯̀


∑
k sk`k. Thus,


∂Tj(s
∗)


∂sj
= (`j(s


∗)− ¯̀) · ∂S̄(s∗)


∂sj
+ S̄(s∗) · ∂`j(s


∗)


∂sj
= s∗ · ∂`j(s


∗)


∂sj
, (A.13)


since at any symmetric s = (s, . . . , s) we have `j = ¯̀ and S̄ = s. Condition (15) actually


holds for all s and not just for s∗.


Proof of Corollary 2. It follows from (A.12), the definition of SES, and Footnote 3


that an interior ESS must satisfy


∂ (ym − yn−m)


∂r


∣∣∣∣
r=s


=
n


n− 1


(
−s · ∂`


m


∂r
+
∂Tm


∂r


)
=


s


f ′′(¯̀)
+ α = 0.


For s = 0 this derivative equals α > 0. The only value of the subsidy that solves the


former equation and the only candidate for an ESS is thus s = −α · f ′′(¯̀), which can be


targeted by an appropriate choice of α. This is indeed an ESS if


∂2ϕ


∂r2


∣∣∣∣
r=s


= uy(y, c) ·
∂2 (ym(r, s)− yn−m(r, s))


∂r2


∣∣∣∣
r=s


< 0.


Using ∂c(r, s)/∂r = −1/n for r = s (cf. Footnote 3) and `m + (n− 1)`n−m = n¯̀ we obtain


∂2 (ym − yn−m)


∂r2


∣∣∣∣
r=s


= − n


n− 1
· ∂`


m


∂r
− s · ∂


2(`m − `n−m)


∂r2
+
∂2(Tm − T n−m)


∂r2
. (A.14)


Since an SES is linear, the last bracket in this expression is zero and the expression itself


reduces to


∂2 (ym − yn−m)


∂r2


∣∣∣∣
r=s


= − n


n− 1
·
(
∂`m


∂r
+ s · ∂


2`m


∂r2


)
(A.15)


A sufficient condition for (A.15) to be strictly negative is that `m is a strictly convex


function which holds if f ′′′ > 0.8


8Note that
∂2`m


∂r2


∣∣∣∣
r=s


=
n


n− 1
· f ′′′(¯̀)[
f ′′(¯̀)


]2 · ∂`m∂r
∣∣∣∣
r=s


.
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A.5 ESS with RTS


Expression (23) shows that with an RTS the first-order conditions (22) in Proposition 2(ii)


is satisfied for all s ∈ [0, smax]. Here we want to check the second-order conditions,


requiring that the payoff difference ϕ be locally concave. From the proof of Corollary 2


it suffices to check that expression (A.14) is strictly negative; i.e. that the difference


ym − yn−m is locally concave.


Now note that with an RTS we have


∂2 (Tm − T n−m)


∂r2
= S̄ · ∂


2 (`m − `n−m)


∂r2
+ 2 · ∂S̄


∂r
· ∂(`m − `n−m)


∂r
+ (`m − `n−m) · ∂


2S̄


∂r2
.


Evaluating at any symmetric profile with r = s, so that S̄ = s and `m = `n−m = ¯̀, and


using ∂S̄/∂r = 1/n, this expression reduces to


∂2 (Tm − T n−m)


∂r2
= s · ∂


2 (`m − `n−m)


∂r2
+


2


n− 1
· ∂`


m


∂r


Substituting in (A.14) and rearranging we obtain


∂2 (ym − yn−m)


∂r2


∣∣∣∣
r=s


= −n− 2


n− 1
· ∂`


m


∂r
,


which is zero for n = 2 and strictly negative for all n > 2.


A.6 Examples


Setting. In our examples, we assume that the production function in each jurisdiction


is quadratic, f(`) = `(A− b`), with positive parameters A, b > 0. We normalize the total


number of mobile poor to one: ¯̀= 1/n. To ensure meaningful solutions, we assume that


2b ≤ nA ≤ 3b. We consider political preferences of the Cobb-Douglas type: Uj = yj · c.


The set of admissible subsidies is common to all jurisdictions and given by s ∈ [0, smax].


Migration equilibrium. The net income and consumption of workers in jurisdiction j


is cj = A−2b`j+sj. At subsidies s = (s1, . . . , sn), a migration equilibrium is characterized
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by cj = c, which results in


`j =
1


n
+
sj − s̄


2b
(A.16)


where s̄ =
∑


k sk/n denotes the average subsidy level in the federation. The poor’s


consumption in all jurisdictions is then given by


c = A− 2b/n+ s̄. (A.17)


The consumption of the rich in location j is given by


yj = b


(
1


n
+


1


2b
(sj − s̄)


)(
1


n
− 1


2b
(sj + s̄)


)
+ Tj. (A.18)


While interjurisdictional transfers Tj may be positive or negative, we restrict yj to be non-


negative. I.e., neither must subsidies be too high to be unaffordable nor must outgoing


transfers exceed the value of the net income generated at location j.9


Symmetric efficient solution. Since ¯̀= 1/n in this example, the Samuelson condition


for a symmetric efficient allocation with Cobb-Douglas utility amounts to yj/c = 1/n.


Production efficiency requires that `j = 1/n, so that the output per jurisdiction equals


f(1/n). Using the feasibility constraint, y = f(1/n)− c/n, gives


c∗ =
1


2


(
A− b


n


)
.


This level can be attained in a decentralized way if all jurisdictions set subsidy


s∗ =
3b


2n
− A


2
.


9Even if we are able to define some meaningful upper bound smax, interior solutions for `j ∈ [0, 1] and
yj ≥ 0 may impose additional restrictions on the parameter values. Furthermore, using expression (A.17),
we see that aggregate feasibility requires


∑
j f (`j) − c = 2b


n − s̄ − b
∑
j `


2
j ≥ 0. Adding up the squares


of expression (A.16) and denoting σ2
s the variance of the subsidies chosen at any vector s, we obtain∑


j `
2
j = 1


n +
nσ2


s


4b2 . Substituting this expression in the aggregate feasibility condition above, we see that


feasible subsidy vectors s must satisfying 4bs̄+ nσ2
s ≤ 4b2/n.
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Public funds sharing. We consider an RTS, which for ¯̀ = 1/n is defined through


Tj = S̄(`j − 1/n) with S̄ =
∑


k(sk`k). Using expression (A.16), it is easy to check that


S̄ = s̄+
n


2b
· σ2


s ,


where σ2
s =


∑
k(sk−s)2


n
corresponds to the variance of the subsidies chosen at s = (s1, . . . , sn).


We can see that this results in equalization payments of the form


Tj(s) =
sj − s̄


2b


(
s̄+


n


2b
· σ2


s


)
. (A.19)


Evolutionarily stable strategies. To characterize the ESS, we compute the payoff


differential between jurisdictions j and i, which is Uj − Ui = (yj − yi) · c. As c is a public


good, we can work with the income differential ∆ := yj−yi as an indicator for the relative


payoff advantage to jurisdiction j. In the absence of public funds sharing we have


∆0 = yj − yi =
s2
i − s2


j


4b
,


which obviously decreases with sj, rendering s = 0 the unique ESS irrespective of the


number n of jurisdictions.


With an RTS, the income differential becomes


∆ = ∆0 + Tj − Ti =
s2
i − s2


j


4b
+
(
s̄+


n


2b
· σ2


s


)
·
(
sj − si


2b


)
=


sj − si
2b


·
{(


s̄− si + sj
2


)
+
n


2b
· σ2


s


}
. (A.20)


Example 1: two jurisdictions


Assuming n = 2 and A = b = 1, we have s̄ = (si + sj)/2 and σ2
s = (sj − si)2/4, so that


∆ =
(sj − si)3


8
.


This income differential is strictly increasing with sj everywhere except at sj = si, when


both jurisdictions choose the same subsidy. Every symmetric profile, however, can be
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destabilized if one of the jurisdictions increases its subsidy, provided this is admissible.


Hence, the unique ESS is sE = smax.


Example 2: three jurisdictions


Now suppose that n = 3 and A = b = 1. In this case the efficient subsidy s∗ = 0 is also


played in the unique, symmetric Nash equilibrium and as an uncorrected ESS. Starting


from a symmetric profile (s, s, s) we consider subsidy vectors of the form s = (s1, s2, s3) =


(r, s, s). From (A.20) we obtain the relative payoff difference of the deviating jurisdiction


as


∆(r, s) =
s2 − r2


4
+
r − s


2


{
r + 2s


3
+


(r − s)2


3


}
=


(r − s)2 [2(r − s)− 1]


12
. (A.21)


Note that, for any given s, ∆ = 0 if r = s or if r = r̃ := s + 1
2


and ∆ > 0 if and only if


r > r̃. The first- and second-order partial derivatives of ∆ with respect to the subsidy of


the deviating jurisdiction are as follows:


∂∆


∂r
=


(r − s) [r − s− 1/3]


2
∂2∆


∂r2
=


2(r − s)− 1/3


2
.


Observe that with RTS every symmetric profile with r = s has ∂∆
∂r


= 0 and ∂2∆
∂r2


< 0


and is, thus, a local maximum of ∆ for any s. However, at r = r̃ we also have ∆ = 0.


Thus, r = s is not a global maximum. Using (A.16), (A.18) and (A.19), it can be


checked that, at s = (r̃, s, s), we have `1 = 1
2


and `2 = `3 = 1
4
, while incomes are given by


y1 = y2 = y3 = 1
3


(
1
8
− s
)
, equal for all jurisdictions and positive if and only if s ≤ s := 1


8
.10


Starting at a symmetric profile with s < s, if any jurisdiction deviates to r = r̃ + ε with


ε > 0 sufficiently small, it obtains a strictly positive relative advantage. It follows that


s ∈ [0, s) are not evolutionarily stable. For s = s a deviation to r = s+ 1
2


results in exactly


10It can be easily checked that subsidy vectors of the form (s+ 1/2, s, s) satisfy the aggregate feasibility
condition introduced in Footnote 9 if an only if s ≤ 1/8.
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zero residual income in all jurisdictions after deviation. For s > s it is not possible to


find feasible values of r that exploit the transfer mechanism in this way. All ESS with an


RTS, thus, satisfy sE ≥ s. It follows that the efficient policy s∗ = 0 < s is not an ESS in


this case and laboratory federalism, augmented by an RTS, will systematically result in


overly generous redistribution.
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