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1 Introduction

The traditional focus of contract theory has been the optimal implementation of monetary
incentives (Gibbons and Roberts, 2013). For instance, Holmstrom, in his seminal work, demonstrates
how in settings with information asymmetry, the principal could motivate the agent to perform a
burdensome task by offering a moderate monetary compensation (Holmstrom, 1999; Holmstrom
and Milgrom, 1991; Holmstrom, 1979). Recent literature has also highlighted the favorable
influence of non-monetary incentives on the agent’s motivation. Tools such as production
targets set by the principal (Corgnet et al., 2015; Gómez-Miñambres, 2012), contests for status
designed by the principal (Ashraf et al., 2014; Bandiera et al., 2013; Moldovanu et al., 2007), and
environments that enhance peer pressure (Falk and Ichino, 2006), among others, have proven
to bolster the agent’s performance even if monetary incentives are already at work.

In this paper, I introduce a new contract featuring an innovative class of non-monetary
incentives. The contract seeks to motivate agents by taking advantage of the regularity that
they distort probabilities systematically. Empirical evidence from the literature of decision-
making shows that when making decisions under uncertainty, individuals tend to overweight
small probabilities and underweight moderate to large probabilities (Prelec, 1998; Wu and
Gonzalez, 1996; Tversky and Fox, 1995; Tversky and Kahneman, 1992). The contract that
I propose has the capacity to activate these probability distortions and direct them towards
the enhancement of the agent’s performance on the task that is of relevance to the principal.
Note that these incentives are absent in more traditional contracts that rely only on monetary
incentives to incentivize the agent; hence, this contract has the potential to improve upon the
efficiency of the contracts that are recommended by traditional contract theory.

In the contract, called the “probability contract”, the agent is offered a payment scheme
that resembles a lottery. The two possible outcomes contained in this scheme are a monetary
prize, with a size that increases with the agent’s performance on the task, and no payment
for performance. Think for instance of a performance bonus that realizes with a probability
that cannot be influenced by the agent or a stock option offered by the firm with a dividend
that is paid with some likelihood that the agent cannot alter. In addition, the contract allows
the principal to set the probability that the monetary prize is paid and makes this decision
before the agent performs the task. Therefore, the probability chosen by the principal has the
capacity to influence the agent’s decision about how much output to supply; not only through
the corresponding changes in the monetary incentives that reward performance, but also, and
more importantly, through the greater or lower motivation induced by the agent’s perception
of the probability that his compensation depends on his own performance.

To understand how the probability contract could outperform a traditional contract, consider
a setting in which both contracts are cost-equivalent for the principal. The expected monetary
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reward of producing an additional unit of output under the probability contract is thus equivalent
to the monetary reward of producing an additional unit of output under the traditional contract.
When facing these incentives, an expected-value maximizer is equally motivated under both
contracts and would deliver the same performance. However, if the assumption that the agent
perceives probabilities accurately is relaxed and it turns out that he overweights the probability
that the prize is paid, he would be motivated to supply more output under the probability
contract. This result is robust to the possibility that the agent has a concave utility function, if
the probability that the prize is paid is largely overweighted so that the risk-aversion stemming
from the utility curvature is outweighed.

I present a theoretical framework to pin down the conditions guaranteeing the greater
efficiency of the probability contract with respect to a cost-equivalent traditional contract.
The agent not only needs to have risk preferences that admit probability distortions, but also,
must overweight the probability that is set by the principal to a degree such that he exhibits a
preference for risky contracts. Hence, when the agent has risk preferences characterized by rank-
dependent utility (Quiggin, 1982) or by cumulative prospect theory (Tversky and Kahneman,
1992), the probability contract yields higher performance if the principal is able to implement
it with a probability that induces risk-seeking attitudes in the agent.

In a controlled laboratory experiment I demonstrate that the probability contract yields
higher effort in a real-effort task than a cost-equivalent piece rate if the probability of the
contract is set at p = 0.10. Moreover, implementing the probability contract with larger
probabilities, namely p = 0.30 or p = 0.5, yields no differences in performance with respect to
the piece rate. In addition, the experiment features an elicitation of the utility functions and
probability weighting functions of the subjects. These functions are used to show that the risk
attitudes generated by probability distortions are causing the observed boost in performance
when the contract is implemented with p = 0.10.

Although the proposed contracting modality may seem abstract at first glance, it has several
applications in the field. One such application is corporate finance. A well-known empirical
regularity of this literature is that volatile firms provide option stocks to lower-level employees,
who in turn accept them (Spalt, 2013). This regularity is at odds with standard theory analyses,
which suggest that risk-averse employees require unusually high premiums to accept such option
stocks. In an alternative analysis, Spalt (2013) demonstrates that with this practice firms are
capitalizing on the risk attitudes that emerge from the probability weighting function of the
employees, who overweight the probability that these options yield large dividends. This paper
shows that with option stocks firms are also generating higher motivation and performance on
the employees, who might overweight the probability that their performance has an impact on
the dividends that the firm distributes. Moreover, my results demonstrate that there is a region
of probabilities, the region of maximal overweighting of probabilities, that if anticipated by the
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firms and implemented in the option stocks package, could maximize the benefits of using this
payment modality. I discuss more applications of the proposed contract in the conclusion.

This paper contributes to several strands of literature. First, it adds to the literature
of behavioral contract theory (See Koszegi (2014) for a review). The idea that a principal
can take advantage of the cognitive biases of consumers and employees is not new and has
been previously studied. For instance, DellaVigna and Malmendier (2004) and Heidhues and
Koszegi (2010) study how firms can design contracts to take advantage of time-inconsistent
individuals; Fehr et al. (2007), Goette et al. (2004), and Herweg and Mueller (2010) study the
effects of higher powered incentives as well as the optimal design of incentives when workers
form reference points that generate loss aversion; and Sandroni and Squintani (2007) study the
effect of contracts when individuals are overconfident. To my knowledge this is the first paper
studying the optimal design and implementation of labor contracts that take advantage of the
regularity that individuals distort probabilities.

The results of this study also contribute to the literature of decision-making that specializes
in the judgment of probabilities (see Wakker (2010) pp. 204 for an extensive list of references).
I contribute to this literature in three ways. First, I elicit the probability weighting functions
of the subjects using the two-step method developed by Abdellaoui (2000) and find that some
of his results do not replicate when smaller monetary incentives and a larger sample are used.
Second, I show that in the presence of large individual variation in the data, statistical analyzes
that are commonly used in this literature could yield biased conclusions. Instead, I propose that
an unbiased method to analyze these data are regressions at the individual level. Third, when
regressions at the individual level are used, I find that individuals overweight small probabilities
to a larger extent than documented by previous studies. Also, the data suggest that individuals
also overweight medium-ranged probabilities but do not underweight large probabilities. These
results correspond to a strong inverse-s shaped probability weighting function with unusually
high elevation.

Finally, the results of this also study add to the methodological literature that studies the
correct incentivization of subjects in the laboratory. I implement the probability contract using
the random-lottery incentive system. According to Azrieli et al. (2018) this system is incentive
compatible and preferable to offering pay for all decisions/rounds under very general conditions.
However, some studies have found that when faced with this system, subjects may exhibit a
form of reduction of probabilities that invalidate it (Holt, 1986). I contribute to this literature
in two different ways. First, the results of the real-effort task show that subjects facing the
random-lottery incentive system on average evaluate each experimental round as an isolated
decision. If this was not the case then a) there would not be average performance differences
across the treatments, and b) the degree to which individuals distort probabilities would not
explain the totality of these performance differences. This finding is in line with the results
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by Hey and Lee (2005), Cubitt et al. (1998), and Starmer and Sugden (1991). Second, the
results of the experiment present a caveat for the implementation of the random-lottery system
when the researcher is interested in tasks that require effort from the part of the subjects: this
mechanism could leverage higher performance than paying for all tasks/rounds.

2 The model

The theoretical framework considers a principal (she) that incentivizes an agent (he) to work
on a task by offering a contract. The agent makes a decision about the output level, y ∈ [0, ȳ],
that he produces. His decision depends on the incentives included in the contract that is chosen
by the principal. The following subsection presents the two contracts that are studied.

2.1 The contracts

2.1.1 Piece rate contract

As a benchmark of traditional contracts, I use a piece rate. A piece rate contract offers
constant marginal monetary incentives, which means that the agent is incentivized to produce
an additional unit of output irrespective of how many units he may already have delivered.
This is a desirable property inasmuch as the agent delivers output up to some level at which
offering an additional unit is too costly for him. Thus, the principal is able to incentivize the
agent to to deliver as much performance as he could using the piece rate.1

Formally, the agent is offered W = ay, where a > 0 represents the monetary reward for
every additional unit of output that he delivers. The agent derives utility from the monetary
rewards and I assume that such utility can be represented by b(·), an increasing and two-times
continuously differentiable function.

Assumption 1 (Basic utility from monetary rewards): b(·) is a C2 function with
b(0) = 0 and by(·) > 0 for all y.

Note that I do not make any assumption about the sign of the second derivative of the basic
utility. This is because the results of the model are going to be evaluated under the two signs
that this derivative can attain.

The agent also experiences disutility from producing output, which captures the notion that
working on the task requires attention, persistence, and effort. I model this disutility through

1This description of a piece rate is adequate for settings that focus on the intensive margin of labor supply
and ignore the influence of incentive schemes on the extensive margin and labor search process. For a more
comprehensive discussion about piece rates see Lazear (1986) and Gibbons (1987).
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the function c(y, θ), an increasing, two-times-differentiable and strictly convex function.

Assumption 2 (Cost of producing output): c(y, θ) is a C2 function with cy(0, θ) = 0
cy(y, θ) > 0, cyy(y, θ) > 0, and cyθ(y, θ) < 0 for all y,θ.

The parameter 0 < θ ≤ 1 represents the agent’s ability. The last expression in Assumption 2
captures that agents with higher ability have flatter cost functions, which means that for them
it is less costly to deliver higher levels of output as compared to agents with lower abilities.

All in all, the agent’s utility when they are offered the piece rate can be written as

U(y) = b(ay)− c(y, θ). (1)

The agent maximizes this utility delivering a production level y∗ that satisfies the following
first-order condition2

aby(ay∗)− cy(y∗, θ) = 0. (2)

Equation (2) shows that the optimal production level y∗ increases with the agent’s abilities θ.
The assumption cyθ(y, θ) < 0 guarantees this comparative static. Also, the optimal production
level increases with higher powered incentives a. The assumption that ensures that y∗ maximizes
U(y) guarantees this comparative static. Hence, higher abilities make it less costly for an agent
to deliver high levels of output and higher monetary incentives increase the marginal utility of
an additional unit of output, both of which motivate the agent to deliver higher output levels.

For illustrative purposes, consider the functional forms c(y, θ) = (y/θ)2

2 and b(ay) = (ay)1−γ

1−γ ,
with −1 < γ < 1. For these forms the optimal output level delivered by the agent has the
closed-form solution y∗ =

(
θ2

aγ−1

) 1
1+γ , which depicts the positive relationship between abilities

and output, and monetary incentives and output .

2.1.2 The probability contract

Consider now the situation in which the agent is offered the probability contract. This incentive
scheme also offers a monetary compensation that depends on the agent’s performance on the
task. However, in contrast to the piece rate, the agent’s compensation depends on his own
performance on the task with some probability. The scheme has the particularity that it allows

2A necessary condition for (2) to attain a maximum of U(y) is a2byy < cyy(y, θ). This implies that the cost
function exhibits more curvature than the function capturing the utility from monetary rewards. Since I am
particularly interested in situations in which offering one of the contracts yields changes in labor supply at the
intensive margin, I impose this assumption wherever necessary.

5



the principal to choose this probability, giving her the potential to influence the agent’s decision
about how much output to deliver.

The timing of the contract stipulates that the principal moves first. Her choice consists of
selecting p ∈ (0, 1], the probability that the agent’s compensation depends on his performance
on the task. Once this choice has been made made, it is communicated to the agent before he
performs the task. This implies that the agent’s choice about how much output to deliver is
influenced by the probability that performance counts toward his earnings. Finally, once the
agent has worked on the task, a random device determines the agent’s compensation depends
on his performance on the task.

Given the aforementioned description, the probability contract can be formally written as
the lottery V = (By, p; 0, 1 − p) , where B > 0 represents the monetary compensation offered
to the agent for each unit of output that is delivered. When facing this contract, the utility of
the agent whose risk preferences are characterized by expected utility is

E(U(y)) = pb(By)− c(y, θ). (3)

The agent maximizes (3) choosing the production level y∗∗ that satisfies the following first-
order condition

pBby(By∗∗)− cy(y∗∗, θ) = 0. (4)

Equation (4) shows that a higher probability p generates higher output. The intuition
behind this comparative static is that the agent is motivated to deliver more output if it is
more likely that output is paid. Moreover, equation (4) also shows that that higher abilities on
the task, θ and higher monetary incentives, B yield higher optimal output.

As an illustration, consider the functional forms c(y, θ) = (y/θ)2

2 and b(By) = (By)1−γ

1−γ with
−1 < γ < 1. The optimal output level under these functional forms can be written as
y∗∗ =

(
θ2p
Bγ−1

) 1
1+γ . This closed-form solution depicts the positive effect of the agent’s higher

abilities, of higher monetary incentives, and of higher probabilities on output.

2.1.3 The probability contract and agents who distort probabilities

So far I have assumed that the agent evaluates probabilities accurately and the results of
the previous analysis hinge on this assumption. In this subsection, I let the agent distort
probabilities systematically as suggested by empirical evidence from the literature of decision-
making (Bleichrodt and Pinto, 2000; Abdellaoui, 2000; Gonzalez andWu, 1999; Wu and Gonzalez,
1996; Tversky and Fox, 1995; Tversky and Kahneman, 1992). As it will become evident, whether
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an agent distorts or not the probability that performance is evaluated is key to the effectiveness
of the probability contract.

Consider now an agent who weights the probability p using the probability weighting
function w(p) which satisfies the following properties

Assumption 3 (Probability weighting function): w(p) : [0, 1]→ [0, 1] with:

• w(p) is C2.

• wp(p) > 0 for all p ∈ [0, 1].

• w(0) = 0 and w(1) = 1.

• limp→0+ wp(p) =∞ limp→1− wp(p) =∞

• ∃p̃ ∈ (0, 1) such that w(p̃) = p̃, w(p) > p if p ∈ [0, p̃), and w(p) < p if p ∈ (p̃, 1].

• ∃p̂ ∈ (0, 1) such that wpp(p) < 0 if p ∈ [0, p̂) and πpp(p) > 0 if p ∈ (p̂, 1].

• −wpp(p)
wp(p) ∈ <

According to Assumption 3, the probability weighting function w(p) is a two-times continuously
differentiable function that maps the unit interval onto itself and exhibits a positive slope
everywhere. This function infinitely-overweights infinitesimal probabilities and infinitely-underweights
near-one probabilities.

Moreover, the probability weighting function contains three fixed points: one at p = 0,
another at p = 1, and an interior fixed point p̃ ∈ (0, 1). I also assume that w(p) has an inverse-
s shape, which implies concavity up to a point p̂ after which the function becomes strictly
convex. Note that I do not assume that p̃ = p̂, which is a characteristic of early representations
of probability weighting functions, and instead I let these two values differ. Finally, I impose
the assumption that the curvature of the probability weighting function is bounded. Hence, the
risk attitudes generated by the weighting function, alone, do not induce infinite risk-aversion
or infinite risk-seeking.

The assumption that the agent evaluates probabilities according to w(p) is not a sufficient
characterization of the agent’s preferences under risk. This is because a probability weighting
function is not a theory of risk itself. Hence, I assume that the agent’s preferences are
characterized either by rank-dependent utility (Quiggin, 1982), (RDU from here onward) or by
cumulative prospect theory (Tversky and Kahneman, 1992), (CPT from here onward). These
two theories of risk accommodate probability weighting functions.

Under RDU the utility that the agent derives from monetary outcomes is represented by
b(·) with the additional restriction that this function is either concave or linear. Thus, the

7



rank-dependent utility of the agent is similar to that in equation (3), with the differences that
p is replaced by w(p) and that byy ≤ 0.3

The agent maximizes his rank-dependent utility, choosing the production level, y∗∗R that
satisfies the following first-order condition.

w(p)Bby(By∗∗R )− cy(y∗∗R , θ) = 0. (5)

The influence of the parameters of the model on the optimal production level is similar to
those presented in previous analyses.The output level chosen by the agent increases with higher
skills θ and with higher monetary incentives B. Additionally, higher probabilities of p generate
higher output. However, in contrast to the case in which the agent evaluates probabilities
accurately, this increment is non-linear: a probability increment within the interval p ∈ [0, p̂)
leads to smaller production increments as compared to an equally large probability increment
taking place over the interval p ∈ (p̂, 1].

For the sake of illustration, consider the functional forms c(y, θ) = (y/θ)2

2 , and b(By) =
(By)1−γ

1−γ with 0 < γ < 1. The optimal output level under these functional forms has the

closed-form solution, y∗∗R =
(
θ2w(p)
Bγ−1

) 1
1+γ . This expression not only shows that higher monetary

incentives and abilities raise output levels, but also that higher p leads to higher output.
Under CPT, which is a more descriptive version of RDU, the agent also distorts probabilities

systematically, but in contrast to the agent with RDU preferences he evaluates the monetary
outcomes offered by the contract relative to a reference point r ≥ 0. The evaluation of outcomes
relative to r is captured by the value function v(y, r) that has the following properties.

Assumption 4 (CPT value function): v(y, r) is the piecewise function,

v(y, r) =

b(By −
r
p
) , if y ≥ r

pB
,

−λb( r
p
−By), if y < r

pB
.

with r ≥ 0, λ > 1, b(0) = 0, by(By − r
p
) ≥ 0 for all y, byy(By − r

p
) < 0 for y > r

pB
, and

byy(By − r
p
) > 0 for y < r

pB
.

The reference point r ≥ 0 represents a monetary amount that the agent expects to receive
3According to RDU preferences an individual facing a lottery (x1, p1;x2, p2; ...;xn, pn) ranks the prizes of the

lottery in an increasing arrangement x1 < x2 < ... < xn and assigns decision weights to each of these outcomes
according to their rank in the following way πn = w(pn), πn−1 = w(pn−1 + pn)−w(pn)), ..., π1 = 1−

∑n
j w(pn).

The ordered outcomes of the lottery enter the utility function through the function b(·) which is assumed to be
concave or linear. In the context of our model the decision-weights are equivalent to the probability weighting
functions, because in our setting an agent faces the lottery (p,By; 1 − p, 0), so that the decision weights are
π = w(p) and π = 1− w(p).
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(Koszegi and Rabin, 2006; Pokorny, 2008; Abeler et al., 2011), a monetary amount that he
received in the past, or an amount of money that he owns (Kahneman et al., 1991). Under the
probability contract, the reference point is formulated as r

p
. This is done to let the agent adjust

his reference with respect to the different probabilities embedded in the contract. For instance,
when the principal chooses lower probabilities, the agent adjusts his reference upward. This
means that the agent accounts for the small likelihood that performance is paid and internalizes
that he needs to deliver larger quantities of output to achieve the monetary target r.

Unlike the utility function in EUT and in RDU, the value function in CPT allows the agent
to have different risk attitudes for gains, all monetary outcomes above the reference point,
and losses, all monetary outcomes below the reference point. Above the reference point, the
value function is concave and below the reference point this function exhibits convexity. This
implies that the agent exhibits risk-averse attitudes in gains and risk-seeking attitudes in losses.
Additionally, the agent is loss-averse, which means that for him losses loom larger than gains.
This is represented by the parameter λ > 1 which enters the value function only for the domain
of losses. Hence, to be compensated for a loss amounting u(q), the agent is required to be paid
an indemnity accruing λu(−q).

Finally, an agent with CPT preferences evaluates the probabilities that gains realize using
the weighting function w(p). In addition, this agent evaluates the probabilities that losses
realize using a different weighting function, which I call z(p). The functions w(p) and z(p)
relate through the duality z(p) = 1−w(1− p). Hence, the probability weights that result from
ordering the outcomes according to a rank from most desirable to least desirable is equivalent
to the probability weights that result from ordering the outcomes according to a rank from
least desirable to most desirable. 4

All in all, the utility of the agent with CPT preferences is equal to

U(y, r) =


w(p)v(y, r) + (1− w(p)v(0, r)− c(y, θ), if y ≥ r

pB
= 0,

w(p)v(y, r) + z(p)v(0, r)− c(y, θ), if y ≥ r
pB

> 0,

z(p)v(y, r) + w(1− p))v(0, r)− c(y, θ), if r
pB

> y > 0.

(6)

Note that there is a key assumption made throughout the three considered theories of risk:
the monetary outcomes, whether evaluated according to final positions, as in EUT or RDU,
or relative to a reference point, as in CPT, are represented by the same function b(·). This
assumption is introduced to simplify the comparison between the two contracts.

4According to CPT an individual facing a lottery (x1, p1;x2, p2; ...;xn, pn) ranks the outcomes using an
increasing arrangement x1 < x2 < ...xr−1 < r < xr+1... < xn and evaluates the outcomes of the lottery relative
to r through the function v(y, r). The lottery outcomes xr+1, ...xn are gains and the outcomes x1, ...xr−1 are
losses. The individual assigns decision weights to gains in the following way πn = w(pn), πn−1 = w(pn−1 +pn)−
w(pn)), ..., πr+1 = 1−

∑n
j=r+1 w(pj) and assigns decision weights to losses in the following way π1 = z(p1), π2 =

z(p1 + p2)− z(p1)), ..., πr−1 = 1−
∑n
j=r−1 z(pj).
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The agent with CPT preferences delivers a level of output y∗∗C , which satisfies the following
system of equations

Bw(p)by
(
By∗∗C −

r

p

)
− cy(y∗∗C , θ) = 0, if y ≥ r

pB
, (7)

Bz(p)λby
(r
p
−By∗∗C

)
− cy(y∗∗C , θ) = 0, if y < r

pB
. (8)

Let us first consider the case in which the agent is in the domain of gains. According to
equation (7), output increases with the monetary incentives offered by the contract B and with
the abilities of the agent θ. Also, higher probabilities increase output in a non-linear way, with
probability increments within the region p ∈ (0, p̂) yielding smaller increases in output than
equivalent probability increments in the region p ∈ (p̂, 1).

When the agent is in the domain of losses, the parameters of the model have a similar
influence on the agent’s decision. Specifically, higher abilities, higher monetary incentives, and
higher probabilities increase output. Additionally, higher values of the loss aversion parameter,
λ lead to higher output. This comparative static captures that the agent is willing to deliver
higher levels of output to avoid experiencing losses.

Finally, the effect of a higher reference point r on output is ambiguous for both domains.
Higher reference points shift to the right the marginal value function in both domains, Bw(p)by(By−
r
p
) and Bz(p)λby( rp − By). This shift might suggest that higher reference points yield higher

output. However, the solution to equations (7) and (8) features multiple equilibria, with
equilibria at low levels of output becoming lower as r increases.5 The intuition of this result
is that higher reference points yield higher output up to a point after which they become
unattainable and demotivate the agent. This is a well-known regularity of endogenous reference
points (Dalton et al., 2016; Corgnet et al., 2015; Wu et al., 2008; Heath et al., 1999).

2.2 Contract comparisons

We are now in the position to compare the piece rate and the probability weighting contracts
with respect to the output that they deliver. To simplify the analysis, I let the two contracts
deliver similar monetary incentives for performance. This equivalence allows me to focus on

5To see how, consider a reference point of zero. In such a case only the curve capturing the marginal utility
of gains, Bw(p)by(By − r

p ), is relevant since only this curve attains positive solutions. The unique crossing
point of this concave curve with the marginal cost of output cy(y, θ) determines the optimal output level for
this situation. Now, consider a small increment of r. Since higher values of the reference point shift the curve
Bw(p)by(By− r

p ) to the right, the crossing point between cy(y, θ) and Bw(p)by(By− r
p ) also shifts to the right.

However, as r increases, the convex curve Bz(p)λby( rp − By) becomes relevant. Among the multiple crossings
between Bz(p)λby( rp − By) and cy(y, θ), there are equilibria at low levels of output which become lower as r
increases.
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the motivational effect of choosing different probabilities p. Formally, let B = a/p, so that
E(V ) = ay, which implies E(V ) = W .

Note that under the assumed equivalence, the probability contract nests the piece rate
contract. When the principal chooses to compensate output constantly, this is as p→ 1, then
B ≈ a. Moreover, in a setting in which the principal decides to evaluate output with very
little frequency, this is as p → 0+, the monetary incentives for delivering one additional unit
of output become very large to compensate for the low frequency at which performance in the
task is paid.

I rewrite the first-order conditions describing the optimal output levels delivered by the
agent under the different contracts in terms of the parameters a and p. Equation (4) can be
written as

aby

(
a

p
y∗∗
)
− cy(y∗∗, θ) = 0, (9)

equation (5) becomes

w(p)
p

aby

(
a

p
y∗∗R

)
− cy(y∗∗R , θ) = 0, (10)

and equations (7) and (8) become

a
w(p)
p

by
(a
p
y∗∗C −

r

p

)
− cy(y∗∗C , θ) = 0, if y ≥ r

a
, (11)

a
z(p)
p
λby

(r
p
− a

p
y∗∗C
)
− cy(y∗∗C , θ) = 0, if y < r

a
. (12)

Let us start comparing y∗ and y∗∗ from equations (2) and (9). This analysis compares the
output levels delivered by an agent that has risk preferences characterized by expected utility
when he faces each of the contracts. To build intuition about how these two production levels
compare, consider the case in which the functional forms c(y, θ) = (y/θ)2

2 and b(By) = (By)1−γ

1−γ are
assumed. Under these forms, a necessary condition for y∗∗ > y∗ is γ ∈ (−1, 0].This condition
implies that to supply higher production under the probability contract, the agent needs to
have risk-seeking attitudes. Hence, the effectiveness of the probability contract depends, in
this case, on the agent’s curvature of the basic utility b(·). Proposition 1 generalizes this result
using general b(·) and c(y, θ). All proofs are relegated to Appendix A.

Proposition 1: For an agent with ability θ̃ ∈ (0, 1) and who evaluates probabilities using
w(p) = p, then y∗∗ > y∗ if byy(·) ≥ 0.
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Proposition 1 shows that when the agent has risk attitudes characterized by expected utility
theory, his risk attitudes, which stem from the curvature of b(·), determine the effectiveness
of the probability contract. An agent with a curvature byy(·) < 0 experiences disutility from
the risk that is introduced by this contract and because of this disutility, he exhibits lower
performance as compared to the case in which he was offered the piece rate. Alternatively,
an agent with curvature byy(·) > 0 derives utility from the risk introduced by the probability
contract, which motivates him supply more performance than in the case in which he was
offered the piece rate. These results hold for any p ∈ (0, 1] that is chosen by the principal. The
first prediction of the model is based on this result.

Prediction 1: Agents with a concave basic utility deliver lower output under the probability
contract. This result is independent of the principal’s choice p ∈ (0, 1].

Let us now compare y∗ and y∗∗R from equations (2) and (10). This analysis compares the
performance levels of an agent whose risk preferences are characterized by RDU when facing
each of the contracts. To build intuition about how these two output levels compare, I first
analyze the case in which the functional forms c(y, θ) = (y/θ)2

2 and b(By) = (By)1−γ

1−γ , are assumed.
In contrast to the result from Proposition 1, an agent exhibiting concave utility for money, this
is an agent with 0 < γ < 1, might perform better under the probability weighting contract.
This is possible since the inequality y∗∗R ≥ y∗ holds if w(p)

p1−γ > 1, which does not only depend on
the curvature of the basic utility γ, but also on p, which is chosen by the principal.

To understand the influence of the principal’s choice p on the agent’s performance, consider
an agent with γ = 0. For him, y∗∗R ≥ y∗ is ensured if w(p)

p
> 1, which holds when the principal

chooses p ∈ (0, p̃). Hence, if the agent overweights the probability that is chosen by the
principal, he is motivated to deliver higher output under the probability contract. Let us now
relax the assumption that γ = 0. As the agent’s utility for money becomes more concave, the
condition ensuring y∗∗R ≥ y∗ becomes more stringent. Thus, to ensure w(p)

p1−γ > 1 the principal
needs to choose probabilities that induce larger degrees of overweighting of probabilities, which
occurs at subsets of smaller probabilities of p ∈ (0, p̃).6

Proposition 2 generalizes the result that agents who distort probabilities according to w(p),
could deliver higher performance under the probability contract, even when they have risk
averse attitudes stemming from the curvature of the basic utility b(·).

Proposition 2: For an agent with ability θ̃ ∈ (0, 1), basic utility with byy(·) ≤ 0, byp(·) > 0
6For γ > 0, the inequality w(p)

p1−γ > 1 can be expressed as ln(w(p))
ln(p) < (1 − γ), note that for this inequality

to hold, the expression ln(w(p))
ln(p) needs to become smaller as γ → 1, which holds for smaller probabilities which

ensure that ln(p) attains larger negative values than ln(w(p)).
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and limp→0+ byp(ayp ) = 0, and who evaluates probabilities according to w(p), then ∃p∗ ∈ (0, p̃)
such that y∗∗R > y∗ if p < p∗.

Proposition 2 shows that the principal could attain higher levels of performance if he offers
the probability contract. However, to achieve this result, she is required to choose a probability
p that induces a sufficiently large overweighting of probabilities in the agent. This result is
robust to the agent having a concave function b(·), which induces risk averse attitudes.

The intuition behind this result is that the overweighting of small probabilities acts as a risk-
seeking mechanism: by perceiving small probabilities to be larger, individuals more often choose
lotteries that are unlikely to happen. Hence, by choosing a probability that is overweighted
by the agent, the principal induces risk-seeking attitudes, which, when sufficiently strong, lead
the agent to derive more utility under contracts that feature risk. Moreover, since the agent’s
decision depends on the marginal utility of output, the risk seeking agent supplies more output
under the probability contract than under the piece rate.

There are two additional assumptions regarding the basic utility b(·) that guarantee the
result presented in Proposition 2. The condition byp(ay

∗∗
R

p
) > 0 is a reasonable and intuitive

restriction, it captures that lower probabilities induce higher basic disutility in the agent,
which generates to lower output. Moreover, limp→0+ byp(ay

∗∗
R

p
) = 0 captures that close to zero

probabilities yield a very high disutility, that motivate the agent not to deliver any output.
A number of commonly used utility functions in the literature satisfy this requirement, for
example

(
ay
p

)r
with 0 < r < 1.

The result that the agent supplies more output under the probability contract depending
on the probability chosen by the principal constitutes Prediction 2.

Prediction 2: Agents who distort probabilities systematically deliver higher output under
the probability contract when the choice of p yields a sufficiently large degree of overweighting
of probabilities.

Finally, l analyze the case in which the agent’s risk preferences are characterized by CPT. It
turns out that the conditions presented in Proposition 2 suffice to motivate the agent to supply
more output under the probability contract. Thus, setting p < p∗ induces risk-seeking attitudes
in the agent in both domains, making him more productive in the probability contract than in
the piece rate. The complete analysis is presented in Appendix B

Prediction 2a: Agents that evaluate outcomes around a reference point and who distort
probabilities systematically deliver higher output under the probability contract when the
principal’s choice, p, yields a sufficiently large overweighting of probabilities.
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With these predictions in mind, I run a controlled laboratory experiment in which subjects
exert effort on a task and are randomly assigned to different incentive schemes representing the
different contracts studied in this model. The experiment investigates the effectiveness of the
probability contract when it features either a high, medium, or a low probability. According to
Prediction 1, irrespective of the probability at which it is implemented, the probability contract
is outperformed by the piece rate if subjects have a concave b(·). However, if subjects distort
probabilities systematically, according to an inverse s-shape probability weighting function, we
can expect that the probability at which the contract is implemented matters. Specifically,
subjects assigned to the treatment with low probability should exhibit higher performance if
this probability is overweighted to a large degree. Moreover, the probability contract with high
probability should yield lower performance if the subjects underweights the high probability to
a large degree.

To conclude this section, let me emphasize that the focus of this theoretical framework was
the agent’s incentive compatibility constraint in the absence of any information asymmetries. In
Appendix C, I provide a more general setup in which the principal implementing the probability
contract also faces a participation constraint. Moreover, introducing information asymmetries
about the risk preferences of the agent and how this shapes the contracts that are offered by
the principal is a topic that is studied in a companion paper.

3 Experimental Method

The experiment was conducted at Tilburg University’s CentERLAB in April 2017. The participants
were all students at the university and were recruited using an electronic system. The data set
consists of 15 sessions with a total of 172 subjects. On average, a session lasted approximately
80 minutes. Between eight and eighteen subjects took part in a session. The currency used
in the experiment was Euros. I used Z-Tree (Fischbacher, 2007) to implement and run the
experiment. Subjects earned on average 15.83 Euros. The instructions of the experiment are
presented in Appendix D.

The experiment consisted of two parts. Upon arrival, participants were informed that
their earnings from either part one or those from part two would become their final earnings
and that this would be decided by chance at the end of the experiment. In the first part
of the experiment, subjects performed a task that required their effort and attention. The
task consisted of summing five two-digit numbers.7 Each summation featured randomly drawn
numbers by the computer, ensuring similar levels of difficulty among participants. When a

7This task has been widely used by other researchers (See for instance Niederle and Vesterlund (2007), and
Buser et al. (2014))
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participant knew the answer to a summation, he/she submitted it using the computer interface.
Immediately after submission, a new summation appeared on the participant’s screen and the
participant was invited to solve it. In total, subjects had 10 rounds of four minutes to complete
as many summations as they could.

There were four treatments that differed with respect to how monetary incentives were
given to the subjects. Participants were randomly assigned to one of these four treatments.
The baseline treatment is Piecerate. Subjects assigned to this treatment were paid 0.25 euros for
every correctly solved summation. The other three treatments also offered monetary incentives
contingent on the subject’s performance on the task. However, in these treatments performance
in some of the rounds, chosen at random at the end of the experiment, counted toward the
subject’s earnings.

The treatments LowPr, MePr and HiPr featured a low, a medium, and a high probability,
respectively, that performance in a round counted toward earnings. These treatments represent
the probability contract implemented with different probabilities. Specifically, in LowPr one
round was randomly chosen at the end of the experiment and only performance in that round
was paid. Similarly, in MePr and HiPr, three and five rounds, respectively, were randomly
chosen at the end of the experiment and performance in those rounds was paid. 8

As in the theoretical framework, the monetary compensation offered in Piecerate, LowPr,
MePr and HiPr was calibrated such that subjects received similar monetary incentives across
these treatments. For instance, a subject assigned to LowPr received 2.50 Euros for each correct
summation in the round that was chosen for compensation. This payment was tenfold of what a
subject assigned to Piecerate earned for each correct summation. Such difference in monetary
payments exactly accounts for the likelihood difference across treatments that performance
in a round is paid. Similarly, subjects assigned the MePr and HiPr treatments received a
compensation of 0.85 and 0.50 Euros for a correctly solved task for the rounds that were chosen
for compensation.9

The probabilities governing the treatments LowPr, MePr and HiPr were chosen according
to the most common findings in the literature of decision-making: subjects distort probabilities
according to an inverse-s shape probability weighting function with a fixed point at approximately
p = 1/3 (see Wakker (2010) pp.204 for a complete list of references). If subjects in this
experiment are not the exception, then they should overweight the probability that a round

8Note that the experiment was designed under the assumption of isolation or narrow bracketing, which is
strongly supported by the literature of experimental economics (See for instance Hey and Lee (2005) and Cubitt
et al. (1998)). Specifically, if a subject was to choose the amount of effort to exert in a task as if each round
was isolated, then indeed these treatments generate uncertainty about whether the supplied performance in a
round counts towards performance. However, if a subject treats the whole real-effort task as one decision, these
treatments do not generate uncertainty.

9These compensations correspond to three times and two times what a subject received in Piecerate,
respectively.
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is chosen with 10% chance, underweight the probability that a round is chosen with 50%
chance, and approximately evaluate accurately the probability that a round is chosen with 30%
chance. Therefore, the experiment was designed to observe performance differences across the
treatments if the incentives from probability distortions generate strong incentives.

Once the last round of the real-effort task was over, participants were asked to state their
beliefs about how well they did in the task. This belief elicitation is used to investigate whether
subjects anticipated the effect of the treatments on performance. A subject received a bonus of
one euro if his answer was exactly equal to the number of correct summations that he performed
over the ten rounds. This elicitation was unanticipated and the monetary compensation given
to the subject„ when he provided a correct answer, was small as compared to the other sources
of earnings in the experiment. These two characteristics ensure incentive compatibility since a
subject was rewarded for reporting accurate beliefs and he could not use the bonus to hedge
against his own performance in the real-effort task (Blanco et al., 2010).

In the second part of the experiment, the subjects’ task was to choose between two binary
lotteries in multiple occasions. This part of the experiment was designed to elicit the utility
and the probability weighting functions of every subject. To elicit these two functions, I used
the two-step method developed by Abdellaoui (2000). This method has the advantage of not
making assumptions about the way in which subjects evaluate probabilities nor about the way
in which subjects evaluate monetary outcomes. 10

This part of the experiment consisted of 11 decision sets. Each decision set elicited an
outcome or a probability that made a subject indifferent between two binary lotteries. Indifference
was found with a sequence of choices that reduced the space of outcomes/probabilities through
bisection. Specifically, a subject needed to express his preference between two initial lotteries.
After having made a choice, either an outcome or the probability, depending on the decision
set, of one lottery changed in a way that depended on the subject’s choice. When facing the
new situation, the subject was invited to choose between the two available lotteries again. This
process was repeated four times in every decision set. Table 1 presents an example illustrating
the bisection procedure. The left panel shows an example of the bisection procedure used to
elicit outcomes and the right panel shows an example of the bisection procedure used to elicit
probabilities. Participants knew that one of their choices would be chosen at random at the
end of the experiment, and that that random chosen lottery would be played to determine their
earnings of the second part of the experiment.

Decision sets 1 to 6 constitute the first step of Abdellaoui (2000)’s methodology. These
decision sets elicit a sequence of outcomes {x1, x2, x3, x4, x5, x6} that made the subject indifferent

10A drawback of this method is error propagation. Since the choices of a subject are chained, a mistake in
a choice could lead to mistakes in subsequent choices. I overcome this disadvantage by adding questions in
between that are not used in the analysis.
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between a lottery L = (xj−1, 2/3; 0.5, 1/3) and a lottery R = (xj, 2/3; 0, 1/3) for any j =
{1, ..., 6}. These lotteries were designed so that the elicited sequence of outcomes yields utility
levels that are equally spaced, i.e. u(xj)− u(xj−1) = u(xj−1)− u(xj−2).11 The starting point of
the program, x0, was set such that the monetary outcomes used in the lotteries always reflected
the earnings of the subject in the first part of the experiment. Specifically, x0 was set at 2/5
of what a subject earned in the first part of the experiment. The advantage of using monetary
outcomes of similar magnitude as the incentives offered in the real-effort task, is that I can
correlate the behavior of the subjects in the task with the elicited preferences. Subjects were
not informed about this calibration and were not informed about their earnings in the first part
of the experiment until the end of the session.

Decision sets 7 to 11 constitute the second step and were designed to elicit a sequence
of probabilities w−1(p1), w−1(p2), w−1(p3), w−1(p4) and w−1(p5) with pj−1 = j − 1/6 and j =
2, ..., 6. These probabilities made the subjects indifferent between the lottery L = (x6, pj−1;x0, 1−
pj−1) and the degenerate lottery xj−1. The elicited probabilities yield equally spaced probability
weights, i.e. w(pj)− w(pj−1) = w(pj−1)− w(pj−2).

Once the second part of the experiment was over, subjects were presented with feedback
about their performance in the real-effort task, the round(s) that counted toward payment
if assigned to LowPr, MePr or HiPr and whether their belief was correct. Also, subjects
were informed about the lottery that was chosen for compensation for the second part of
the experiment, its realization, and their final earnings. Finally, participants completed a
questionnaire that asked them about their willingness to take risks, such as willingness to
take health-related risks, willingness to take job-related risks, willingness to take risks while
driving, and general willingness to take risks. These questions where taken from Dohmen et al.
(2012).The questionnaire also featured measures of self-efficacy and a self-reported measure of
mathematical abilities. Appendix D presents the questionnaire.

4 Treatment effects

4.1 Performance

I compare the average performance produced by each treatment. Performance is defined as
the total number of correctly solved summations by a participant in all rounds. Table 2 shows
the descriptive statistics of performance by treatment. This table suggests that the probability
contract implemented with 10% probability delivers higher performance than the piece rate
contract. Specifically, a subject assigned to the LowPr treatment solves on average 20.56 %

11Note that indifference between L and R implies w(1/3)u(xj−1) + (1−w(1/3))u(0.5) = w(1/3)u(xj) + (1−
w(1/3))u(0) which is equivalent to u(0.5)− u(0) = u(xj)− u(xj−1) for any j = {1, ..., 6}
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Table 1: Example of the Abdellaoui’s (2000) algorithm
# Alternatives Interval Choice Alternatives Probabilities Choice

1 L=(1, .66; .50, .33)
R=(3.7, .66; 0, .33) [1, 6.4 ] L L=(x1, 1)

R=(x6, .50; 1, 0.5) [0, 1] L

2 L=(1, .66; .50, .33)
R=(5.05, .66; 0, .33) [3.7,6.4] R L=(x1, 1)

R=(x6, .75; 1, 0.25) [.5, 1] L

3 L=(1, .66; .50, .33)
R=(4.38, .66; 0, .33) [3.7,5.05] R L=(x1, 1)

R=(x6, .87; 1, 0.13) [.75, 1] R

4 L=(1, .66; .50, .33)
R=(4.04, .66; 0, .33) [3.7,4.38] L L=(x1, 1)

R=(x6, .81; 1, 0.19) [.75, .87] L

5 L=(1, .66; .50, .33)
R=(4.21, .66; 0, .33) [4.04,4.38] L L=(x1, 1)

R=(x6, .85; 1, 0.15) [.81, .87] L

End x1 ∈[4.21, 4.38] p1 ∈[85, 87]
Note: This table illustrates the bisection method used to elicit utility and probability functions. The lotteries in this table are expressed
in the form (A, p;B, 1− p) where A and B are prizes, and p is a probability. The left panel presents the bisection method to elicit utility
and the right panel presents the bisection method to elicit probability functions.

more summations than a subject assigned the Piecerate (t(84.454) = 2.361, p = 0.010). The
effect size of this difference is 0.5 standard deviations which is significantly different from zero.12

By contrast, the probability contract implemented with higher probabilities produces similar
average performance as compared to the piece rate. A subject assigned the MePr treatment
solved on average 87.9 correct summations, and a subject assigned the HIPR treatment solved
on average 83.7 correct summations, neither of which are statistically different from the average
correct summations under Piecerate, 81.37 summations.13

Among the three treatments representing the probability contract, the LowPr produces
higher average performance. This contract yields an increase in average performance of 17% as
compared to the HiPr (t(75.215) = 2.232, p = 0.014), and an increase in average performance
of 11% when compared to MePr (t(79.575) = 1.478, p = 0.0716). All in all, the analysis
of the descriptive statistics of performance demonstrates that LowPr yields higher average
performance than the Piecerate and HiPr treatments.14

To control for factors that may influence these results other than the treatment assignment,
12The significance of this effect size was evaluated with a bootstrapped 95% confidence interval with 10000

repetitions.
13The t-tests of these comparisons are (t(83) = 1.005, p = .159) and (t(82.44) = −0.386, p = .692),

respectively.
14An alternative analysis is to compare average performance by round and by treatment rather than analyzing

the sum of correct summations by treatment. Overall, I find the same qualitative results. I find evidence to
reject the null hypothesis that LowPr and Piecerate produce on average the same performance in a round
(p = 0.010). Moreover, I find evidence to reject the null hypothesis that LowPr and HIPR yield on average the
same performance by round (p = 0.013), but I find no evidence to reject the null that LowPr and MePr produce
on average the same performance by round once the Bonferroni correction is performed, (p = 0.07). Finally, I
find no evidence to reject the null hypothesis that MePr and HiPr yield the same average performance by round
(p = 0.47) and that Piecerate produces the same average performance than MePr and HiPr, (p = 0.69) and
(p = 0.32), respectively.
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Table 2: Descriptive statistics of performance by treatments

Treatment LowPr MePr HiPr Piecerate Total
Mean 98.116 87.9 83.75 81.377 87.686
Median 91 87 82.5 77 85
St.dev. 34.659 28.134 24.358 31.684 30.412
N 43 40 44 45 172
Note: This table presents the average, median and standard
deviations of performance in the experiment by experimental
treatment. Performance is defined as the total number of summations
produced by a subject in the real-effort task.

I regressed the subject’s performance on treatment dummies, the subject’s gender, self-reported
measures of risk attitudes, a self-reported measure of self-efficacy on the task, a self-reported
measure of mathematical skills, and performance beliefs. Table 3 presents the estimates of
the regression. All in all, the results of the regression analysis confirm the aforementioned
findings. First, the coefficient associated with the LowPr treatment is significant and positive,
which supports the result that a subject assigned to this treatment produces higher average
performance than a subject assigned the Piecerate treatment. Second, the estimate of LowPr
is significantly higher than the estimate associated with HiPr (F (1, 159) = 6.58). Also, the
estimate of LowPr is significantly higher that of MePr (F (1, 159) = 6.02). Therefore, among
the probability contracts, the LowPr yields the highest performance.

An explanation for these results is that the probability contract with 10% yields higher
performance because, as opposed to the piece rate, it circumvents wealth effects. This could
explain the higher average performance of subjects assigned to LowPr. To dispel this possibility,
I show that this difference in performance appears as of the first round, which demonstrates
that in the absence of wealth effects the LowPr outperforms the piece rate. Subjects assigned
to LowPr achieve on average 7.44 tasks in the first round, which is significantly higher than
the 6.46 average tasks solved by the subjects assigned to Piecerate (t(85.54) = 1.443, p = 0.07).
Also, I find no average differences in performance in the first round between the Piecerate and
MePr and the Piecerate and HiPr.

The results of the real-effort task support Prediction 2 and Prediction 2a. These predictions
state that the efficiency of the probability contract depends on the probability at which this
contract is implemented. From the performance data it seems that subjects overweight the
probability p = 0.10 to a large degree, given that they exhibit higher performance under
the probability contract with p = 0.10 than under Piecerate. However,from this data it also
seems that subjects do not underweight the probability p = 0.5 since HiPr and Piecerate
yield on average similar performance levels. The latter result is at odds with the majority of
the results from the literature that find that individuals underweight probabilities after the
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range p ∈ [0.3, 0.4]. Section 5 demonstrates that subjects in the experiment overweight small
probabilities and do not underweight large and moderate probabilities.

4.2 Performance Beliefs

The previous subsection demonstrated that the probability contract yields higher performance
than the piece rate. In this subsection, I investigate whether the subjects understand and
anticipate the non-monetary incentives included in the probability contract. To that end, I
analyze the data on the subject’s beliefs about their own performance in the task. If the
subjects understood these incentives, their beliefs about their own performance should reflect
the performance differences across the treatments.

Table 4 presents the descriptive statistics of the performance beliefs by treatment. Overall, I
find no belief differences between the treatments, which suggests that subjects do not anticipate
the non-monetary incentives of the contract. Particularly, the average beliefs of the subjects
in LowPr, MePr, and HiPr are not statistically different from those of subjects assigned to
Piecerate.15 Also, I find no significance difference in average performance beliefs between the
LowPr and the MePr(t(80.749) = 0.206, p = 0.837), the HiPr and MePr (t(78.819) = 0.956, p =
0.3418) or the LowPr and HiPr treatments(t(83.241) = 1.1885, p = .1190).

To account for factors that may be driving these results other than the treatment assignment,
I regress the performance belief of a subject on treatment dummies, the subject’s gender, self-
reported measures of risk attitudes over different domains, a self-reported measure of self-
efficacy on the task, and a self-reported measure of mathematical skills. Table 5 presents
the OLS estimates. The regression estimates corroborate the aforementioned results. The
coefficients associated with the MePr, HiPr and LowPr treatments are not significant, suggesting
no statistical differences between the average beliefs of subjects assigned to these treatments
and those of subjects assigned to Piecerate. Furthermore, there is no evidence to reject the null
hypothesis that the coefficients associated with LowPr and MePr are equal (F (1, 160) = 0.29),
as well as no evidence to reject the null hypothesis that the coefficients of LowPr and HiPr are
equal (F (1, 160) = 0.09).

All in all, the belief data suggest that subjects do not internalize the psychological incentives
included in the probability contract. Understanding the reasons behind the gap between
performance and performance beliefs is beyond the scope of this paper and requires methodologies
that allow the researcher to study in more detail the cognitive processes underlying probability
judgments. I conjecture that this gap can be explained in light of the findings of Berns et al.
(2008), who show that the perception of probabilities primarily involves the perceptual stage of

15The statistics of these t-tests are (t(85.98) = 1.190, p = 0.1186), (t(82.843) = 0.976, p = 0.331), and
(t(84.91) = −0.10, p = 0.920), respectively.
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Table 3: Regression of performance on treatments
(1) (2) (3)

Performance Performance Performance
LowPr 16.739∗∗ 16.649∗∗ 16.567∗∗∗

(7.090) (6.448) (6.193)
MePr 6.522 1.839 0.016

(6.487) (6.130) (6.236)
HiPr 2.372 1.844 -0.388

(5.985) (5.474) (5.669)
Gender -2.326 0.689

(4.413) (4.567)
Task difficulty -6.412∗∗∗ -6.231∗∗∗

(1.920) (1.920)
Math skills 3.071∗∗ 3.864∗∗∗

(1.245) (1.271)
Self-efficacy 0.516 -0.084

(1.168) (1.123)
Risk general -2.431∗∗

(0.973)
Risk occupation -0.180

(0.843)
Risk health 0.012

(0.947)
Risk drive 2.030∗∗

(0.960)
Constant 81.378∗∗∗ 74.735∗∗∗ 79.340∗∗∗

(4.726) (9.120) (9.383)
R2 0.045 0.25 0.291
Observations 172 172 172
Note: This table presents the estimates of the Ordinary Least Squares
regression of the model Performancei = β0 + β1MePr + β2LowPr +
β3HiPr + Controls′Γ + εi, with E(ε|MepR,LowPr,HiPr, Controls) = 0.
“Performance” is the number of correctly solved sums in the first part of the
experiment, “LowPr”, “MePr” and “HiPr” are dummy variables that capture
whether the subject was assigned to the treatment with low, medium or high
probability, respectively. The controls considered in this model are “Gender”
a variable which indicates the gender of the participant, “Math Skills ” which
captures the self-reported mathematical skills of the subject, “Task Difficulty ”
which captures the self-reported difficulty to perform the task.“Risk general”,
“Risk occupation”, “Risk health”, and “Risk drive, capture the self-reported
willingness to take risks in general, at their studies, with their health and while
driving. Robust standard errors in parenthesis. *** denotes significance at the
0.01 level, ** denotes significance at the 0.05 level, * denotes significance at
the 0.1 level.

21



Table 4: Descriptive statistics of performance beliefs by treatments

Treatment LowPr MePr HiPr Piecerate Total
Mean 83.86 82.025 74.022 73.177 78.123
Median 75 80 75 64 74.5
St. Dev. 40.864 40.156 36.139 43.318 40.147
N 43 40 44 45 172
Note: This table presents the average, median and standard
deviations of performance beliefs by treatment. A performance
belief is the estimate of a subject about the number of correct
summations solved in the real-effort task.

the cognitive process rather than stages of consciousness that allow individuals to internalize
these distortions. Without being able to internalize the perception of probabilities, subjects are
unlikely to understand the non-monetary incentives of the probability contract as it is suggested
by the beliefs data.

5 The probability weighting functions

A crucial assumption underlying Prediction 2 and Prediction 2a is that the agent distorts
probabilities in a systematic way, overweighting small probabilities and underweighting large to
moderate probabilities. In this section I investigate whether subjects exhibit such a systematic
pattern of probability weighting. To that end I analyze the data from the second part of the
experiment, which features the subjects’ preferences over lotteries that were designed to elicit
their utility and probability weighting functions. An unbiased analysis of the data suggests that
subjects severely overweighted small probabilities. Therefore, the risk attitudes that stem from
the probability weighting functions of the subjects could explain the aforementioned treatment
differences.

As explained in section 3, the second part of the experiment consisted of 11 decision sets.
Decision sets 1 to 6 elicited the sequence of outcomes {x1, x2, x3, x4, x5, x6}. With these data
I can analyze the properties of the utility functions of the subjects. I find that the majority
of subjects exhibit linear utility functions over the monetary outcomes that were considered
with the lotteries. This finding is in line with the notion that individuals exhibit linear utility
over small monetary outcomes (Rabin, 2000) and that utility elicitations using Wakker and
Deneffe (1996)’s trade-off method require large monetary outcomes to capture the curvature of
the utility function of a subject. Appendix E presents the complete analysis of these data.

Decision sets 7 to 11 were designed to elicit the sequence of probabilities

{w−1(p1), w−1(p2), w−1(p3), w−1(p4), w−1(p5)}
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Table 5: Regression of performance beliefs on treatments
(1) (2) (3)

Beliefs Beliefs Beliefs
LowPr 10.683 7.644 6.861

(8.977) (8.409) (8.507)
MePr 8.847 3.601 2.041

(9.055) (8.818) (9.053)
HiPr 0.845 0.755 -0.571

(8.452) (7.983) (8.183)
Gender 13.912∗∗ 14.770∗∗

(5.816) (5.857)
Task difficulty -5.812∗∗ -5.897∗∗

(2.645) (2.664)
Math skills 3.907∗∗ 4.255∗∗

(1.766) (1.856)
Self-efficacy -0.488 -0.720

(1.527) (1.546)
Risk general -0.792

(1.301)
Risk occupation -0.322

(1.381)
Risk health 1.518

(1.563)
Risk drive 0.360

(1.408)
Constant 73.178∗∗∗ 59.412∗∗∗ 59.362∗∗∗

(6.461) (13.487) (13.877)
R2 0.014 0.165 0.174
Observations 172 172 172
Note: This table presents the estimates of the Ordinary Least Squares
regression of the model Beliefi = β0 + β1MePr + β2LowPr +
β3HiPr+Controls′Γ + εi, with E(ε|MepR,LowPr,HiPr, Controls) =
0. “Beliefs” is the subject’s predicted number of correctly solved sums
in the first part of the experiment , “LowPr”, “MePr” and “HiPr”
are dummy variables that capture whether the subject was assigned to
the treatment with low, medium or high probability, respectively. The
controls considered in this model are “Gender” which that indicates the
gender of the participant, “Math Skills ” which captures the self-reported
mathematical skills of the subject, “Task Difficulty ” which captures
the self-reported difficulty to perform the task.“Risk general”, “Risk
occupation”, “Risk health”, and “Risk drive, capture the self-reported
willingness to take risks in general, at their studies, with their health
and while driving. Robust standard errors presented in parentheses.
*** denotes significance at the 0.01 level, ** denotes significance at the
0.05 level, * denotes significance at the 0.1 level.
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. These data is analyzed to understand the properties of the probability weighting function of
the subjects. I first analyze these data performing the analyses presented in Abdellaoui (2000)
and Bleichrodt and Pinto (2000). These analyses feature individual classifications as well as
analyses using averages and medians of each elicited probability. I also analyze the data using
a variety of regressions at the individual level. I show that in the presence of large individual
variation, the latter analysis yields more reliable conclusions.

Analysis at the individual level

The first analysis of the data is done at the individual level and is based on Bleichrodt and Pinto
(2000). The aim of this analysis is to perform a classification of subjects according to the shape
of their probability weighting function. To perform this classification, I construct the variable
∂jj−1 ≡

w(pj)−w(pj−1)
w−1(pj)−w−1(pj−1) , which denotes the average slope of the probability weighting function of

a subject between the successive probabilities j and j−1, and the variable 5j
j−1 ≡ ∂jj−1−∂

j−1
j−2 ,

which denotes the change of the average slope of the weighting function between successive
probabilities.

Given that the treatments seek to study the motivational effect of probability distortions
at small and large probabilities, I am especially interested in the shape of the probability
weighting function at the smallest and largest considered probabilities. Thus, the sign of 50.33

0.16

and that of 51
0.83 are computed for each subject. If a subject exhibits 50.33

0.16 < 0, then his
probability weighting function has the property of lower subadditivity (LS), implying that
near-zero probability intervals have larger weights than mid-range probability intervals. In
other words, a subject with LS overweights small probabilities. Moreover, if a subject has
51

0.83 > 0, then his probability weighting function exhibits the property of upper subadditivity
(US), which means that near-one probability intervals have larger weights than mid-range
probability intervals. This implies that this subject underweights large probabilities.

Table 6 shows that 38% of subjects exhibit LS, so the majority of subjects did not overweight
small probabilities. Moreover, 75% of the subjects exhibit US and thus underweight large
probabilities. Furthermore, only 31% of the subjects present probability weighting functions
with both LS and US.

Additionally, the signs of5j
j−1 as j increases allows me to examine the shape of the weighting

function of a subject throughout all the considered probabilities. A subject was classified as
having a concave probability weighting function if at least three (out of five) 5j

j−1 had a
negative sign and he did not exhibit US. Alternatively, a subject had a convex probability
weighting function if at least three (out of five) 5j

j−1 were positive and he did not exhibit LS.
Note that these classifications allow for the possibility of response error.

Table 6 shows that 51% of the subjects exhibit concave weighting functions and that 13%
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of the subjects exhibit convex probability weighting functions. Thus, under the framework
of rank-dependence, more subjects in the experiment were pessimistic than optimistic. This
conclusion is consistent with the aforementioned finding that most of the subjects exhibited LS
and did not exhibit US. Furthermore, the proportion of subjects in the experiment with either
concave or convex probability weighting functions is higher than that reported by Bleichrodt
and Pinto (2000), who finds that only 15% of the subjects have probability weighting functions
with either of these shapes.

Table 7 shows that the majority of subjects in the experiment have probability weighting
functions with the certainty effect (CE) exceeding the possibility effect (PE). For these subjects
the probability weighting function is steeper at the highest considered probability than at the
lowest considered probability, i.e.w(1

6) < 1 − w(5
6). However, the proportion of subjects for

which PE exceeds CE is not negligible as it constitutes close to 42% of the subjects.
To account for the possibility that subjects have CPT preferences with reference points other

than zero, I perform the previous analyses with the additional assumption that the monetary
equivalent of a subject’s performance belief in the real-effort task is his reference point.16 This
assumption presumes that a subject evaluates the outcomes of the lotteries relative to his
expectations about his current earnings in the experiment (Koszegi and Rabin, 2006). This
non-zero reference point is addressed as “Beliefs” from here onward.

It is important to emphasize that the nature and intuition of the classification under the
assumption that Beliefs is the reference point differs from the original classification. The reason
for this difference is that the data does not admit enough 5j

j−1s to analyze the shape of the
probability weighting function of a subject for the domain of gains as well as for the domain of
losses. Instead, I analyze the shape of a subject’s probability weighting function for the domain
wherein the majority of his 5j

j−1s lie. Thus, this analysis could shed light on whether subjects
who have most of their choices in the domain of losses exhibit weighting functions of different
shape than subjects who have most of their choices in the domain of gains.

The results are also presented in Table 6 and Table 7. I find that the main conclusions of the
original analysis are robust to the assumption that Beliefs is the reference point. Specifically, I
find that there is a larger proportion of subjects with US than those with LS in the domain of
gains and in the domain of losses. Moreover, I find that the proportion of subjects exhibiting
concave and/or convex weighting functions is very large and comparable across the two domains.
Finally, the data suggest that in both domains, more subjects have probability weighting
functions with the CE exceeding the PE.

In conclusion, the analysis of the data at the individual level suggest that the majority
16Given that the lotteries in the second part of the experiment only feature positive prizes, subjects with CPT

preferences with a reference point equal to zero cannot be distinguished from subjects with RDU preferences.
However, subjects with CPT preferences with reference points larger than zero can be distinguished from subjects
with RDU preferences, since their preferences in the two domains were elicited and can therefore be analyzed.
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Table 6: Classification of subjects according to the shape of their probability weighting function

Reference Point Domain Convex Concave LS US LS & US
No/Zero No/Gains 89 23 66 129 53
Beliefs Gains 45 9 28 63 22
Beliefs Losses 44 14 38 66 31
Note: This table presents the classification of subjects according to the shape
of their probability weighting function. Subjects are classified as having a
probability weighting function with upper subadditivity, lower subadditivity or
both. Also, subjects are classified as having a convex or concave probability
weighting function if they do not exhibit lower subadditivity and upper
subadditivity respectively. This classification depends on the sign of 5jj−1.
The first row presents the classification when the analysis is performed with
all the data. The second and third columns feature the analysis assuming that
Beliefs is a reference point. The second row presents the analysis when the
monetary outcomes of the lotteries are above the reference point, whereas the
third row presents the analysis when the monetary outcomes of the lotteries
are below the reference point.

of subjects underweights probabilities. Under the framework of rank-dependence, this finding
implies that most of the subjects had a pessimistic attitude about the realization of the outcomes
of the lotteries. This conclusion is enhanced by the result that for more subjects the CE exceeds
PE. A convex probability weighting function or a function that features underweighting of some
of the considered probabilities can capture such pessimism.

Analysis at the aggregated level

The second analysis features the sequence {w−1(p1), w−1(p2), w−1(p3), w−1(p4), w−1(p5)} aggregated
across all the subjects. Table 8 presents the medians, means and standard deviations of the
aggregated sequence. Additionally, Table 9 presents sign tests that investigate the number of
positive and negative counts of the difference w−1(pj) − j/6 for each j = {1, ..., 5}. These
two tables suggest that subjects on average underweighted small probabilities. Specifically, the
weight w(p) = 1/6 is on average mapped by the probability p = .306, which is significantly larger
than 1/6, and the weight w(p) = 1/3 is on average mapped by the probability p = .448, which is
significantly larger than 1/3. Additionally, I do not find evidence that subjects underweighted
or overweighted large probabilities. The weight w(p) = 2/3 is on average mapped by the
probability p = 0.638 and the weight w(p) = 5/6 is on average mapped by the probability
p = 0.78, both of which are not statistically different from 2/3 and 5/6, respectively.

I reach similar conclusions when it is assumed that subjects have CPT preferences with
Beliefs as the reference point. The probability that maps w(p) = 1/6 is significantly larger
than 1/6 for the domain of gains and for the domain of losses, and the probability that maps
w(p) = 1/3 is larger than 1/3 but only for the domain of gains. One difference with respect
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Table 7: Classification of subjects according to the steepness near certainty and near possibility

Reference Point Domain CE PE CE =PE
No/Zero No/Gains 73 83 16
Beliefs Gains 31 35 13
Beliefs Losses 42 48 3
Note: This table presents the classification of subjects
according to the slope of their probability weighting
function at the lowest and largest probabilities considered.
Subjects are classified as having probability weighting
function where the certainty effect (CE) exceeds the
possibility effect (PE) if the slope of the function at
w−1(5/6) exceeds the slope at w−1(1/6). Subjects were
classified with a probability weighting where PE exceeds
CE if the slope of the function at w−1(1/6) exceeds the
slope at w−1(5/6).

to the original analysis which is that I find weak evidence that subjects in the domain of
gains underweight large probabilities17. I do not find evidence of such underweighting of large
probabilities for the domain of losses.

The analysis of the aggregated data also suggests that subjects underweighted small probabilities.
This conclusion contradicts most of the regularities from the literature of decision-making and
probability judgments. For instance, it contradicts the findings by Abdellaoui (2000), from who
the elicitation of probability weights was borrowed, and those by Bleichrodt and Pinto (2000).

Individual variation and regression analyses

The previous analyses of the data could yield erroneous conclusions since they do not account
for all sources of individual variation in the data. This is not a minor problem, given that
individual variation is sizable in the data as it is evidenced by the standard deviation of the
elicited probabilities presented in Table 8. On the one hand, the individual analysis cannot
inform us about the relevance of the subjects’ deviation from perceiving probabilities accurately.
This is, a small deviation from the accurate perception of probabilities is treated in the same
way as a large deviation. On the other hand, extrapolating the average probability weighting
function from the averages of each of the elicited probabilities fails to take into account that
with their choices, individuals could deviate in various and different ways from each average
probability. Omitting this variation yields downward biased estimates when a linear relationship
between weights and probabilities is assumed. 18

17The difference w−1(5/6)− 5/6 > 0 is only significant at the 10% significance level
18To see how denote with p̄j the average of some probability j. Assume that the relationship between weights

and probabilities is described by ¯w(pj) = c1 + s1p̄j + εj . However, the researcher chooses to represent this
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Table 8: Means, Medians and Standard Deviation of w−1(p)

Probability Mean Median SD Mean Median SD Mean Median SD
w−1(1/6) .306 .234 .240 .412 .390 .298 .249 .234 .273
w−1(2/6) .448 .406 .252 .553 .578 .298 .383 . 359 .289
w−1(3/6) .524 .484 .253 .582 .609 .308 .492 .484 .298
w−1(4/6) .638 .671 .244 .677 .765 .299 .628 .640 .282
w−1(5/6) .781 .859 .217 .807 .890 .233 .763 .828 .224
Ref.Point No/Zero Beliefs Beliefs
Domain No/Gains Gains Losses
N 173 79 93
Note: This table presents the average, medians and standard deviation of the sequence
w−1(1/6), w−1(2/6), w−1(3/6), w−1(4/6), w−1(5/6)) elicited in the second part of the experiment using
decision sets 7 until 11. Columns 2,3, and 4, present the mean, median, and standard deviation of the
probabilities respectively. Columns 5,6, and 7 present the mean, median, and standard deviation of
the sequence of probabilities when the reference point is assumed to be the monetary equivalent of a
subject’s beliefs about performance and the outcomes implied for the lotteries are below the reference
point. Columns 8,9, and 10 present the mean, median, and standard deviation of the sequence of the
sequence of probabilities when the lottery prizes are above the reference point.

Table 9: Counts of w−1(p)− p > 0 and w−1(p)− p < 0

w−1(p)− p) >0 <0 >0 <0 >0 <0
p = 1/6 117∗∗∗ 55 61∗∗∗ 18 56∗∗ 37
p = 2/6 105∗∗∗ 67 55∗∗∗ 24 50 43
p = 3/6 79 93 40 39 39 54
p = 4/6 87 85 44 35 43 50
p = 5/6 89 83 49 ∗ 30 40 53
Ref.Point No/Zero Beliefs Beliefs
Domain No/Gains Gains Losses
N 173 79 93
Note: This table presents the number of positive and negative
events of the difference w−1(p)− p for p = 1/6, 2/6, 1/2, 4/6, 5/6.
The significance of the count is tested with one tailed sign tests.
Columns 2 and 3 present the number of events using all the
data. Columns 4, 6, 7 and 8 present the number of events
when the monetary equivalent of a subject’s beliefs about his own
performance is assumed to be his reference point. Columns 4 and
5 present the number of negative and positive events when the
lottery prizes are above the assumed reference point. Columns 6
and 7 present the number of negative and positive events when
the lottery prizes are below this reference point. *** denotes
significance at the 0.01 level, ** denotes significance at the 0.05
level, * denotes significance at the 0.1 level.
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In this section, I analyze the data on probabilities performing regressions of the elicited
probabilities on probability weights at the individual level. Such analysis fully accounts for
individual variation in the data, since individual variation between and within probabilities
are included in the variance-covariance matrix of the different regressions.19 Furthermore,
throughout this analysis, I compare the estimates of the regressions with those reported in
previous studies. These comparatives are useful since they could inform us about the degree to
which subjects distorted probabilities in the experiment. However, it is important to emphasize
that any resulting difference cannot only be attributed to differences in preferences but also,
for example, to the different methods used to elicit preferences, the type of uncertainty used
and the monetary stakes used to elicit the subject’s preferences.

Table 10 presents the regression estimates when different functional forms are assumed. I
use the most relevant and well-known functions proposed in the literature. Let us first study
the case in which it is assumed that the probability weighting function follows w(p) = c + sp.
This linear function is referred as the neo-additive weighting function (Chateauneuf et al., 2007;
Wakker, 2010). To allow for c+ s > 1, which is what the previous analyses of the data suggest,
I perform the regressions allowing for truncation at w(0) and w(1). The maximum likelihood
estimation yields estimates that comply with ĉ > 0 and ĉ+ŝ < 1. Therefore, subjects on average
overweighted small and medium-ranged probabilities and underweighted large probabilities.20

Furthermore, the estimation yields a larger constant and a smaller slope than in Abdellaoui
et al. (2011), which implies that subjects in my experiment overweighted small probabilities
more severely and also overweighted medium-ranged probabilities.

The function proposed by Tversky and Kahneman (1992) describes a relationship between
probabilities and weights captured by w(p) = pψ

(pψ+(1−p)(1−ψ))
1
ψ
. Table 10 presents the estimates

of this parametric form when the non-linear least squares method is used. I find a lower estimate
than those reported in previous studies, which are in the range ψ̂ ∈ [0.60, 0.75] (See Bleichrodt
and Pinto (2000), Abdellaoui (2000), Wu and Gonzalez (1996), Camerer and Ho (1994), and
Tversky and Kahneman (1992) ). Thus, subjects in the experiment had an inverse-s average
probability weighting function inducing more severe overweighting of small probabilities than
that documented in previous studies.

Finally, Prelec (1998) proposed a two-parameter function i.e. w(p) = exp(−β(−ln(p)))α.

relationship using w(pij) = c2 + s2pij + εij . The OLS estimates of each process are ŝ1 = Cov(p̄j , ¯w(pj))
V ar(p̄j) and

ŝ2 = Cov(pij ,w(pij))
V ar(pij) . By construction we have that V ar(pij) ≥ V ar(p̄j). This is because V ar(pij) captures

individual variation within probabilities (in each pj) and between probabilities (across p′js), whereas V ar(p̄j)
only captures individual variation between probabilities. Moreover, given that Abdellaoui’s (2000) method
imposes ¯w(pij) = w(pj), then Cov(pij , w(pij)) = Cov(pij , ¯w(pj)) ≤ Cov(p̄j , ¯w(pj)). Therefore, ŝ1 ≥ ŝ2.

19However, a disadvantage of such an analysis is that I assume some functional form of the probability
weighting function, which imposes structure on the relationship between weights and probabilities.

20When estimating the regression without truncation, these conclusions also hold.
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When this function is assumed, the resulting estimate α̂, which is statistically lower than one,
suggests that the average probability function has an inverse-s shape. Moreover, the estimate
β̂, which is also statistically lower than one, suggests high elevation of the weighting function.
Previous estimations of this probability weighting function report larger values of α and β

(Murphy and Ten Brincke, 2018; Haridon et al., 2018; Fehr-duda, 2012; Abdellaoui et al., 2011;
Bleichrodt and Pinto, 2000). Hence, subjects in this experiment had an average probability
weighting function with more curvature, this means a function with a stronger inverse-s shape,
and higher elevation. These two characteristics imply that on average small probabilities were
overweighted to a larger degree than in previous studies and that medium-ranged probabilities
were also overweighted.

All in all, the estimates of the regressions are suggestive of subjects exhibiting an average
probability weighting function with a strong inverse-s shape and high elevation. These two
characteristics entail that subjects overweighted severely small probabilities, even to a larger
degree than documented by previous studies, and that subjects also overweighted medium-
ranged probabilities.21 Furthermore, these two characteristics also imply that large probabilities
are moderately underweighted or not underweighted at all. This pattern of probability distortion
is able to explain the result that LowPr generates more output than Piecerate and the finding
that there is no difference in average performance between HiPr and Piecerate. The next
subsection intends to reconcile the findings of the first part of the experiment with the findings
of the second part of the experiment.

When it is assumed that Beliefs is the reference point, the conclusion that subjects had
probability weighting functions with a strong inverse-s shape and with high elevation is robust
and holds for both domains. Moreover, this alternative analysis also yields that the probability
weighting function in the domain of gains has a higher elevation, which contradicts most
empirical evidence on probability weighting functions for gains and losses.22 Despite this striking
result, I can conclude that even when the reference point is shifted from zero to Beliefs, the
conclusions that subjects in the experiment severely overweighted small probabilities and also
overweighted medium-ranged probabilities hold.

21A possible explanation for the finding that elevation is higher than in previous studies is that the probability
weighting function is sensitive to the magnitude of the outcomes of the lotteries. According to Bruhin et al.
(2010) and Etchart-Vincent (2004) lotteries with low stakes yield probability weighting functions with higher
elevation as compared to probability weighting functions elicited using lotteries with higher stakes. I used
monetary outcomes that reflect the subjects’ monetary gains in the real-effort task, which are usually not higher
than 20 euros. Thus, it is possible that I find probability weighting functions with an elevation as in previous
studies, had I used similar stakes.

22This conclusion must be taken with a grain of salt since this result may stem from the restriction that
the prizes of the lotteries considered in this part of the experiment are strictly positive. This implies that the
estimations in the domain of losses may be subject to a bias arising from censoring the choice data around zero.
The inclusion of lotteries with negative prizes may yield probability weighting functions with higher elevation
in the domain of losses.
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Table 10: Parametric estimates of the weighting function

Neo-additive (truncated)
w(p) = c+ s ∗ p
ĉ .194 ∗∗∗(.021) .228∗∗∗ (.024) .155∗∗∗ (.024)
ŝ .566∗∗∗ (.035) .463∗∗∗ (.037) .686 ∗∗∗ (.044)
Log-Likelihood 220.288 75.200 166.842
Tversky & Kahneman (1992)
w(p) = pψ

(pψ+(1−p)(1−ψ))
1
ψ

ψ̂ .598∗∗∗ (.016) .597∗∗∗ (.012) .785∗∗∗ (.037)
Adj. R2 0.838 0.827 0.866
Prelec (1998)
w(p) = exp(−β(−ln(p)))α
α̂ .284∗∗∗(.025) .143∗∗∗ (.025) .357∗∗∗ (.033)
β̂ .841 ∗∗∗(.0148) .596 ∗∗∗(.024) . 944∗∗∗(.0195)
Adj. R2 0.864 0.907 0.851
N 860 304 550
Ref.Point No/Zero Beliefs Beliefs
Domain No/Gains Gains Losses
Note: This table presents the estimates of the probability weighting function when
parametric estimates are assumed. The upper panel presents the maximum likelihood
estimates of the equation w(p) = c+s(p) when truncation at p = 0 and at p = 1 is assumed.
The second panel from top to bottom presents the non-linear least squares estimation of
the function w(p) = pψ

(pψ+(1−p)(1−ψ))
1
ψ
. The last panel presents the non-linear least squares

estimates of the function w(p) = exp(−β(−ln(p)))α. The first column in all the panels
presents the estimates when all the data is used. The second and third columns present
the estimations when it is assumed that Beliefs is the reference point and only data for the
domain of gains and the domain of losses, respectively, is used for the estimations. Standard
errors in parenthesis. *** denotes significance at the 0.01 level, ** denotes significance at
the 0.05 level, * denotes significance at the 0.1 level.
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6 What drives the treatment effect?

According to the theoretical framework, agents with a linear utility function and who overweight
small probabilities deliver more output under the probability contract if the implemented
probability is largely overweighted. In this section, I demonstrate that the higher performance
exhibited by subjects assigned to LowPr is indeed driven by their perception of probabilities.

To examine the role of probability distortions in explaining the treatment differences, I
include variables capturing the perception of probabilities of a subject in model (2) from Table
3. Additionally, to account for risk attitudes stemming from the subject’s utility curvature,
I also include variables capturing the shape of the utility function of a subject. 23 A first
approach to this analysis is to include in the model a variable that indicates whether a subject
has a probability weighting function with Lower Subadditivity (LS). After all, subjects with LS
overweight the probability p = 1/6 and are thus more likely to perform better under LowPr
than under the other treatments.

Table 11 presents the estimates of the OLS regressions. Models (1) and (2) show that the
coefficient associated with LowPr remains significant. Model (2) shows that the interaction
between LowPr and LS is significant and positive. Thus, a subject with a weighting function
with LS and who is assigned to LowPr exhibits higher performance than a subject assigned
to Piecerate. However, a subject without LS and who is assigned to LowPr could still exhibit
higher output than a subject assigned to Piecerate. Hence, the treatment effect can be partially
explained by whether a subject exhibits LS or not. A shortcoming of this analysis is that it
cannot inform us about the degree to which subjects overweighted small probabilities. This is
a relevant shortcoming since according to the theoretical framework, an agent needs to exhibit
a sufficiently large degree of probability overweighting to exhibit risk-seeking attitudes that
generate higher output under LowPr.

If the effectiveness of the probability contract depends on the degree to which subjects
distort probabilities, a better analysis must instead include variables capturing the degree to
which subjects distort probabilities. For that purpose I construct the variable “Overweight”
which features the sum ∑5

j=iw(pi) − pi. If the mechanism underlying the treatment effect is
the degree to which subjects overweight probabilities, then introducing this variable in the
statistical model, along with an interaction with LowPr, should capture the totality of the
treatment effect. Models (3) and (4) in Table 11 show that the coefficient of LowPr remains
significant. Also model (4) shows that the interaction between LowPr and Overweight is not
significant. Thus, this variable representing probability overweighting is unable to explain the
treatment effect. Appendix F shows that the sum ∑2

j=1w(pj)− pj is also unable to explain the
23Note that I do not use model (3) from Table 3 to avoid confounds between the elicited risk preferences and

self-reported risk attitudes.
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treatment effects,
The main disadvantage of using Overweight as a measure of probability distortions, is that

it cannot inform us about whether a subject distorts probabilities due to his limited capacity
to understand likelihoods, which is a cognitive component, or whether he is optimistic or
pessimistic, which is a motivational component (See Wakker (2010) pp. 205 for a complete
discussion). Thus, this variable is unable to distinguish a pessimistic subject, who always gives
more probability weights to the lowest payoff of a lottery, from a subject who underweights large
and medium-ranged probabilities. This confound is even more problematic when analyzing
data that is aggregated across subjects. For instance, in a sample with a majority of subjects
being pessimistic, but also with some subjects strongly overweighting small probabilities due to
likelihood insensitivity, the variable Overweight, when aggregated across subjects, might lead
to the conclusion that, on average, there are no probability distortions in the sample.

Given the nature of the proposed contract, I am interested in establishing whether a
subject’s sensitivity to likelihoods is driving the treatment effect. To understand whether this
cognitive channel of probability distortion is the determinant of the treatment effect, I construct
indexes that separate the motivational and cognitive components of probability weighting. As
recommended by Wakker (2010), due to their parsimony and easy interpretation, I use the
estimates of the probability weighting function when it is assumed that this function follows
the neo-additive structure. Thus, for each subject, I estimated

w(pj) = ci + sipj + εj.

The estimate ŝ is an index of the subject’s sensitivity to probabilities, which I call “ACurvature”.
Higher values of this index imply more responsiveness to likelihoods. Furthermore, the difference
between the intercept of the weighting function at p = 0 and the intercept of this function at
p = 1, ĉ− (1− ĉ− ŝ), is an index of optimism which I denominate “Optimism”.

I included these two indexes in the statistical model along with their interaction with the
treatment indicators. Model (6) in Table 11 shows that the assignment to LowPr, alone, does
no longer yield higher performance on the real-effort task and that the coefficient associated
with the interaction between ACurvature and LowPr is significant and positive. In contrast,
the interaction between Optimism and LowPr is not significant. These findings imply that the
treatment effect is explained by the interaction between the assignment to the treatment and
the index representing the subject’s responsiveness to probabilities.

My interpretation of these results is that a subject with a weighting function exhibiting a
degree of sensitivity to probabilities and a high elevation, experiences more severe overweighting
of small probabilities than a subject with a weighting function with the same elevation but who
is less responsive to probabilities. Figure 1 illustrates this situation. The figure shows that a

33



p

w(p)

w1(p)

w2(p)

Figure 1: Lower curvature implies more severe overweighting of small probabilities

subject with w2(p) exhibits more severe overweighting of small probabilities and overweights
more probabilities than a subject with w1(p). Note that the property of high elevation is found
on average for all the regressions presented in Table 10. Hence, the intuition behind these
estimates is that the higher is ACurvature for a subject, which at the same time entails more
severe overweighting of small probabilities, the higher becomes his performance when assigned
to LowPr. Moreover, being assigned to LowPr alone, no longer yields higher performance as
compared to the piecerate.

A possible explanation for these findings is that the subjects’ assignment to the treatments
affects the way in which they evaluate probabilities in the second part of the experiment.
For instance, subjects assigned to LowPr may exhibit more probability overweighting than
subjects in Piecerate since they were exposed to risk in the first part of the experiment. If this
were the case, the analysis presented in this section would not be suggestive of a mechanism
explaining the treatment effect, but a consequence of the treatment itself. To rule out this
possibility, it suffices to show that the degree to which subjects distort probabilities is equivalent
across the treatments. The linear regression w(p) = c + sk(p) with a different k for each
treatment shows that there is no evidence to reject the null hypothesis that s1 = s2 = s3 = s4

(χ2(3) = 80, p = 0.848). Moreover, the degree of overweighting of probabilities captured by
Overweight, is on average the same for LowPr and MePr (t(81) = −0.820, p = 0.414), LowPr
and HiPr(t(86) = −0.539, p = 0.591), and LowPr and Piecerate (t(85) = −0.088, p = 0.929).
The same conclusion is reached with the variable OverweightS.

Finally, the findings that the probability contract yields higher performance than the piece
rate and that this improvement is explained by the degree to which subjects overweight probabilities,
support the assumption that individuals make the decision about how much output to deliver
as if each round was considered in isolation. If this were not the case, and instead subjects made
the decision about how much output to deliver in all rounds at the outset of the experiment,
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then we should observe no performance differences across treatments, since under such condition
none of the treatments induces risk, implying no difference in non-monetary incentives across
the treatments.24 This result is in line with the findings by Hey and Lee (2005), and Cubitt
et al. (1998).

7 Conclusion

This paper introduced a novel incentive scheme designed to take advantage of the behavioral
regularity that individuals distort probabilities. A theoretical framework and a laboratory
experiment demonstrated that the proposed contract yields higher output than a standard
piece rate when i) both contracts offer similar monetary returns for performance, and ii) the
probability contract is implemented with a probability that is sufficiently overweighted by the
agent. Additionally, I show that the pattern used by individuals to distort probabilities and
the degree to which probabilities are distorted affect the efficiency of the contract.

The non-monetary incentives of the contract, crucial to achieving its efficiency, stem from
a well-established regularity of human behavior and are therefore available to the principal
across different populations of agents. Hence, principals interested in novel ways to motivate
labor supply, and willing to use performance-pay schemes, should consider implementing this
contract or variants of it that preserve its fundamental property: to incentivize effort by means
of inducing probability distortions.

At this point, I would like to discuss additional applications of the probability contract.
Perhaps the most straightforward application, is monitoring. Consider a setting in which the
principal could choose among different monitoring technologies that allow her to find out the
amount of effort that was exerted by an agent on a task. On the one hand, more advanced
technologies, and also more expensive ones, allow her to be more precise. On the other hand,
cheaper technologies have a component of randomness in their effort assessment. In such a
setup, the principal has the choice between choosing the expensive option and compensate the
agent exclusively based on his exerted effort, or, in light of the findings of this paper, choosing
a cheaper technology that features a probability of accurate monitoring that is overweighted
by the agent, which in turn motivates him to supply more output.

Another application is bonuses rewarding the achievement of performance targets. Consider
a setting in which the principal sets a milestone or performance target to the agent. Conditional
on reaching such target, the agent is compensated with a performance-based compensation. In
a setting in which the principal and the agent know that the performance target is attained

24Even in a setting in which the mapping from effort to performance is not deterministic, we should observe
no differences in performance across treatments since the rate of errors are equally distributed across treatments
due to the randomization.
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Table 11: The mechanism driving the treatment effects
(1) (2) (3) (4) (5) (6)

Perfomance Perfomance Perfomance Perfomance Perfomance Perfomance
LowPr 15.277∗∗ 16.385∗∗ 16.110∗∗ 22.014∗∗ 15.544∗∗ 10.918

(6.744) (7.554) (6.834) (8.956) (6.801) (6.654)
MePr 1.466 1.423 1.725 1.619 -0.351 -0.044

(6.166) (6.163) (6.191) (6.240) (6.237) (6.285)
HiPr 1.917 2.011 1.830 1.476 0.945 0.994

(5.538) (5.577) (5.493) (5.474) (5.412) (5.460)
LowSub 2.161 2.940

(4.999) (5.806)
LowPr*LowSub 16.776∗

(9.320)
Overweight 0.003 0.001

(0.004) (0.004)
LowPr*Overweight 0.008

(0.006)
Acurvature 2.614∗∗ 2.157∗

(1.025) (1.117)
LowPr*Acurvature 5.389∗∗∗

(1.824)
Optimism 3.409 2.403

(2.768) (3.136)
LowPr*Optimism 6.828

(4.862)
Self-efficacy 0.740 0.738 0.833 0.724 0.648 0.676

(1.190) (1.194) (1.183) (1.165) (1.160) (1.187)
Task difficulty -6.713∗∗∗ -6.690∗∗∗ -6.823∗∗∗ -6.744∗∗∗ -6.875∗∗∗ -6.812∗∗∗

(1.943) (1.961) (1.935) (1.922) (1.944) (1.961)
Math skills 2.814∗∗ 2.825∗∗ 2.723∗∗ 2.868∗∗ 2.493∗ 2.502∗

(1.295) (1.296) (1.279) (1.274) (1.282) (1.306)
Gender -2.486 -2.486 -2.873 -2.787 -1.976 -2.208

(4.593) (4.608) (4.626) (4.629) (4.543) (4.786)
Mixed Utility -11.432 -11.499 -11.232 -12.981 -11.709 -12.032

(11.015) (11.022) (10.930) (10.883) (11.129) (11.259)
Convex Utility 9.475 9.105 11.657 17.242 9.826 10.566

(12.431) (12.140) (12.137) (12.742) (12.006) (12.096)
Linear Utility -8.943 -8.983 -10.643 -11.620 -9.377 -9.296

(9.402) (9.399) (9.600) (9.654) (9.518) (9.595)
Constant 83.581∗∗∗ 83.302∗∗∗ 87.942∗∗∗ 86.687∗∗∗ 83.665∗∗∗ 84.269∗∗∗

(13.731) (13.943) (14.505) (14.495) (13.891) (14.015)
Adj. R2 0.265 0.278 0.284 0.294 0.270 0.286
N 172 172 172 172 172 172
Note: This table presents the estimates of the Ordinary Least Squares regression of the model Performancei = β0 +
β1LowPr+β2LowPr∗LS+β3MePr+β4HiPr+β5LS+Controls′Γ+εi, with E(ε|MePr, LowPr,HiPr, Controls, LS) = 0,
which are presented in columns (1) and (2). The OLS estimates of the model Performancei = β0 +β1LowPr+β2LowPr∗
Overweightβ3MePr+β4HiPr+β5Overweight+Controls′Γ+εi, with E(ε|MePr, LowPr,HiPr, Controls, Overweight) =
0 which are presented in columns (3) and (4). Also, the OLS estimates of the model Performancei = β0 + β1LowPr +
β2LowrPr∗Acurvature+β3LowrPr∗Optimism+β4MePr+β5HiPr+β6∗Acurvature+β7optimism+Controls′Γ+εi, with
E(ε|MepR,LowPr,HiPr, Controls, Optimism,Acurvature) = 0 “Performance” is the number of correctly solved sums in
the first part of the experiment, “LowPr”, “MePr” and “HiPr” are dummy variables that capture whether the subject was
assigned to the treatment with low, medium or high probability of outcome evaluation, respectively. “LS” captures whether
a subject has a probability weighting function with lower subadditivity. “Overweight” captures the general probability
overweighting of a subject through the index

∑5
j=1 w(pj)− pj . For each subject the maximum likelihood estimation of the

regression w(p) = c+sp was performed with truncation at w(0) and w(1). “Optimism’ ’ is the index 2c+s
2 and “ACurvature”

is the index c. The controls considered in this model are “Gender” which captures the gender of the participant, “Belief ”
which captures the performance belief of the subject, “Math Skills ” which captures the self-reported mathematical skills
of the subject, “Task Difficulty ” which captures the self-reported difficulty to perform the task. Robust standard errors in
parenthesis. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance at the
0.1 level. 36



with some probability, the principal could set a high target, entailing a low probability of
achievement, along with a high compensation for performance. According to my findings, this
practice would take advantage of the probability perception of the agent, who overweights the
probability that he could attain the milestone. Such probability distortion generates higher
performance than if he was given a low target combined with a low compensation.

Finally, I would like to state that this study has limitations that should be addressed in
future research. I discuss two of the most relevant limitations. First, even though there are
obvious advantages of using controlled laboratory environments to compare the effectiveness of
incentive schemes (Charness and Kuhn, 2011), these advantages come at the cost of external
validity. A more general understanding of the motivational effect of the probability contract,
requires performing a similar test in a situation that features longer working periods, more
powerful monetary incentives, more meaningful tasks and a more natural setup for subjects.
Field experiments incorporating these characteristics are an ideal tool to evaluate the external
validity of the findings reported in this paper.

Second, some findings from the literature of decision-making suggest that individuals perceive
probabilities differently when they are described, i.e. probabilities from description, as compared
to situations where probabilities are experienced (Hertwig et al., 2004; Hau and Pleskac, 2008).
If this is the case, then the probability contract could have ambiguous effects on performance in
settings where the contract is implemented repeatedly. Specifically, in first implementations the
predictions and results of the paper hold since the probabilities of the contract are described.
However, in subsequent implementations the agent has gained experience about the probabilities
that govern the contract. This experience might lead to lower performance if the probability
weighting function is transformed in a way such that it becomes convex in the region of
probabilities that is implemented by the principal. Studying the properties of the probability
contract in a setup that admits repeated implementations could shed light on the efficiency of
the contract when the probabilities governing the contract are not exclusively described.
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Appendix A: Proofs

Proposition 1

Proof. Suppose that y∗∗ ≤ y∗. For an agent with θ̃, and since cy(θ, y) > 0 and cyy(θ, y) > 0,
then cy(y∗∗, θ̃) ≤ cy(y∗, θ̃). Using equations (2) and (9), it is possible to further rewrite the
initial inequality as

by

(
ay∗∗

p

)
≤ by(ay∗). (13)

Since ay
p
> ay for any p ∈ (0, 1) and any y ∈ (0, ȳ], then by(ayp ) > by(ay) if byy(·) ≥ 0,

which contradicts (13). This contradiction is also reached when y∗∗ < y∗. To see how, consider
y∗∗ = 1 and y∗ = 2, the inequality a

p
< 2a does not hold for p ∈ (0, 1

2). Thus, by(ap) > by(2a) if
byy(·) ≥ 0 and p ∈ (0, 1

2), which contradicts (13). In general, one could find sufficiently small p
to ensure that y∗∗ < y∗ if byy(·) ≥ 0 is contradicted. Then, it must be that y∗∗ > y∗ if byy(·) ≥ 0.
Following a similar procedure it is possible to show that y∗∗ ≥ y∗ cannot hold if byy(·) < 0 and
that it must be that y∗∗ < y∗ if byy(·) < 0.

Proposition 2

Proof. Consider first the interval p ∈ (p̃, 1). Since w(p)
p

< 1 if p ∈ (p̃, 1) and byy(·) ≤ 0, then
w(p)
p
by(ayp ) < by(ay) for any y ∈ (0, ȳ]. Moreover, for arbitrary ε > 0, w(p)

p
by(a(y+ε)

p
) < by(ay)

holds. Suppose that y∗∗R > y∗∗. For an agent with θ̃, and since cy(θ, y) > 0 and cyy(θ, y) > 0,
then cy(y∗∗R , θ̃) > cy(y∗∗, θ̃). Equations (9) and (10), entail that the previous inequality can be
written as w(p)

p
by(ay

∗∗
R

p
) > by(ay∗∗), which contradicts that w(p)

p
by(a(y+ε)

p
) < by(ay) for arbitrary

ε > 0. Then it must be that y∗∗R < y∗∗ if p ∈ (p̃, 1) and byy(·) ≤ 0. In addition, Proposition
1 demonstrates that y∗∗ < y∗ if byy(·) < 0 for any p ∈ (0, 1). Therefore, y∗∗R < y∗∗ < y∗ if
p ∈ (p̃, 1) and byy(·) < 0.

Now, consider the interval p ∈ (0, p̃]. Note that w(p)
p
≥ 1 if p ∈ (0, p̃] and byy(·) ≤ 0, then

w(p)
p
by(ayp ) < by(ay + ε) or w(p)

p
by(ayp ) ≥ by(ay + ε) are possible for any ε ≥ 0. Thus, either

y∗∗R ≥ y∗ > y∗∗ or y∗ > y∗∗R ≥ y∗∗ if p ∈ (0, p̃) and byy(·) < 0. Suppose that y∗ ≥ y∗∗R . For
an agent with θ̃, and due to cyy(θ̃, y) > 0 and cy(θ̃, y) > 0, this inequality can be written
as cy(y∗, θ̃) ≥ cy(y∗∗R , θ̃). Moreover, using equations (2) and (10) the initial inequality can be
further rewritten as

by(ay∗) ≥
w(p)
p

by

(
ay∗∗R
p

)
. (14)

Let us analyze what happens at the extremes of the considered probability interval. Since
w(p)
p

= 1 at p = p̃, then ay < a(y+ε)
p̃

for any y > 0 and arbitrary ε ≥ 0. Moreover, given that
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byy(·) ≤ 0, (16) holds at p = p̃. Nonetheless, (14) does not hold as as p → 0+. To evaluate
limp→0+

w(p)
p
by
(
ya
p

)
, which yields an indeterminate form, use L’Hospital’s rule as follows

lim
p→0+

w(p)
p

by

(
ya

p

)
= lim

p→0+

d
(
w(p)
p

)
dp

/
1

d(by( ya
p

))
dp

= lim
p→0+

pwp(p)− w(p)
byp(ay/p)(ay)
by(ay/p)2

=∞.

The last equality is due to limp→0+ byp(ay/p) = 0, limp→0+
1

by(ay/p) = ∞, and limp→0+ wp(p)p =
∞.25 Hence, (16) does not hold as p→ 0+ and it must be that y∗ < y∗∗R .

I compute ∂(w(p)
p
by(ay

p
))

∂p
= (pwp(p)−wp(p))

p2 by(ayp )− 2w(p)
p3 aybyp(ayp ) to analyze the behavior of the

right hand side of (14) as p increases over p ∈ (0, p̃). Suppose that ∂(w(p)
p
by(ay

p
))

∂p
> 0, which

implies

pwp(p)
w(p) > 1 +

byp(ayp )ay
p

by(ayp ) . (15)

For p ∈ (0, p̃) and p̃ > p̂, the left hand side of (15) decreases since ∂(w(p)
p )
∂p

> 0 and wpp(p) < 0.
Therefore, the largest value that pwp(p)

w(p) attains must be as p → 0+. I evaluate the limit
limp→0+

pwp(p)
w(p) using L’Hospital’s rule as follows,

lim
p→0+

pwp(p)
w(p) = lim

p→0+

dp
dp

d

(
w(p)
wp(p)

)
dp

= lim
p→0+

1
1− w(p)wpp(p)

wp(p)2

.

Which implies that limp→0+
pwp(p)
w(p) ∈ (0, 1) and contradicts (15) given that byp(ay) > 0 is

assumed. Therefore, ∂(
w(p)
p
by(ay

p
))

∂p
< 0.

Given that limp→0+
w(p)
p
by(yap ) =∞, by(ay) > by(ayp ) holding at p = p̃, and ∂( (w(p)

p
by(ay

p
))

∂p
< 0,

then the existance of a p∗ ∈ (0, p̃) such that (14) holds with equality is guaranteed. When p̃ < p̂,
p∗ is unique since the left hand side of (14) is always decreasing over p ∈ (0, p̃). However, when
p̃ ≥ p̂, the existence of p∗ is still guaranteed, since w(p) is always first concave and then convex,
but p∗ is not unique since the left hand side of (14) could not be decreasing over p ∈ (p̂, p̃).
For the latter case we refer to p∗ as the smallest possible value that makes (16) bind. Hence,
y∗ ≥ y∗∗R cannot hold if p ∈ (0, p∗) and instead it must be that y∗∗R > y∗.

25Note that limp→0+ wp(p)p is also an indeterminate form. I use a L’Hospital’s rule again to evaluate this limit:

limp→0+ wp(p)p =
dp
dp

d

(
1

wp(p)

)
dp

= limp→0+
−1

wpp(p)
(wp(p))2

=∞. The last equality is due to wpp(p) < 0, limp→0+
1

wp(p) = 0

and the assumption that limp→0+
wpp(p)
wp(p) ∈ <.
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Lemma 1

Proof. The proof is similar to that of Proposition 2, with the difference that r
p
> 0 and r are

subtracted from the utility of the agent.

Lemma 2

Proof. Suppose that y∗∗C ≤ y∗C . Since cy(θ̃, y) > 0 and cyy(θ̃, y) > 0, then cy(y∗∗C , θ̃) ≤ cy(y∗C , θ̃).
Using equations (12) and (18), as well as the duality z(p) = 1−w(1− p), the initial inequality
can be further rewritten as,

(1− w(1− p))
p

by
(r
p
− a

p
y∗∗C
)
≤ by(r − ay∗C). (16)

Since r
p
− ay

p
> r− ay for any y > 0, any r > 0 such that y < r/a holds, and any p ∈ (0, 1),

and given that byy(·) ≥ 0 for y < r/a, then by( rp −
a
p
y) > by(r − ay). For arbitrary ε > 0,

by( rp −
a
p
(y+ ε)) > by(r−ay) holds. Moreover, 1−w(1−p)

p
≥ 1 for p ∈ (0, p̃]. These two statements

contradict (18). Hence, it must be that y∗∗C > y∗C for y < r/Bp if p ∈ (0, p̃) .
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Appendix B: Agents with CPT preferences

This analysis compares the output delivered by this agent when he works under the piece rate
as compared to the situation in which he works under the probability contract. I assume that
when offered the piece rate, this agent has preferences as in CPT for riskless choice (Tversky
and Kahneman, 1991). Hence, under the piece rate, the optimal output delivered by the agent
y∗C satisfies the following system of first-order conditions

aby(ay∗C − r)− cy(y∗C , θ) = 0, if y ≥ r/a, (17)

λaby(r − ay∗C)− cy(y∗C , θ) = 0, if y < r/a. (18)

These first-order conditions as well as those in equations (11) and (12), illustrates a crucial
assumption of the presen t analysis which is that an agent has the same reference point across
the two contracts. This may seem an stringent assumption, but given that the considered
contracts pay on expectation the same monetary amounts, do not feature a performance goal
that could act as a reference point, do not include a bonus, and do not elicit an expectation on
the part of the agent, it is not a unlikely assumption to make.26

Let us first consider the case in which the agent’s production locate him in the domain of
gains. Lemma 1 demonstrates that the condition over the principal’s choice from Proposition
2 guarantees that the probability contract induces higher output.

Lemma 1: For an agent with ability θ̃ ∈ (0, 1), with preferences for monetary outcomes
represented by the value function v(r, y), with r > 0, and λ > 1, and who evaluates probabilities
using w(p) and z(p), then y∗∗C ≥ y∗C for the domain y ≥ r

a
if p ∈ (0, p∗].

As in the case of RDU preferences, the principal could be better off offering the probability
contract if it is implemented with a probability that induces a sufficiently large degree of
overweighting of probabilities in the agent. This is because the overweighting of small probabilities
acts as a risk-seeking mechanism, which, when sufficiently large, could outweigh the risk-averse
attitudes generated by the shape of the value function in the domain of gains. These risk-
seeking attitudes motivate the agent to work harder on the task under the probability contract
as compared to a situation in which she was offered the piece rate.

Let us consider the case in which the agent’s output level locate him in the domain of losses.
Again, the principal could incentivize the agent to work harder under the probability contract
and the conditions in Proposition 2 guarantee this result.

26It is straightforward to see that relaxing this assumption and letting rProb ≥ rPR, with rProb the reference
point of under the probability contract and rPR the reference point under the piece rate, yields the same results.
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Lemma 2: For an agent with ability θ̃ ∈ (0, 1), with preferences for monetary outcomes
represented by the value function v(r, y), with r > 0 and λ > 1, and who evaluates probabilities
using w(p), then y∗∗C > y∗C for y < r

a
if p ∈ (0, p∗].

According to CPT, the agent exhibits a convex value function in the domain of losses. Such
a curvature induces risk-seeking attitudes in the agent, which incentivize higher output supply
under the probability contract. To maintain these favorable risk attitudes, the principal should
avoid choosing probabilities that induce risk-averse attitudes. This could be done implementing
any p ∈ (0, p̃], which is guaranteed when p ∈ (0, p∗).
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Appendix C: The principal’s choice

In the main body of the paper I demonstrate that for an agent who distorts probabilities
systematically, the probability contract could lead to higher output than a cost-equivalent
piece rate. A necessary condition for this result is that the principal anticipates the shape of
the probability weighting function of the agent, and implements the contract using a probability
that is sufficiently overweighted by the agent. The purpose of this appendix is to show that
this conclusion is also reached in an analysis that focuses on the decision of the principal.
This analysis is more complete inasmuch as it not only focuses on the incentive compatibility
constraint of the agent.

Throughout this appendix I assume that agents distort probabilities systematically using
w(p) which has the properties described in Assumption 3 in Section 2. Note that this constitutes
the interesting case given that under this assumption, the choice of p has an influence on the
agent’s behavior. Moreover, I assume that agent has a linear basic utility, which is a result
that is supported by the empirical results of Appendix E and previous utility elicitations using
lotteries with small stakes (See Wakker & Deneffe (1996) and Rabin (2000)). Finally, I assume
that the agent evaluates outcomes with respect to final positions of the asset and not relative
to a reference point, this is done to simplify the analysis. Together, these assumptions entail
that the risk attitudes of the agent do not stem from the curvature of his basic utility, but from
the curvature of the probability weighting function. In other words, I assume that the agent’s
risk preferences are represented by RDU preferences with byy(·) = 0.

Let us start by setting up the principal’s program. The principal’s objective is to minimize
the compensation offered to the agent, subject to the participation constraint of the agent,
which entails that the principal needs to offer a contract ensuring that is going to be accepted
by the worke, and the incentive compatibility constraint, which entails that the contract offered
by the principal ensures that the agent delivers an optimal amount of output. This program
can be formally written as

Min
p

Byp,

subject to IC : argmax
y

w(p)By − c(θ, y),

PC : w(p)By − c(θ, y) ≥ 0.

As in Section 2, I employ the cost equivalence B = a
p
that equalizes the expected value of

the extrinsic incentives offered by the piece rate with those offered by the probability contract.
The Lagrangian of the principal’s problem is

L = ay − λ1

(
w(p)a

p
− cy(y, θ)

)
− λ2

(
w(p)ya

p
− c(y, θ)

)
. (19)
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The first-order condition of the Lagrangian with respect to p, representing the optimal choice
of the risk-neutral principal, is

∂L
∂p

: −λ1

(
wp(p)

a

p
− w(p)w(p)a

p2

)
− λ2

(
wp(p)

ay

p
− w(p)ayt

p2

)
. (20)

Some rewritting of (20) yields,

∂L
∂p

: (λ1 + λ2yt)
a

p

(
wp(p)−

w(p)
p

)
= 0. (21)

Notice from (21) that when either the IC or PC constraints bind, this is if λ1 > 0 or if
λ2 > 0, and naturally when y > 0, the solution of the Lagrangian is given by the following
probability p∗∗,

{
p∗∗ ∈ (0, 1) : p∗∗ = w(p∗∗)

wp(p∗∗)

}
. (22)

At this point we would like to understand the properties of the solution p∗∗. Let us start
by studying the existence and uniqueness of this solution. Start by defining g(p) ≡ w(p)

wp(p) .
Note that g(0) = 0 since limp→0+ wp(p) = ∞ and w(0) = 0, also note that g(1) = 0 since
limp→1− wp(p) =∞ and w(1) = 1, finally note that g(p̂) =∞ since limp→p̂wp(p) = 0. Moreover,
g(p) is increasing for the interval p ∈ [0, p̂), given that wpp(p) > 0 in p ∈ [0, p̂), and alternatively
g(p) is decreasing for the interval p ∈ [1, p̂], since wpp(p) < 0 in p ∈ [1, p̂].

The aforementioned properties of g(p) guarantee the existence of the fixed-point p∗∗ = g(p∗∗)
in p ∈ (0, 1). To see how, note that p is a linear and increasing function in the unit interval
with minimum value at p = 0 and maximum value at p = 1. Moreover, g(p) is an increasing
function in the interval p ∈ [0, p̂) with values g(0) = 0, g(1) = 0, and g(p̂) =∞. In the interval
p ∈ (p̂, 1], g(p) is decreasing while and p is increasing in this interval, then at some probability
in this interval p and g(p) intersect.27

Let us now investigate whether p∗∗ is a solution for the principal’s program for all possible
values of p. This is done by studying the shape of the Lagrangian over the entire probability
support. The second-order condition of the Lagrangian in (19) is,

∂2L
∂p2 : −(λ1 + λ2yt)

a

p

(
wpp(p)−

2wp(p)
p

+ 2w(p)
p2

)
. (23)

Equation (23), when evaluated at p∗∗, becomes positive if wpp(p) < 0. Hence p∗∗ is a unique
solution of the program for p ∈ (0, p̂). In contrast, if wpp(p) > 0 the second order condition
evaluated at p∗∗ becomes negative, implying that in this probability interval the Lagrangian

27Since gp(p) = 1− w(p)wpp(p)
(wp(p))2 , a sufficient condition for gp(p) > 0 is that wpp(p)<0, and a necessary condition

for gp(p) < 0 is that wpp(p)>0.
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is concave and the objective function attains a minimum value at one of the extreme values,
p ∈ (p̂, 1]. Hence, in the whole interval p ∈ [0, 1] there are multiple solutions. This multiplicity
of solutions stems from the assumed shape of the w(p).

Thus far, we have proven the existence of the the solution p∗∗ = g(p∗∗) over the entire
probability interval p ∈ (0, 1). However, as shown in the previous paragraph p∗∗ is the unique
solution in p ∈ (0, p̂). Hence, we want to study the conditions guaranteeing that p∗∗ exists in
p ∈ (0, p̂). A sufficient condition for this is that wppp(p) < 0 in p ∈ (0, p̂). This condition means
that w(p) is linear for near-zero probabilities and becomes more concave as p approaches p̂.
Note if wppp(p) < 0 in p ∈ (0, p̂), then g(p) is strictly convex at p ∈ (0, p̂), which together with
the fact that g(0) = 0 entails that p > g(p) at near-zero probabilities. In addition, as p → p̂

then g(p) > p since g(p̂) =∞ and p < p̂ < 1. Hence, in some probability in p ∈ (0, p̂) we have
that p = g(p).

In what is left of the Appendix, I describe the optimal solution of the principal’s problem.
Note that the w(p) allows p̂ 6= p̃. This entails that if p̂ > p̃, the solution p∗∗ may not yield an
overweighting of probabilities. Moreover, if p̂ < p̃ there is overweighting of probabilities in the
convex region of w(p). As it will become evident, these properties, implied by these two cases,
are determinant to characterize the solution of the principal’s problem. Thus, I describe the
solution distinguishing the casesp̂ > p̃ and p̂ < p̃ .

Let us first focus on the case in which the principal faces an agent with a w(p) with p̂ < p̃.
For the interval p ∈ (0, p̂) the optimal solution p∗∗ can be implemented. However, for p ∈ [p̂, 1]
the solution is at one of the extreme values p ∈ {p̂, 1}. Which p ∈ {p̂, 1} would be chosen by
the principal? to answer that question let us take a look at the behavior of the lagrangian at
each of the two values. At p = p̂, the IC and PC constraints become larger than at p = 1, this
entails thatp = p̂ the lowest value of the Lagrangian is achieved. This result is achieved because
p = p̂ induces an overweighting of probabilities w(p)

p
> 1, which at the same time inflates these

constraints. Thus, the principal chooses p = p̂ if p ∈ (p̂, 1).
Let us now turn to the case in which the principal has an agent with w(p) such that p̂ > p̃.

For the interval p ∈ (0, p̂) the optimal solution p∗∗ can be implemented. Notice that this
solution might not induce an overweighting of probabilities in the agent. The intuition behind
this result is that the principal implements p∗∗, even when it does not induce an overweighting
of probabilities in the agent, so that the contract is accepted by the agent. This means that
the principal is better off implementing a contract that is going to be accepted by the agent,
even though the non-monetary incentives that it entails do not yield better outcomes than the
piece rate. Moreover, for the interval p ∈ [p̂, 1], the solution of the program is p = 1 since any
other value of p = p̂ yields w(p)

p
< 1 which leads to lower values of the IC and PC constrains

than those implied by p = 1.
All in all, the solution to the minimization program for the principal is given by p? which
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can be written down as,

p? =


p∗∗, if p < p̂,

p̂, if p̂ < p̃ and p > p̂,

1, if p̂ > p̃ and p > p̂.

The principal has two possible optimal actions for each case. He chooses p∗∗ irrespective of
the location of p̃ relative to p̂ as long as p∗∗ is a solution. In other words p∗∗ is chosen long
as p < p̂. This action always yields an overweighting of probabilities if p̂ < p̃ and yields an
overweighting of probabilities for the interval p ∈ (0, p̃) if p̂ > p̃. However, the action p = p∗∗

induces underweighting of probabilities in the agent for the interval p ∈ [p̃, p̂] if p̂ > p̃. This
means that agents with a w(p) with low elevation may yield lower output under the probability
contract whenever p∗∗ ∈ [p̃, p̂]. As explained above, the intuition of this particular case of the
solution is that the principal finds it optimal to implement a contract that is accepted by the
agent even when its (non-monetary) incentives may yield lower output than those embedded by
a piece rate. Additionally, the principal facing an agent with w(p) with high elevation chooses
p = p̂ whenever p > p̂. This action is chosen since p̂ is overweighted by the agent. Finally, for
an agent with a w(p) with low elevation the principal chooses p = 1 which is the equivalent of
the probability contract.

To conclude, I find that the principal implements the probability contract with probabilities
that are overweighted by the agent, except for the special case in which the agent has a
probability with low elevation and p∗∗ ∈ [p̃, p̂]. Notice that this solution requires that the
principal has a detailed knowledge of the probability weighting function of the agent. Future
analyses of the probability contract should focus on relaxing this assumption and the consequences
that this relaxation imposes on the decision of the principal.
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Appendix D: Instructions

This is an experiment in the economics of decision-making. The instructions are simple and if
you follow them carefully and make certain decisions, you might earn a considerable amount of
money, which will be paid to you via bank transfer at the end of the experiment. The amount
of money that you earn will depend on your decisions and effort, and partly on chance. Once
the experiment has started, no one is allowed to talk to anybody other than the experimenter.
Anyone who violates this rule will lose his or her right to participate in this experiment. If
you have further questions when reading these instructions please do not hesitate to raise your
hand and formulate the question to the experimenter.

The experiment consists of two parts. Your earnings in part one or part two of the
experiment will be chosen at the end of the experiment and become your final earnings. Whether
the earnings of part one or the earnings of part two will be your final earnings will be established
by roll of a die.

Part one

In this part of the experiment your task is to complete summations. Your earnings in this part
of the experiment depend only on the number of correct summations that you deliver. You
need to complete as many summations as you can in 10 rounds, each round lasts four minutes.
In other words you will have a total of 40 minutes to complete as many summations as you can.

Each summation consists of five-two digit numbers. For example 11+22+33+44+55=?
Once you know the answer to the sum of these five two digit numbers, input the answer in the
interface, Click OK, and a new set of numbers will appear on your screen.

For your better understanding you will face with two examples next.

[Examples displayed]

The previous examples show what you have to do in this part of the experiment. The only
thing left to be explained is to specify how you are going to earn money by completing the
summations.

Piecerate Treatment The payment rule: In this part of the experiment each correct
summation will add 25 Euro cents to your experimental earnings.
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Remember: you have 40 minutes to complete summations, and only correct summations
will count towards your earnings at a rate of 25 euro cents each. If you understood these
instructions Press ”OK”. When everyone is ready we will start with this part of the experiment.

LowPr Treatment The payment rule: In this part of the experiment 1 out of all the
10 rounds will be randomly chosen. The specific round is chosen at random by the computer
at the end of this part of the experiment. This is, once you completed summations in all the
10 rounds, only the correct summations in a randomly chosen round will count towards your
earnings at a rate of 250 euro cents per correct summation.

Remember: you have 40 minutes to complete summations, and only correct summations in
1 specific round, chosen randomly by the computer at the end of the experiment, will count
towards your earnings at a rate of 250 euro cents each. If you understood these instructions
Press ”OK”. When everyone is ready we will start with this part of the experiment.

MePr Treatment The payment rule: In this part of the experiment 3 out of all the 10
rounds will be randomly chosen. The specific rounds are chosen at randomby the computer at
the end of this part of the experiment. This is, once you completed summations in all the 10
rounds, only the correct summations in that randomly chosen round will count towards your
earnings at a rate of 85 euro cents per correct summation.

Remember: you have 40 minutes to complete summations, and only correct summations in
3 specific rounds, chosen randomly by the computer at the end of the experiment, will count
toward your earnings at a rate of 85 euro cents each. If you understood these instructions Press
”OK”. When everyone is ready we will start with this part of the experiment.

HiPr Treatment The payment rule: In this part of the experiment 5 out of all the 10
rounds will be randomly chosen. The specific rounds are chosen at random by the computer at
the end of this part of the experiment. This is once you completed summations in all the 10
rounds, only the correct summations in that randomly chosen round will count towards your
earnings at a rate 50 euro cents per correct summation.

Remember: you have 40 minutes to complete summations, and only correct summations in
5 specific rounds, chosen randomly by the computer at the end of the experiment, will count
toward your earnings at a rate of 50 euro cents each. If you understood these instructions Press
”OK”. When everyone is ready we will start with this part of the experiment.
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Part two

In this part of the experiment your task is to choose among two possible alternatives. Your
earnings on this part of the experiment depend on how good your choices are.

Particularly, you will face with 11 decision sets. In each of these sets you need to choose
between the option L, that delivers a fixed amount of money, and the option R that is a lottery
between two monetary amounts. Each decision set contains six choices.

Be Careful! Every time you make a choice between L and R, the monetary prizes of the
options are going to change and you ought to make a choice again. One of your choices will be
randomly picked by the computer, will be played and its realization will count towards your
earnings for this part of the experiment. You will be faced with one example next.

[Example displayed]

If it is clear what you have to do in this part of the experiment. Press ”OK” to start, once
everyone is ready this part of the experiment will begin.

Survey

• Gender:

• Age:

• What is your education level? (Bachelor, Exchange, Pre-Master, Master, PhD):

• What is the name of your program of studies?

• How difficult did you find the task? (where 1 stands for easy and 5 for Very difficult)

• Rate how confident you are that you can do the task good enough so you can be in the
top half of performers in this group as of now. (1-Not confident, 10- Very confident)

• Are you any good at adding numbers? (1-Not good at all, 10-Very good)

• Are you generally a person who is fully prepared to take risks or do you try to avoid
taking risks?

• Rate yourself from 0 to 10, where 0 means "unwilling to take any risks" and 10 means
"fully prepared to take risks".

• People can behave differently in different situations. How would you rate your willingness
to take risks while driving? Rate yourself from 0 to 10, where 0 means "unwilling to take
any risks" and 10 means "fully prepared to take risks"
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• How would you rate your willingness to take risks in financial matters? Rate yourself
from 0 to 10, where 0 means "unwilling to take any risks" and 10 means "fully prepared
to take risks"

• How would you rate your willingness to take risks with your health? Rate yourself from
0 to 10, where 0 means "unwilling to take any risks" and 10 means "fully prepared to take
risks"

• How would you rate your willingness to take risks in your occupation? Rate yourself from
0 to 10, where 0 means "unwilling to take any risks" and 10 means "fully prepared to take
risks"

• How would you rate your willingness to take risks in your faith in other people? Rate
yourself from 0 to 10, where 0 means "unwilling to take any risks" and 10 means "fully
prepared to take risks"
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Appendix E: The shape of the utility functions

In this appendix, I investigate the shape of the utility function of the participants. Decision
sets numbered 1 to 6 elicit the sequence of outcomes {x1, x2, x3, x4, x5, x6}, which has the
characteristic of yielding equally spaced utilities, i.e. u(xj) − u(xj−1) = u(xj−1) − u(xj−2).
I am interested in two characteristics of this sequence when each outcome is plotted against
the expected value of the lottery from which it was elicited: i) the sign of the slope and
ii) the curvature. To study these characteristics, I construct two measures: the difference,
∆′i ≡ xi − xi−1, for i = 1, ...6, and the second difference, ∆′′i ≡ ∆′i − ∆′i−1 for i = 2, ..., 6.
The sign of ∆′i as i increases determines the sign of the slope, i.e. whether a subject prefers
larger monetary outcomes. Moreover, the sign of ∆′′i as i increases determines the curvature.
For example, a subject with ∆′i > 0 and ∆′′i < 0 for all i has a preference for larger monetary
outcomes and experiences smaller utility increments with larger monetary outcomes, this is
equivalent to say that this subject has a concave utility function.

I classify the participants of the experiment according to the curvature of their utility
function. Given that a subject has multiple ∆′′i ’s and that it is possible that he makes mistakes,
this classification is based on the sign of ∆′′i with the most occurrence. Thus, a subject with at
least three positive ∆′′i s was classified as having a convex utility. A subject with at least three
negative ∆′′i s was classified as exhibiting a concave utility. A subject with three or more ∆′′i s
that are not significantly different from zero was classified as having a linear utility. Finally,
a subject with a utility function that cannot be classified as concave, convex, or linear, was
classified as having a mixed utility. To statistically asses the sign of a ∆′′i , I use confidence
intervals around zero. The confidence intervals were constructed using the standard deviation
of ∆′′i , for each i = 1, ...5, which was then multiplied by the factors 0.64 and −0.64. Hence,
if ∆′′i follows a normal distribution, 50% of ∆′′i s in the data are to be contained within the
confidence interval.28

The data suggest that all the subjects in the experiment exhibit an increasing sequence
{x1, ..., x6} which denotes, not surprisingly, a generalized preference for larger amounts of
money. Table 12 presents the classification of the subjects in the experiment according to
the curvature of their utility function. The data suggest that the majority of subjects exhibit
linear utility functions. Specifically, 77% of the subjects have linear utility functions, while
the rest of the subjects have mixed utility functions (13% of the subjects), and concave utility
functions (7% of the subjects). Of the subjects classified as having mixed utility functions, only

28Different confidence intervals were used in this analysis. These confidence intervals were constructed using
the standard deviation of a ∆′′i and multiplied by other factors, such as 1 and −1, 1.64 and −1.64, and 2 and −2.
The qualitative results of these analyses are not different from the main result reported here that the majority
of subjects exhibit a linear utility function. Since these confidence intervals are more stringent, they yield less
subjects classified as having a mixed utility function and more subjects exhibiting a linear utility function.
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Table 12: Classification of Subjects According to Utility Curvature

Reference Point Domain Convex Concave Linear Mixed Total
No/Zero No/Gains 3 13 133 23 172
Belief Gains 3 12 43 21 79
Belief Losses 0 1 90 2 93
Note: This table presents the subjects classification according to the shape of their
utility function. Subjects are classified as having a convex, concave, linear or mixed
utility function based on the sign of most occurrence of ∆i. The first row presents
the classification when the analysis is performed with all the data. The second and
third columns feature the analysis taking into account the Beliefs non-zero reference
point, which is the monetary equivalent of a subject’s beliefs about her performance
in the first part of the experiment. The second row presents the analysis when the
monetary outcomes of the lotteries are above the reference point, whereas the third
row presents the analysis when the monetary outcomes of the lotteries are below the
reference point

6 (3 % of subjects) presented ∆′′i s that suggest a utility function that is first convex and then
concave, indicating diminishing sensitivity around some non-zero reference point. A binomial
test shows that the number of subjects classified as having linear functions is significantly larger
than those classified to have mixed utility functions (p<0.01, one sided test) and also larger
than subjects classified as having convex utility functions (p<0.01, one sided test).

Table 12 also presents the analysis of the curvature of the utility function when it is assumed
that Beliefs is the reference point. This alternative analysis also yields that the majority of
the subjects exhibit a linear utility function. Specifically, I find that 65 % of the subjects have
linear utilities in the domain of gains and 98% of the subjects exhibit linear utilities in the
domain of losses. This division of the outcomes into gains and losses around Beliefs does not
yield new indications of diminishing sensitivity, since the majority of the data of those subjects
classified as having a convex utility function are in the domain of gains.

The result that more than two-thirds of the subjects exhibit linear utility is at odds with
the principle of diminishing sensitivity, a key property of cumulative prospect theory (CPT).
However, disregarding CPT as a possible representation for the subjects’ preferences for money
on the basis of this classification may be incorrect. As pointed out by Wakker and Deneffe
(1996), the trade-off method, used to elicit {x1, x2, x3, x4, x5}, requires lotteries with large
monetary outcomes in order to obtain utility functions with pronounced curvature. Therefore,
one of the advantages of the experimental design, that it elicits the utility function and the
probability weighting function of a subject over the monetary outcomes at stake in the first
part of the experiment, is also the reason that diminishing sensitivity may not be observed.

Until now I have focused on data at the individual level. To understand how these results
aggregate, I analyze the values of the sequence x1, ..., x6 when each xi is averaged across subjects.
Table 13 presents the average of xi, the standard deviation of xi, and the average of ∆′i.These

56



values show that xi is increasing with i, suggesting that subjects have a preference for larger
monetary amounts. Also, the columns containing the average values of ∆′i show that the
increments of xi become moderately larger as i increases, suggesting that the tendency of the
utility function to exhibit a linear shape decreases when the amount of money becomes larger.
Since the first step of Abdellaoui’s method elicits a sequence of ff equivalents that are equally
spaced in terms of utility levels, the values of ∆′i as i increases show that the utility function
of the average subjects tends to become concave. This result is also obtained by Abdellaoui
(2000).

To gain a better understanding of the aforementioned results, I assume two parametric
families of utility and estimate the parameters of these utility functions using non-linear least
squares. Specifically, I assume a power utility, which belongs to the CRRA family of utility
functions, and an exponential function, which belongs to the CARA family of utility functions.
Table 14 presents the estimates of the regressions. For the two parametric specifications I
find that the average utility function of the subjects is linear. For instance, when the power
utility function u(x) = xφ is assumed, the estimate of the parameter is φ = 0.995 which is
statistically not different from one. This conclusion is consistent with the large proportion of
subjects that were classified as having a linear utility function, as shown by Table 12, and the
modest increments that the averaged series xi exhibits as i increases presented in Table 13.

These analyses are also performed under the assumption that Beliefs is the reference point.
Table 13 shows that subjects exhibit a preference for larger monetary amounts in both domains.
I also observe a decreasing tendency of the utility function to be linear as the amount of money
becomes larger with respect to the reference point; In the domain of gains the utility function
of the average subject tends to concavity, while in the domain of losses the function tends to
convexity. Moreover, the data suggest that diminishing sensitivity manifests at different degrees
across domains, with subjects exhibiting more diminishing sensitivity in the domain of gains
than in the domain of losses. This difference is explained by fact that only positive outcomes
were used to elicit the outcomes {x1, x2, x3, x4, x5, x6}, which leaves no room for the subjects to
exhibit as much sensitivity in the domain of losses as in the domain of gains. I chose to elicit
preferences using only positive outcomes since the aim of the second part of the experiment was
to understand the preferences of the subjects over the stakes offered in the real-effort task. A
more complete analysis of diminishing sensitivity across domains, and of preferences in general
in the domain of losses under the assumption that subjects have CPT preferences, requires
lotteries featuring negative outcomes.

I estimate the parameters of the utility function for each domain assuming a power or
an exponential utility function. For the domain of losses, the estimated coefficients suggest
linearity, with an estimated coefficient of φ = .992 when the power utility function is assumed.
This result is also found for the domain of losses, where the estimation yields φ = 1.035 when
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Table 13: Aggregate results x1,x2,x3,x4,x5, and x6

i xi ∆′k xi ∆′k xi ∆′k
1 2.579 (1.99) 1.579 3.761(4.037) 3.037 1.576 (.548) .576
2 4.573 (4.445) 1.993 8.167 (5.226) 4.129 2.167(.931) .590
3 6.684 (6.792) 2.110 12.545 (7.564) 4.378 2.761(1.280) .593
4 9.179 (9.420) 2.495 17.8120 (9.826) 5.266 3.515 (1.800) .754
5 11.773 (11.880) 2.594 23.156(11.598) 5.344 4.353 (2.589) .837
6 14.379 (14.418) 2.605 28.400 (13.608) 5.243 5.287 (3.727) .934
Ref.Point No/Zero Beliefs Beliefs
Domain No/Gains Gains Losses
Note: This table presents the average, standard deviations of the sequence x1, x2, x3, x4, x5, x6
along with the difference ∆′j = xi − xi−1. Standard deviations are presented in parenthesis.
Columns 2 and 3 present these statistics when all the data is taken into account. Columns 4, 5, 6,
and 7, present these statistics when it is assumed that subjects make decisions around Beliefs as a
reference point. Columns 4 and 5 present the mean and median of x1, x2, x3, x4, x5, x6 along with
∆′j = xi − xi−1 for values above Beliefs for each subject. Columns 6 and 7 present the mean and
median of x1, x2, x3, x4, x5, x6 along with ∆′j = xi − xi−1 for values below Beliefs for each subject.

the power utility function is assumed.
All in all, the data suggest that subjects have linear utility functions. This result is robust

to the assumption that subjects have a non-zero reference point following an expectation-
based rule. This is not a surprising finding given the stakes offered in the experiment and
the discussions about utility curvatures by Wakker and Deneffe (1996) and Rabin (2000).
Furthermore, the conclusion that the utility function is linear implies that probability distortions,
if any, fully determine the risk attitudes of the subjects in the experiment. Thus, performance
differences across treatments must be explained by probability distortions rather than by the
curvature of the basic utility.
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Table 14: Parametric Estimates of the utility function

Exponential (CARA) 1− exp(−γ(xi−1 + ε
2))

γ̂ .977 (.001) .946 (.001) 1.337 (.001)
Adj. R2 0.922 0.887 0.303
N 1032 412 619
Power Utility (CRRA) (xi−1 + ε

2)φ
φ̂ .995 (.001) .992 (.001) 1.035 (.007)
Adj. R2 0.925 0.971 0.756
N 1032 412 619
Ref.Point No/Zero Beliefs Beliefs
Domain No/Gains Gains Losses
Note: This table presents the estimates of the non linear least squares regression. The upper panel
assumes that the parametric form 1 − exp(−γ(xi−1 + ε

2 )) and the lower panel assumes the parametric
form (xi−1 + ε

2 )φ . The first column presents uses all the data. The second and third column present the
data for the domain of gains and the domain of losses, respectively, when the reference point is Beliefs.
Standard errors in parenthesis. *** denotes significance at the 0.01 level, ** denotes significance at the
0.05 level, * denotes significance at the 0.1 level.

Appendix F: Additional regressions
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Table 15: The mechanism driving performance
(1) (2) (3) (4)

Perfomance Perfomance Perfomance Perfomance
LowPr 15.807∗∗ 12.531∗ 15.697∗∗ 22.228∗∗

(6.865) (7.479) (6.861) (8.825)
MePr 1.407 1.292 1.521 1.542

(6.185) (6.190) (6.221) (6.265)
HiPr 1.484 1.279 1.619 1.281

(5.456) (5.445) (5.476) (5.454)
LS and US -1.699 -8.092

(5.509) (6.370)
LowPr*LS and US 20.896∗∗

(8.862)
OverweightS 0.001 -0.001

(0.001) (0.001)
LowPr*OverweightS 0.002

(0.001)
Self efficacy 0.608 0.761 0.688 0.536

(1.169) (1.133) (1.197) (1.182)
Task difficulty -6.737∗∗∗ -6.704∗∗∗ -6.759∗∗∗ -6.612∗∗∗

(1.945) (1.915) (1.954) (1.930)
Math skills 2.922∗∗ 2.927∗∗ 2.848∗∗ 3.038∗∗

(1.291) (1.278) (1.271) (1.263)
Gender -2.350 -2.434 -2.459 -2.321

(4.591) (4.621) (4.635) (4.624)
Mixed Utility -11.320 -11.454 -11.487 -12.152

(11.005) (11.059) (11.072) (10.681)
Convex Utility 9.705 8.454 9.523 16.338

(11.892) (13.429) (12.275) (13.584)
Linear Utility -8.548 -8.961 -9.062 -8.987

(9.471) (9.550) (9.422) (9.190)
Constant 84.332∗∗∗ 84.466∗∗∗ 84.810∗∗∗ 82.302∗∗∗

(13.700) (13.812) (13.772) (13.644)
Adj. R2 0.264 0.273 0.264 0.273
N 172.000 172.000 172.000 172.000
Note: This table presents the estimates of the Ordinary Least Squares regression of the
model Performancei = β0 + β1LowPr + β2LowPr ∗ LSandUS + β3MePr + β4HiPr +
β5LSandUS + Controls′Γ + εi, with E(ε|MePr, LowPr,HiPr, Controls, LSandUS) = 0, which
are presented in columns (1) and (2). The OLS estimates of the model Performancei =
β0+β1LowPr+β2LowPr∗OverweightSβ3MePr+β4HiPr+β5OverweightS+Controls′Γ+εi, with
E(ε|MePr, LowPr,HiPr, Controls, OverweightS) = 0 which are presented in columns (3) and (4).
“Performance” is the number of correctly solved sums in the first part of the experiment, “LowPr”,
“MePr” and “HiPr” are dummy variables that capture whether the subject was assigned to the
treatment with low, medium or high probability of outcome evaluation, respectively. “LS and US”
captures whether a subject has a probability weighting function with lower subadditivity and upper
subadditivity. “OverweightS” captures the general probability overweighting of a subject through
the index

∑2
j=1 w(pj) − pj . The controls considered in this model are “Gender” which captures

the gender of the participant, “Belief ” which captures the performance belief of the subject, “Math
Skills ” which captures the self-reported mathematical skills of the subject, “Task Difficulty ” which
captures the self-reported difficulty to perform the task. Robust standard errors in parenthesis. ***
denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance
at the 0.1 level.
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