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Abstract

We consider the model by Miao and Wang [3], in which the existence of endogenous
collateral constraints allows for the existence of stock price bubbles. Whereas Miao and
Wang [3] characterize the local dynamics around stationary equilibria only under the
assumption of risk neutral households, we extend this characterization to the case of risk
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1 Introduction

Miao and Wang [3] develop a theory of rational stock price bubbles that rests on endogenous

credit constraints. The main results of the paper are derived under the assumption that the

households are risk neutral, whereas for the case of risk averse households only the characteri-

zation of stationary equilibria is conducted.1 The purpose of the present note is to fill this gap,

i.e., to provide a complete analysis of the local dynamics in a version of the model with risk

averse households.

The model by Miao and Wang [3] is a notable contribution for various reasons. First of all,

it shows that endogenous credit constraints can generate bubbles that are consistent with the

transversality condition at infinity. More specifically, because the presence of a bubble relaxes

the credit constraints for firms, the bubble component of the asset price does not have to grow

at the rate of interest. Second, the model by Miao and Wang [3] directly addresses bubbles on

markets for common stock, whereas most of the previous literature has dealt with bubbles on

intrinsically useless assets. The fact that the assets under consideration are productive ones

opens the door for an important and intuitively plausible feedback mechanism. If the stock

price of a company contains a positive bubble component, the firm’s assets have a higher value

than in a bubbleless equilibrium. Since the firm can use these assets as collateral, it is able

to obtain more credit which, in turn, allows the firm to invest more. Thus, and this is the

third notable feature of the model, the bubbly equilibrium features higher capital and more

output than the bubbleless one, i.e., there is a crowding-in effect. Miao and Wang have already

extended their theory to economies with idiosyncratic productivity shocks, multiple production

sectors, and endogenous growth; see [1] and [2].

The rest of this paper is organized as follows. In section 2 we present the basic model with

risk averse households. Section 3 analyzes competitive equilibria: stationary equilibria are

characterized in subsection 3.1, whereas the local dynamics around these stationary equilibria

are studied in subsection 3.2. To overcome the difficulties mentioned by Miao and Wang [3]

(see footnote 1 above), we use the output market clearing condition to express the real interest

rate as a function of the aggregate capital stock and the two components of the stock price

(Tobin’s marginal Q and the bubble component). This eliminates aggregate consumption from

all equilibrium conditions except for the Euler equation. Consequently, we are left with a

three-dimensional system of ordinary differential equations which is analytically tractable. The

analysis demonstrates that the results about the local dynamics that have been derived by

Miao and Wang [3] for the economy with risk neutral households carry over to the case of risk

1Regarding the model with risk averse households, Miao and Wang [3] write in appendix D: “We are unable

to derive analytical results for local dynamics because the equilibrium system contains five equations, but it is

straightforward to derive numerical solutions.”
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averse households. Finally, section 4 concludes the paper.

2 Model formulation

Time is modeled as a continuous variable on the time domain R+. We consider an economy

that is populated by households and firms. Firms use the input factors capital and labor to

produce a single output good. The latter can be used for consumption and for investment and

it serves as numeraire good. Households are endowed with labor and they own the firms. Firms

own their capital and rent labor services from households. There a two assets in the economy:

bonds, which are available in zero net supply, and firm equity.

2.1 Households

There exists a unit interval of identical and infinitely-lived households. The representative

household is endowed with one unit of labor per period and it owns equal shares of all firms.

Furthermore, it has the time-preference rate ρ > 0 and the instantaneous utility function

u(c) =


c1−θ − 1

1− θ
if θ 6= 1,

ln c if θ = 1,

where θ > 0 is the inverse of the elasticity of intertemporal substitution. The household

maximizes its lifetime utility ∫ +∞

0

e−ρtu(c(t)) dt

subject to the budget constraint

ḃ(t) + p(t)ṡ(t) + c(t) = r(t)b(t) + d(t)s(t) + w(t)

and the initial conditions

s(0) = 1 and b(0) = 0.

The choice variables of the household are its consumption rate c(t), share holdings s(t), and

bond holdings b(t). On the other hand, the household takes the variables p(t), r(t), d(t), and

w(t) as given. These variables denote the time-t share price, interest rate, dividend payment

per share, and the wage rate, respectively.

Absence of arbitrage requires that

r(t) =
d(t) + ṗ(t)

p(t)
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holds for all t. We denote total financial wealth of the representative household at time t by

a(t), that is,

a(t) = b(t) + p(t)s(t).

Using this notation, we can rewrite the flow budget constraint from above as

ȧ(t) = r(t)a(t) + w(t)− c(t). (1)

It is well known that the behavior of the representative household is completely described by

constraint (1), the initial value a(0), the Euler equation

ċ(t)

c(t)
=
r(t)− ρ

θ
, (2)

and the transversality condition

lim
t→+∞

e−
∫ t
0 r(s) dsa(t) = 0. (3)

Note that a(0) = p(0) is the stock market value of all firms at time 0. Thus, even if the

representative household takes this initial value as given, a(0) is not an exogenous parameter

of the model but an endogenously determined variable.

2.2 Firms

There exists a unit interval of infinitely-lived firms, which produce output from capital and

labor. The firms own their capital and they rent the labor services from the households.

Consider any individual firm j ∈ [0, 1]. Output of firm j is given by

yj(t) = kj(t)
α`j(t)

1−α, (4)

where kj(t) and `j(t) denote the time-t input quantities of capital and labor, respectively. The

firm can choose its employment `j(t) ≥ 0 at any point in time. Investment, however, is assumed

to be lumpy. Formally, we assume that firm j can invest only at discrete instants of time tj,1,

tj,2, . . . , where (tj,n)+∞n=1 is a Poisson process with arrival rate λ. We choose the unit of time in

such a way that λ = 1. The investment opportunities are independent across firms. Denoting

by δ the rate of capital depreciation and by ij(t) the (lumpy) investment at time t, it follows

that firm j’s capital stock evolves according to

k̇j(t) = −δkj(t) (5)

for t 6∈ {tj,n |n = 1, 2, . . .} and

lim
s↘t

kj(s) = kj(t) + ij(t) (6)
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for t ∈ {tj,n |n = 1, 2, . . .}. Thus, we assume that the function kj is piecewise continuously

differentiable with jump discontinuities at the investment opportunities and that it is continuous

from the left everywhere. Finally, we assume that all firms are initially endowed with k̄ > 0

units of capital.

Firms maximize their shareholder value. The maximal stock market value of firm j when it

owns k units of capital at time s is

V (k, s) = max Es

∫ +∞

s

e−
∫ t
s r(τ) dτ [yj(t)− w(t)`j(t)] dt−

∑
{n | tj,n≥s}

e−
∫ tj,n
s r(τ) dτ ij(tj,n)

 ,
where the maximum is taken over employment and investment subject to constraints (4)-(6),

the initial condition k(s) = k, and the control constraints `j(t) ≥ 0 and

−kj(t) ≤ ij(t) ≤ V (ξkj(t), t)

for all t.

According to its definition, V (k, s) is the expected and discounted value of the firm’s future

profits. The constraint `j(t) ≥ 0 restricts employment to be non-negative and the constraint

ij(t) ≥ −kj(t) says that disinvestment is possible but that the capital stock of the firm must

remain non-negative. The crucial constraint is ij(t) ≤ V (ξkj(t), t), which is interpreted as a

collateral constraint. The parameter ξ satisfies 0 < ξ ≤ 1. Firms cannot raise additional equity

and are therefore forced to finance their investments via loans. We do not model the credit

market explicitly but simply assume that financial frictions or asymmetric information imply

that the investment of firm j must not exceed the stock market value of a hypothetical firm

owning the fraction ξ of firm j’s current capital stock.2

The Hamilton-Jacobi-Bellman equation (HJB equation) for the above optimization problem is3

r(t)V (kj, t)− V2(kj, t)
= max

{
kαj `

1−α
j − w(t)`j − V1(kj, t)δkj + [V (kj + ij, t)− V (kj, t)− ij]

}
.

Carrying out the maximization with respect to labor input in the HJB equation yields

`j =

[
1− α
w(t)

]1/α
kj. (7)

2For further explanations and interpretations of the constraint ij(t) ≤ V (ξkj(t), t) we refer to Miao and

Wang [3].
3Recall that we have normalized the arrival rate of investment opportunities, λ, by 1. The bracketed term

V (kj + ij , t)−V (kj , t)− ij in the HJB equation is multiplied by this arrival rate. The maximization in the HJB

equation is over `j ≥ 0 and over ij ∈ [−kj , V (ξkj , t)].
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Substituting this back into the HJB equation, the latter simplifies to

r(t)V (kj, t)− V2(kj, t)

= max

{
α

[
1− α
w(t)

](1−α)/α
kj − V1(kj, t)δkj + V (kj + ij, t)− V (kj, t)− ij

}
.

Given the structure of this equation, we conjecture a linear affine value function of the form

V (kj, t) = Q(t)kj + q(t). The variable Q(t) denotes the value of capital inside the firm, i.e.,

Q(t) is Tobin’s marginal Q. The variable q(t) describes those components of the firm’s value

that do not originate from its capital stock. For this reason, an equilibrium with q(t) 6= 0 is

said to contain a bubble. If q(t) = 0, then it follows that Q(t) coincides with Tobin’s average

Q.

With the linear specification of the optimal value function introduced above, the HJB equation

turns into

r(t)[Q(t)kj + q(t)]− Q̇(t)kj − q̇(t)

= max

{
α

[
1− α
w(t)

](1−α)/α
kj −Q(t)δkj + [Q(t)− 1]ij

∣∣∣ − kj ≤ ij ≤ ξQ(t)kj + q(t)

}

=


α

[
1− α
w(t)

](1−α)/α
kj + [1− (1 + δ)Q(t)]kj if Q(t) < 1,

α

[
1− α
w(t)

](1−α)/α
kj − δQ(t)kj + [Q(t)− 1][ξQ(t)kj + q(t)] if Q(t) ≥ 1.

The optimal investment rate is given by

ij =

 −kj if Q(t) < 1,

ξQ(t)kj + q(t) if Q(t) > 1.

(8)

In the case where Q(t) = 1 holds, the investment rate is not uniquely pinned down by the

above maximization problem and any value ij ∈ [−kj, ξQ(t)kj + q(t)] is possible. Since the

HJB equation has to hold for all t and all kj it follows that

Q̇(t) =


[1 + δ + r(t)]Q(t)− 1− α

[
1− α
w(t)

](1−α)/α
if Q(t) < 1,

[r(t) + δ]Q(t)− ξQ(t)[Q(t)− 1]− α
[

1− α
w(t)

](1−α)/α
if Q(t) ≥ 1,

(9)

q̇(t) =

 r(t)q(t) if Q(t) < 1,

r(t)q(t)− [Q(t)− 1]q(t) if Q(t) ≥ 1.

(10)

The behavior of the firms is completely described by equations (4)-(10) along with the initial

condition k(0) = k̄.
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2.3 Aggregation and market clearing

Defining the aggregate variables y(t) =
∫ 1

0
yj(t) dj, k(t) =

∫ 1

0
kj(t) dj, `(t) =

∫ 1

0
`j(t) dj, and

i(t) =
∫ 1

0
ij(t) dj and recalling that the arrival rate for investment opportunities has been

normalized to 1, it follows from (4)-(8) that

y(t) =

[
1− α
w(t)

](1−α)/α
k(t) = k(t)α`(t)1−α, (11)

k̇(t) = i(t)− δk(t), (12)

`(t) =

[
1− α
w(t)

]1/α
k(t), (13)

i(t) =

 −k(t) if Q(t) < 1,

ξQ(t)k(t) + q(t) if Q(t) > 1.

(14)

The markets for labor services, output, and assets clear if

`(t) = 1, (15)

y(t) = c(t) + i(t), (16)

a(t) = V (k(t), t) + b(t) = Q(t)k(t) + q(t). (17)

In the last of these equations we have used the assumption that bonds are available in zero net

supply.

Finally, we have to make sure that households keep their firms running. This will be the case

if the market value of the firms held by the representative household is at least as large as the

market value of the capital installed in those firms. Since the value of capital outside the firms

is equal to 1 and since the representative household owns equal shares of all firms, this means

that V (k(t), t) = Q(t)k(t) + q(t) ≥ k(t) has to hold. A sufficient condition for this inequality is

that

Q(t) ≥ 1 and q(t) ≥ 0 (18)

are satisfied for all t.4

4The inequalities in (18) are of course not necessary for V (k(t), t) ≥ k(t) to hold. Neither do we know

whether the linear specification of the value function V is the only one that is consistent with equilibrium. We

follow Miao and Wang [1], [2], and [3] by considering only those equilibria with linear value functions satisfying

(18).
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3 Equilibrium analysis

A family of functions (c, a, k, `, y, i, r, w,Q, q) is called an equilibrium from k̄ if it satisfies con-

ditions (1)-(3) and (9)-(18) for all t and if k(0) = k̄ holds. A family of constant functions

(c, a, k, `, y, i, r, w,Q, q) is called a stationary equilibrium if it satisfies (1)-(3) and (9)-(18) for

all t. An equilibrium or a stationary equilibrium is called non-degenerate if y(t) > 0, k(t) > 0,

and c(t) > 0 hold for all t.

According to Walras’ law, one of the market clearing conditions or budget constraints is re-

dundant. Therefore, we shall disregard the flow budget equation (1) in the following analysis.

Using (17) it follows that (3) holds if

lim
t→+∞

e−
∫ t
0 r(s) dsQ(t)k(t) = lim

t→+∞
e−

∫ t
0 r(s) dsq(t) = 0. (19)

Finally, we note that (11), (13), and (15) together imply that

w(t) = (1− α)k(t)α, (20)

y(t) = k(t)α (21)

hold. Consequently, we can combine (9) and (18) to obtain

Q̇(t) = [r(t) + δ]Q(t)− ξQ(t)[Q(t)− 1]− αk(t)α−1. (22)

3.1 Non-degenerate stationary equilibria

In the present subsection we characterize and compare all non-degenerate stationary equilibria

of the economy under consideration.

Theorem 1 (a) A non-degenerate stationary equilibrium satisfying Q(t) = 1 exist if and only

if ξ ≥ δ holds. This stationary equilibrium is given by5

k(t) = k∗ =

(
α

ρ+ δ

)1/(1−α)

,

c(t) = c∗ =

(
1− αδ

ρ+ δ

)(
α

ρ+ δ

)α/(1−α)
,

Q(t) = Q∗ = 1,

q(t) = q∗ = 0,

r(t) = r∗ = ρ.

5Here and in the rest of the theorem we only state the equilibrium values for k(t), c(t), Q(t), q(t), and

r(t). The equilibrium values of the remaining variables can easily be computed from the stated values and the

equilibrium conditions.
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(b) A non-degenerate stationary equilibrium satisfying Q(t) > 1 and q(t) = 0 exist if and only

if ξ < δ holds. This stationary equilibrium is given by

k(t) = k0 =

[
αξ

δ(ρ+ ξ)

]1/(1−α)
,

c(t) = c0 =

(
1− αξ

ρ+ ξ

)[
αξ

δ(ρ+ ξ)

]α/(1−α)
,

Q(t) = Q0 =
δ

ξ
,

q(t) = q0 = 0,

r(t) = r0 = ρ

(c) A non-degenerate stationary equilibrium satisfying Q(t) > 1 and q(t) > 0 exist if and only

if ξ < δ/(1 + ρ) holds. This stationary equilibrium is given by

k(t) = k+ =

[
α

(1 + ρ)[(1− ξ)ρ+ δ]

]1/(1−α)
,

c(t) = c+ =

[
1− αδ

(1 + ρ)[(1− ξ)ρ+ δ]

] [
α

(1 + ρ)[(1− ξ)ρ+ δ]

]α/(1−α)
,

Q(t) = Q+ = 1 + ρ,

q(t) = q+ = [δ − ξ(1 + ρ)]

[
α

(1 + ρ)[(1− ξ)ρ+ δ]

]1/(1−α)
,

r(t) = r+ = ρ.

Proof: First we observe that the Euler equation (2) implies that in every non-degenerate

stationary equilibrium the interest rate is given by r(t) = ρ.

(a) Suppose now that Q(t) = 1 holds for all t. In this case (10) shows that q(t) = 0 must hold

for all t and (22) implies that k(t) = [α/(δ + ρ)]1/(1−α). From (12) we obtain i(t) = δk(t) ≥ 0

so that (16) and (21) lead to

c(t) = k(t)α − δk(t) =

(
1− αδ

δ + ρ

)(
α

δ + ρ

)α/(1−α)
.

The collateral constraint says that i(t) = δk(t) ≤ V (ξk(t)) = ξk(t) and it follows that δ ≤ ξ

must hold. Finally, we observe that the transversality conditions in (19) hold trivially because

of the constancy of k(t), Q(t) and q(t) and because of r(t) = ρ > 0.

(b) Suppose that Q(t) > 1 and q(t) = 0 hold. From equations (12) and (14) it follows that

k(t) = 0 or Q(t) = δ/ξ must hold. The former case is not consistent with the non-degeneracity

of the stationary equilibrium and is therefore discarded. The latter case requires the parameter
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restriction ξ < δ. Substituting r(t) = ρ and Q(t) = δ/ξ into equation (22), we obtain

k(t) =

[
αξ

δ(ρ+ ξ)

]1/(1−α)
.

Now we can use conditions (12), (16), and (21) to compute

c(t) = kα0 − δk0 =

[
1− αξ

ρ+ ξ

] [
αξ

δ(ρ+ ξ)

]α/(1−α)
.

Non-negativity of investment and the validity of the transversality conditions in (19) can be

shown in the same way as in part (a).

(c) Finally, assume that Q(t) > 1 and q(t) > 0 are satisfied. It follows from (10) and r(t) = ρ

that Q(t) = 1 + ρ holds. Substituting this value along with r(t) = ρ into (22) we obtain

k(t) =

[
α

(1 + ρ)[δ + ρ(1− ξ)]

]1/(1−α)
.

Note that the restriction ξ < δ/(1 + ρ) stated in the theorem implies trivially that ξ < (1 + δ+

ρ)/(1 + ρ) which, in turn, is equivalent to

(1 + ρ)[δ + ρ(1− ξ)] > δ. (23)

This shows that the above value for k(t) is well defined and positive. Substituting the values

for Q(t) and k(t) into (12) and (14) we obtain

q(t) = [δ − ξ(1 + ρ)]

[
α

(1 + ρ)[δ + ρ(1− ξ)]

]1/(1−α)
.

The constraint q(t) > 0 implies that ξ < δ/(1 + ρ). By substituting the above values into

equation (16) we obtain

c(t) =

[
1− αδ

(1 + ρ)[δ + ρ(1− ξ)]

] [
α

(1 + ρ)[δ + ρ(1− ξ)]

]α/(1−α)
.

Using (23) it is straightforward to see that c(t) is strictly positive. The non-negativity constraint

on investment as well as the transversality conditions in (19) hold for the same reasons that

have already been mentioned above. �

The following lemma describes how the stationary equilibria listed in theorem 1 depend on

the parameter ξ. We also demonstrate that the capital stock in all non-degenerate stationary

equilibria is lower than the Golden Rule capital stock, which is given by kGR = (α/δ)1/(1−α).
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Lemma 1 (a) It holds that

max{k∗, k0, k+} < kGR.

(b) It holds that k0 and c0 are strictly increasing with respect to ξ ∈ (0, δ).

(c) It holds that k+ and c+ are strictly increasing with respect to ξ ∈ (0, δ/(1 + ρ)).

(d) If ξ = 1, then it follows that k0 = k+ and c0 = c+.

(e) If ξ < 1, then it holds that k0 < k+ and c0 < c+.

Proof: (a) The inequalities k∗ < kGR, k0 < kGR, and k+ < kGR follow immediately from

theorem 1 and the parameter restrictions ρ > 0, ξ ∈ (0, 1), and α ∈ (0, 1).

(b) It is obvious from theorem 1(b) that k0 is strictly increasing with respect to ξ. Defining

the function g : R+ 7→ R by g(k) = kα − δk it holds that c0 = g(k0). Moreover, we have

g′(k) = αkα−1 − δ > 0 for all k ∈ (0, kGR) and it follows therefore that g is strictly increasing

on the interval (0, kGR). Combining these observations and the fact that the function g is

independent of ξ, one can see that c0 is strictly increasing with respect to ξ.

(c) Part (c) of the lemma is obvious from theorem 1(c) and c+ = g(k+).

(d) This part is obvious from theorem 1(b-c).

(e) Let us define the parameter ξ̄ = 1 + δ/ρ and note that max{1, δ/(1 + ρ)} < ξ̄ holds.

Furthermore, we define the functions κ0 : [0, ξ̄) 7→ R and κ+ : [0, ξ̄) 7→ R by

κ0(ξ) =
ξ

δ(ρ+ ξ)

and

κ+(ξ) =
1

(1 + ρ)[(1− ξ)ρ+ δ]
,

respectively. Both of these functions are continuously differentiable and strictly increasing, κ0 is

strictly concave, and κ+ is strictly convex. Finally, we have κ0(0) = 0 < κ+(0), κ0(1) = κ+(1),

and κ0(δ/(1 + ρ)) = κ+(δ/(1 + ρ)). These properties imply that the graphs of κ0 and κ+

intersect only in the points ξ = 1 and ξ = δ/(1 + ρ) and that κ0(ξ) < κ+(ξ) holds for all

ξ ∈ (0,min{1, δ/(1+ρ)}). The proof of part (e) is completed by noting that k0 = [ακ0(ξ)]
1/(1−α),

k+ = [ακ+(ξ)]1/(1−α), c0 = g(k0), and c+ = g(k+). �

Figure 1 illustrates the results stated in theorem 1 and lemma 1 for the parameter values

α = 1/3, δ = 2/3, and ρ = 1. Note that the parameter values are such that δ/(1+ρ) = 1/3 < 1

holds, such that the bubbly stationary equilibrium does not exist for ξ = 1. Indeed, there exists

two non-degenerate stationary equilibria (one of which is bubbly) whenever ξ is smaller than

δ/(1 + ρ) = 1/3.
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Figure 1: Capital stocks in the stationary states for α = 1/3, δ = 2/3, and ρ = 1.

In figure 2 we show the situation when δ/(1 + ρ) > 1. More specifically, the parameter values

are α = 1/3, δ = 3, and ρ = 1. Since ξ ≤ 1 and δ > 1 + ρ > 1 is satisfied, it follows from

theorem 1(a) that there exists no non-degenerate stationary equilibrium with Q(t) = 1. In

every non-degenerate stationary equilibrium the collateral constraint is binding.

An interesting special case is ξ = 1, because we have k0 = k+ and c0 = c+ despite the fact that

Q0 = δ > 1 + ρ = Q+ and q0 = 0 < (δ − 1− ρ)k+ = q+. In this case it holds furthermore that

Q0k0 + q0 = Q+k+ + q+. In other words, the two stationary equilibrium allocations as well as

their supporting price systems coincide, but the stock market price of firms can be interpreted

to be bubbleless (q0 = 0) or to have a positive bubble component q+ > 0.

3.2 Local dynamics

In this subsection we study the local dynamics around the stationary equilibria (k0, c0, Q0, q0, r0)

and (k+, c+, Q+, q+, r+). We focus on these two stationary equilibria because they are the ones

for which the collateral constraint is binding.

In the first step we reduce the equilibrium conditions to a system of three differential equations.

To this end, recall that in Q0 > 1 and Q+ > 1, which implies that locally at both stationary

equilibria under consideration it holds that Q(t) > 1. The equilibrium dynamics are therefore

described by

k̇(t) = ξQ(t)k(t) + q(t)− δk(t), (24)

ċ(t) = [r(t)− ρ]c(t)/θ, (25)
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Figure 2: Capital stocks in the stationary states for α = 1/3, δ = 3, and ρ = 1.

Q̇(t) = [r(t) + δ]Q(t)− ξQ(t)[Q(t)− 1]− αk(t)α−1, (26)

q̇(t) = r(t)q(t)− [Q(t)− 1]q(t), (27)

c(t) = k(t)α − ξQ(t)k(t)− q(t). (28)

Equation (24) follows from (12) and (14), equation (25) is just a repetition of the Euler equation

(2), equation (26) follows from (22), equation (27) follows from (10), and equation (28) combines

(14), (16), and (21). Conditions (24)-(28) are the five equations referred to by Miao and

Wang [3, Appendix D]; see footnote 1 of the present paper.

Lemma 2 In every equilibrium, in which Q(t) > 1 holds for all t, the interest rate satisfies

r(t) = R(k(t), Q(t), q(t)), where the function R is given by

R(k,Q, q) =
{ρ− αθ[δ − ξ(1 +Q)]}kα + αθkα−1q − ξ(ρ+ θξ)Qk − [ρ+ θ − θ(1− ξ)Q]q

kα − ξ(1− θ)Qk − (1− θ)q
.

(29)

Proof: Differentiating equation (28) with respect to time t and using equations (24)-(27) to

eliminate the time derivatives k̇(t), ċ(t), Q̇(t), and q̇(t) we obtain an equation that is linear in

the interest rate r(t). Solving this equation we obtain r(t) = R̃(k(t), c(t), Q(t), q(t)) with R̃

defined by

R̃(k, c,Q, q) =
αθ[ξ(1 +Q)− δ]kα + αθqkα−1 − θξ2Qk + ρc− θ[1− (1− ξ)Q]q

c+ θ(ξQk + q)
.

Using (28) once more to eliminate c(t) from the above expression it follows that r(t) =

R(k(t), Q(t), q(t)) with R defined in (29). �
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Using the above lemma, we can write the equilibrium dynamics as
k̇(t)

Q̇(t)

q̇(t)

 = F (k(t), Q(t), q(t)), (30)

where F : R3
+ 7→ R3 is defined by its three components

F 1(k,Q, q) = ξQk + q − δk,
F 2(k,Q, q) = [R(k,Q, q) + δ]Q− ξQ(Q− 1)− αkα−1,
F 3(k,Q, q) = R(k,Q, q)q − (Q− 1)q.

The Jacobian matrix of this system in a fixed point (k,Q, q) is

J(k,Q, q) =


ξQ− δ ξk 1

R1Q+ α(1− α)kα−2 R2Q+ ρ+ δ − ξ(2Q− 1) R3Q

R1q R2q − q R3q + 1 + ρ−Q


where we have used the fact that R(k,Q, q) = ρ holds for every stationary equilibrium and

where we have omitted the arguments of the function R for simplicity. In the following two

theorems we characterize the eigenvalues of the Jacobian matrix J(k,Q, q) at the two stationary

equilibria.

Theorem 2 Suppose that ξ < δ holds. The eigenvalues of the Jacobian matrix J(k0, Q0, q0)

are

1 + ρ− δ/ξ , λ1 , λ2,

where λ1 and λ2 are the roots of the quadratic polynomial

P0(λ) = λ2 − λ[δR2(k0, Q0, q0)/ξ + ρ+ ξ − δ]− δR1(k0, Q0, q0)k0 − α(1− α)ξkα−10 .

The eigenvalues λ1 and λ2 are real and of opposite signs.

Proof: Since q0 = 0 and Q0 = δ/ξ we have

J(k0, Q0, q0) =


0 ξk0 1

δR1/ξ + α(1− α)kα−20 δR2/ξ + ρ+ ξ − δ δR3/ξ

0 0 1 + ρ− δ/ξ

 .
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This proves immediately that one of the eigenvalues is 1 + ρ− δ/ξ and that the remaining two

eigenvalues are the roots of P0(λ), which is the characteristic polynomial of the upper-left 2×2

submatrix of J(k0, Q0, q0). To prove the last statement of the theorem it suffices to show that

P0(0) = −δR1(k0, Q0, q0)k0 − α(1− α)ξkα−10 < 0

holds. Using theorem 1(b) and lemma 2 it is straightforward to verify that

P0(0) = −δ
2(1− α)(ρ+ ξ){ρ+ ξ[1− α(1− θ)]}k0c0

αξ(c0 + δθk0)2
,

which is obviously negative for all parameter values. �

Theorem 3 Suppose that ξ < δ/(1 + ρ) holds. The Jacobian matrix J(k+, Q+, q+) has exactly

one stable eigenvalue.

Proof: Using Q+ = 1 + ρ we obtain

J(k+, Q+, q+) =


ξ(1 + ρ)− δ ξk+ 1

R1(1 + ρ) + α(1− α)kα−2+ R3(1 + ρ) + ρ+ δ − ξ(1 + 2ρ) R4(1 + ρ)

R1q+ R3q+ − q+ R4q+

 .

The characteristic polynomial of this matrix has the form

P+(z) = −z3 +D2z
2 +D1z +D0,

where

D2 =
1

∆

{
αδ2(1 + ρ)θ + (1 + ρ)(1− ξ)[ρ2(1− ξ)− αθξ(1 + 2ρ)]

+δ[αθ(1− 2ξ) + ρ2(1 + αθ)(1− ξ) + ρ(1− α− ξ + αξ + αθ(3− 4ξ))]
}
,

D1 =
1

∆

{
δ3[1 + ρ− α(1 + ρθ)] + ρ(1 + ρ)2(1− ξ)ξ[α(1− ξ)(θ − ρ+ 2ρθ) + (1 + ρ)ξ]

+δ2[ρ2(2− 3ξ − αξ − 3αθ + 4αθξ)− (1− α2)ξ + ρ(2− 4ξ + α2ξ − α− 2αθ + 3αθξ)]

+δ(1 + ρ)[(1− α)ξ2 − ρ(ξ + 2αξ − αξ2 − α2ξ + α2ξ2 − 3ξ2 + αθ − 4αθξ + 3αθξ2)]

+δ(1 + ρ)ρ2[1− 3ξ + 3ξ2 − α(1− ξ)(2ξ + 2θ − 5θξ)]
}
,

D0 = −(1− α)(1 + ρ)[δ − ξ(1 + ρ)][δ + ρ(1− ξ)]{(1− α)δ + ρ[1 + ρ+ δ − ξ(1 + ρ)]}
∆

,

and

∆ = δ[1− α(1− θ)] + ρ[1 + ρ+ δ − ξ(1 + ρ)].
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The assumption ξ < δ/(1 + ρ) implies that

∆ > 0,

δ + ρ(1− ξ) > 0,

(1− α)δ + ρ[1 + ρ+ δ − ξ(1 + ρ)] > 0.

Hence, it follows that D0 < 0, which proves that P+ has at least one negative real root. It also

follows that there cannot be two stable roots (counting multiplicities). To complete the proof

of the theorem it is therefore sufficient to rule out that there are three stable roots.

From the results in Strelitz [4] and Weisstein [6] it follows that P+ has three stable roots if and

only if D0 < 0, D1 < 0, D2 < 0, and D0 + D1D2 > 0. It is therefore sufficient to prove that

D2 > 0 holds which, because of ∆ > 0, is equivalent to D2∆ > 0. It will be convenient to write

D2∆ = h(α, θ, ξ).6 First of all note that h(α, θ, ξ) is linear with respect to α and that

h(0, θ, ξ) = ρ(1 + ρ)(1− ξ)[δ + ρ(1− ξ)] ≥ 0

holds. Since α ∈ (0, 1) is satisfied, it is sufficient to prove that h(1, θ, ξ) is non-negative. It

holds that

h(1, θ, ξ) = ρ3 + ρ2(1 + δ + δθ) + ρδθ(3 + δ) + δθ(1 + δ)

−[2ρ3 + (1 + 2δ)θ + (3 + 4δ)ρθ + (2 + δ)ρ2(1 + θ)]ξ + (1 + ρ)(ρ2 + 2θρ+ θ)ξ2,

and

h(1, 0, ξ) = ρ2(1− ξ)[δ + (1− ξ)(1 + ρ)].

We observe that h(1, θ, ξ) is linear with respect to θ and that the assumption ξ(1+ρ) < δ implies

that h(1, 0, ξ) > 0 holds. Consequently, it is sufficient to prove that h2(1, θ, ξ) is positive. We

have

h2(1, θ, ξ) = δ2(1 + ρ) + δ[1 + 3ρ− (ρ2 + 4ρ+ 2)ξ]− (1 + 3ρ+ 2ρ2)ξ(1− ξ).

The function h2(1, θ, ξ) is independent of θ (because of linearity of h(1, θ, ξ) with respect to θ)

and it is a strictly convex quadratic function of ξ. This quadratic function attains its minimum

at

ξ̄ =
1 + 3ρ+ 2ρ2 + δ(2 + 4ρ+ ρ2)

2(1 + 3ρ+ 2ρ2)

and it holds that ξ̄ > δ/(1 + ρ). This implies that h2(1, θ, ξ) is strictly decreasing with respect

to ξ ∈ (0, δ/(1 + ρ)). Since h2(1, θ, δ/(1 + ρ)) = δρ(1 + ρ) > 0 it follows that h2(1, θ, ξ) > 0

holds for all feasible parameter values. This completes the proof of D2 > 0. �

6Dependence of D2∆ on the remaining parameters δ and ρ is not important for the following argument,

which is why we do not include these parameters as arguments of the function h.
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4 Discussion

We have shown that the results from Miao and Wang [3] on the dynamics locally around

stationary equilibria in an economy with risk neutral households carry over the case of risk

averse households. More specifically, if the fraction ξ of capital that can be pledged as collateral

is sufficiently high, only a bubbleless stationary equilibrium exist and it is saddle point stable. If

the parameter ξ falls below a certain threshold value, a bubbly stationary equilibrium bifurcates

from the bubbleless one. In the course of this bifurcation the bubbly equilibrium inherits the

saddle point stability whereas the bubbleless stationary equilibrium becomes indeterminate.

The situation is therefore completely analogous to that in the overlapping generations model

of Tirole [5], where the distinction between ξ being above or below the threshold corresponds

to the distinction between the bubbleless steady state capital stock being below or above the

Golden Rule capital stock.

The stability properties derived in Miao and Wang [3] and the present paper imply that there

exist equilibria converging to the stationary ones, no matter whether they contain bubbles or

not. Since the stationary equilibrium capital stocks are smaller than the Golden Rule capital

stock (see lemma 1), all those convergent equilibria are dynamically efficient. In the model of

Tirole [5], on the other hand, existence of bubbly equilibria is only possible if the bubbleless

equilibrium is dynamically inefficient.

Finally, let us emphasize that the collateral constraint ij(t) ≤ V (ξkj(t), t) introduces an in-

teresting property into the firms’ dynamic optimization problem: a constraint of the problem

depends on the optimal value of that very problem. It is this self-referential feature that gives

rise to multiple solutions and, hence, to the emergence of stock price bubbles. In the model

by Miao and Wang [3] two solutions can be identified in which the optimal value functions are

linear. It would be very interesting to find other meaningful examples of such self-referential

problems in economics, perhaps also ones that admit non-linear solutions.
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