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How to Bid without Knowing what Others are Doing∗

Bernhard Kasberger? Karl Schlag�

September 28, 2017

Abstract

Bidding optimally in first-price auctions is complicated. In the classi-

cal equilibrium framework, optimal bidding relies on detailed beliefs about

other bidders’ value distributions and bidding functions. This article shows

how to find a robust bidding rule that does well with minimal information

and thus achieves good performance in many situations. Robust bidding

means to minimize the maximal difference between the payoff and the pay-

off that could be achieved if one knew the other bidders’ value distribu-

tions and bidding functions. We derive robust bidding rules under different

scenarios, including complete uncertainty. Our bid recommendations are

evaluated with experimental data.

Keywords– Auction, Robust, Uncertainty

JEL Codes: C72, D44, D81

1 Introduction

Consider a bidder in a first-price auction who knows her value for the auctioned

good.1 The bidder is aware of the basic trade-off. On the one hand, bidding

close to value raises her chances of winning the auction, but it also leads to a

∗We thank the participants at the 2016 Auction and Market Design Workshop in Vienna,
the 2017 ZEW Workshop on Market Design, the 2017 Stony Brook International Conference on
Game Theory, the 2017 EEA-ESEM meeting in Lisbon, and the 2017 VfS annual conference for
their comments.

?Kasberger: Vienna Graduate School of Economics and Department of Economics, University
of Vienna, bernhard.kasberger@univie.ac.at

�Schlag: Department of Economics, University of Vienna, karl.schlag@univie.ac.at
1In a first-price auction every bidder submits a sealed bid. The bidder with the highest bid

wins the object and pays his or her bid. Ties are resolved randomly.
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small payoff conditional on winning. Bidding low, on the other hand, leads to a

large payoff conditional on winning, but goes along with a smaller likelihood of

winning. The bidder is unsure about the probability that a bid becomes winning

and wishes to hire an economic consultant to help her figure out the optimal bid.

A consultant will ideally be guided by the current economic literature and hence

will seek to compute a Bayesian Nash equilibrium. For this he needs to know the

joint value distribution, the information structure, the number of bidders, other

bidders’ utility functions, their beliefs, and needs to assume common knowledge

of all of these ingredients. He would then (try to) calculate an equilibrium. Our

bidder has only a vague conception of these ingredients and concludes that she

cannot hire such an economic consultant. In particular, she does not believe that

everyone is playing according to equilibrium as she is unsure and others might be

unsure too. Alternative methods to make recommendations exist but rely on the

bidder knowing how others make their choices (rationalizability (e.g. Battigalli

and Siniscalchi, 2003) and bidding under ambiguity (e.g. Lo, 1998)).

In this paper we provide a novel methodology that a consultant can use to

help the bidder formalize her vague conception and place a bid in the first-price

auction. The methodology requires minimal information about other bidders and

even allows misunderstandings about the faced circumstances. Our general idea

is the following. There is a true but unknown bid distribution. This bid distribu-

tion is generated by a joint value distribution, an information structure, and other

bidders’ bidding behavior. If the bid distribution was known, one could maximize

the payoff; this generates the highest possible payoff. Our bid recommendations

aim to get a payoff close to the highest possible payoff in the following way. Con-

sider as the loss of a bid the difference between the maximized payoff if the bid

distribution was known, and the payoff generated by the bid under the true bid

distribution. Bidding behavior is chosen to minimize the maximal loss (the er-

ror bound) for the bidders’ conceivable bid distributions. Note that loss is never

experienced; it is a number that measures how well the highest possible payoff is

approximated given the true but unknown bid distribution.

We suggest the consultant to formalize the bidder’s vague conception with

a set of conceivable environments. An environment generates a bid distribution

and is defined as a joint value distribution, an information structure, and the

bidding functions of the other bidders. Different perceptions lead to different

sets of conceivable environments. In the text, we discuss conceptions that reach

from complete uncertainty to bounds on the value distribution and others’ bidding

functions. Maximal loss is minimized with respect to the bidder’s set of conceivable
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environments.

We start by making a recommendation for the case of complete uncertainty,

so when the bidder deems all value distributions and bidding functions possible.

Other bidders might, for example, collude or have interdependent values. Our rec-

ommendation under complete uncertainty is to bid half of the own value. This bid

insures that loss is at most half of the own value. In contrast, the loss of a slightly

misspecified Nash equilibrium bidding function can be 100% of the own value.

Nash equilibrium play is designed to perform optimally in a specific environment,

but can perform poorly in another. Our bidding functions balance the risks of

bidding too low and too high across all conceivable environments. One scenario

we have to protect against, as any bids of others is deemed possible, is that all

other bidders bid 0 and hence the robust bidder incurs a large loss due to bidding

above 0. The bidder might be willing to rule out such extreme environments. We

address this in two different ways. First, we consider restrictions on the joint bid

distribution by imposing lower bounds and variability of bids. Later we assume

others bid independently and limit the possible environments by bounding value

distributions and bidding functions.

Our next recommendation applies when the bidder can assess a lower bound

on the maximal bid of others. The bidder might be willing to rule out that the

maximal bid of the others will be below some threshold L < v, where v is the

private value of the bidder. For these environments, bidding (v+L)/2 guarantees

a loss below (v−L)/2. This means, for example, that if one does not expect that

the maximal bid is below 80% of one’s own value, so L = 0.8 · v, then the error

bound will be at most 10% of v. However, a threshold L for which the bidder is

willing to rule out with certainty that the maximal bid will not be below L may

be very small. Hence, we also offer a bidding strategy for a bidder who can bound

the probability of others bidding below L. We find that the above result for the

case where the maximal bid has no mass below L = 0.80 · v continues to hold if

at most mass 0.11 of the maximal bid is below this value of L.

The following recommendation can be used when the bidder is willing to rule

out that others bid the same bid for sure. The bidding functions recommended

so far do not depend on the number of bidders, as it is conceivable that the other

bidders bid the same bid for sure. We introduce some degree of independence in

a reduce form. There are n bidders and the maximal bid of others is not below L.

We assume that independently for each bidder, with probability ε, this bidder is

believed to bid between L and v with each bid being equally likely. The remaining

bidders are believed to bid above L. The optimal bidding function of the ε-uniform
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model is increasing in the number of bidders and a convex combination of the value

v and L. The weight on v is at least one half. For instance, if ε is at least 0.15,

there are 10 bidders, and L = 0, then bidding 0.88 · v insures that loss is at most

13% of value v. The same minimax loss is attained by bidding 0.66 · v when there

are five bidders and L = v/2.

We finally derive recommendations for more refined conceptions in which the

bidder is willing to place bounds on the joint value distribution and others’ bidding

behavior. Others’ values and bids are conceived to be independent and the bounds

rule out too much mass of others’ bids close to L. There are upper bounds on

the likelihood of others having low values as well as bounds on how low a bid

can be for each possible value. We find, for instance, if there are five bidders,

other bidders are believed to bid less than half of their value, i.e. b(v) ≥ v/2, and

the values are independently distributed according to F with F (x) ≤
√
x, then a

robust bidder who believes that the own value is not in the upper 0.29 quantile of

the value distribution can guarantee a loss below 10% of the own value by using

a linear bidding strategy. In this example the optimal bid is 0.7 · v.

Our bid recommendations are designed to minimize the difference of the payoff

and the highest possible payoff in the worst case. Supposedly, the worst case does

not always occur. Hence, we want to evaluate our recommendations in actual

situations. Experimental data provides a good setting for the evaluation as the

private values are known. We data from three experiments. In all treatments

of the three experiments, we find that our methods lead to much smaller loss on

average than the actually submitted bids. The best recommendation across all

treatments is from the ε-uniform model. The average loss of this recommendation

tends to be around 20% of the actual loss. Depending on the treatment, knowing

the empirical bid distributions allows to increase the payoff by 0.6% to 3.8% of the

own value on average. Our methods tend to outperform Nash equilibrium play in

terms of average and maximal loss.

The outline of the paper is as follows. We next discuss the related literature.

The formal methodology used for this study is described in Section 2. Section 3

presents simple examples of the non-robustness of bidding functions that are op-

timal in specific environments under expected and maximin expected utility. The

core of the paper begins in Section 4 where we derive deterministic bid recommen-

dations for different restrictions on the possible bid distributions. In Section 5

we derive bids under restrictions on value distributions and bidding functions. In

Section 6 we evaluate our bid recommendations with experimental data. Section

7 concludes. Proofs are given in Appendix A. Appendix B shows that appro-
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priate randomization can further decrease the minimax loss. For example, the

error bound can be improved by appropriate randomization to 36% of (v − L)

under complete uncertainty. Appendix C supplements the empirical section. In

Appendix D we consider risk averse bidders.

Related Literature

First-price auctions are prevalently analyzed by deriving Bayesian Nash equilibria

(e.g. Vickrey, 1961).2 As this practice requires many common knowledge assump-

tions, it is subject to the critique of Wilson (1987) who suggests to successively

weaken common knowledge assumptions in game theory.3 Our work dispenses

with all common knowledge assumptions and is therefore related to studies that

weaken these assumptions. Common with the literature on rationalizability is

dispensing with equilibrium play (e.g. Battigalli and Siniscalchi, 2003; Dekel and

Wolinsky, 2003; Cho, 2005; Robles and Shimoji, 2012). In contrast to this ap-

proach, we neither assume a commonly known value distribution, nor common

knowledge of rationality. Common with the literature on ambiguity is uncertainty

about the value distribution (e.g. Lo, 1998; Levin and Ozdenoren, 2004; Chen et

al., 2007).4 This approach, however, assumes symmetric ambiguity preferences,

a common prior over priors, and equilibrium play, so that behavior is common

knowledge up to private information.

Compte and Postlewaite (2013) suggest to reduce the sophistication needed in

fine tuning bids to the environment by restricting attention to a specific functional

form. Thus, the bidding functions are simple by assumption while in our paper

they are simple as result of the optimization. Most importantly, they assume

common knowledge of the restriction. In our approach, we do not impose that all

bidders think about the problem in the same way. We only consult one bidder

and try to put as little restrictions on what others do as possible.

2Experimental research seems to have rejected the hypothesis of risk-neutral equilibrium play
in first-price auctions. There does not seem to be one accepted model that explains observed
behavior in the lab; risk aversion, behavioral motives, and confusion have been suggested as
explanations (e.g. Kagel and Levin, 2016). In principle, our theory can be seen as an alternative
to existing models to rationalize observed behavior. The primary objective of the paper is,
however, deriving bid recommendations. Interestingly, Harrison (1989) suggests considering the
payoff space and not the bid space in evaluating experimental bids. Using a certain notion of
loss and equilibrium beliefs, he concludes that observed bids in experiments might be close to
optimal bids in the payoff space.

3Rothkopf (2007) informally favors decision theoretic methods over game theoretic models
for deriving bid recommendations, but has no explicit suggestion of how to address bidding as a
decision problem.

4Interestingly, experimental results by Güth and Ivanova-Stenzel (2003) and Chen et al.
(2007) indicate that bidding behavior is very similar with and without a known value distribution.
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Our approach is minimizing the maximal loss; a concept introduced by Sav-

age (1951) for decision problems that was subsequently used in the literature on

minimax regret and robust statistics. To start with the latter, Huber (1965, 1981)

introduces a loss function to derive robust test statistics in slightly misspecified

environments. In this paper, we do not restrict ourselves to slightly misspecified

environments, but consider more arbitrary sets of conceivable environments, that

is, we look at globally robust bidding functions. Note that the term “robust”

has also been used differently in denoting expected maximin utility (e.g. Car-

roll, 2015). The literature on minimax regret (e.g. Milnor, 1954; Hayashi, 2008)

has, for example, looked at the news-vendor problem under partial information

(Perakis and Roels, 2008), the pricing problem of a monopolist (Bergemann and

Schlag, 2008, 2011; Caldentey et al., 2017), and dynamically consistent robust

search rules (Schlag and Zapechelnyuk, 2016). In strategic settings, Linhard and

Radner (1989) consider bargaining and Sošić (2007) develops a specific collusive

scheme in auctions. Renou and Schlag (2011) and Halpern and Pass (2012) de-

velop solution concepts for games where it is common knowledge all players follow

minimax regret.

A methodological innovation is that we fully exploit the advantages of ex-ante

over ex-post loss. The difference between ex-ante and ex-post loss can be easily

seen in the auction context. From an ex-ante perspective environments are bid

distributions, whereas from an ex-post perspective environments are realized bids.

Put differently, ex-ante loss occurs because one does not know the bid distribution,

but ex-post loss occurs because the realized bids are unknown. While some studies

have also considered ex-ante loss (e.g. Perakis and Roels, 2008; Jiang et al., 2011;

Schlag and Zapechelnyuk, 2016), we explicitly vary the information available.

We talk about loss and not about regret because, first, our evaluation of perfor-

mance has no behavioral context as the term “regret” might suggest, and second,

because the term regret is used differently by the literature that follows Loomes

and Sugden (1982). This approach has been applied to auctions (e.g. Engelbrecht-

Wiggans, 1989; Filiz-Özbay and Özbay, 2007; Engelbrecht-Wiggans and Katok,

2008), assumes a commonly known value distribution, and deals with anticipated

behavioral effects of learning other bidders’ bids. We do not have a behavioral

motive in mind.
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2 Methodology

There are n bidders who participate in a first-price sealed bid auction for an

indivisible good. We consider the bidding behavior of a single bidder among

them. Let 1 be the index of this bidder. Bidder 1 is risk neutral with a utility

function quasilinear in her bid.5 She knows that winning the good with bid b

yields her utility v1 − b and losing the auction gives her utility 0. Let b1 be her

bidding function, so b1 : R+ → ∆R+ maps the own value v1 into (a distribution

of) bids, as ∆R+ denotes the set of probability distributions over positive reals.

When choosing their bids, bidders in first-price auctions are interested in the

bid distribution of the other bidders. The bid distribution is generated from three

inputs. First, there is a true and exogenous joint value distribution F ∈ ∆Rn
+.

Second, there is an information structure that maps the profile of values into the

information available to the bidders. Third, each participant’s bidding behavior

translates the information into bids. Traditional game theoretic analysis of bid-

ding behavior in auctions assumes common knowledge of the value distribution,

information structure, and bidders’ preferences and searches for an equilibrium

in which each bidder best responds to the bidding behavior of the other bidders.

In equilibrium every bidder knows how the other bidders behavior up to private

information and therefore knows the bid distribution.

We depart from the classic game theoretic setting and analyze the auction as

a decision problem. We investigate how bidder 1 should bid if she is uncertain

about the value distribution, the information structure, and the bidding behavior

of the others. No assumptions about the utility functions of the other bidders are

made. Bidder 1 might not know the true joint value distribution F , but conceive

that F belongs to the class of joint distributions F with F ⊆
⋃
n∈N ∆Rn

+. One can

incorporate uncertainty over the number of bidders n by including distributions

with different numbers of bidders in F . The bidder might be uncertain about the

bidding functions of the other bidders. They might bid independently, collude,

communicate, or know not only their own value. We abstract from the information

structure and directly specify which bidding functions are deemed possible. The

set BF collects the profiles of other bidders’ bidding functions b−1 = (b2, . . . , bn) ∈
BF that bidder 1 conceives under the joint distribution F . Any bidder i > 1 uses

the bidding function bi that maps the available information into a distribution of

bids.

The overall uncertainty is modeled in the form of bidder 1 identifying a set

5In Appendix D we consider risk-averse bidders.
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of conceivable environments E . The set of conceivable environments combines

the uncertainty about the joint value distribution and the bidding functions, i.e.

E =
⋃
F∈F{F} × BF . An environment E ∈ E generates the bid distribution

faced by bidder 1 and is a pair (F, b−1), where F is a joint value distribution and

b−1 = (b2, . . . , bn) specifies the bidding behavior of other bidders. Two extreme

cases of conceivable environments are complete uncertainty and Nash equilibrium.

Under complete uncertainty the set of conceivable environments is the universe of

all possible value distributions and bidding functions U =
⋃
F∈F{F} ×BF , where

F =
⋃
n∈N ∆Rn

+ is the set of all joint distributions and BF the set of all positive

functions b−1, where n given by F . Another extreme case is Nash equilibrium.

Simply set E = {(F, b∗−1)} where b∗ is a Bayesian Nash equilibrium under joint

value distribution F . Similarly, one can model the environment in which some but

not all other bidders choose Bayesian Nash bidding strategies.

Bidder 1 ideally selects the best bid given the true environment. We consider,

however, a bidder who does not know the environment and hence cannot perform

this task (i.e. |E| > 1). In the following we present our model of how bidder 1 bids

without having a subjective probabilistic belief. The performance of a bidding

function in a given environment is measured using a loss function. The loss of

bidder 1 conditional on her value v1 is defined as the difference between what she

could get if she knew the environment what she gets. Formally, loss is given by

l (b1, F, b−1|v1) = sup
y
{(v1 − y)Q (y, b−1, F )} −

∫
(v1 − x)Q (x, b−1, F ) db1 (x) ,

where Q is the probability that bidder 1 wins the object when bidder i uses bidding

function bi and values are drawn according to F.Note that supy {(v1 − y)Q (y, b−1, F )}
describes the payoff bidder 1 could (approximately) achieve if she knew F and the

bidding behavior of the others. We call this purely hypothetical situation in which

the environment is known the oracle. In general loss is zero if the optimal bidding

function for the true environment is chosen and bounded above by v1 if no bids

above value are placed.

What remains to be specified is the description of how bidder 1 solves the

problem of deciding how to bid without knowing the environment. A bidding

function is evaluated by the maximal loss it can generate among the conceivable

environments E . For a given set of conceivable environments E , bidder 1 prefers

bidding functions that generate smaller maximal loss. The best bidding function

bidder 1 can choose according to this criterion is the one at which minimax loss

is attained. Minimax loss is defined relative to a set of conceivable environments
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E . We distinguish minimax loss and deterministic minimax loss. In the former

all bidding strategies can be used to minimize loss, whereas in the latter only

deterministic (pure) strategies are allowed.

Definition 0. Call ξ the value of minimax loss for the conceivable environments

E if, for all environments in E , (i) loss is guaranteed to be at most ξ, and (ii) there

is no bidding function that guarantees a loss strictly lower than ξ.

Call ξ the value of deterministic minimax loss for the conceivable environments

E if, for all environments in E , (i) there exists a deterministic bidding function

that guarantees loss to be at most ξ, and (ii) there is no deterministic bidding

function that guarantees a loss strictly lower than ξ.

In the main part of the article we consider deterministic minimax loss. In

Appendix B we show that minimax loss can be further decreased with appropriate

mixed strategies.

3 Sensitivity of Expected and Maximin Utility

In this section we provide two simple examples that illustrate potential loss of

game theoretic solution concepts due to slightly misspecified environments. The

first example illustrates loss in the standard Bayesian Nash equilibrium framework,

while the second example deals with equilibrium among maximin expected utility

maximizers. Maximal loss is (approximately) 100% of the value in both examples.

This is the largest possible maximal loss if one does not bid above value. In both

examples there are two risk-neutral bidders participating in a first-price auction.

Their respective values are drawn independently from a parameterized value dis-

tribution. Loss will depend on the parameter of the value distribution. The two

examples differ in how the other bidder’s conceived bidding function depends on

the parameter. In the first example bidder 1 conceives that the other bidder’s

bidding function depends on the parameter, so it is as if the other bidder behaves

as if the true parameter was common knowledge. In the second example the other

bidder is conceived to use a bidding function independent of the parameter. This

might occur if there is a common understanding about behavior, but not about

the value distribution.

In the first example any conceivable value distribution distributes mass ε ∈
(0, 1) uniformly on (δ, 1] and mass 1 − ε on δ, so F δ(x) = 0 for x < δ and

F δ(x) = min
{

1− ε+ εx−δ
1−δ , 1

}
for x ≥ δ. Bidder 1 expects the other person to

9



play the Bayesian Nash equilibrium strategy

bδ(x) = x−
∫ x
δ
F δ(x̃) dx̃

F δ(x)
=
x2ε− δ2(2− ε) + 2δ(1− ε)

2(1− δ + xε− ε)

for x ∈ [δ, 1]. Note bidder 2 has value δ with probability 1−ε, in which case she bids

her value. The set of conceivable environments is given by E = {(F δ, bδ)|δ ∈ [0, 1)}.
In a standard textbook model bidder 1 has a subjective probabilistic belief that a

certain environment (F δ, bδ) happens with probability 1. Consider bidder 1 with

type v1 = 1 and the belief that (F 0, b0) occurs with probability 1. Her optimal

bid is b0(1) = ε/2. This bid is never winning if the true δ > ε/2. The loss of the

bid b0(1) = ε/2 is maximized if the true δ is slightly above ε/2 and equal to

sup
δ>ε/2

l(b1, F
δ, bδ2|v) = sup

δ>ε/2

1− bδ(1) = sup
δ>ε/2

(1− δ)(2− ε)
2

=
(2− ε)2

4
.

For ε close to 0, the maximal loss is approximately equal to the value. To sum-

marize, the Bayesian Nash equilibrium performs optimally for the true value dis-

tribution, but it is very sensitive to slight chances in the environment.

In the second example any of the conceivable value distributions distributes

mass γ uniformly on [0, 1−γ) and mass 1−γ uniformly on [1−γ, 1]. Let 0 < γ1 <

γ2 < 1, and F = {F γ|γ ∈ [γ1, γ2]}, where F γ(x) = γx/(1 − γ) for 0 ≤ x ≤ 1 − γ
and F γ(x) = (2γ − γx + x − 1)/γ for 1 − γ < x ≤ 1. The set of conceivable

environments is E = {(F γ, bmin)|γ ∈ [γ1, γ2]}, where

bmin(v) = v −
∫ v

0
F γ1(x) dx

F γ1(v)
=

v
2

for v ∈ [0, 1− γ1)
(1−γ1)(v2+2γ1−1)
4γ1+2v(1−γ1)v−2

for v ∈ [1− γ1, 1]
.

This behavior is consistent with the equilibrium model of maximin expected utility

maximizers. Lo (1998) shows that bidders with identical F and maximin prefer-

ences select the worst-case prior Fmin as the lower envelope of conceivable value

distributions in F . In our example this corresponds to Fmin = F γ1 . Subsequently,

bidders behave as if Fmin is the true value distribution and strategic uncertainty

is resolved in equilibrium, that is the bidding function is used by both players.

Consider bidder 1 with value 1 who bids bmin(1) = 1−γ1. Let γ1 be close to 0 and

the true γ = γ2 and γ2 close to 1. In this case most types are close to 0 and bidder

1 should bid very low to maximize her payoff. Bidder 1 bids, however, almost 1

as γ1 is close to 0. Consequently, her loss of not bidding as she would if she knew

the true γ can be almost 100% of the own value.
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In both equilibrium models the loss can be as high as 100% of the value.

Although equilibrium play depends on many restrictive assumptions, these as-

sumptions are not the source of the high loss in our examples. The loss comes

from the underlying decision theory. A bidder with a subjective probability as-

sessment of the highest bid among the other bidders might bid very well if the

assessment is accurate, but very badly if it is slightly wrong. Likewise, bidder 1

with maximin expected utility preferences might bid value, because bidding value

is a best response to the worst-case in which all other bidders bid bidder 1’s value.

Bidding value is not a sensible bid recommendation in a first-price auction as it

leads to zero expected utility for sure.

4 Conceiving Bid Distributions

We come to the main part of the paper. A bidder who is uncertain about the

value distribution, the information structure, and other’s bidding functions is in

fact uncertain about the bid distribution. In this section we consider a bidder

who narrows down the possible environments by putting restrictions directly on

the conceivable bid distributions. First, she imposes a lower bound on the possible

maximal bid, then she allows for some mass below this threshold, and finally, she

considers a model with some independent bidding and bid dispersion. In Section

5 the robust bidder thinks more explicitly about value distribution and other

bidders’ behavior.

4.1 Imposing a Lower Bound on the Maximal Bid of Others

We start by looking at the case in which bidder 1 is completely uncertain about

the other bidders’ types (value distributions, risk preferences, higher-order beliefs,

etc.) and their bidding behavior. This means, for example, that bidder 1 does not

insist that the other bidders bid independently, but also deems colluding behavior

possible. More formally, we allow the set of conceivable environments to be the

set of all possible environments U .

The model of complete uncertainty can readily be generalized to the following

situation. Bidder 1 believes that she needs to bid at least L ≥ 0 so that her bid

becomes winning. The value of L can be a known reserve price,6 or the perception

that the maximal bid of other bidders is at least L. In the following we consider

the case where v1 > L as bidding under v1 ≤ L is simple; all bids less than or

6The value L can also be the endogenously determined reserve price in a unit-demand Anglo-
Dutch auction (Binmore and Klemperer, 2002).
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equal to v1 are optimal. The perception that the other bidders’ highest bid is at

least L is a restriction on the set of all possible environments.

Definition 1. Let EL be the set of environments belonging to U in which the

highest bid of other bidders is almost surely at least L for L ≥ 0.

The objective is to find the deterministic bid b∗ that minimizes the maximal

loss for the set of conceivable environments EL. Loss associated with bid b is the

difference between the oracle payoff, the maximized payoff if the environment was

known, and the payoff generated by bid b. First, observe that loss cannot be min-

imized by bids above v1, because these bid results in a non-positive payoff.7 Bids

below L are losing for sure and cannot minimize loss. Loss cannot be maximized

by environments in which the highest bid among the other bidders M is above v,

because then loss is zero. Therefore, loss can only be maximized by environments

with M ∈ [L, v]. Note that for a given environment E bidder 1 wins only if her

bid is higher than M . Hence, loss is maximized by environments in which M is

revealed in the oracle, because in these environments the oracle payoff is as high

as possible. A simple type of environment in which this is the case is when all

other bidders bid M with certainty. If bidder 1 bids b and the oracle reveals M ,

then loss equals

l(b,M |v) = sup
x>M
{v − x} − 1b>M(v − b) = v −M − 1b>M(v − b),

where 1b>M = 1 if b > M and 0 otherwise. The oracle payoff is supx>M{v − x},
because bidder 1 knows the bid M she has to match.8

Loss can come from bidding too low and from bidding too high. Bidder 1 bids

too low if the bid b does not become winning. In this case, loss is v −M , but not

higher than v− b, as loss is maximized when b is slightly outbid. The bid b is too

high when b > M ≥ L, so when bidder 1 could raise her payoff by decreasing her

bid. The loss of bidding too high is not more than v − L − v + b = b − L. Thus,

the maximal loss is max {v − b, b− L}. Maximal loss is minimized by the bid that

balances the loss from bidding too low and too high, so by the bid that equates

the two expressions. The proposition gives the resulting deterministic minimax

bid and the corresponding loss. Minimax loss relative to the distance v − L is 1
2
.

7We will often drop the index if we think this causes no confusion.
8Formally, without discrete bids and with a non-degenerate tie-breaking rule, bidder 1 has no

best response when he knows that the maximal bid among the other bidders is M < v. Hence,
we consider the supremum because we are interested in the payoff and not in the specific bid.
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Proposition 1. For the set of conceivable environments EL deterministic minimax

loss is equal to v−L
2

and attained by bidding

b∗(v) =
v

2
+
L

2
. (1)

The bidding function in Proposition 1 is independent of the number of bidders.

Note that no assumption on the number of bidders is made. Even if this number

was known, the true value distributions could assign the same value to all other

bidders, or the bidding function could be such that all submit the same bid, making

the number of bidders irrelevant.

Bergemann and Schlag (2008) look at a related problem–the optimal pricing

scheme of a monopolist who does not know the value distribution of the buyer.

The monopolist minimizes maximal regret (loss), where regret is the difference

in profit when the value is known and when it is not known. It turns out that

their solution of the monopolist’s optimal pricing strategy resembles our solution.

Bidding in a first-price auction with no assumptions is like pricing in markets

with no information on demand. Apart from directions where higher payoffs can

be achieved, in auctions one wishes as bidder to have a low winning bid, in markets

as seller a high sale prices. A methodological difference is that Bergemann and

Schlag (2008) consider ex-post loss, while we consider ex-ante loss. The difference

of those two concepts is decision maker’s knowledge used for the computation

of the oracle payoff. In Bergemann and Schlag (2008) the monopolist knows

the strategy of the potential buyer and uses the buyer’s value in the oracle. In

this article the bidder uses the distribution and bidding function of the other

bidders only when computing the oracle payoff. Halpern and Pass (2012) introduce

iterated elimination of strategies that do not attain minimax regret in normal form

games (with a known prior). For this approach it is crucial that all players are

known to minimize maximal regret. They provide a simple example of a first-price

auction in which they essentially look at ex-post minimax regret, limit attention

to deterministic strategies, and iteration is not needed. They find that the bidding

function b(v) = v/2 minimizes maximal regret. We do not assume that all bidders

minimax loss and we consider ex-ante and not ex-post loss. The deterministic

bidding rule b(v) = v/2 was also found by Sošić (2007).

Loss can come from bidding too low and from bidding too high. Loss from

bidding too low is maximized when he mass point of the bid distribution is just

marginally larger than the own bid. Loss from bidding too high, however, is

maximized by a bid distribution that puts all the mass on the lowest possible bid

13



L. There are certainly situations in which such extreme situations are deemed

implausible. In the following sections we show that minimax loss is smaller if very

low bids are not conceived to be likely.

4.2 Allowing some Mass Below the Threshold

In the analysis above bidder 1 restricted her bids to be above L, because she

deemed that her bids below L are never winning. When the likelihood of bids

below L is sufficiently small, we show that it is best to ignore possible bids below

L and to bid as in Proposition 1.9

Definition 2. Let L ≥ 0 and p̄ ∈ [0, 1]. Define ELp̄ to be the set of all environments

such that the probability that the highest bid among the other bidders is below L

is bounded above by p̄.

The maximal probability that the highest bid among the other bidders is below

L is p̄ for environments in ELp̄. Each environment specifies a number of bidders n

with n ≥ 2. Suppose the other bidders bid independently. For every bidder i > 1

there is a pi ∈ [0, 1] such that at most mass pi of i’s bids can be below L. Then

the maximal probability that the highest bid among the other bidders is below L

is
∏

1<i≤n pi ≤ p̄. Moreover, if pi does not depend on i, then pn−1 ≤ p̄. In the

analysis above we had p̄ = 0. In this section the maximal bid M can be in [L, 1]

with probability 1, but maximal bids below L can only be induced by distributions

in which the highest bid among the other bidders is above L with probability at

least 1− p̄.
Consider bidder 1 having a relatively high value v > L and suppose she uses

the bidding strategy b∗(v) = (v+L)/2 of Proposition 1. Above we saw that if the

highest bid among the other bidders is always above L, loss is at most (v − L)/2.

Therefore, loss of not bidding below L can only be made larger if the highest bid

among the others is below L. Potentially, loss can be made largest by all other

bidders bidding 0, which can, under the set of conceivable environments ELp̄, only

happen with probability p̄. This insight is associated with a loss that depends on

p̄. The following proposition states that if p̄ is sufficiently small, then maximal

loss is minimized by ignoring potential bids below L.

Proposition 2. Let v > L > 0 and 0 < p̄ < 1. For the set of conceivable

environments ELp̄ with p̄ ≤ v−L
v+L

deterministic minimax loss is equal to v−L
2

and

attained by the deterministic bidding strategy stated in Proposition 1.

9In Appendix B we discuss a related setting in which one knows that the own value is relatively
small and the implications on loss.
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The proof is in Appendix A. Note that for any L ∈ (0, v) and pi ∈ (0, 1), the

upper bound on p̄ in Proposition 2 is satisfied for large enough n. In order to get

a feeling for the result, in Example 1 we fix the bound on loss to be at most 10%

of v and ask which L and p̄ give rise to this loss.

Example 1. Let L = 0.8v. Proposition 2 implies that one does not need to bid

below L to minimize maximal loss if p̄ ≤ v−L
v+L

= 0.2
1.8

= 0.11. In this case minimax

loss is equal to 10% of the value. Assuming independent bidding, so p̄ = pn−1, loss

is less than one tenth of v when p ≤ 0.57 and n = 5.

The proposition illustrates the difference between an ex-ante and an ex-post

perspective. In an ex-post perspective the oracle reveals the bids of the other

bidders. If it happens that all bids are below L, the optimal bid is below L. One

can incorporate constraints on the bid distribution in the ex-ante approach. The

oracle reveals the bid distribution, but not the specific bids, and therefore it is

optimal not to bid below L. In the next model the ex-ante approach is further

developed by assuming a certain independence of other bidders’ behavior.

4.3 The ε-Uniform Model

We now return to our original model in which the bidder believes that all bids are

above L. In Subsection 4.1 it was conceivable that all other bidders bid the same

bid. This had the consequence that the optimal bidding function was independent

of the number of bidders. Here we assume that the bidder expects a certain number

of bidders and some heterogeneity among the other bidders. We model this in a

reduced form by assuming that the bidder believes that any other given bidder

puts a minimal weight of ε on bids above L. Thus, no relevant bid can be ruled

out and, in particular, it cannot be the true environment that all other bidders

bid some bid M for sure. Formally, bidder 1 conceives that the bid distribution

of a given bidder can be written as ε times the uniform distribution on [L, v] plus

1− ε times some arbitrary distribution.10

Definition 3. Let L ≥ 0 and ε ∈ (0, 1). Define EL,ε,n to be the set of all environ-

ments belonging to EL such that (i) there are n bidders, (ii) for any bidder i > 1

it is as if the bid is independently drawn uniformly from the interval [L, v] with

probability ε.

10We assume the uniform distribution for simplicity. With the uniform distribution one gets
quite far in terms of closed form solutions. It might be that one has to rely entirely on numerical
calculations for other continuous distributions.
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For EL,ε,n it is again a simple form of environment that potentially maximizes

loss. These environments generate bid distributions such that for every bidder

i > 1 the bid is drawn uniformly from [L, v] with probability ε and equal to

M ∈ [L, v] with probability 1 − ε. It is enough to restrict bids to the interval

[L, v], as loss is made smaller if bids are above value with positive probability. In

these simple environments it is as if bidder 1 learns the highest bid M among the

other bidders whose bid is not drawn uniformly in the oracle. The bid distribution

has a mass point at M . If b > M, then bidder 1 wins against the n−1−k bidders

who bid M , so the payoff is equal to

π(b) =
n−1∑
k=0

(
n− 1

k

)
εk (1− ε)n−1−k (v − b)p(b)k, (2)

with p(b) = (b − L)/(v − L) being the probability that bid b is larger than a

uniformly drawn bid. This function is maximized by bidding b̃ = L+εnv−v
εn

. Note

that b̃ > L if and only if ε > 1/n. In principle, the oracle bid recommendation

can be above, equal to, or below M . Bidding M is never optimal, because slightly

bidding above M avoids the tie-breaking. If bidder 1 bids below M , then bidder 1

only wins if all other bidders’ bids are drawn uniformly. It turns out that loss in

not maximized by environments in which M < b̃, or in which M is so large such

that one wants bid below M in the oracle.

Loss can come again from bidding too low and from bidding too high. Bidding

too low means that the bid b is below the mass point M . The difference to

complete uncertainty is that here bidder 1 might win against the k bidders who

bid uniformly. The bidder bids too high when b > M so that a lower bid would

also have been higher than the mass point of the bid distribution. The minimax

bid balances the maximal loss from bidding too low and the maximal loss from

bidding too high. It depends on ε, the number of bidders n, and the lowest

possible winning bid L. A closed form solution is not available–it needs to be

computed numerically. As a result, also the value of minimax loss can only be

stated implicitly. As ε tends to zero, the model and the results converge to the

previously stated 1/2 bound.

Proposition 3. Let there be n ≥ 2 bidders, v > L ≥ 0, and ε ∈ (0, 1). For the

set of conceivable environments EL,ε,n deterministic minimax loss is attained by b∗

such that

π(max{L, b̃})− π(b∗) =
n−2∑
k=0

(
n− 1

k

)
εk(1− ε)n−1−k(v − b∗)p(b∗)k (3)

16



and equal to the value on either side of the equation, where b̃ = L+εnv−v
εn

.

The left-hand side of Equation (3) is the maximal loss of bidding too high. The

bid generates a payoff of π(b), but a higher payoff could be achieved by bidding

max{L, b̃}. The right-hand side is the maximal loss of bidding too low. In this

case the bid can only be winning if all other bidders’ bid is drawn uniformly. The

maximal loss is when bidder 1 is just slightly outbid.

To get a feeling for the magnitude of minimax loss, we look for a numerical

approximation when we vary the number of bidders. Hence, we fix ε = 0.15 and

consider n ≤ 10. Two cases need to be distinguished, as b̃ > L when n > 6 and

b̃ < L otherwise. For every case, we look for a linear bidding function b such that

the maximum of the difference between the maximal loss of the linear bidding

function and the minimax loss is as small as possible. The best fit is given by

b(v|n) =

λ1(n) · v + (1− λ1(n)) · L for n ≤ 6

λ2(n) · v + (1− λ2(n)) · b̃ for 6 < n ≤ 10,

where

λ1(n) = 0.46 + 0.04 · n

λ2(n) = 0.38 + 0.05 · n.

The approximated bidding function leads to a higher maximal loss than the min-

imax bids. Proportional to v − L, the maximal loss of the approximated bidding

function is at most 0.017 larger for n ≤ 6 and of at most 0.027 for 6 < n ≤ 10.

A linear fit of maximal loss proportional to v − L of the approximated bidding

function is

max l(b)

v − L
=

0.51− 0.05 · n for n ≤ 6

0.33− 0.02 · n for 6 < n ≤ 10.

One can see that loss is decreasing in the number of bidders and that the optimal

bid is increasing in the number of bidders. For n = 10 loss relative to v − L is

only about 13%. This is substantially lower than the 50% bound under complete

uncertainty.

5 Conceiving Value Distributions and Bidding Functions

In Section 4 we described the uncertainty directly in terms of the conceivable

bid distributions. Now we consider the other bidders more explicitly. We first
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reexamine the case of complete uncertainty and look for justifications of the lower

bound L. Next, we discuss the impact of beliefs about the value distribution and

the bidding behavior of other bidders. Beliefs only about the value distribution or

the bidding behavior do not have much bite, as one cannot improve the (v−L)/2

bound of minimax loss. A combination of beliefs about the value distribution and

bidding behavior, however, does lead to a lower upper bound on loss. In particular,

we present a set-up in which minimax loss is attained by a bidding function linear

in the own value.

In the setting of complete uncertainty (Definition 1) the robust bidder is com-

pletely uncertain about the value distribution and bidding functions. She only

conceives that the maximal bid among the other bidders is above L. Two simple

scenarios lead to the conclusion of the maximal bid being above L. In the first

scenario there are at least two other bidders, who are rational, bid independently,

and believe that the value of the other is above L. In this case, neither of them

will bid below L. In the second scenario, the maximal bid is above L if one be-

lieves that there is another robust bidder who applies the results of this paper and

who believes that the maximal bid of the bidders he faces is certainly above L.

Hence, it is not necessarily the own beliefs that lead to the bound L, but it can

be anticipating beliefs and behavior of others.

One might wonder whether the error bound (v − L)/2 becomes smaller if one

makes more assumptions on the bidding behavior of the others while maintaining

complete uncertainty about the value distributions. We explore this in the frame-

work closest to the classic model of independent private values. Assume that all

other bidders know the value distribution, that there is common knowledge of

rationality among them and that they know the strategy of the robust bidder.

Moreover, assume that the robust bidder knows the above assumptions, but does

not know the value distribution. The error bound does not change if there are at

least two other bidders. To see this, let the value distribution F be iid and equal

to ε[v1] + (1− ε)[M ], M ≥ L and ε sufficiently small.11 Bayesian bidders basically

know that all bidders have the same value M . Consequently, bidding (almost)

value is a best response to each other. This behavior generates the same condi-

tions as in Subsection 4.1 and Proposition 1 applies. Loss cannot be decreased by

simply restricting uncertainty to uncertainty over values.

One cannot improve the 1/2 error bound if one knows the value distribution,

but not the bidding function of other bidders. Suppose the value distribution was

11Alternatively, consider an asymmetric value distribution in which the Bayesian bidders have
some prior over v1, and know that all rational bidders have the same value.
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known, but any bidding behavior was deemed possible. In this case it cannot be

ruled out that all other bidders bid M irrespective of their value. Any bid above

L can happen with probability 1, so loss can only be bounded by (v − L)/2. One

can imagine that the bidder’s perception of the environment leads to constraints

that rule out this extreme case. We have seen that constraints would need to

apply both to the value distribution, so that not all bidders can have value L with

certainty, and to bidding behavior to imply that not all bidders bid L irrespective

of their type. In the next subsection we make restrictions that rule out these cases.

5.1 Behavioral Beliefs: A Linear Lower Bound on Bidding Functions

There are n ≥ 2 bidders. Values are distributed independently and identically.

The lowest possible value is K ∈ [0, v). All conceivable value distributions can

be bounded from above. In particular, the true value distribution F is such that

F (v) ≤ η (v −K)α , where η > 0 and α > 0. The larger the parameter α, the

less likely are values around K. The smaller η the less mass can be put on low

types. Other bidders use deterministic bidding functions monotone in their value

that can be bounded from below by linear functions, i.e. bidder i > 1 uses a

bidding function bi(v) ≥ σv, with 0 < σ < 1. The set of conceivable environments

is formally defined as follows.

Definition 4. Given 0 < α, 0 < η, 0 < σ < 1 and 0 ≤ K, let Eσαη be the set

of environments belonging to U in which for all conceivable value distributions F,

(i) there are n bidders, (ii) values are identically and independently distributed,

(iii) F (v) ≤ min {1, η (v −K)α} , and for all conceivable bidding functions b−1 we

have that bi(v) ≥ σv for i > 1.

Loss comes from bidding too high or too low. Under complete uncertainty the

highest bid of the other bidders M can be any bid with probability 1. Hence,

the bid b ∈ [K, v) can be too low with probability 1 and it can be too high with

probability 1. Under the constraints of this section low bids of other bidders can

only occur with low probability. For example, the maximal bid of others cannot

be K for sure. In particular, the probability that the bid b is larger than bidder

i’s bid can be bounded by

P(bi(v) ≤ b) ≤ P(σv ≤ b) ≤ η

(
b

σ
−K

)α
.

The robust bidder faces an unknown bid distribution. Let B(b) be the proba-

bility that the bid b becomes winning. Given the constraints, we have B (b) ≤
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γ (b−Kσ)β, with γ =
(
η
σα

)n−1
and β = α (n− 1). The minimax bid balances

the maximal loss from bidding too low and bidding too high and depends on the

parameters of the model.

The following proposition says that the deterministic minimax bid is an affine

function. The optimal bid is a convex combination of the own value and the lowest

possible bid of other bidders L = σK. A bid below L is, as above, never winning.

Weight ρ is put on v and weight 1−ρ on L, where ρ = (1 + β)1+β /((1 + β)1+β+ββ).

The parameter ρ ∈ (1/2, 1) is strictly increasing in β. As β is increasing in the

number of bidders, ρ increases in n and reaches 1 in the limit as n grows large.

Proposition 4. Let 0 < α, 0 < η, 0 < σ < 1, 0 ≤ K and v ≤ L+ σ
ρη1/α

. For the

set of conceivable environments Eσαη, deterministic minimax loss is equal to

γ
ββ (1 + β)β(1+β)(

(1 + β)1+β + ββ
)1+β

(v − L)1+β

and attained by bidding function

b∗(v) = ρv + (1− ρ)L. (4)

The bound on the bid distribution is only useful if the value v is not too high,

i.e. if η(ρv/σ −K)α ≤ 1, which is equivalent to v ≤ L+ σ
ρη1/α

.

We look at two examples to get a feeling for how the results can be applied

and for the magnitude of minimax loss. In both examples we set K = 0. In

this case b∗ only depends on the total number of bidders and the bound on the

value distribution. It is independent of the beliefs about the other bidders bidding

behavior (σ). When low types are relatively likely (small α) and there are few

bidders, then the optimal bid is just above v/2. For a linear bound (α = 1) and

two bidders, the optimal bid equals 0.8 v. In the first example we ask how much

mass can be at most below the own type. In the second example we fix the highest

level of loss and find an upper bound for the quantile in which the own value can

lie. For the examples it is convenient to introduce a new variable. Let µ = η1/α, so

F (v) ≤ ηvα = (µv)α. The bound on loss is tight for v ≤ σ
ρη1/α

= σ
ρµ

, so if µv ≤ σ
ρ
.

Loss is then l ≤
(
µ
σ

)β
(1− ρ) ρβv1+β =

(
ρ
σ

)β
(1− ρ) (µv)β v ≤ (1− ρ) v, where we

use the fact that µv ≤ σ
ρ
.

Example 2. There are five bidders and the lowest possible value is K = 0. All

other bidders bid at least half of their value, i.e. σ = 1/2. Let α = 1. The

robust bidder bids quite aggressively as ρ = 3125
3381
≈ 0.92. Proposition 4 applies for
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v ≤ σ
ρµ

= 3381
6250

1
µ
≈ 0.54 · 1

µ
. Hence, when bidder 1 puts at most mass 0.54 below

the own value v1, then loss is at most (1− ρ) v = 0.0757 · v.

Now let α = 1
2
, so intuitively there can be more low types. In this case we

have ρ = 27
31

= 0.87. The bound on v1 is tight if v ≤ 0.57 · 1
µ
. This condition

translates to the case in which the robust bidder puts at most mass 0.76 below

the own value, which is true whenever η ≤
√
σ/(ρ v1). Loss can then be bounded

by (1− ρ) v = 0.13 · v, which is worse than above as more mass is allowed below

value. If the bidder puts less mass below the own type, then loss can be bounded

further. For example, suppose at most mass 0.54 (this is the number from above)

is put below the own value v1 (e.g. η = 0.54/
√
v1). Loss can be bounded by(

ρ
σ

)β
(1− ρ) ((µv)α)

n−1
v ≤

(
ρ
σ

)β
(1− ρ) (0.54)n−1 v = 0.03 · v. This bound on loss

is tighter than in the case with α = 1.

In the second example we ask how much mass can be at most below the own

type such that loss is not more than 10% of the own value.

Example 3. Let K = 0, n = 5, σ = 1/2 and α = 1/2. Minimax loss is less than

10% of the own value if
(
ρ
σ

)β
(1− ρ) (µv)β v ≤ 0.1 v. This is true if µ v ≤ 0.51.

Note that in this case the constraint on loss is tight, as 0.51 < σ/ρ = 0.57. We

have that µ v ≤ 0.51, when η ≤
√

0.71
v

, so if the maximal mass below the own value

is 0.71. The restrictions on the value distribution leads to a loss below 10% of the

own value if one believes that the own value is not in the upper 0.29 quantile of

the value distribution.

5.2 Behavioral Beliefs: An Affine Lower Bound on Bidding Functions

Above we analyzed the case in which other bidders’ bidding can be bounded below

by a linear function. There might be cases in which one wants to use an affine

lower bound on bidding functions, i.e. bi (v) ≥ L+ σ (v − L) for all other bidders,

where L denotes the lowest possible value for other bidders. One case is when one

expects other robust bidders who have similar perceptions of the environment.

In this case the lower bound on the bidding function is linear, but the robust

bidding function from above is affine. Both ρ > σ and ρ < σ are possible. In

particular, when α is sufficiently small and σ > 1
2
, then b∗ (v) < σv for large v. So

it can be that b∗(v) ≥ σv is inconsistent with some other bidder being robust and

having identical conceptions about environment. With an affine lower bound this

inconsistency does not occur.

Let B (b) be the probability that all other bidders bid below b. The probability

that a bid b is winning is maximized by taking both the lower bound on the bidding
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function and the upper bound on the value distribution as binding, that is,

P(bi(v) ≤ b) ≤ P(L+ σ (v − L) ≤ b) ≤ η

(
b− L
σ

)α
.

The upper bound on the bid distribution is thereforeB (b) ≤ min
{
η
(
b−L
σ

)α
, 1
}(n−1)

.

Thus, everything is as in the linear case, except replacing σK by L. This leads to

the following proposition, where the set of conceivable environments Eσ′αη is as in

Definition 4, but for the different bound on others’ bidding functions.

Proposition 5. Let 0 < α, 0 < η, 0 < σ < 1, 0 ≤ L and v ≤ L + σ
ρη1/α

. For the

set of conceivable environments Eσ′αη, deterministic minimax loss is equal to

γ
ββ (1 + β)β(1+β)(

(1 + β)1+β + ββ
)1+β

(v − L)1+β (5)

and attained by bidding function

b∗(v) = ρv + (1− ρ)L. (6)

In particular, the robust bidder can be more or less aggressive than the bound-

ary bidder as there are no restriction on how ρ relates to σ. If the robust bidder

conceives that there may be other robust bidders like her then it may be good to

choose σ such that ρ ≥ σ.

6 Comparison with Experimental Data

The objective of this section is twofold. First, we want to empirically assess our bid

recommendations with experimental data. Experimental data has the advantage

that the bidder’s value is known. Second, we demonstrate the flexibility of our

methods in using available and relevant information. We use the data of the

following three studies. Filiz-Özbay and Özbay (2007) run three treatments to

test the effect of post auction feedback rules on bidding behavior. Güth and

Ivanova-Stenzel (2003) and Chen et al. (2007) investigate the difference in bidding

behavior with a known and an unknown value distribution in an auction.12

We compare the performance of our bidding strategies to those used, evaluating

performance based on the true value and the empirical distribution of bids. Loss

12Appendix C contains a more detailed description of the data and the methods.
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associated with a bidding strategy is the difference between the maximal payoff

when the bid distribution is known and the payoff of the bid strategy. We compute

the empirical bid distribution for each treatment. The results are presented in a

table for every experiment. In every table the columns refer to the treatments of

the experiment. For each treatment and every bid strategy we present the average

and the maximal loss. Every table reports the loss of actually observed bids, loss

of deterministic bid recommendations, and loss of Nash equilibrium. We assume

risk neutrality and give loss in per cent of the own value.

We first consider the data of Filiz-Özbay and Özbay (2007) (FÖÖ). In their

experiment there are four bidders who know that the true value distribution is iid

and uniform on [0, 100]. We compare three deterministic bid recommendations.

First, the model of complete uncertainty (Proposition 1) is evaluated with L = 0

and gives the bidding function b(v) = v/2. The second recommendation is the

ε-uniform model of Proposition 3. The lower bound is set to 0 and the information

on the number of bidders is used. The value of ε = 0.15 was chosen ex-ante, so

we get b(v) = 0.6365 · v. The last recommendation is a compound model, as it is

a combination of Propositions 2 and 4. One can set Proposition 4’s parameters

α = 1 and η = 1/100, as it is known that the true value distribution is uniform

on [0, 100]. Moreover, we assume that no other bidder bids below half of the own

value, so we set σ = 0.5. The proposition only holds for relatively small types. For

larger types we use Proposition 2. The proposition requires that the probability

that the maximal bid of the other bidders is below a certain threshold is not

too high. This probability can be computed, because the true value distribution

is uniform and we assume that others bid at least half their value. Hence, we

choose the parameter L of Proposition 2 such that the bound of the proposition

is satisfied, i.e. that

P(M < L) ≤ P
(
(σṽ)3 < L

)
= P

(
ṽ <

L
1
3

σ

)
=
L

1
3

σ
≤ ση−1/α/ρ− L
ση−1/α/ρ+ L

and that the bidding function is continuous. The bidding function that combines

the two propositions is then given by

b(v) =

ρ · v for v ≤ σ
ρη1/α

v+L′

2
for v > σ

ρη1/α

≈

0.90 · v for v ≤ 55.27

v
2

+ 22.4 for v > 55.27
. (7)

Table 1 shows that the mean loss of the actual bids is around 2.5% of the value,

while the mean loss is less than 2% for all deterministic bid recommendations.
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Loser Winner No
Feedback Feedback Feedback

L Mean Max Mean Max Mean Max

Observed Bids - 2.36 11.82 2.93 10.53 2.44 8.36
Nash - 0.51 2.44 0.88 4.74 0.69 3.31

Complete Uncertainty 0 1.70 4.74 1.81 4.59 1.97 5.91
ε-uniform 0 0.63 2.28 0.66 2.59 0.60 2.50

Compound Model - 0.88 3.46 1.59 5.20 1.31 4.34

Table 1: Performance of different bidding strategies according to the Filiz-Özbay
and Özbay (2007) data.

50 100

0.25

0.75

1

0

ηvα

F 1

F 2

Figure 1: The distributions of Chen et al. (2007) and our bound

What is more, the ε-uniform model leads to a mean loss well below 1% of value.

Across treatments, the mean loss of the ε-uniform model is just 25% of the loss of

real bids. Our bid recommendations also perform better in terms of the maximal

loss. The maximal loss of the ε-uniform recommendation is around 2.5% of the

value, which is the number of the average loss of the real bids. The bid strategy

associated with Nash equilibrium does not outperform other bid recommendations.

Chen et al. (2007) test how information about the true value distribution in-

fluences bidding in a first-price auction. They have two treatments and there are

two bidders in every auction. Values are drawn independently. Specifically there

are two known and piece-wise linear distributions F 1 and F 2 (see Figure 1) where

a value is drawn from F 1 with probability δ. In one treatment the parameter δ is

known (it was chosen equal to 0.7), and hence the distribution of values is known.

In the other treatment the parameter δ is not known and hence there is ambiguity

about the distribution.
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Known Unknown
Distribution Distribution

L Mean Max Mean Max

Observed Bids - 17.07 143.60 12.14 190.40
Nash - 1.97 4.62 3.08 8.60

Complete Uncertainty 0 1.98 4.62 2.00 6.14
ε-uniform 0 2.10 4.91 1.89 6.07

Compound Model - 4.33 7.72 4.33 10.02

Table 2: Performance of different bidding strategies according to the Chen et al.
(2007) data.

We basically evaluate the same bidding functions for the Chen et al. (2007)

(CKO) data, but we have to make some changes due to different parameters. A

first difference is that there are only two bidders, so the bidding function b(v) =

0.5220·v is used for the ε-uniform model. A second difference is the construction of

the compound bidding function that uses Propositions 2 and 4. In the calculation

of the bidding function we use the following parameters: n = 2, α = 0.4, η =

100−α, and σ = 0.5. The parameters α and η are chosen such that for any

δ the distribution of values first order stochastically dominates ηvα (cf. Figure

1). Proposition 4 can be applied for values below 71.64. The threshold L of

Proposition 2 cannot be chosen so that the bidding function is continuous. Hence,

we set it as large as possible so that Proposition 2 can be applied to the borderline

value 71.64. For L = 16.03 the inequality η (L/σ)α ≤ (71.64 − L)/(71.64 + L)

holds as an equality. The bidding function is then

b(v) =

ρ · v for v ≤ σ
ρη1/α

v+L′

2
for v > σ

ρη1/α

≈

0.70 · v for v ≤ 71.64

v
2

+ 8.01 for v > 71.64
. (8)

The last difference relates to Nash equilibrium play. The value distribution is only

common knowledge in the known valuation treatment. In this case we compute the

risk-neutral Nash equilibrium bidding function. In the unknown value distribution

treatment we compute the maximin expected utility Nash equilibrium, that is, the

Nash equilibrium for the case in which the worst parameter of δ is the true one.

This corresponds to F2 being the true value distribution. The row “Nash” in Table

2 displays the finding for the risk-neutral Nash equilibrium in the known treatment

and the maximin expected utility equilibrium in the unknown treatment.

Table 2 shows the performance of the bid strategies using the Chen et al.
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(2007) data. The results are similar to the findings in Table 1, however, some bids

substantially above value contribute to the high actual loss. The median loss in

per cent of the value of the observed bid is 9.78% for the known and 5.50% for the

unknown distribution; both numbers are much lower than the respective means.

Our bid recommendations perform again much better than the observed bids. The

worst candidate is the compound model. The two other functions perform quite

well. The Nash recommendation performs well in the known treatment, whereas

the maximin recommendation performs less well in the unknown treatment.

In the experiment of Güth and Ivanova-Stenzel (2003) (GIS) there are two

asymmetric bidders. For the weak bidder, bidder 1, the value distribution is

uniform on [50, 150] and for the strong bidder 2 it is uniform on [50, 200]. The

supports and the distribution are common knowledge only in one treatment. In

the other treatment nothing is known about the value distribution. In the known

value distribution treatment, bidders know that the lowest possible value is 50.

We consider a robust bidder i = 1, 2 who conceives that the other bidder does not

bid below 50% of the own value, so σ = 0.5 and b3−i(v) ≥ σv. This gives us a

lower bound of 25 for the highest bid of the other bidder. We compute the loss

associated with the bid strategy b(v) = (v + L)/2, where we use L = 25. The

deterministic minimax bid of the ε-uniform model is also computed with L = 25

and equal to b(v) = 0.5220 ·v+11.95. The weak bidder 1 knows the strong bidder’s

value distribution. This translates into α = 1, η1 = 1/150. The strong bidder 2

has η2 = 1/100. In both cases we have F (v) ≤ η(v − 50) for the relevant v.

Proposition 4 can be applied for values below 118.75 for the weak bidder and for

values below 87.5 for the strong bidder. As above, for larger values we choose L so

that Proposition 2 can be applied. This gives rise to bidder i = 1, 2’s compound

bidding function

bi(v) =


0.8 · v + 5 for v ≤ 25 + σ

ρη
1/α
i

v+Li
2

for v > 25 + σ

ρη
1/α
i

.
(9)

For the weak bidder 1 L1 = 53.44 and for strong bidder 2 L2 = 42.37. The

Nash equilibrium functions are computed for the weak and the strong bidder,

respectively. In the unknown value distribution treatment, bidders do not know

that there are asymmetric value distributions and they do not know the support of

the value distribution. The two basic bidding functions are evaluated with L = 0.

For the compound model, we choose α = 1/3, σ = 0.5 at discretion and assume

that no bidder believes that her value is in the top 0.09 quantile. Hence, the
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Known Unknown
Distribution Distribution

Weak Bidder Strong Bidder

L Mean Max Mean Max L Mean Max

Observed Bids - 6.17 24.64 14.02 83.43 - 7.85 26.86
Nash - 2.57 3.91 3.47 5.79 - - -

Complete Uncertainty 25 1.70 3.77 2.59 6.14 0 4.02 7.92
ε-uniform 25 1.55 3.90 1.86 4.85 0 3.79 8.13

Compound Model - 3.26 6.10 3.46 6.17 - 3.13 9.92

Table 3: Performance of different bidding strategies according to the Güth and
Ivanova-Stenzel (2003) data.

bidding function b(v) = 0.68 · v is used.

Table 3 summarizes the findings for the data of Güth and Ivanova-Stenzel

(2003). The overall picture is similar to other two data sets. The actual loss is

higher on average than for our recommendations. The ε-uniform recommendation

of Proposition 3 performs well in both treatments. The combination of Proposi-

tions 2 and 4 achieves the lowest loss on average in the unknown treatment.

We conclude this section by looking at the statistical difference between our bid

recommendations in order to find the best recommendation. Eyeballing suggests

that the ε-uniform model performs best across treatments, while contenders are

b(v) = v/2 and Nash.13 Statistical tests summarized in Appendix C confirm that

the recommendation is either statistically indistinguishable, or better than any of

the alternative suggestions. Hence, the bidding function derived in the ε-uniform

model seems like the best choice across treatments and experiments. It introduces

the important dependency on the number of bidders in a simple and reduced way.

7 Conclusion

One of the major obstacles and challenges to bidding in first-price auctions is

limited information. In many instances it is difficult to assess other bidder’s value

distributions and bidding functions (i.e. the environment) and to specify beliefs

and higher-order beliefs. Misspecification can lead to substantial loss. This is

the first paper that derives robust bidding rules in first-price auctions. We deal

with the uncertainty by searching for a compromise that performs well for a wide

13In the “known” treatment of Güth and Ivanova-Stenzel (2003) we use the respective equiv-
alents of the two bidding functions with different lower bounds.
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variety of situations. The methodology based on compromises is easy to explain

and justify. We evaluate bidding functions based on loss, where loss compares

the payoff in an environment to the payoff of the best bidding rule if the true

environment were known (that is, in the truly hypothetical and unrealistic oracle).

Our methodology has been designed to aid bidding in real auctions. A bidder

can choose the recommendation best suited for the faced situation. First, one

needs to decide whether one wants to think directly about the faced bid distribu-

tion, or if one wants to think about bounds on the value distribution and bounds

on other bidders’ behavior. The first step in the former case is finding a suitable

threshold L. The threshold L can be the lowest maximal bid among the other

bidders, it can be a known reserve price, or it can be a value chosen at discretion.

For example, a bidder might never want to bid below half of the own value due

to some reason. Note that one does not need to say that the maximal bid of

other bidders is above L with certainty. We provide a bound on the probability

with which this must be true. An alternative is to use the ε-uniform model of

Subsection 4.3. One simply has to choose an ε and decide on a number of bidders

in addition to L. This model has the advantage that bids are increasing in the

number of bidders and that knowing that there are more bidders reduces loss. One

can also change the uniform distribution in the ε-uniform model to some other

preferred bid distribution.

The alternative to thinking about the bid distribution is specifying bounds

on the value distribution and linear or affine bounds on other bidders’ bidding

behavior. In this case we develop a model with quite some flexibility. Bidding

is linear (or affine) in the own value and depends on only few parameters, the

number of bidders and the parameters used to bound the value distribution. This

model can be used if one is willing to place enough mass above the own value,

where what is enough depends on the chosen parameters.

It is interesting that the same simple functional form can be optimal in dif-

ferent situations. The minimax bid is always a convex combination between the

own value and the reserve price or lowest maximal bid of the other bidders. In

the environments we have considered, the weight on the own value is at least 1/2.

Bidding half of the value remains approximately optimal when there are few bid-

ders. The weight on the own value increases if independent bidding is assumed

and there are more bidders.
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A Proofs

Proposition 2. Let v > L > 0 and 0 < p̄ < 1. For the set of conceivable

environments ELp̄ with p̄ ≤ v−L
v+L

deterministic minimax loss is equal to v−L
2

and

attained by the deterministic bidding strategy stated in Proposition 1.

Proof. Let p̄ ≤ v−L
v+L

. We show that loss cannot be higher than v−L
2

when strategy
v+L

2
is played. Loss is potentially maximized by environments of the form p̄[0] +

(1− p̄)[M ] with M ≥ L. Note that in the oracle one either bids slightly above zero

or slightly above M . We distinguish two cases. First, it can be that one bids too

low relative to M , i.e. M ≥ v+L
2

and second, that one bids too high. We start

with the first case, i.e. M ≥ v+L
2
. In the oracle, payoff is maximized by either

bidding zero or M . If one bids zero, then loss equals

p̄v − p̄
(
v − v + L

2

)
= p̄

v + L

2
.

This loss is smaller than v−L
2

, as p̄ ≤ v−L
v+L

. The other sub-case occurs when one

bids M in the oracle. It is straightforward to verify that then maximal loss at

most v−L
2

.

The second case is when L ≤ M ≤ v+L
2
. If M is the payoff maximizing bid

in the oracle, then loss is smaller than v−L
2
. The other sub-case is when zero is

chosen in the oracle. Loss is then equal to p̄v− v−L
2

. This is less than v−L
2

, because

p̄ ≤ v−L
v+L

< v−L
v
. To summarize, there exists no environment in ELp̄ with p̄ ≤ v−L

v+L

that increases loss above v−L
2

when bidder 1 bids b∗(v) = v+L
2
.

Proposition 3. Let there be n ≥ 2 bidders, v > L ≥ 0, and ε ∈ (0, 1). For the

set of conceivable environments EL,ε,n deterministic minimax loss is attained by b∗

such that

π(max{L, b̃})− π(b∗) =
n−2∑
k=0

(
n− 1

k

)
εk(1− ε)n−1−k(v − b∗)p(b∗)k (3)

and equal to the value on either side of the equation, where b̃ = L+εnv−v
εn

.

Proof. We first analyze the oracle payoff and then deterministic minimax loss. The

following lemma considers the maximization of the payoff in the oracle with known

M . It says that payoff in the oracle is maximized by either bidding (slightly above)

the highest bid among the other bidders M or by bidding b̃, which is independent

of M . Intuitively, when ε is small relative to n, then one basically has to outbid
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only those who bid M . On the other hand, when ε is relatively large relative to

n, then it can be the case that the optimal bid is independent of M , as one needs

to outbid the uniform bids.

Lemma 1. Let M ∈ [L, v). The payoff in the oracle is maximized by b̃ = v(nε−1)+L
nε

whenever M < b̃, or by bidding (slightly above) M , or by bidding ỹ = (n−1)v+L
n

.

Proof. The bid distribution has a mass point at M . Therefore, we have to distin-

guish the case from bidding below M and bidding above M . It is never optimal to

bid M in the oracle, as bidding slightly above M avoids tie-breaking and leads to

a higher payoff. We consider the two relevant cases separately. Conditional upon

bidding above M , the payoff in the oracle is equal to

π(b|b > M) =
n−1∑
k=0

(
n− 1

k

)
εk (1− ε)n−1−k (v − b)p(b)k. (10)

Conditional on bidding below M , payoff is equal to

π(b|b < M) = εn−1(v − b)p(b)n−1. (11)

We start by maximizing π(b|b > M). To this end we first discuss the roots of

the first order condition of Equation (10) and identify b̃ as the payoff maximizing

root. Depending on the parameters, the bid b̃ can be smaller than L and conse-

quently smaller than M . In this case, we show that M is the argument at which

the supremum of payoff is attained.

The first order condition of Equation (10) for b > M with respect to b is

∂π(b|b > M)

∂b
=

(v − L)1−n(bε− L− εv + v)n(−bεn+ L+ v(εn− 1))

(−bε+ L+ (ε− 1)v)2
= 0. (12)

Its distinct roots are b′ = L+εv−v
ε

and b̃. The root b̃ is the relevant root, as b′ < L.

The payoff is maximized by bidding b̃ if b̃ > M, because π(b|b > M) is decreasing

for b ∈ (b̃, v). This can be seen from Equation (12). Therefore, whenever b̃ ≥ L and

b̃ > M, then b̃ is the unique maximizer of π(b|b > M). A necessary condition for

b̃ > M is b̃ > L and this is true whenever ε > 1
n
. However, if b̃ ≤M, then bidding

M is optimal, i.e. M ∈ arg supb π(b|b > M), because the payoff is decreasing in b

and therefore has its supremum in the smallest possible b.

The payoff π(b|b < M) is maximized by bidding ỹ = (n−1)v+L
n

. This follows

directly from the respective first order condition.
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Now we come back to maximizing payoff in the oracle. Note that b̃ < ỹ, so if

M ≤ b̃, bidding b̃ yields higher payoff utility than ỹ. For a medium high M , i.e.

b̃ < M < ỹ, it is clear that bidding M is optimal. Whenever M is high, so when

ỹ < M , it might be best to “ignore” M and bid ỹ.

Now we derive optimal deterministic bids. Any bid b can be too low or too

high for the true environment. First, we consider a too low bid, i.e. b < M . Loss

cannot be maximized by environments with M < b̃, because then loss π(b̃|b >
M)− π(b|b < M) is the same for all such M . Hence, it is enough to consider only

M ≥ b̃. A similar argument shows that loss is also not maximized by environments

with M such that ỹ maximizes the oracle payoff. Thus, the optimal action in the

oracle is to bid slightly above M , leading to a loss of π(M) − π(b|b < M).14 The

proof of Lemma 1 showed that π(b) is decreasing in b for b > b̃, thus the highest

loss of bidder 1 by being slightly outbid by one of the non-uniform bidders by

bidding M > b is equal to

sup
x>M>b

{
n−2∑
k=0

(
n− 1

k

)
εk(1− ε)n−1−k(v − x)p(x)k

}
=

n−2∑
k=0

(
n− 1

k

)
εk(1−ε)n−1−k(v−b)p(b)k.

We still have to consider loss that results from bidding too high (i.e. b > M). It is

again enough to only consider environments such that the oracle payoff is π(M).

Hence, loss is equal to π(M) − π(b). This loss is maximized by M = max{L, b̃}.
Conditional on b, the highest loss is then

max

{
π(max{L, b̃})− π(b),

n−2∑
k=0

(
n− 1

k

)
εk(1− ε)n−1−k(v − b)p(b)k

}

The optimal bid b∗ equates these two expressions.

Proposition 4. Let 0 < α, 0 < η, 0 < σ < 1, 0 ≤ K and v ≤ L+ σ
ρη1/α

. For the

set of conceivable environments Eσαη, deterministic minimax loss is equal to

γ
ββ (1 + β)β(1+β)(

(1 + β)1+β + ββ
)1+β

(v − L)1+β

and attained by bidding function

b∗(v) = ρv + (1− ρ)L. (4)

14Note that we slightly abuse notation, as the function π(b) is equal to π(b|b > M).
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Proof. The probability that bid b is winning is bounded byB (b) ≤ min
{
η
(
b
σ
−K

)α
, 1
}n−1

.

Let us first ignore the constraint that probabilities are bounded above by 1, so we

obtain B (b) ≤ γ (b− L)β. We consider the loss of the robust bidder who faces

some bid distribution B with B (b) ≤ γ (b− L)β. Loss is maximized by bid dis-

tributions Qx that put mass γ (x− L)β on x and the rest of mass above v. Bid

distributions of the form Qx amplify what it means to bid too low and too high,

because a marginal change in the bid can lead to a substantial change in payoff.

To see this, consider the case in which a bid b is too low. A bid is too low when a

higher bid would improve payoff. In the worst-case there is no mass of other bid-

ders’ bids below the own bid, so the payoff of bidding b is zero. Loss is maximized

if as much mass as possible is on x with b < x < v. Conversely, the bid b is too

high if lowering the bid increases payoff. The problem of bidding too high is most

severe if slightly lowering the bid does not increase payoff. In the worst-case the

bid distribution has a point mass at the bid x < b.

Loss associated with bid b is given by

l (b,Qx) = γ (x− L)β ((v − x)− 1b>x (v − b)) .

The loss of bidding too low is maximized by max{b, L+βv
β+1
}. It holds that b∗(v) >

L+βv
β+1

, so the relevant maximizer of loss is an x slightly above b. The inequality

b∗(v) > L+βv
β+1

is equivalent to the true inequality ββ+1 < (β + 1)β+1. Hence, loss

cannot be raised by setting x = L+βv
β+1

. The loss of bidding too high is maximized

by x = βb+L
β+1

for L < b, as d
dx

(
γ (x− L)β (b− x)

) ∣∣∣∣
x=βb+L

β+1

= 0. Maximal loss is

therefore

max

{
γ (b− L)β (v − b) , γββ

(
b− L
1 + β

)1+β
}
.

Maximal loss is attained by the bid that equalizes the two expressions, so choose

b such that γ (b− L)β (v − b) = γββ
(
b−L
1+β

)1+β

. The bidding function b∗(v) =

ρv+(1−ρ)L satisfies this equation. Plugging in the bidding function into maximal

loss gives the minimax loss.

γββ
(
b− L
1 + β

)1+β ∣∣∣∣
b=ρv+(1−ρ)L

= γρβ(1− ρ)(v − L)1+β

= γ
ββ (1 + β)β(1+β)(

(1 + β)1+β + ββ
)1+β

(v − L)1+β .
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The bound on loss is tight if η
(

1
σ
b∗(v)−K

)α ≤ 1, i.e. if b∗(v) ≤ L + σ
η1/α

,

which is equivalent to v ≤ L+ σ
ρη1/α

.

B Randomized Bidding

Appropriate randomization can further reduce minimax loss relative to determin-

istic minimax loss. We will consider the cases of complete uncertainty, mass below

L, and the congestion ε-uniform model. The section on mass below L also consid-

ers the case with v < L. The last subsection evaluates the bidding functions with

the experimental data.

B.1 Conceiving the Lower Threshold

We show how appropriate randomized bidding can reduce loss compared to the

deterministic minimax bidding function of Proposition 1. Let bidder 1 use a mixed

strategy with probability density function (pdf) g(b|v) on some support, which is

a subset of [L, v]. Bids below L are never winning and bids above v yield non-

positive payoff. The corresponding cumulative distribution function (cdf) of the

mixed bidding function is denoted by G(b|v). Bidder 1 wins the auction if her bid

is above the highest bid of the other bidders M and loses it otherwise. Loss is

equal to the following difference when M is known and when it is not known, i.e.

l(G,M |v) = max

{
sup
x>M
{v − x} , 0

}
−
∫ v

M

v − b dG(b|v)

= max {v −M, 0} −
∫ v

M

v − b dG(b|v) (13)

If M is known then bidder 1 gets either (approximate) utility of v−M by bidding

(slightly above) M , or 0 if M ≥ v. All bids above M are winning and bidder 1

computes the payoff of using the randomized bidding function G.

Proposition 6. For the set of conceivable environments EL minimax loss is v−L
e

and attained by the randomized bidding strategy with density

g(b|v) =
1

v − b
on

[
L, v − v − L

e

]
. (14)

The proof specifies the details how the bidding function is derived. The mean

bid of bidding function (14) is (v + L(e − 1))/e and less than the median, which
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is equal to (v(
√
e − 1) + L)/

√
e. The median and the mean are both less than

the deterministic bid. This shows that one needs to bid relatively low in order to

minimize maximal loss.

Syrgkanis and Tardos (2013) show that in any equilibrium of the first-price

auction with independent private values the ratio of the realized social welfare

and the highest possible social welfare is at least (1 − 1
e
). Interestingly, in the

proof they use the same randomized bidding function that we identify as the

minimax bidding function under complete uncertainty (Equation (14)).

Proof. We show two ways to derive the optimal randomized bidding function for

bidder 1. Then we consider environments, that is, bid distributions such that

minimax loss is attained.

We derive the optimal randomized bidding function for bidder 1. Let M1 and

M2 be two highest bids such that maximal loss is attained at M1 and M2. Clearly,

the loss needs to be the same for these two bids. Without loss of generality, let

M1 > M2 and observe that l(G,M1) = l(G,M2) is equivalent to

v −M2 − v +M1 =

∫ M1

M2

(v − b)g(b) db.

This equation is satisfied by g(b|v) = 1
v−b with support [L, b̄]. The upper bound

of the support is determined by b̄ ≤ v that solves
∫ b̄
L
g(b|v)db = 1 and equal to

b̄ = v − v−L
e
.

Plugging in the bidding function and the support in Equation (13) gives loss

v −M −
∫ v− v−L

e

M

db =
v − L
e

.

An alternative derivation of the bidding function g is to take the first derivative

of loss as specified in Equation (13) with respect to M and solve the first order

condition

g(M |v)(v −M)− 1 = 0

for g(b|v). This leads to the same random bidding function as specified in Equation

(14). We will mostly use the FOC approach.

Now we derive environments in which the bound on loss is tight. One can

model the minimization of the maximal loss as a zero-sum game between bidder

1 and nature. Nature knows v and chooses the highest bid among other bidders

M . The objective of the bidder is to minimize loss, while the nature’s objective is

the maximization of loss. Nature is indifferent between all M if bidder 1 uses an
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optimal bidding function. One obtains this bidding function by setting the first

derivative of (13) equal to zero, as shown above.

Nature chooses the cumulative distribution function H(M |v) = v
e(v−M)

to make

bidder 1 indifferent between all bids b1, b
′
1 ∈ [L, v − v−L

e
]. Loss must be equal for

both bids, i.e.∫
(v −M)dH(M |v)− (v − b1)H(b1|v) =

∫
(v −M)dH(M |v)− (v − b′1)H(b′1|v)

must hold. Plugging in b′1 = L and simplifying gives

H(b1|v) =
(v − L)H(L|v)

v − b1

.

Observe that nature does not want to place any bids above v − v−L
e

, because this

only decreases loss, thus H(v− v−L
e
|v) = 1. Solving for H(L|v) gives H(L|v) = 1

e
.

Nature puts mass 1/e on L.

To summarize, an environment E = (F,BF ) in which minimax loss is attained

is given by the value distribution F such that v2 = · · · = vn, v2 ∼ F, F (v2|v1) =
v1

e(v1−v2)
on [L, v − v−L

e
] and BF = {b−1|bi(x) = x for 1 < i ≤ n}. There are

other environments that generate the same loss. In any of these environments, the

distribution of the maximal bid among other bidders is given by H.

B.2 Conceiving Mass Below the Threshold

We come back to the model of Subsection 4.2. There is potentially some mass

below the threshold L.

Proposition 7. Let v > L > 0 and 0 < p̄ < 1. For the set of conceivable

environments ELp̄ with p̄ ≤ v−L
v−L+eL

minimax loss is equal to v−L
e

and attained by

the randomized bidding strategy stated in Proposition 6.

Proof. From Proposition 6 we know that if no bids are below L, then minimax

loss is attained by the randomized bidding strategy and equal to v−L
e
. Therefore,

we have to show that loss is maximized if there are no relevant bids of the other

bidders below L, i.e. that nature does not want to put mass below L in the

fictitious zero-sum game. Subsequently, we show that loss is less than v−L
e
.

Let bidder 1 use the random bidding function with density g(b) = 1
v−b on

support [L, v− v−L
e

]. Loss can potentially be increased if as much mass as possible

is below L. Hence, consider bid distributions of the form p̄[M1] + (1 − p̄)[M2],

with 0 ≤ M1 < L and L ≤ M2. The bidding function g performs badly if M1 = 0
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and M2 > v − v−L
e
. To see this, note that all bids of bidder 1 beat M1, but they

are too high. Conversely, all bids are lower than M2. Loosely speaking, p̄ times

of the cases the bids are too high and 1 − p̄ times too low. Loss of environment

E = p̄[0] + (1− p̄)[M2], M2 > v − v−L
e

equals

l (G,E) = max

{
sup
x>0
{p̄v − x} , sup

x>M2

{v − x} , 0
}
− p̄

∫ v− v−L
e

L

db

= max {p̄v, v −M2, 0} − p̄
∫ v− v−L

e

L

db.

If p̄v ≥ v −M2, then loss equals p̄(v+(e−1)L)
e

. This loss is less than v−L
e
, as p̄ ≤

v−L
v−L+eL

. On the other hand, if p̄v < v−M2, the inequality must hold in particular

for M2 = v− v−L
e

, in which case loss is (v−L)(1−p̄(e−1))
e

, which is less than v−L
e

. Loss

cannot be made larger through other bid distributions.

In Example 4 we fix L and p̄ and ask for which v the inequality is satisfied so

that Proposition 2 can be used.

Example 4. Suppose the true value distribution is uniform on [0, 1] and the other

n−1 bidders are risk-neutral and play according to the risk neutral Bayesian Nash

equilibrium β(v) = n−1
n
v. Bidder 1, however, only knows the median bid L = n−1

2n

and p = 1
2
. The inequality pn−1 ≤ v−L

v−L+eL
gives a bound on v. If v is higher than the

upper bound, then loss is bounded by v−L
e

for the set of conceivable environments

EL,p̄. If n = 2, then L = 0.25 and pn−1 = 1
2
≤ v−L

v−L+eL
for v ≥ (1 + e)/4 (≈ 0.93).

For n = 5 the median bid is L = 0.4 and v ≥ (30 + 2e)/75 (≈ 0.47) is necessary.

If n = 10, then L = 0.45 and v ≥ (4599 + 9e)/10220 (≈ 0.4524) is required.

So far we have considered relatively large v, but now we turn attention to

smaller v. In particular, we look at v < e
e−1

L. The next proposition says that

bidder 1 can minimize maximal loss by using the randomized bidding function of

Equation (14) on [0, v− v
e
]. This bidding functions ensures that all bids are below

L, as v < e
e−1

L.

Proposition 8. Let v ≤ e
e−1

L and p̄ ≥ v−L
v
e if L < v. For the set of conceivable

environments ELp̄ minimax loss is equal to p̄v/e and attained by the randomized

bidding strategy stated in Proposition 6 evaluated as if L = 0.

Proof. Loss is maximized by bid distributions of the form p̄[M1] + (1 − p̄)[M2],

where M1 is the highest bid below L and M2 the highest bid above L. Bidder 1

bidding M1 in the oracle yields payoff p̄(v −M1) and bidding M2 gives v −M2.
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Bidder 1 always bids M1 if p̄(v −M1) ≥ v −M2 for all M1 < L and M2 ≥ L. The

inequality holds for all such M1, M2 if it holds for the largest M1 and smallest M2,

that is, for M1 = v − v/e and M2 = L. Bidder 1 always bids M1 in the oracle if

p̄ ≥ e(v−L)/v and M2 is irrelevant for loss. Under the proposed bidding function

and the restriction on p̄ and v, loss is

p̄(v −M1)− p̄
∫ v− v

e

M1

db = p̄
v

e
.

Nature chooses bid distributions of the form p̄[M1]+(1− p̄[M2]), where M1 ∈ [0, L]

and distributed according to the cdf specified in the proof of Proposition 6 with

support
[
0, v

e

]
and M2 ≥ L arbitrary.

Example 5. Suppose one knows that one has a value below the median bid L,

that other bidders bid independently and that there are n bidders. Then the

proposition says that minimax loss is (1/2)n−1v/e. Then for two bidders minimax

loss is approximately 0.18 v, with five bidders it is 0.02 v and loss is at most 0.0007 v

with ten bidders.

Note that the condition p̄ ≥ v−L
v
e implies p̄ ≥ v−L

v−L+eL
. Hence, for v such that

L < v ≤ e
e−1

L Propositions 7 and 8 cannot hold at the same time.

B.3 The ε-Uniform Model

Minimax loss is also lower in the ε-uniform model of Section 4.3.

Proposition 9. Let there be n ≥ 2 bidders, v > L ≥ 0, and ε ∈ (0, 1). Let

α(b) = v(1−ε)+bε−L and β(b) = ε(b−L). For the set of conceivable environments

EL,ε,n minimax loss is attained by the randomized bidding strategy with density

conditional on v given by

g(b|v) =
α(b)n−1β(b)(v(1− εn) + bεn− L)

(v − b) ((ε− 1)vβ(b)n + bε (α(b)n − β(b)n) + L (β(b)n − εα(b)n))
(15)

for b ∈
[
b, b̄
]
, where b = max

{
L, b̃
}

and b̄ solves
∫ b̄
b
g(b|v) db = 1. Minimax loss

equals

π
(
b̄
)
− εn−1

∫ b̄

b

g(b|v)

(
b− L
v − L

)n−1

(v − b) db. (16)

Proof. The oracle is as in Proposition 3. In particular, Lemma 1 has direct con-

sequences on the maximization of loss. Suppose ε > 1/n so that b̃ > L and that
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bidder 1 uses a randomized bidding strategy with support [b, b̄], where b < b̃. If it

turns out that the highest bid among the other bidders is M ∈ [L, b̃), then bidder

1’s optimal bid in the oracle is b̃, so loss equals

π(b̃)−εn−1

∫ v

L

(v−b)p(b)n−1 dG(b|v)−
n−2∑
k=0

(
n− 1

k

)
εk(1−ε)n−1−k

∫ v

M

(v−b)p(b)k dG(b|v).

Loss is increased by M ′ ∈ (M, b̃), because this does not change the oracle payoff,

but decreases the chance of winning under unknown M ′. Hence, maximal loss is

attained by M ≥ b̃ and given by

π(M)−εn−1

∫ v

L

(v−b)p(b)n−1 dG(b|v)−
n−2∑
k=0

(
n− 1

k

)
εk(1−ε)n−1−k

∫ v

M

(v−b)p(b)k dG(b|v).

(17)

This is also the maximal loss when ε ≤ 1/n. To summarize, loss cannot be

maximized if the highest bid among the other bidders is below max
{
L, b̃
}

.

Taking the first derivative with respect to M of Equation (17) and solving the

first order condition for g(M |v) leads to bidder 1 using the density

g(b|v) =
α(b)n−1β(b)(v(1− εn) + bεn− L)

(v − b) ((ε− 1)vβ(b)n + bε (α(b)n − β(b)n) + L (β(b)n − εα(b)n))
,

where α(b) = v(1− ε) + bε− L and β(b) = ε(b− L).

In order to determine the support of the random bidding function one needs

to distinguish between ε < 1
n

and its converse. Let b = max
{
b̃, L
}

. Then the

support of g is [b, b̄], where b̄ solves
∫ b̄
b
g(b|v) db = 1. Under this bidding function,

loss is guaranteed to be below

π
(
b̄
)
− εn−1

∫ b̄

b

g(b|v)

(
b− L
v − L

)n−1

(v − b) db,

as loss must be the same for all M ∈ [b, b̄]. Evaluate loss at M = b̄. The function

g never selects a winning bid, hence one only wins if all other bids are uniformly

drawn.

Loss is maximized if nature can choose the distribution of M and has prefer-

ences for higher losses, i.e. if bidder 1 played a zero-sum game against nature,

where bidder 1 wants to minimize loss and nature wants to maximize bidder 1’s

loss. Nature’s strategy H is missing for the proof of the Proposition. In the equi-

librium of a zero-sum game, a player must be indifferent between two actions,
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therefore, bidder 1 must be indifferent between b and b′. Loss for bid b is

l(b|v) =

∫
π(M) dH(M |v)−εn−1(v−b)p(b)n−1−(v−b)H(b|v)

n−2∑
k=0

εk(1−ε)n−1−kp(b)k.

In equilibrium, it must hold that l(b|v) = l(b′|v) = l(b|v). Solving for H(b|v) yields

H(b|v) =
(v − b) (H (b|v) γ(b)n−1 + (1−H (b|v)) δ(b)n−1)− (v − b)δ(b)n−1

(v − b) (γ(b)n−1 − δ(b)n−1)
,

where γ(b) = v(1−ε)+εb−L
v−L and δ(b) = εp(b). Loss is decreased for b > b̄, thus

H(b̄|v) = 1. From the last equation one can solve for H(b|v).

Example 6. Table 4 provides numerical calculations for v = 1, L = 0 and different

values of ε and n. For every ε and n the table reports the support of the random

bidding function, the mean bid, and the upper bound on loss, all rounded to

two decimals. One interesting feature of the model is that the expected bid is

increasing in the number of bidders. As one might expect, loss is decreasing in

ε and n. The maximal loss under random bidding is approximately 74% of the

maximal loss under deterministic bidding.

Figure 2 shows the density of the bidding function of Equation (15) for n = 2

(dotted), n = 5 (dashed), and n = 10 (solid), where ε = 0.15, L = 0, and v = 1.

One can see that for n = 2 and n = 5 the lower bound of the bidding function is

0, but not for n = 10. For n = 10, b̃ > 0 and therefore b̃ is the lowest possible bid.

As the number of other bidders increases, more mass is put on higher bids.

B.4 Comparison with Experimental Data

Table 5 summarizes the mean and max loss of the randomized bidding functions of

the model with complete uncertainty and the ε-uniform model. The randomized

bid recommendations tend to lead to a higher loss on average than the correspond-

ing deterministic bid, but sometimes achieve a lower maximal loss. For the same

L, the randomized bidding functions has a mean bid lower than the deterministic

minimax bid. This reduces maximal loss, but might not be ideal in other situa-

tions. For the Filiz-Özbay and Özbay (2007) data, mean loss is about the same

as of the observed bids. In the experiments of Chen et al. (2007) and Güth and

Ivanova-Stenzel (2003), the randomized bid recommendations would have led to

a lower loss than real bids.
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Randomized Bidding

n = 2 n = 5

ε Support Mean Bid Loss Support Mean Bid Loss

0.10 [0, 0.64] 0.38 0.32 [0, 73] 0.47 0.24
0.15 [0, 0.65] 0.39 0.30 [0, 78] 0.54 0.19
0.20 [0, 0.65] 0.40 0.28 [0, 0.82] 0.62 0.15
0.25 [0, 0.66] 0.41 0.26 [0.2, 0.86] 0.70 0.12
0.40 [0, 0.68] 0.46 0.19 [0.5, 0.91] 0.81 0.07
0.50 [0, 0.70] 0.51 0.14 [0.6, 0.93] 0.85 0.06

n = 10

Support Mean Bid Loss

0.10 [0, 0.83] 0.64 0.14
0.15 [0.33, 0.89] 0.76 0.10
0.20 [0.5, 0.92] 0.82 0.07
0.25 [0.6, 0.93] 0.85 0.06
0.40 [0.75, 0.96] 0.91 0.04
0.50 [0.80, 0.97] 0.93 0.03

Table 4: Minimax Bids and Loss for different values of ε and n with L = 0 and
v = 1

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Figure 2: Probability density function of Equation (15) for n = 2 (dotted), n = 5
(dashed), and n = 10 (solid), where ε = 0.15, L = 0, and v = 1
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Loser Winner No
Feedback Feedback Feedback

L Mean Max Mean Max Mean Max

Complete Uncertainty 0 2.95 9.47 3.66 10.37 3.62 10.18
ε-uniform 0 2.02 6.22 2.50 7.18 2.46 6.72

(a) Filiz-Özbay and Özbay (2007) data

Known Unknown
Distribution Distribution

L Mean Max Mean Max

Complete Uncertainty 0 5.14 9.17 5.96 9.93
ε-uniform 0 4.88 8.67 5.56 9.25

(b) Chen et al. (2007) data

Known Unknown
Distribution Distribution

Weak Bidder Strong Bidder

L Mean Max Mean Max L Mean Max

Complete Uncertainty 25 4.12 6.44 6.30 11.01 0 8.32 14.27
ε-uniform 25 3.84 5.85 5.94 10.53 0 7.75 13.19

(c) Güth and Ivanova-Stenzel (2003) data

Table 5: Performance of randomized bidding strategies
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C Data

This appendix supplements Section 6 in the description of the data and the meth-

ods, and provides statistical tests. In all three experiments every subject par-

ticipated only in one treatment. Filiz-Özbay and Özbay (2007) test anticipated

regret in the first-price auction. For this purpose they run three treatments that

differ in the pre-auction announcement of the post-auction feedback about the

winner’s or loser’s bid. The authors find that bidders who know that they will

learn the winning bid (loser feedback treatment) significantly higher than in the

other two treatments. The strategy method is used to elicit bidding functions.

Hence, each bidder receives a list of ten values and has to indicate a bid for each

value. The list for bidder i = 1, . . . , 4 is the same in every auction, hence there

are 40 different values. We generate the empirical bid distribution Bi by pooling

all bids submitted by a bidder with value list i = 1, . . . , 4. For a bidder with

value list i the probability of bid b to become winning is a function of B−i and

tie-breaking with equal probabilities of winning. There are m ∈ {7, 8, 9} markets

in a treatment, so there are m bidders with the same value. The empirical bid

distribution contains 30 ·m observations. For a player with value v who bid b in

the experiment we simply compute the actual loss l(b|v). We compute the mean

loss for the m bidders with the same value. The loss in per cent of the value is

then l(b|v)/v · 100.

In Chen et al. (2007) bidders repeatedly receive values and bid. Values and

bids are integers from 0 to 100. We only consider the data from the first round

of bidding in order to ensure independent observations. So our data only consists

of one observation (value and bid) per subject and treatment. There are 40 in-

dependently drawn values per treatment. We compute for bidder i the empirical

bid distribution Bj that she faces, that is, we calculate for every bidder a cdf that

excludes the bidder’s bid and use it to compute the probability of winning. The

bid distribution faced by a bidder therefore contains 39 bids.

Güth and Ivanova-Stenzel (2003) compare bidding in a first-price auction with

and without common knowledge of the value distribution. In one treatment the

value distributions are known, in the other treatment the value distributions are

unknown. They find very similar behavior in both treatments. We only use the

data from the first round of bidding to have independent observations. We have

35 independent values for the weak and the strong bidder, respectively. For every

treatment, we use all the bids of bidder 2 to compute the empirical bid distribution

faced by bidder 1 and all the bids of bidder 1 to get the empirical bid distribution
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FÖÖ (2007) CKO (2007) GIS (2003)
L W No K UNK W S UNK

WMW 0.01 0.00 0.00 0.70 0.81 0.43 0.07 0.56
S-IEQ at 5% = < < = = = = =
S-IEQ at 10% < < < = = = = =

(a) Comparison eps and L0

FÖÖ (2007) CKO (2007) GIS (2003)
L W No K UNK W S UNK

WMW 0.37 0.99 0.65 0.76 0.01 0.00 0.00 -
S-IEQ at 5% = = = = = < < -

(b) Comparison eps and Nash

Table 6: Significance Tests

faced by bidder 2. The used empirical bid distribution contains 35 independent

bids.

We run two types of tests to test for statistically significant differences in loss.

The results are summarized in Table 6. First, we use the Wilcoxon-Mann-Whitney

(WNW) test to examine whether the distribution of mean loss is the same for the

ε-uniform model (eps) and the model of complete uncertainty (L0) and Nash in

a treatment.15 The table reports p values. First, we compare eps and L0. The

null that eps and L0 are identically distributed is rejected for the treatments of

Filiz-Özbay and Özbay (2007). For the other treatments the data is found to

be indistinguishable. As a next step, we use an exact stochastic inequality test

(Schlag, 2008, S-IEQ) to verify that mean loss is indeed statistically less under eps

than L0. This is true for the Winner and No Feedback treatment when the level of

a type I error is fixed at 5% and true for the Loser treatment when the significance

level is 10%. Now we compare eps and Nash. The WMW test suggests that mean

loss is not identically distributed in the treatments of Chen et al. (2007) and in the

known treatment of Güth and Ivanova-Stenzel (2003). The stochastic inequality

test finds that in the latter case the mean loss is indeed significantly less under

eps than Nash.

15For the tests one needs independent observations. As a result, we have restricted ourselves
to observations of the first round only. Nevertheless, we basically use the same empirical bid
distribution in the computation for mean loss for eps and L0 (Nash) and for every different
value. Strictly speaking, we have to assume independence. One could develop an exact test for
dependent variables, but this goes beyond the scope of this exercise.
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D Risk-Aversion

D.1 Complete Uncertainty

In this appendix, we derive robust bid recommendations for risk averse bidders.

Let u denote bidder 1’s non-decreasing Bernoulli utility function with the normal-

ization that the utility of losing is equal to 0. Under complete uncertainty, with

L ≥ 0, loss is

l(b,M |v) = max{u(v −M), 0} −
∫ M

L

u(v − b) dG(b|v)−
∫ v

M

0 dG(b|v).

Taking the first derivative with respect to M yields the density of the optimal

bidding function

g(b|v) =
u′(v − b)
u(v − b)

on [L, b̄].

The upper bound of the support is determined by b̄ ≤ v that solves
∫ b̄
L
g(b|v)db = 1.

In the following we focus on two popular parameterized utility functions.

D.1.1 CRRA

Let u(x) = x1−ρ, 0 ≤ ρ < 1. Risk neutrality corresponds to ρ = 0. The density of

the bidding function is

g(b|v) =
1− ρ
v − b

on [0, v − e
1
ρ−1 (v − L)].

Loss is bounded by

(v −M)1−ρ −
∫ v−e

1
ρ−1 (v−L)

M

(v − b)1−ρg(b) db =
(v − L)1−ρ

e
.

The mean bid

∫ v−e
1
ρ−1 (v−L)

L

b dG(b|v) = v −
(

1− e
1
ρ−1

)
(1− ρ)(v − L)

is increasing in ρ. The more risk averse, the higher the bid on average, because

larger bids reduce the risk of not winning. When L = 0, then for ρ ≥ 0.7 we have

that the expected bid is approximately equal to ρ · v.
Deterministic minimax loss is equal to (v−L)1−ρ/2 and attained by the bidding

strategy b∗(v) = v− (v−L)2
1
ρ−1 , because this bid balances the loss of bidding too
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high and too low, i.e.

b∗(v) ∈ arg min
b

max{(v − b)1−ρ, (v − L)1−ρ − (v − b)1−ρ}.

Minimax loss can be increasing or decreasing in the level of risk aversion. It is

strictly increasing in the risk aversion parameter ρ when v − L < 1, so when v is

small relative to L. For v large relative to L minimax loss is strictly decreasing.

Minimax loss normalized by u(v − L) is 1/e and 1/2 for the randomized and

deterministic case, respectively.

D.1.2 CARA

Under constant absolute risk aversion, u(x) = 1−e−αx
1−e−α , α > 0, the probability

density function of the bidding function is

g(b|v) =
αeα(−(v−b))

1− eα(−(v−b)) on

[
L,

log
(
eαL−1 + eαv − eαv−1

)
α

]
.

Loss is not higher than
eα(1−e−α(v−L))

e(eα−1)
. The deterministic minimax bid is b∗(v) =

log
(

1
2

(
eαL + eαv

))
/α and deterministic minimax loss equals

eα(1−e−α(v−L))
2(eα−1)

.

Loss is increasing in α when v is relatively small in relation to L, i.e. when

eαL (eα(v − L) + L− v + 1) > eαv. Otherwise minimax loss is decreasing. Min-

imax loss normalized by u(v − L) is 1/e under randomization and 1/2 under

deterministic bidding.

D.2 The ε-Uniform Model

D.2.1 CRRA

The ε-uniform model can also be solved for a CRRA Bernoulli utility function

u(x) = x1−ρ. The derivation of minimax loss is analogous to the risk-neutral

case. One only has to change the Bernoulli utility function. Payoff conditional on

bidding higher than M equals

π(b|b > M) =
n−1∑
k=0

(
n− 1

k

)
εk (1− ε)n−1−k u(v − b)p(b)k,

and is maximized by max
{
M, b̃

}
, where b̃ = v(nε−ερ+ρ−1)+L(1−ρ)

ε(n−ρ)
≥ L if and only

if n ≥ (1− ρ(1− ε))/ε. The optimal bid b̃ is strictly increasing in ρ, so the more
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risk averse, the higher the optimal bid. Let δ(b) = v(1− ε) + bε− L.

Minimax loss is equal to

π(b̄|b̄ > M)− εn−1

∫ b̄

b

g(b|v)p(b)n−1u(v − b) db (18)

and attained by the mixed strategy with density

g(b|v) =
ε(b− L)p(v(1− ε) + bε)n((v − L)(1− ρ)− (v − b)ε(n− ρ))

(v − b)δ(b) (ε(b− L)p(v(1− ε) + bε)n − εδ(b)p(b)n)

on [b, b̄], with b = max
{
L, b̃
}

and b̄ such that
∫ b̄
b
g(b|v) db = 1.

D.2.2 CARA

Finding closed form solutions for the ε-uniform model with CARA utility function

u(x) = 1−e−αx
1−e−α is more challenging. The payoff conditioned on bidding higher than

M is maximized by max
{
b̃,M

}
, with b̃ =

ε−εn+εW((n−1)en+
αv
ε −1)+αεv+α(−v)

αε
, where

W (·) is the Lambert-W function.

The density of the mixed strategy at which minimax loss is attained is equal

to

g(b|v) =
ε(b− L)p(v(1− ε) + bε)n

(
ε
(
(n− 1)eα(v−b) − n+ 1

)
− α(v(1− ε) + bε− L)

)
(1− eα(v−b)) δ(b) (ε(b− L)p(v(1− ε) + bε)n − εδ(b)p(b)n)

and has support [b, b̄], with b = max
{
L, b̃
}

and b̄ such that
∫ b̄
b
g(b|v) db = 1.

Minimax loss is given by Equation (18).
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