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Abstract
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We show that the efficient investment can be implemented in an ε-subgame perfect

equilibrium for any given ε if there are sufficiently many rounds of investment.

This shows that when the horizon is finite, the holdup problem that emerges from

backwards induction is not robust. Equilibria with stable and robust strategies

require more periods.
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1 Introduction

”Don’t pay the ferryman,

Don’t even fix a price,

Don’t pay the ferryman,

Until he gets you to the other side”

Chris de Burgh, 1982

Chris de Burgh’s 1982 pop song ’Don’t pay the ferryman’ is a reference to the ferryman

Charon from Greek mythology, who took the deceased from one side of the river Styx to

the other side, in exchange for a small fee (Nardo, 2002). When should one pay the

ferryman? According to Chris de Burgh, not until he gets you to the other side, since he

doesn’t have an incentive to continue once you paid. However, also this clearly cannot be

the solution to the problem as the passenger has no incentive to pay the ferryman once

he has reached his destination.

A broad variety of economic problems, termed holdup problems, can be interpreted as

a very similar situation. One agent, say, the seller, has to make an upfront investment in

order to produce or deliver something valuable to another agent, the buyer. Who should

move first? If the irrevocable investment is made first, the buyer has no incentive to pay

anymore - he is already at the other side of the Styx, so why pay? Alternatively, the

payment could be made first. But then why should the seller still make her investment?

Holdup emerges. The Nash equilibrium prediction is that no trade will take place.

The existing solutions in economic research fall into three categories. First, insti-

tutions and enforceable contracts may solve the problem and recover the possibility for

trade. Second, repeated interaction and reputational concerns may create sufficiently

strong incentives to build up a lasting relationship (see Shapiro (1982) for an early theo-

retical consideration and Dulleck et al. (2011) and Palfrey and Prisbrey (1996) for more

recent experiments). Third, if the duration of the relationship between buyer and seller

is uncertain and investments and payments are split up into smaller pieces, then both

sides may have an incentive to continue investing and paying until the game terminates

randomly (Pitchford and Snyder, 2004).

These solutions each have their own drawbacks. Institutions are costly and the in-

vestment information need not be verifiable1. Shadow markets definitely lack the legal

1Note that in environments where costly institutions exist, it is actually better not to split up payments

and investments. Appealing to the institution is no longer optimal in case of deviation if the relative

gains are small, thus effectively eliminating the threat of subsequent enforcement.
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enforceability aspect. With growing decentralized markets there may not be sufficient rep-

utational concerns. Most trade is organized with known transaction and delivery dates.

Apart from Pitchford and Snyder (2004), the idea of splitting up the project is already

informally suggested by Dixit and Nalebuff (1993) in the context of shadow markets. In

their case, splitting serves as a tool to limit possible future losses if the business partner

turns out not to be trustworthy, whereas in our environment the holdup problem emerges

even absent any incomplete information about the opponent’s type. Splitting up the

project is also frequently observed in real life. The key for a house or a car is handed over

only once the payment was made. This is an optimal strategy within our model. In job

order contracting, the entire contract is split up into many subcontracts, and each is paid

for upon completion. These contracts frequently involve equal sized parts, which is not a

solution in our context unless each of these parts are smaller than ε.

In this paper, we propose a novel solution to the holdup problem that is particu-

larly simple to implement and moreover provides insights about when existing investment

schedules are optimal or not. We approach the problem by splitting up the total invest-

ment into smaller parts and using the solution concept of ε-subgame perfect equilibria

(Mailath et al., 2005) instead of the standard subgame perfect equilibrium. In a subgame

perfect equilibrium (SPE) no player can obtain strictly more in any subgame by deviat-

ing. The concept of an ε-SPE makes a minor adjustment. There is a constant ε, which is

typically small, such that no player can obtain at least ε more in any subgame by deviat-

ing. Intuitively, why bother about arbitrarily small gains (figuratively often referred to as

peanuts)? The ε threshold can capture deliberation costs, costs of embarrassment costs

due to deviating from the suggested plan and unmodeled uncertainty about how others

react to own deviation.

Just replacing SPE by ε-SPE does not solve the holdup problem as ε is assumed to be

small, but gains from deviation, should trade be valuable, are expected to be large. We

split up total investment and payment into smaller pieces; as we now show, that alone

would not suffice either.

Given the finite horizon, the holdup problem originates in the final period. Lack

of future consequences make costly actions (such as investment or payment) in the last

period non optimal. Using the backwards induction logic, costly actions in earlier periods

can also not be sustained and the holdup problem occurs. However, the first step in

this logic, the behavior in the final period, is not necessarily compelling if the gains of

deviation are only small. This is the intuition behind our approach. We split up the

total investment into many small ones in order to make that last investment small and
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invoke an equilibrium concept in which possibilities to only minorly improve payoffs are

not followed.

Total investment x as well as the payment p are split up into sequences of T smaller

investments (xt)
T
t=1 and payments (pt)

T
t=1. We then look for sequences such that in each

round the seller wishes to continue to invest and the buyer wishes to continue to pay when

facing the alternative of terminating the relationship. However this would not solve the

problem if we use SPE as solution concept, as the original problem would identify itself

in the final period. This would then unravel back to the first.

When adopting ε-SPE instead as solution concept the problem is solved for any ε >

0. We eliminate the hold problem where it originates, namely in the final period. By

making the final payment small enough, the buyes does not wish to deviate, thus providing

incentives for earlier investments and payments. We address the following questions:

Under which conditions does an equilibrium exist? What is the optimal investment and

payment schedule from the buyer’s or seller’s point of view? Which shape do they have?

In the economic problems we consider, there is a single investment and transaction

possibility between a seller and a buyer, which may be broken down into smaller pieces.

In particular, we rule out the possibility of future interaction and therefore any repu-

tational concerns. Moreover, we assume that no institutions enforcing any contractual

arrangements exist, based on the idea that efforts are either not observable, not verifiable,

or enforcement is simply too costly.

The buyer obtains the irrevocable right to exclusively use or consume whatever the

seller produced up to period t. We allow for a general production technology f : R+ → R+

and normalize it such that the social surplus f(x)−x is maximized at x∗ = 1. For instance,

the example with the ferryman can be modeled using the production function f such that

f(x) = 0 for x < 1, and f(x) = 1 + s for x ≥ 1 where s is some parameter with s > 0.

In an ε-SPE of the game, each player has to be willing to invest or pay the specified

amount in each period t. We show that for any admissible payoff and any ε > 0, an ε-SPE

exists provided T is sufficiently large. For the ferryman example, only two periods are

needed: A large initial investment and payment, followed by a small additional investment

and payment. The buyer does not have an incentive to deviate after the first investment,

because it does not yet have any value for him. Neither player deviates from the last

investment, respectively payment, because gains from deviation are very small and we

assume that players don’t run after peanuts.

We also present the sequence of investments and payments that implements this ε-

SPE. Moreover, we show that for production functions with increasing social surplus the
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investments and payments are decreasing over time. Constant investments in each period

work as long as there is a small payment in the last period, but require more periods than

the investment plan we describe. The reason is that in that case the fact that the outside

option becomes increasingly attractive for the buyer is not accounted for.

On top of ε-SPE, we introduce the stricter notion of terminal ε-SPE, in which players

are willing to forego small gains only in the last period. All our main results still hold,

showing that solving the holdup problem in the last period solves it altogether. Terminal

ε-SPE are robust to best responses, but this comes at the expense of requiring much

more periods to be implemented for production functions with increasing surplus. For

the ferryman technology, there is no such trade-off because of the steep increase in social

surplus at the end of the project, deterring the buyer from deviation even if high payments

are needed. Thus, even in a terminal ε-SPE never more than 3 periods are necessary.

The ability to achieve cooperation in finite horizons by considering only deviations

that ensure a minimal additional payoff was highlighted by Mailath et al. (2005) in the

context of a Prisoners’ dilemma. In their paper, the ε can be taken small if supergame

payoffs are defined as average stage game payoffs. The strategic choice to split up an

investment into small parts to lower incentives to deviate was informally suggested by

Dixit and Nalebuff (1993). Our analysis shows that typically only the last investments

and payments need to be small. For other applications of ε-optimality see e.g. Radner

et al. (1980), Baye and Morgan (2004), Barlo and Dalkiran (2009) and Milgrom (2010).

Moreover, maximin and minimax regret often select ε-optimal solutions, e.g the robust

policies identified in Bergemann and Schlag (2011) are ε-optimal.

In terms of the application, the closest paper to ours is by Pitchford and Snyder

(2004) who show how one can get around the holdup problem by splitting up the entire

investment into many small investments when the buyer seller relationship is indefinite.

In their paper the relationship is assumed in each round to continue with a sufficiently

large probability, e.g., because project continuation is ”conditional on past experience”

(p. 89). Conversely, our model also allows for efficient investment in the more realistic

scenario where the termination date is known. Although the mechanisms for ensuring

investment are very different, our paper shares with theirs the decreasing investment.

However, in Pitchford and Snyder (2004) the investments converge to 0, whereas our

smallest investment is ε.

Our modelling assumption that investments are non-negative and thus irrevocable

carries some resemblance to the framework of Lockwood and Thomas (2002). Two players

infinitely interact and each player’s payoff decreases in her own action but increases in
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the action of the other player. Since investments in their model are irrevocable, the

worst credible threat is to stop cooperating in the future. Players are incentivized by the

perspective of future cooperation of the other player. Conversely, we show that the efficient

outcome can be attained if we allow that players are willing to give up small payoffs relative

to optimality. Moreover, we don’t need to split up the project into arbitrarily many parts.

For the ferryman example, only two periods are enough for any ε > 0.

Admati and Perry (1991) overcome the impossibility of socially desirable investments

into a joint project by making costs contingent on project completion. In this environment,

costs are not effectively sunk, because they will be recovered entirely if the project does

not complete. Such an environment requires enforceable contracts or an institution that

ensures recovery in case of breakup, which may be both costly to enact and to call upon

if needed. Conversely, our model does not require contracts or institutions of any kind.

The structure of the game allows implementation of the efficient outcome once we split

up the entire project into smaller parts.

We proceed as follows. We lay out our main model in Section 2. The main results are

in Section 3. Various numerical examples are shown in Section 4. Section 5 provides a

discussion of our results, and Section 6 concludes.

2 Model

Consider an interaction between a buyer and a seller that lasts a given number of T

periods. In each period t the seller can make an investment xt and then the buyer can

make a payment pt. We denote the period t time units before the end as period t, e.g.,

the last payment is p1. Both investments and payments are restricted to be positive or

zero. We denote the sequence of investments and payments as (xt)
T
t=1 and (pt)

T
t=1.

Investments by the seller provide value to the buyer according to a production function

f : R+ → R+, where x is the sum of investments and f(x) is weakly increasing in x. We

assume that f(0) = 0 and that the surplus f(x)− x is uniquely maximized at x∗ = 1.

Two types of production functions are of special interest. (i) The maximal surplus

exceeds the value of any smaller investment. Formally, f(1) − 1 ≥ f(x) for all x < 1.

We refer to this production function as the ferryman technology as it generalizes the

situation underlying the boat ride where the passage has no value until the passenger

reaches the other side. Any investment less than the efficient one is worse for the buyer

than paying the efficient investment. (ii) The willingness of the buyer to pay for each

additional investment is larger than the cost for the seller for this investment. Formally,
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f(y) − y is weakly increasing in y. Production functions of this type arise naturally in

many environments.

We assume throughout that the buyer owns the property rights of any investment

made by the seller. In particular, in any period the value of the good to the buyer is given

by the sum of past investments.

The timing of the game is as follows. The game consists of at most T periods. In each

period the seller moves first and either chooses an investment or chooses to break up the

relationship. If the seller chooses to invest then the buyer observes this investment and

either chooses a payment for the seller or chooses to break up the relationship. This ends

the period. If within this period one of the two players has chosen to break up then the

game ends. If neither of the two parties has chosen to break up the relationship and there

have been less than T periods then the next period begins with rules as described above.

Payoffs are determined as follows. The cost of investment is born by the seller at the

beginning of the period. The benefits of the investment for the seller are realized at the

end of a period. Whenever there is a break up or all T periods have passed then each

player gets an outside option normalized to 0.

Specifically, if either the seller or the buyer breaks up in period t then payoffs of the

two players are given by us = 0 and

ub = f

(
T−t∑
i=t−1

xi

)
.

If neither of the players breaks up then, from the perspective of the beginning of period

t and assuming that the total sum of investments equals 1, the seller’s payoff is given by

us =
t∑
i=1

(pi − xi) (1)

and the buyer’s payoff is given by

ub = f(1)−
t∑
i=1

pi. (2)

Note that according to the unique subgame perfect equilibrium no investments will be

made. After the last investment was made, the buyer doesn’t have an incentive to make

the final payment p1 if p1 > 0, since the project is already finished. Anticipating no final

payment, the seller of course doesn’t want to make the final investment if x1 > 0. By

backwards induction, we find that investments have to be 0 in all periods.

As we will show in the next section, employing ε-SPE instead radically changes our

insights.
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2.1 Equilibrium concept

Our solution concept is ε-SPE (Mailath et al., 2005), which applies ε-Nash equilibrium to

all subgames. A player only deviates if he gains more than a given threshold ε. Formally,

the concept is defined as follows:

Definition 1. Denoting as Ai the set of actions for player i and as σ∗−i the strategy profile

of the other players, a strategy profile σ∗ is an ε-Nash equilibrium if ui(ai, σ
∗
−i) ≤

ui(σ
∗) + ε, ∀ai ∈ Ai, ∀i.

Definition 2. A strategy profile σ∗ is an ε-subgame perfect equilibrium if it induces

an ε-Nash equilibrium in every subgame.

Possible reasons why one might not want to deviate when the gains are small or

negligible include: i) deliberation costs, ii) costs from being embarrassed (or alternatively,

extra utility from staying at the proposed equilibrium) and iii) existence of possibility to

prevent small deviations (e.g., small retaliation is available).

In the following we will limit attention to equilibria in which any deviation is punished

by discontinuing the relationship. There is no loss of generality in this assumption when

searching for outcomes that can be sustained in some ε-SPE. In order to check whether

a given sequence of investments and payments can be supported in an ε-SPE, we need to

make sure that neither player has an incentive to deviate in any period.

We define
∑j

k=i hk = 0 for i > j. In order to guarantee that the seller does not have

an incentive to deviate from an investment xt, it has to hold that:

−xt + pt +
t−1∑
i=1

(pi − xi) ≥ −ε. (3)

Conversely, for the buyer we require that

f(1)− pt −
t−1∑
i=1

pi ≥ f

(
1−

t−1∑
i=1

xi

)
− ε. (4)

As a robustness check for our analysis, we also introduce the stricter notion of terminal

ε-SPE, in which only the buyer is willing to give up peanuts in his very last move. We

discuss additional motivation for this alternative solution concept in Section 5. Impor-

tantly, this shows that only the buyer needs to be willing to forego small gains in order

to solve the finite horizon holdup problem; the seller still plays strictly best responses in

each move.
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Definition 3. A strategy profile σ∗ is a terminal ε-subgame perfect equilibrium if

it induces a Nash equilibrium in every subgame except the last subgame, and an ε-Nash

equilibrium in the last subgame.

Therefore, in a terminal ε-SPE, the seller does not have an incentive to deviate from

an investment xt as long as it holds that

−xt + pt +
t−1∑
i=1

(pi − xi) ≥ 0. (5)

Conversely, for the buyer we require that in each period t > 1 it holds that

f(1)− pt −
t−1∑
i=1

pi ≥ f

(
1−

t−1∑
i=1

xi

)
(6)

and in period 1 it holds that

f(1)− p1 ≥ f(1)− ε

p1 ≤ ε.
(7)

Given these definitions, we are now ready to describe equilibria in this game.

3 Efficient Equilibria

We first characterize the set of feasible equilibrium payoffs.

Proposition 1. (i) In any (terminal-)ε-SPE, the sum of payoffs is bounded from above

by f(1) − 1. (ii) In any ε-SPE, each player’s equilibrium payoffs are within the interval

[−ε, f(1)−1+ε]. (iii) In any terminal ε-SPE, each player’s equilibrium payoffs are within

the interval [0, f(1)− 1].

Proof. (i) Prices are only transfers in this model and thus exactly cancel out in the sum

of payoffs. Formally we have that

us + ub =
T∑
i=1

(pi − xi) + f

(
T∑
i=1

xi

)
−

T∑
i=1

pi =

f

(
T∑
i=1

xi

)
−

T∑
i=1

xi ≤ f(1)− 1

where the last inequality follows from the assumption that f(x)−x is maximized at x = 1.

(ii) This follows immediately from the no-deviation constraints at period T and the

maximal sum of payoffs.

(iii) This follows immediately from the no-deviation constraints at period T and the

maximal sum of payoffs.
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Equipped with this knowledge about feasibility, we now discuss conditions for equilib-

rium existence under the ferryman technology, and then move production functions where

social surplus increases with investments.

3.1 Ferryman technology

As introduced above, we consider production functions where f(1)−1 ≥ f(x) for all x < 1

in this subsection. These include the one underlying the boat ride story. We first give an

intuitive overview of the results and afterwards we provide a more formal treatment.

Contrary to production functions with increasing social surplus, in the ferryman tech-

nology there is no trade-off between robustness and the number of periods required: Both

the ε-SPE and the terminal ε-SPE can be implemented with at most 3 periods. Due to

the steep increase in surplus at x = 1, the buyer does not have an incentive to deviate

from paying throughout the project.

Only 2 periods are necessary if the buyer’s payoff is sufficiently high; in that case,

his first payment p2 is sufficiently low to deter deviation to non-payment. As the buyer’s

payoff decreases, p2 increases until eventually he would deviate. In that case, a warm-up

period with some initial payment but zero investments is necessary.

Note that the ferryman example with f(x) = (1 + s) ·1x≥1 is a special case where two

periods are always enough. Even getting close to the other side of the river is of no value

to the passenger if he cannot swim. Thus neither player has an incentive to deviate from

the large first investment, respectively payment.

Taking up the example given in the introduction, a house or a car without keys is

useless to the buyer. While passing over the keys is almost costless for the seller, receiving

the keys for the house or car is extremely valuable for the buyer. This stark asymmetry

at the end of the project makes the small but final transaction very powerful. The buyer

is willing to make even substantial initial payments, anticipating large future gains for

relatively small payments. Consequently, only very few periods are needed.

Formally, we have the following result:

Proposition 2. Assume f(1)− 1 ≥ f(x) for all x < 1 and ε > 0.

(i) Let w1 = f(1 − 2ε) − ε. There exists an ε-SPE with efficient investments and

ub = w if w ∈ [w1, f(1) − 1 + ε] and there are least 2 periods, or if w ∈ [−ε, w1) and

there are at least 3 periods. In the corresponding ε-SPE, investments are x1 = 2ε and

x2 = 1− 2ε, p1 = ε, and the remaining payments are such that the buyer does not deviate

and ub = w is obtained.
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(ii) Let w2 = f(1− ε). There exists a terminal ε-SPE with efficient investments and

ub = w if w ∈ [w2, f(1)− 1] and there are at least 2 periods, or if w ∈ [0, w2) and there

are at least 3 periods. In the corresponding ε-SPE, investments are x1 = ε and x2 = 1−ε,
p1 = ε, and the remaining payments are such that the buyer does not deviate and ub = w

is obtained.

(iii) The above claims cannot be established using less periods.

Proof. (i) We establish existence under 3, respectively 2, periods. For more then 3,

respectively 2, periods, existence follows by setting investments and payments to 0 in all

additional periods. In this case, no player has an incentive to deviate by construction.

Fix x1 = 2ε and p1 = ε, which is the maximal payment and investment that deters

deviation from either player in period 1 in an ε-SPE. In order to reach a total investment

of 1, we set x2 = 1− 2ε. The buyer does not have an incentive to deviate on the payment

of p2 as long as it holds that

f(1)− p1 − p2 ≥ f(1− 2ε)− ε

p2 ≤ p2 := f(1)− f(1− 2ε).

The payment p2 also needs to be such that a final payoff of ub = w is obtained, i.e.:

f(1)− p1 − p2 = w

p2 = f(1)− ε− w.

so deviation is deterred as long as p2 ≤ p2 or alternatively

f(1)− ε− w ≤ f(1)− f(1− 2ε)

w ≥ f(1− 2ε)− ε = w1

and therefore in that case 2 periods suffice. Otherwise we need to set p2 = p2 in order

to deter deviation, and make the remaining payment in an additional period 3 where

p3 = f(1− 2ε)− ε− w, which is always positive and deters deviation by construction.

(ii) We establish existence under 3, respectively 2, periods. For more then 3, re-

spectively 2, periods, existence follows by setting investments and payments to 0 in all

additional periods. In this case, no player has an incentive to deviate by construction.

Fix x1 = ε and p1 = ε, which is the maximal payment and investment that deters

deviation from either player in period 1 in a terminal ε-SPE. In order to reach a total

investment of 1, we set x2 = 1 − ε. The buyer does not have an incentive to deviate on
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the payment of p2 as long as it holds that

f(1)− p1 − p2 ≥ f(1− ε)

p2 ≤ p̂2 := f(1)− f(1− ε)− ε.

The payment p2 also needs to be such that a final payoff of ub = w is obtained, i.e.:

f(1)− p1 − p2 = w

p2 = f(1)− ε− w.

so deviation is deterred as long as p2 ≤ p̂2 or alternatively

f(1)− ε− w ≤ f(1)− f(1− ε)− ε

w ≥ f(1− ε) = w2

and therefore in that case 2 periods suffice. Otherwise we need to set p2 = p̂2 in order

to deter deviation, and make the remaining payment in an additional period 3 where

p3 = f(1− ε)− w, which is always positive and deters deviation by construction.

(iii) The proof for (i) and (ii) shows that 2 periods are not enough when w is sufficiently

high. Thus we only need to show that also 1 period is never enough. In that case,

we need to have that x1 = 1. A necessary condition for non-deviation of the seller is

that p1 ≥ 1 − ε. However, in that case the buyer would deviate to non-payment since

−(1− ε) < −ε. Therefore, 1 period cannot suffice to get a total investment of 1.

3.2 Production functions with increasing surplus

A broad class of production functions does not exhibit such substantial surplus gains

at the very end of the project, but rather surplus is generated along throughout. In

this subsection we consider production functions in which the surplus is increasing. We

first give an intuitive overview of the results and afterwards we provide a more formal

treatment.

Similar to the ferryman technology, the investment and payment schedule that requires

the minimal number of periods features a very small final payment and, importantly,

a pay-as-you-go schedule during the project; the seller is exactly compensated for his

investment in each period. This is the maximal amount the buyer is willing to pay in

each period and therefore minimizes the number of periods required. Investments decrease

over time, because the outside option of breaking up the relationship because increasingly

attractive for the buyer as the project value increases. Therefore, constant investments
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in each period require considerably more periods. The binding constraint remains the

penultimate period, so we have to add periods until that final payment is sufficiently

small to deter deviation to non-payment by the buyer. Thus we cannot take advantage

of otherwise decreasing payments, prolonging the project duration.

Contrary to ferryman technology and as will be illustrated in numerical examples be-

low, for production functions with increasing surplus there is trade-off between robustness

and the number of periods required: terminal ε-SPE require more periods than ε-SPE.

In a terminal ε-SPE, only smaller amounts can be paid (and thus also invested) in order

to deter deviation, and therefore the project implementation takes longer.

Formally, we have the following results:

Proposition 3. Let f(y)− y be weakly increasing in y, ε > 0 and w ∈ [−ε, f(1)− 1 + ε].

Then there exists a T ∈ N such that

i) the following sequence of investments and payments constitute an ε-SPE with effi-

cient investments and payoffs ub = w: x1 = 2ε, p1 = ε,

pt = xt = f

(
1−

t−2∑
i=1

xi

)
− f

(
1−

t−1∑
i=1

xi

)
,

for 2 ≤ t ≤ T − 1, xT = 1−
∑T−1

i=1 xi and

(pT , pT+1) =



(
f(1−

∑T−2
i=1 xi)− f(1−

∑T−1
i=1 xi), f(1)−

∑T
t=1 pt − w

)
if w ≤ f(1−

∑T−1
i=1 xi)− ε(

f(1)−
∑T−1

t=1 xt + ε− w, 0
)

otherwise

and immediate termination whenever anyone deviates;

ii) for any T ′ < T , a ε-SPE with
∑T ′

i=1 xi = 1 and payoffs ub = w does not exist.

Proof. i) The structure of the proof is as follows: show how T is determined; that the

seller doesn’t have an incentive to deviate in any period; that the buyer doesn’t have an

incentive to deviate in any period; and finally that indeed the buyer obtains ub = w.

We define a sequence zt as follows: z1 = 2ε and zt = f(1−
∑t−2

i=1 zi)− f(1−
∑t−1

i=1 zi)

for t ≥ 2. It follows readily that zt ≥ 0 for all t. Note that zt is increasing in t since the

assumption that f(y)− y is increasing implies that

f

(
1−

t−1∑
i=1

zi

)
−

(
1−

t−1∑
i=1

zi

)
≥ f

(
1−

t∑
i=1

zi

)
−

(
1−

t∑
i=1

zi

)

f

(
1−

t−1∑
i=1

zi

)
− f

(
1−

t∑
i=1

zi

)
≥

t∑
i=1

zi −
t−1∑
i=1

zi

zt ≥ zt−1.
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Since 1 is the unique maximizer of f(y) − y, z2 > 0. Therefore, there exists a unique K

such that
K−1∑
i=1

zi < 1 ≤
K∑
i=1

zi.

Setting T = K uniquely identifies T . Note that, by construction of zt, we have that

xt = zt for all t ≤ T − 1, and xT = 1−
∑T−1

i=1 xi = 1−
∑T−1

i=1 zi.

We now consider seller optimality in each period. Note that, by definition of xt and

pt for t ≤ T − 1, it holds that

t∑
i=1

xi =
t∑
i=1

pi + ε.

and it also holds that

t∑
i=1

xi = f(1)− f

(
1−

t−1∑
i=1

xi

)
+ 2ε.

The seller’s continuation payoff in period t is given by

uts =
t∑
i=1

(pi − xi)

and therefore the seller doesn’t have an incentive to deviate as long as it holds that

t∑
i=1

(pi − xi) ≥ −ε

which is satisfied in all periods t ≤ T − 1 by definition of xt and pt. We are thus left with

showing that the seller also doesn’t have an incentive to deviate in period T , i.e., that it

holds that

xT = 1−
T−1∑
i=1

xi ≤ pT .

Define w̄ = f
(

1−
∑T−1

i=1 xi

)
− ε, i.e., as the cutoff point of w such that for w ≤ w̄,

the remaining payments are split across pT and pT+1 and for w ≥ w̄, the entire payment

is made in pT and pT+1 = 0.

Then for the case where w ≤ w̄, we need to show that

1−
T−1∑
i=1

xi ≤ f

(
1−

T−2∑
i=1

xi

)
− f

(
1−

T−1∑
i=1

xi

)

14



which holds since

1−
T−1∑
i=1

xi = 1−

(
T∑
i=1

zi − zT−1

)
≤ f

(
1−

T−2∑
i=1

xi

)
− f

(
1−

T−1∑
i=1

xi

)

1−
T∑
i=1

zi + f

(
1−

T−2∑
i=1

xi

)
− f

(
1−

T−1∑
i=1

xi

)
≤ f

(
1−

T−2∑
i=1

xi

)
− f

(
1−

T−1∑
i=1

xi

)

1 ≤
T∑
i=1

zi =
K∑
i=1

zi

which holds by definition of K.

For the case where w > w̄, we need to show that

1−
T−1∑
i=1

xi ≤ f(1)−
T−1∑
i=1

xi + ε− w

which holds since w ≤ f(1)− 1 + ε. Thus the seller never has an incentive to deviate.

We now show that also the buyer never has an incentive to deviate. Generally, this

holds as long as his continuation payoff

f(1)−
t∑
i=1

pi

exceeds his outside option

f

(
1−

t−1∑
i=1

xi

)
− ε.

By definition of pt and xt, this holds for all t ≤ T − 1. For the case where w ≤ w̄, we are

left with showing that

f(1)−
T∑
i=1

pi ≥ f

(
1−

T−1∑
i=1

xi

)
− ε

which holds since this can be rewritten as

f(1)−
T−1∑
i=1

xi + ε− pT =

f(1)−

(
f(1)− f

(
1−

T−2∑
i=1

xi

))
+ ε−

(
f

(
1−

T−2∑
i=1

)
− f

(
1−

T−1∑
i=1

))
=

f

(
1−

T−1∑
i=1

xi

)
+ ε ≥ f

(
1−

T−1∑
i=1

xi

)
− ε

2ε ≥ 0.
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For the case where w > w̄, the condition can be rewritten as

f(1)−
T∑
i=1

pi =

f(1)−
T−1∑
i=1

pi − pT =

f(1)−
T−1∑
i=1

pi −

(
f(1)−

T−1∑
i=1

pi − w

)
=

w ≥ f

(
1−

T−1∑
i=1

xi

)
− ε

which holds whenever w > w̄ = f
(

1−
∑T−1

i=1 xi

)
− ε. Thus also the buyer doesn’t have

an incentive to deviate.

Finally, by definition of pt and in particular pT and pT+1, we always have that ub =

f(1)−
∑T+1

i=1 pi = w.

ii) The sequence of investments and payments is such that both the seller and buyer

constraints are binding in each period. Suppose, by means of contradiction, that for some

T ′ < T , a ε-SPE with efficient investments and ub = w exists. This requires that either

the seller or the buyer constraint is not binding in some period t. Assume that both

constraints are still binding in all previous periods. Suppose that the buyer constraint is

not binding in period t such that p′t < pt. This also reduces the maximal investment the

seller is willing to make to x′t = xt − (pt − p′t). This, in turn, reduces also the maximal

payment in period t+ 1, i.e., it holds that p′t+1 ≤ pt+1 where

p′t+1 = f(1)− f

(
1−

t−1∑
i=1

xi − x′t

)
+ ε+

t−1∑
i=1

pi + p′t

and

pt+1 = f(1)− f

(
1−

t−1∑
i=1

xi − xt

)
+ ε+

t−1∑
i=1

pi + pt

since the inequality simplifies to

f

(
1−

t−1∑
i=1

xi − xt

)
+ p′t ≤ f

(
1−

t−1∑
i=1

xi − x′t

)
+ pt

f

(
1−

t−1∑
i=1

xi − xt

)
≤ f

(
1−

t−1∑
i=1

xi − xt + pt − p′t

)
+ pt − p′t

which holds by the assumption that f(y)− y is increasing.
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Therefore, also x′t+1 ≤ xt+1 etc. The same holds if we start with assuming that first

the seller constraint is not binding.

Hence, in period T we have that

x′T = 1−
T∑
i=1

x′i ≥ xT = 1−
T∑
i=1

xi.

The hypothesis that still ub = w is attained requires that
∑T

i=1 p
′
i =

∑T
i=1 pi. Ensuring

that the buyer does not have an incentive to deviate in period T requires that

f(1)−
T∑
i=1

pi ≥ f(xT )− ε.

As the left-hand side is identical both in the sequence of investments as payments with

binding constraints and without binding constraints, but on the right-hand side x′T ≥ xT ,

we cannot have that this inequality is satisfied for non-binding constraints if it was not

also already satisfied under binding constraints. Therefore, we cannot have a ε-SPE with

T ′ < T .

Remark: The investments in Proposition 3 are increasing in t for t ∈ [T − 1, 1], i.e.,

decreasing over time.

Besides illustrating the requirement of a minimal number of periods, Proposition 3

also shows the sequence of investments and payments such that an ε-SPE exists. Key to

proving the result is the assumption that f(y)− y is increasing, which guarantees that as

we keep adding periods with non-zero investments, eventually we the sum of investments

exceeds 1.

We now show that our main results also hold for terminal ε-SPE.

Proposition 4. Let f(y) − y be weakly increasing, ε > 0 and w ∈ [0, f(1) − 1]. Then

there exists a T ∈ N such that

i) for any T ′ ≥ T , a terminal ε-SPE with efficient investments and payoffs ub = w

exists and

ii) for any T ′ < T , a terminal ε-SPE with efficient investments and payoffs ub = w

does not exist.

Proof. See appendix.
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4 Examples

We now present various numerical examples, both for ε-SPE and terminal ε-SPE. In

particular, in Table 1 we show the minimal number of periods required such that the

respective equilibrium in which the buyer obtains all the surplus exists, given ε and

a production function f . The ferryman technology always requires just 2 periods (see

Proposition 2).

The number of periods required decreases in ε. As player’s interpretation of ’how

small’ peanuts are which are not worth running after, final payments and investments

can be larger, and therefore also subsequent investments and payments. Terminal ε-

SPE require more periods than ε-SPE, since investments increase much slower because

of the requirement of strict optimality in all periods except the first. The difference is

particularly striking for the concave production function.

Highway procurement is a typical example where job order contracting is frequently

employed. In the terminology employed in this paper, the project may be thought of as

a production function with increasing social surplus; e.g. the utility to the buyer may be

linear in the investment. So why is the standard job order contracting model with equal

parts not a solution to the holdup problem? Unless payments and investments in the final

period are small, the usual market unraveling logic applies.

Constant payments may work, however, once an extra period with small investments

and payments is added. In Table 1, we also show how many periods an investment and

payment schedule with constant investments (in all periods except the final period) would

take in an ε-SPE. In order to compute the values in Table 1, we still fix x1 = 2ε and p1 = ε,

so in order to reach a total investment of 1 we need that xt = pt = 1−2ε
T−1

for all t > 1.

We already know from the construction of payments in Proposition 3 that the maximal

admissible payment in period 2 is f(1)− f(1− 2ε), so we find the required T by solving

1− 2ε

T − 1
= f(1)− f(1− 2ε)

for T and taking the ceiling thereof. In the ε-SPE with minimal required periods, invest-

ments are decreasing (Proposition 3), whereas with constant investments they obviously

are not. Thus, projects take much longer to implement.

In Figure 1, we present the investments in each period of an ε-SPE for f(x) = 2
√
x

and different values of ε. The smaller ε, the longer it takes until substantial investments

are undertaken, contributing to a longer total duration.
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minT for . . .

ε 2
√
x 1.1 ·min(x, 1) 1.1 · 1x≥1

ε-SPE .01 18 19 2

.05 7 8 2

.1 4 5 2

Terminal ε-SPE .01 393 50 2

.05 74 30 2

.1 35 26 2

Constant investments ε-SPE .01 50 46 2

.05 10 10 2

.1 5 5 2

Table 1: Smallest T given ε for various production functions.

5 Discussion

Do we need that both players willing to forego peanuts in each move, as proposed by the

ε-SPE? As we have already shown, the stricter notion of terminal ε-SPE suffices, in which

only one player behaves ε-optimal only in the terminal move.

Moreover, when considering ε-SPE, we should consider some notion of doubt about

the type of the opponent. When the buyer makes the first payment in the ferryman

example, he faces considerable risk: If his beliefs about the seller being an ε-type are

wrong, the seller may not make the final investment and the buyer makes a huge loss.

Thus, we introduce the notion of stability in case no player obtains a substantial loss in

utility if his opponent subsequently deviates to some (strictly) better response.

Definition 4. A strategy profile σ∗ is ε-stable to better responses if it holds that

ui (σ
∗
i , σ−i) ≥ ui (σ

∗)− ε whenever uj
(
σj, σ

∗
−j
)
> uj (σ∗) for j 6= i.

If a player correctly anticipates that the opponent will deviate, she might also want

to adjust her own action. Thus, the concept of robustness is used when a player gets no

substantial gain by knowing their opponents will deviate to a (strictly) better response.

Definition 5. A strategy profile σ∗ is ε-robust to better responses if it holds that

ui (σ
∗
i , σ−i) ≥ maxσi∈∆Ai

ui (σi, σ−i)− ε if uj
(
σj, σ

∗
−j
)
> uj (σ∗) for j 6= i.

Given these definitions, we are now ready to state this section’s main result: ε-SPE

may be neither stable nor robust, but our terminal ε-SPE is both stable and robust.
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Figure 1: Investments in ε-SPE for f(x) = 2
√
x, given ε, over time. Note that period 1

is the last period.

Proposition 5. (i) ε-SPE may be neither robust nor stable.

(ii) The strategy profiles employed in the terminal ε-SPE in Proposition 2(ii) and

Proposition 4 are ε-stable to better responses and ε-robust to better responses.

Proof. (i) E.g., for the ferryman technology with target payoffs ub = f(1)−1+ε, the buyer

has a better response of p′1 = 0 instead of p1 = ε, in which case the seller’s continuation

payoff after making the final investment x1 = 2ε is −2ε. If the seller knew that the buyer

would subsequently deviate to paying nothing, he would also invest 0 in the last period

for a continuation payoff of 0. Therefore, this violates robustness since

−2ε ≤ 0− ε = −ε.

Also the seller has a better response instead of making the final investment of x1 = 2ε,

namely deviating to x′1 = 0. But then the first payment p2 = 1 − 2ε violates stability

since

f(1− 2ε)− 1 + 2ε = −1 + 2ε < f(1)− 1. (8)

(ii) We need to show that if a strategy profile σ∗ is a terminal ε-SPE in Proposition

2(ii) or Proposition 4, than it is also a) ε-stable and b) ε-robust.

a) Stability vacuously holds in all subgames except the penultimate, in which the seller

is worried that the buyer deviates from the equilibrium payment of p1 = ε to the better

response p′1 = 0. In this case, the seller’s continuation payoff is −ε, whereas in equilibrium

it would be −ε+ x1 = 0. Therefore, stability is satisfied since

−ε ≥ 0− ε.
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b) Analogously, robustness holds in all subgames except the penultimate. If the seller

knew that the buyer would subsequently deviate, he would deviate to x′1 = 0 himself.

Therefore also robustness holds since

0 ≥ 0− ε.

Proposition 5 together with the numerical examples in Section 4 highlight an important

trade-off: One may get robustness and stability, but only the expense of more sub-periods.

Finally, we may also think of ε as a temptation to deviate. In Proposition 3, all

constraints are always binding, which implies that players would strictly prefer to stop

the relationship whenever possible if ε would be 0. This temptation is eliminated in the

terminal ε-SPE.

6 Conclusion

The lyrics that make the charm of Chris de Burgh’s song identify the problem: when

to pay the ferryman. According to our model, the recommendation in the song to only

pay at the other side does not solve the problem. The ferryman would not be willing to

take a passenger that follows this recommendation. In this paper we enable the passage,

provided the ferryman is willing to replace the optimal with something that is almost

optimal. Our suggestion is to pay the ferryman almost everything when almost at the

other side, and to pay the rest upon arrival.

The story of the ferryman is more than a myth. The difficulty to find the right timing

is apparent anytime there is trade. Two payments are needed for the passage. When

the technology is concave more periods of payment are necessary. However, payments

should not be equally distributed unless one is willing to have many periods. The final

rounds are characterized by small investments and payments, as there is only little joint

interaction in the future to reward and punish current behavior. Investments in earlier

rounds are larger as the payoffs generated in the future can be used to incentivize to

continue. An important ingredient is that players do not deviate from the plan unless

they get substantially more. Terminal ε-SPE only uses this variation in the last round,

at the expense of increasing the number of periods needed, possibly dramatically. In

fact, this paper uncovers that the holdup problem is not robust. It only arises because

we impose preferences where each player deviates whenever she can get a strictly higher

payoff, regardless of how small this improvement is.
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Admittedly, it is not clear that investments can always be split up arbitrarily and at

no cost. We present predictions that involve the fewest possible investments, implicitly

reflecting costs in splitting the total investment. Our paper can be used to understand

which investments can be made when there are only limited possibilities for splitting the

total investment. Similarly, a cost of splitting the investment can easily be incorporated

explicitly.

We think that experiments are needed to understand how the possibility to split

investment and payment will be used to mitigate holdup and to enable cooperation. In

reality, uncertainty about preferences of the opponent also often plays a role. Bargaining

under uncertainty has been considered by Kartal (2016). It would be interesting to

investigate the holdup problem under incomplete information.
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Appendix

Proof of Proposition 4. (i) We first show that for T ′ = T , the following sequence of in-

vestments and payments constitute a terminal ε-SPE with payoffs ub = w: x1 = p1 = ε,

x2 = p2 = f(1)− f(1− ε)− ε and

pt = xt = f

(
1−

t−2∑
i=1

xi

)
− f

(
1−

t−1∑
i=1

xi

)
,

for 2 < t ≤ T − 1, xT = 1−
∑T−1

i=1 xi and

(pT , pT+1) =



(
f
(

1−
∑T−2

i=1 xi

)
− f

(
1−

∑T−1
i=1 xi

)
, f(1)−

∑T
t=0 pt − w

)
if f(1)−

∑T−1
t=0 pt − w ≥ f

(
1−

∑T−2
i=1 xi

)
− f

(
1−

∑T−1
i=1 xi

)
(
f(1)−

∑T−1
t=0 pt − w, 0

)
otherwise

and immediate termination whenever anyone deviates.

The remainder of the proof is analogous to the proof of Proposition 3 and therefore

omitted.

(ii) The remainder of the proof is analogous to the proof of Proposition 3 and therefore

omitted.
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