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Abstract

This paper studies dynamic pricing in markets with search frictions. Sell-

ers have a single unit of a good and post prices in every trading period. Buyers

have to incur a search cost to match with a new seller and upon matching

they observe the price and the realization of some idiosyncratic match value.

There is no discounting but trade ends at an exogenously given deadline. We

show that equilibrium involves trading in finitely many trading periods and

the volume of trade increases over time. Under mild conditions on the buyer-

to-seller ratio and the distribution of valuations, prices decrease at increasing

rates as the deadline approaches. We derive the gains from trade in equilib-

rium and their distribution between buyers and sellers. For the case in which

the measures of buyers and sellers coincide, we provide a full characterization

of the (unique) equilibrium for a class of distribution functions. We finally

discuss implications for market design, including the use of platform fees and

cancellation policies.
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1 Introduction

In the sharing economy, individual buyers and sellers perform market transactions

in fundamentally novel ways. Using a simple mobile application, a user can schedule

a car ride with a private driver; book a night at someone’s place; or hire someone

else to clean her house, assemble her furniture or take care of her pet. Conversely,

owners of empty houses, drivers with free time or people willing and able to perform

home chores for someone else can use these same digital platforms to provide goods

and services for profit. The numbers are staggering: according to a recent report

by McKinsey and Co. 162 million people have provided goods or services through

online marketplaces in the last 12 months in the US and the EU alone.1

While these markets differ in many dimensions, many share some specific fea-

tures.2 First, transactions are specific to a certain time frame. Buyers obtain the

right to use a good or hire someone to perform a certain task at a particular date.

Second, providers have very limited capacity (often a single unit) and they post

prices which may vary over time. Third, because goods are heterogeneous, inter-

ested buyers have to devote time and effort to search among the different providers.

Bound by their limited capacity, sellers adjust their prices over time in order to

maximize revenue, while buyers search repeatedly trying to obtain the best possible

deal. It is the goal of this paper to provide a simple framework in which to analyze

large dynamic markets with search frictions.

More precisely, we set up a very simple model of a large market with search

frictions and unit capacity. Sellers are homogeneous and hold one unit of a good

that can be rented at some future date, which we refer to as the deadline. In each

period they set a price and may get randomly matched with an interested buyer.

If the buyer accepts the offer, both parties commit to perform the transaction at

the deadline. If the buyer rejects, the seller carries her unit of the good to the next

period. Similarly, we assume that buyers are homogeneous and demand a single

unit of the good. In each period they may decide to remain idle (and wait) or

actively search for a seller. In the latter case, they get to observe the price and

their idiosyncratic valuation for the good offered but have to pay a search cost. An

equilibrium is characterized by a sequence of prices, reservation values and searching

decisions such that firms maximize profits given the behavior of buyers and these

maximize their expected utility given the sequence of prices.

In order to understand the incentives at play, first note that, from the perspec-

1See http://www.mckinsey.com/global-themes/employment-and-growth/independent-work-
choice-necessity-and-the-gig-economy

2Einav et al. (2016). See also the FTC Report ’The Sharing Economy’.
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tive of a seller, the opportunity cost of selling the good in a given period is the

continuation profit she expects to obtain in the future. Therefore, the price must

be equal to the expected future profit plus a markup that depends on the elasticity

of demand. Since the elasticity of demand depends on buyers’ reservation values, it

evolves over time as they become more pessimistic about their likelihood of finding a

suitable match in the ever-shortening future. Similarly, sellers’ continuation profits

decrease over time, as they run out of future opportunities to sell. The evolution of

prices and reservation values, therefore, determines the equilibrium in this market.

Given a sequence of prices, the typical buyer’s decision problem has two compo-

nents. First, he has to decide which offers to accept if he decides to search actively.

A natural indifference condition can be obtained as follows: the net surplus he de-

mands in order to accept an offer in a given period must equal the net surplus he

will demand in the following period plus the expected net gains from an additional

search. The reservation value can thereby be computed as the surplus demanded

plus the expected equilibrium price. Second, he has to decide whether to actively

search or not. As it turns out, this is a static decision that only compares the ex-

pected benefit of search, which depends on the likelihood of obtaining a better draw

than the current reservation value, and his intrinsic search cost. In general, there

is a unique cutoff value such that consumers search if and only if their reservation

value is below this cutoff. Importantly, this cutoff is independent of prices and is

equal to the constrained-efficient gains from trade in the market.

These simple observations lead to some striking results. Under a mild restriction

on the distribution of match values, we can show that an (un-dominated) equilib-

rium exists and all equilibria are approximately outcome-equivalent. In equilibrium,

buyers’ reservation values are decreasing and convex as time approaches the dead-

line, so that trading probabilities increase over time. As a consequence, net gains

from search increase as the market approaches the deadline, which yields a unique

time period such that buyers participate in every subsequent period but never be-

fore. Given the induced dynamics on demand, the evolution of prices depends on

whether buyers’ price elasticity increases or decreases over time (which depends on

the shape of the distribution of valuations) and on the initial ratio of buyers and

sellers in the market. In the particular case in which this ratio equals one, prices

are decreasing over time. At the deadline, sellers become effective monopolists with

no marginal cost so that the price equals the inverse elasticity of demand.

Our first main result concerns the welfare properties of this equilibrium. If there

are equal numbers of buyers and sellers, total welfare is given by the difference

between the reservation value of buyers in the first active trading period and the
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sellers’ markup in this period. As mentioned above, this reservation value equals

the gains from trade in the constrained-efficient allocation and, therefore, is inde-

pendent of the sequence of prices, while the markup depends on the inverse of the

hazard ratio of the distribution of valuation. As search costs vanish, the reservation

value converges to the upper bound of the support of the distribution, so that the

equilibrium welfare depends on its shape. For some distributions with increasing

hazard rates (like the uniform), the markup converges to zero and, therefore, the

equilibrium outcome is approximately efficient. For a large class of distributions,

including the exponential or the Pareto, however, the hazard rate does not vanish at

the upper bound and the equilibrium remains inefficient as search frictions vanish.3

More generally, if the number of buyers and sellers do not coincide, the gains

from trade depend on the whole sequence of prices. In this case, it follows that

the rents of the long side of the market are bounded by a function of the ratio of

buyers and sellers and the markup in the initial period. Interestingly, if this markup

becomes sufficiently small as frictions vanish (which ensures efficiency), the long side

will only appropriate a tiny fraction of the whole pie.

A final observation from a normative point of view is that trade starts too late.

This is because sellers appropriate some of the gains that buyers generate by search-

ing an additional period and so buyers decide to wait even if it is socially inefficient.

Therefore, any policy that fosters early search has the potential to increase the total

gains from trade.

A very attractive feature of this model is that it allows us to solve in closed form

the equilibrium prices and reservation values for certain distributions in the case of

equal measures of buyers and sellers. Using the continuous time limit we can also

derive the number of trading periods and perform comparative statics on prices and

reservation values as a function of the search cost. Not surprisingly, in any given

period, increasing search costs leads to higher prices and lower reservation values.

Strikingly, however, prices in the first trading period decrease in search costs. We

also show that the shape of the distribution crucially affects the elasticity of total

search as a function of search costs, so that distributions with a long tail induce

buyers to increase their total search effort when search costs decrease.

We then use the model to answer some classical questions in Industrial Orga-

nization. First, we establish a relation between the pass-through rate in a static

environment (which depends only on the curvature of demand) and the elasticity

of the initial price with respect to search costs. This relation can be used to derive

3For instance, for the Pareto distribution, which induces an iso-elastic demand function, the
equilibrium gains from trade are only a fraction of the available surplus.
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estimates of the incidence of taxes or merchant fees with basic knowledge of the

demand function. Second, we perform the classical comparison between fixed and

variable as a source of revenue for the platform. We show that neither policy has

implications on the gains from trade but they have different implications for the

distribution of the burden between buyers and sellers. In particular, while variable

fees have no impact in market outcomes, fixed fees lead to a steeper profile of prices

and, therefore, to a lower time horizon, which benefits buyers because they incur

lower search expenditures. We finally study the impact on equilibrium outcomes of

a very popular feature in many dynamic markets: cancellation policies. We show

that cancellation policies have no impact on total gains from trade because they

are never taken up in the earlier periods. We then show that if they are actually

taken up, they may benefit sellers, since they increase the buyer-to-seller ratio in

the market and induce buyers to become less patient.

1.1 Related Literature

The literature on dynamic pricing is lengthy and rich, but focuses mostly on the

case of a monopolistic seller with and without commitment who faces a sequence

of buyers who may or may not wait for better offers and whose valuation may be

independently distributed or may include some correlation.4 A smaller strand of

papers have studied the case of duopoly with myopic buyers (c.f. Dudey (1992) and

more recently Mart́ınez-de Albéniz and Talluri (2011)). In general, these models

have not been very fruitful because they are plagued with non-existence issues, and

even if it exists, equilibrium requires complicated mixed strategies and may not

be unique. In many real-world applications, however, a large number of sellers

actively compete with one another and buyers, while able to wait for better deals

need to incur time and effort in order to discover prices. Meisner (2016) studies

an oligopolistic version of Hörner and Samuelson (2011) but focuses on the case

in which a monopolist supplier would implement the efficient allocation, in which

case an oligopolistic supply side induces the same equilibrium outcome. On the

other hand, there is a large literature on dynamic matching models (Lauermann,

2013) where sellers and buyers engage in bargaining in an stationary environment

and heterogeneity is on a vertical dimension. Our focus is different since we are

concerned with horizontally differentiated products (e.g. products differing in their

location) and we explicitly model a deterministic deadline (as opposed to exponential

discounting).

4Prominent recent contributions include, Hörner and Samuelson (2011) and Board and Skrzy-
pacz (2016) and references therein
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A different strand of the literature has studied dynamic demand uncertainty.

Deneckere and Peck (2012) provides a model in which firms compete over a finite

horizon with fixed capacities, buyers arrive at random times but may wait to buy in

future periods and aggregate demand is highly uncertain. In their model, price com-

petition does not induce marginal cost pricing because firms’ may ’bet’ on different

demand states, so that high price firms will sell in high demand states. Demand

uncertainty is an alternative rationale for dynamic pricing and therefore we view

our papers as complementary. In addition, our setup is much simpler and we can

derive a much sharper equilibrium characterization.

The need for a better understanding of dynamic pricing in competitive setups has

been already identified in empirical work. Sweeting (2015) provides a computational

model of an oligopolistic markets in which sellers face myopic buyers who arrive

over time and who can sample all available products at no cost and applies it to the

secondary market for sports tickets. Buyers and sellers are heterogeneous in many

dimensions, which translates in a large state space so that computing the equilibrium

of the game is not feasible. We assume monopolistic competition without ex-ante

heterogeneity and search frictions but model buyers as long-run players and obtain

a thorough characterization of equilibrium outcomes.

Finally, the model contributes to the literature on consumer search by introduc-

ing dynamic pricing and capacity constraints. To the best of our knowledge only

Moraga-González and Watanabe (2016) and Garcia et al. (2015) introduce capacity

constraints in markets in which consumers search sequentially over different produc-

ers offering heterogeneous products but they abstract from dynamic considerations.

Similarly, Coey et al. (2016) study a random search model in which buyers search

over time for better prices and sellers sort themselves into a faster auction market

and a slower posted-price market, but do not face capacity constraints. 5

2 The Model

We now present the benchmark model of monopolistic competition and search fric-

tions with capacity constraints and a deadline. We consider a market with a con-

tinuum of measure m of buyers and a continuum of measure 1 of sellers. Sellers

are ex-ante identical and have one unit of the good that they can supply at no

5Dynamic considerations play a role in a handful of papers in the consumer search literature.
For instance, in Armstrong and Zhou (2015) oligopolistic sellers price discriminate over time be-
tween different buyers. Similarly, in Garcia and Shelegia (2015) firms compete over time in an
environment in which consumers learn from each other.
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additional cost, while buyers have unit demand.6 Time is discrete and indexed by

t = 1, 2, ..., T , so that t = 1 corresponds to the deadline.

Buyers search sequentially for sellers without recall. Upon paying a search cost

s, buyer i may get matched with a randomly chosen seller j. Upon matching, buyer

i learns her valuation for the good of seller j, vij and its price pj, from which he

derives surplus vij − pj. The buyer’s outside option is normalized to 0. The random

utility draw vij is specific to the match between i and j and has a distribution

F (v), with density f(v) and F (0) = 0. We shall consider both distributions with

bounded support (like uniform) and distributions with semi-infinite support (like

exponential). Let H(v) = 1−F (v)
f(v)

be the inverse hazard rate of F (v). We assume

throughout that the virtual valuation, defined as v −H(v) is strictly increasing.

The measure of matches in each period equals a fixed proportion of the total

potential matches so that if mt buyers search among nt sellers, the total number of

matches will be qmin{mt, nt} with 0 < q ≤ 1.7 One can think of q as the reciprocal

of the mean number of periods that a given buyer needs to inspect a seller. For most

of the paper, we assume that m ≤ 1, so that at every period qmin{mt, nt} = qmt.

We study the case of m > 1 in Subsection 7.2.

The timing is as follows. At the beginning of each period t, sellers post prices

and commit to them for a single period,8 and buyers decide whether to search or not

based on their expectation of prices and match values. Each buyer is either matched

with a seller or idle. Upon matching, a buyer observes his realization and the price

and decides whether he searches or not. We concentrate throughout on (Perfect-

Bayesian) Symmetric Equilibrium, in which sellers use un-dominated strategies and

buyers have passive beliefs. The restriction to un-dominated equilibrium rules out

no-trade equilibria originating in coordination failures by restricting sellers to choose

optimal prices even in those periods in which they expect no demand. Passive beliefs

imply that buyers’ expectations regarding future prices and trading probabilities do

not change following a deviation of an individual seller.9

6The assumption of zero marginal costs is made for expositional reasons and together with
the assumptions on the distribution of valuations implies that trade is always efficient in the last
period. For an analysis with positive marginal costs see Section 5

7Formally, we assume that a gatekeeper ensures a frictionless matching subject to delay which
is distributed a la Poisson. For the case of m = 1, as we will see an urn-ball process would deliver
the same results, and even for the case of m 6= 1, the qualitative results are unaffected.

8Posted prices are common in most online markets (FTC 2016). Here we restrict sellers’ com-
mitment possibilities to one-period only, but in Appendix C we provide some analysis for the case
of partial commitment, so that sellers choose a fixed price for the next 1 ≤ k ≤ T periods.

9Passive beliefs is common in the consumer search literature and are natural in the case of
infinitesimal sellers. For a recent discussion see Janssen et al. (2014).
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2.1 Optimal Search

We begin the analysis describing the problem of a consumer in period t ≤ T , who

faces a sequence of future prices {pτ}τ≤t. Although different buyers may have had

different histories up to period t, provided that sellers’ prices are independent of

aggregate variables (see below), these histories play no role in their decisions. It then

follows from standard arguments that if a consumer searches in period t, observes a

utility draw vi,j and a price pj, he will accept the offer if and only if vi,j−pj ≥ wt−pt,
which can be defined recursively as follows

wt − pt =
(
1− q(1− F (wt−1)

)
(wt−1 − pt−1) + q

∫ ∞
wt−1

(v − pt−1)dF (v)− s

with w1 = p1. This expression can be easily understood. Upon paying a cost s, the

buyer faces a lottery in the following period. With probability 1 − q(1 − F (wt−1))

he fails to draw a suitable match and move forward to the next period, which yields

an expected surplus of wt−1 − pt−1. With complementary probability, however, he

draws a desirable match and buys the good, obtaining v− pt−1. Let Vt = wt− pt be

the continuation value in period t. We can then rewrite this expression as

Vt = Vt−1 + q

∫ ∞
wt−1

(v − wt−1)dF (v)− s.

It follows that the continuation value in period t equals the continuation value in

period t − 1 plus the net expected gains from search in that period. Since V1 = 0,

we have

wt − pt = Vt = q
t−1∑
τ=1

∫ ∞
wτ

(v − wτ )dF (v)− (t− 1)s, (1)

which is a dynamic version of the standard stationary threshold rule in sequential

search models. Since the gains from search are strictly decreasing in wt, it follows

that Vt+1 − Vt ≥ 0 if and only if wt ≤ w∗ defined as

q

∫ ∞
w∗

(v − w∗)dF (v) = s. (2)

As a result, consumers will search if and only if wt < w∗. Let T ∗ be the earliest time

period t, such that wt ≤ w∗. That is, wT ∗ ≤ w∗ ≤ wT ∗+1. Similarly, define s̄ as the

lowest search cost such that this market exists, i.e.,

q

∫ ∞
p1

(v − p1)dF (v) = s̄. (3)
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Finally, in what follows we assume that the date at which the market opens formally,

T is earlier than T ∗ so that buyers always start their search at T ∗.10 Therefore, the

reservation rule that a buyer uses in the first period in which he searches is (up to

the discreteness of time) the same as the one she would use in a stationary setup

with the same search cost and distribution of valuations. The intuition from this

result stems from the fact that buyers must be (approximately) indifferent between

searching or not at T ∗ so that the change in continuation value from periods T ∗ and

T ∗ + 1 is (approximately) zero.

2.2 Dynamic Pricing

We turn now our attention to sellers. Sellers have a single unit to supply at zero

marginal cost and can adjust their prices in every period t. Upon trading, a seller

leaves the market immediately. Therefore, we need only consider the problem of

seller j holding a unit of the good in period t. She anticipates a future sequence

of prices by her competitors {pτ} and a future sequence of reservation utilities by

buyers {wτ}. She also knows that in every future period τ < t she will match a

buyer with probability qτ whose distribution can be computed recursively from the

initial probability qT ∗ = qm and the distribution of quantities traded in the market

at every date τ = T, T−1, .., t−1. Since the measure of traders who leave the market

in every period is super-atomless (Podczeck, 2010), a strong Law of Large Numbers

applies, ensuring that the probability that a seller matches a buyer in period τ can

be computed as,

qτ = q
mτ+1F (wτ+1)

1− qmτ+1(1− F (wτ+1))
, (4)

with mT ∗ = m. Equation (4) can be understood as follows. In period τ + 1, there

are mτ+1 ≤ 1 buyers for each seller. The measure of matches in period τ + 1 was,

therefore, qτ+1(1−F (wτ+1)) since a match in period τ+1 was successful if v ≥ wτ+1.

Thus, out of a measure of mτ+1 buyers in period τ + 1, only mτ+1F (wτ+1) remain

in period t. Similarly, a proportion of qmτ+1(1−F (wτ+1)) sellers matched in period

t+ 1 so that the remaining sellers constitute a proportion 1− qmτ+1(1− F (wτ+1))

of the original sellers. Notice that qτ ≤ qτ+1 so that the matching rate of sellers

decreases over time.

Two extreme cases are particularly interesting. If the initial ratio of buyers-to-

sellers equals one, we have that mt = mt−1 = 1 for all t, and trading probabilities

are stationary. On the other hand, if there are infinitely more sellers than buyers,

m = 0 and so mt = mt−1 = 0 for all t. The case of m = 0 corresponds to a model in

10A sufficient condition in terms of underlying parameters is q
∫∞
Ts

(v − Ts)dF (v) < s.
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which sellers’ capacity constraint is not binding, since the likelihood of selling the

good in the future is negligible. In this case, each seller will use the static pricing

rule,

pt =
1− F (wt)

f(wt)
= H(wt),

where H(wt) is the inverse hazard rate and determines the price elasticity of demand

if consumers use wt as a reservation value in period t. For m > 0, however, the

capacity constraint binds with positive probability and so the seller has to take into

account the option value of holding his unit in period t − 1 when deciding which

price to post in period t. The value function representation satisfies:

Πt = max
pj

(1− qt(1− F (wt − pt + pj))Πt−1 + qt(1− F (wt − pt + pj))pj.

In a symmetric equilibrium, this yields the necessary condition for pt.

pt = Πt−1 +H(wt). (5)

This condition is also sufficient since v − H(v) is strictly increasing as we show

formally in the Appendix. Notice that p1 = H(p1) = pm gives the static monopoly

price, if it lies in the interior; otherwise, p1 is such that F (p1) = 0. In every previous

period, the expected continuation profits of a seller can also be computed recursively.

In particular,

Πt−1 =
(
1− qt−1(1− F (wt−1))

)
Πt−2 + qt−1(1− F (wt−1))pt−1

= Πt−2 + qt−1(1− F (wt−1))H(wt−1).

Notice then that the evolution of prices across periods is driven by changes in the

elasticity of demand driven by changes in the reservation value of consumers (wt)

and by the changes in the future continuation profits of sellers, as captured by the

value of the foregone trading opportunities in earlier periods.

3 Equilibrium

Equation (5) together with Equation (1) implicitly characterize a unique sequence

of prices and reservation values for each T ∗. If m = 1 or m = 0, these sequences are

independent of T ∗ and so the equilibrium number of periods is the unique maximizer

of Vt. As we saw in Section 2.1 this corresponds to the earliest time period in which

the reservation value drops below w∗. On the other hand, if m ∈ (0, 1), for each
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candidate initial period l and an associated sequence of prices and reservation values

there is a (potentially different) maximizer of Vτ . Let τ(l) be its maximizer, assuming

that all buyers participate in every period. A pure-strategy equilibrium is a fixed

point of τ(l) so that all buyers enter the market in period l and their reservation

values satisfy wl+1 > w∗ > wl. In order to prove existence, however, we shall use the

fact that if wl = w∗, buyers are indifferent between entering the market in period l

or l − 1 and we can adjust the participation rate in order to adjust the reservation

value.

3.1 Equilibrium Existence

In order to show that such an equilibrium exists, we first show that, for a given candi-

date initial period l, the sequence {wlt}
τ(l)
1 of reservation values is strictly increasing.

This follows directly from the assumption of monotone hazard rates.

Lemma 1. Suppose that virtual valuations are monotone, i.e. v −H(v) is strictly

increasing. Then, wt > wt−1 for all t such that wt < w∗. Therefore, τ(l) is well-

defined.

Proof. In the Appendix.

Lemma 1 delivers a simple testable implication for dynamic markets in which

buyers are not the long side of the market. Namely, it predicts that the trading

probability of a randomly drawn buyer is increasing over time. Conversely, the

average match quality is decreasing over time.

Using this monotonicity property, we can construct an un-dominated equilib-

rium. For every l, let {wlt}l1 be the sequence of reservation values assuming full

participation in every period t ≤ l. Namely,

wlt = wlt−1 +

∫ ∞
wlt−1

(v − wlt−1)dF (v)− s+ ∆(wt−1, t, l)

where ∆(w, t, l) is the difference in prices between periods t and t − 1 given some

matching rate for sellers qlt and some reservation value of consumers w. In particular,

∆(w, t, l) = H(w)−H(w)(1− qlt−1F (w)).

The crucial part of the argument shows that wlt > wl+1
t if τ(l) ≥ l and τ(l+1) ≥ l+1.

This follows by induction noticing that the difference between both sequences is

difference in the buyer-to-seller ratio in period l. Since the difference equation is

monotone with respect to m, it follows that wlt > wl+1
t . This monotonicity carries

11



over to the function τ(l); that is, τ(l) ≥ τ(l + 1). Since τ(∞) = T1 < ∞. Denote

by l∗ the lowest initial period such that τ(l∗) ≤ l∗. In the proof of Proposition

2 we show that either l∗ = τ(l∗) or we can construct an equilibrium with partial

participation in period l∗ so that wl∗ = w∗. Hence,

Proposition 1. If v −H(v) is non-increasing, an un-dominated equilibrium exists

and all un-dominated equilibria yield approximately the same surplus. Further, if

either m = 0, m = 1 or F (v) is exponential, the equilibrium is unique.

3.2 Welfare

We now turn our attention to the welfare properties of these equilibria, as represented

by the total gains from trade (net of search costs). This is the main object of interest

both for market designers and policy makers.

Fix an equilibrium {wt}, {pt} with a corresponding starting period T ∗ so that

wT ∗ ≤ w∗ ≤ wT ∗+1 and w1 = p1 = H(p1). The gains from trade can be computed as

the sum of the consumers’ continuation value in the initial period and the expected

profit of an entrant seller. More precisely,

W = mVT ∗ + ΠT ∗ (6)

= m
(
wT ∗ − pT ∗

)
+
(
pT ∗ −H(wT ∗)

)
+ qmqm

(
1− F (wT ∗)

)
H(wT ∗)

= m
(
wT ∗ −H(wT ∗)

)
+ (1−m)

(
pT ∗ −H(wT ∗) + qm

(
1− F (wT ∗)

)
H(wT ∗)

≈ m
(
w∗ −H(w∗)

)
+ (1−m)

(
pT ∗ −H(w∗)

)
.

The first equality follows by definition of the gains from trade. The second

equality uses the fact that Πt = Πt−1 +qm(1−F (wt−1))H(wt−1). The third equality

is simply the product of a reorganization of terms. The last condition follows when

taking the continuous time limit as the per-period matching rate converges to zero

so that wT ∗−1 → w∗.11

Notice first that if m = 1, then W ≈ w∗ −H(w∗), which is independent of the

sequence of prices and only depends on the first period’s markup, the distribution

of valuations and the search costs. Indeed, gains from trade depend only on the

equilibrium outcomes in the initial period, because buyers and sellers internalize

all future transactions in their value and buyers adjust their search behavior so

that, regardless of the future sequence of prices, their reservation value at the initial

11Formally, we use the symbol ≈ to represent the following relation between two quantities,

x(q, s) ≈ y ⇐⇒ lim
q̃→0

x(q̃, sq̃) = y.
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period in which they search is the same. In this case, the role of prices is simply to

redistribute rents between buyers and sellers but do not have consequences for the

allocation, except those of the first trading period. It follows that if H(v) is non-

increasing, the (static) monopoly price is an upper bound for the difference in the

gains from trade between the constrained-efficient allocation and the equilibrium.12

The following proposition summarizes the implications of this result for different

distributions of valuations.

Proposition 2. Suppose that s > 0. In any equilibrium, gains from trade are

approximately given by (6). Moreover, as frictions vanish, if m = 1.

1. if H(v)→ 0 as F (v)→ 1 (e.g. F (v) is uniform), equilibrium is approximately

efficient.

2. if H(v) → B as F (v) → 1, and H(v) is non-increasing (F (v) is exponential

or logistic), equilibrium welfare converges to w∗ −B.

3. if F (v) is Pareto so that H(v) = av for some a < 1, then, the equilibrium

welfare converges to (1− a)w∗.

Figure 1 depicts the relative welfare as a function of s for the uniform, Pareto

and exponential distributions.
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Figure 1: Relative Gains from Trade for different Distributions.

Notice that the invariance of gains from trade with respect to the sequence of

prices crucially relies on the endogenous adjustment of the time-span of the market.

For instance, if T < T ∗ so that trade would start immediately, different sequences

of prices would lead to different realized welfare gains.

We now consider the case of a buyer’s market so that m < 1. If buyers are

the short side of the market, aggregate welfare depends on the distribution of rents

12If H(v) is non-decreasing, then the static monopoly price is a lower bound for this difference.
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between buyers and sellers, and, thereby, also on the whole sequence of prices. In

equilibrium, at most m units will be sold so that 1 − m will always remain idle.

However, at the outset, sellers do not which of those units will be sold and so the

expected profit per seller decrease with m, reducing their rents and increasing the

share of the pie accruing to buyers. Since in equilibrium there is inefficient delay

because buyers do not fully appropriate all their surplus, per-buyer welfare is higher

if m < 1.

To further elaborate on this argument, suppose that there is a gatekeeper that

blocks the entry of these idle 1−m sellers so that the market has an equal measure

of active buyers and sellers. This exclusion has a direct effect on per-seller revenue,

leading to an increase in the value of holding a unit of the good for those sellers

who remain, which is reflected in higher prices in earlier periods. Since the price in

the last period is always the (static) monopoly price, the profile of prices necessarily

becomes steeper. This induces buyers to wait more before purchasing, inducing

more distortions and lower welfare. The extent to which this is true depends on the

relative magnitude of m. If m → 0 and H(v) is non-decreasing, industry profits

also tend to zero so that restricting entry does not change prices, while if m → 1,

blocking entry leads to little redistribution and, therefore, small effects on prices.

Therefore, there is some intermediate m∗ such that per-buyer gains from trade are

maximal for m∗.

Flipping this argument, we can obtain a bound for the rents accruing to sellers

when they are the long side of the market. Notice that it must be the case that

W ≤ mw∗ since in any equilibrium a buyer is willing to accept w∗ − pT ∗ in the

first period and sellers optimality condition implies that ΠT ∗−1 ≈ ΠT ∗ ≤ pT ∗ . As a

result,

ΠT ∗ ≤ H(w∗)
m

1−m
(
1− qm(1− F (w∗))

)
≤ m

1−m
H(w∗). (7)

Further since pT ∗ ≈ ΠT ∗ + H(w∗), we have pT ∗ ≤ 1
1−mH(w∗) and, therefore, VT ∗ ≥

w∗ − 1
1−mH(w∗). Equation (7) gives us an idea of the effect of competition on

seller’s profits. If there are many sellers for each buyer in the market or if, at the

outset, buyer’ demand is very elastic, sellers will appropriate a very small fraction

of the surplus. While the first part is rather obvious, the second is not so. The

idea is as follows. Buyers arrive at the market with a reservation value of w∗ which

induces a price elasticity of −H(w∗)−1. Over time, this elasticity may be changing

and eventually they will become so desperate that prices will tend to monopoly. If

m < 1, however, sellers are more impatient than buyers because as time goes by

their matching rate drops and, therefore, they cannot hold for those higher prices

in the future.
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Proposition 3. In equilibrium,

1. if H(v) is decreasing and converges to zero as v approaches its upper bound,

then for every m < 1, Πt < ε for all s < s(m, ε).

2. if H(v) is non-increasing and converges to a constant as v →∞, then for every

m < 1, the share of the pie accruing to buyers converges to one as s→ 0.

For distributions in the Generalized Pareto Class Bulow and Pfleiderer (1983),

which includes the Pareto, the exponential and the uniform as special cases, we have

that H(v) is linear in in v. If the slope of H(v) is negative, then the first case applies

and the rents of sellers are uniformly bounded by a function of s for any m < 1. If,

on the other hand, H(v) is constant, so that F (v) is exponential, the share of the

total rents that sellers appropriate vanish as frictions disappear. Finally, if the slope

is increasing, profits represent at most m/(1−m) of the total surplus.

A corollary of Proposition 4 is that sellers need not benefit from improvements

in the matching technology if they are the long-side of the market.

Corollary 1. Suppose that 1−F (v) is strictly log-concave. Then, there exists some

0 < m∗ < 1, such that for all m < m∗, lims→s̄ Πt > lims→0 Πt.

This is very intuitive. Higher search costs increase the market power of sellers

and, therefore, they can extract a bigger fraction of the total pie. For the case of log-

concave distributions and small enough m, this gain more than compensates the loss

in terms of a lower quantity sold. Obviously, competition and lack of commitment

are crucial for this result, for a single monopolist who can commit to a single price

would never lose from increases in search costs. As we will see in Section 4, however,

sellers do benefit from reductions in search costs if the market is balanced (m = 1).

These formulae also can be used to obtain some insight on price dynamics. To see

this first notice that as search costs vanish, gains from trade converge to first-best

and so the probability that a buyer exits the market at the deadline without buying

must converge to zero. Therefore, each seller sells with probability approaching m.

Rewriting the expression for profits we have.

p̄ =
1

m
ΠT ∗ =

1

1−m
H(w∗)

where p̄ is the average transaction price of a seller, and since pT ∗ = ΠT ∗ +H(w∗) =
1

1−mH(w∗), if H(w∗)→ 0, we have that p̄ = pT . Notice also that p1 = H(p1) > pT ∗

and so prices cannot be monotonically decreasing. This is in stark contrast with

models of experimentation where sellers learn about demand and prices decrease as

they become more pessimistic, regardless of market conditions.
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Delay

Consider now an intervention that would force consumers to start searching one

period before. The gains from trade in period T ∗ + 1

WT ∗+1 −WT ∗ =

∫ ∞
wT∗+1

(v − wT ∗+1)dF (v) + qm(1− F (wT ∗+1))H(wT ∗+1)− s

≈ qm(1− F (wT ∗+1))H(wT ∗+1) > 0

since wT ∗+1 ≈ w∗. Therefore, if F (w∗) < 1, WT ∗+1 −WT ∗ > 0. Because consumers

do not fully appropriate all the rents they create when searching, there is inefficient

delay in that the search starts too late.

Proposition 4. Suppose that m > 0, then in any equilibrium there is inefficient

delay.

Inefficient delay is a direct result of the wedge between the social value of an ad-

ditional search and the private value accruing to the consumer. This wedge depends

on the share of rents that sellers can appropriate. A redistributive policy may then

lead not only to lower initial prices but also to an increase in the number of trading

periods.

This result also establishes a connection between initial prices and equilibrium

welfare. An estimate of the initial markup can be obtained by using the standard

demand elasticity formulas if the researcher has access to some cost shifters (e.g.

shipping costs or merchant fees). This estimate can then be used to obtain a direct

estimate of the inefficiency in equilibrium.

From the perspective of the design of optimal platforms, an interesting observa-

tion then concerns the issue of time-varying fees. Most transactions occur in the final

periods but welfare can be enhanced if sellers reduced their markups in the initial

periods. Interestingly, in a recent work Sweeting (2015) proposes a counterfactual

commission system for Stubhub involving a discount for trade one week before the

deadline. Our model suggests that indeed such reforms are likely to induce more

trade and higher profits.

3.3 Prices and Quantities

As we discussed in the Introduction, the bulk of the literature on dynamic pricing

has neglected the issue of competition. This may be because of a variety of reasons

including tractability (both in theory (Mart́ınez-de Albéniz and Talluri, 2011) and

in empirical applications (Sweeting, 2015)), a particular focus in certain industries
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with few competitors (e.g. airlines), and the striking success of the monopolistic

model in replicating salient features of the data (Sweeting, 2012). Therefore, it is

important to provide a set of clear and empirically testable predictions that could

offer guidance to researchers considering introducing competition in their dynamic

pricing models.

A first observation is that if the measures of buyers and sellers are the same

(m = 1), the capacity constraint of a single seller is just as tight as the market-wise

capacity constraint so that competition yields exactly the same profile of prices and

quantities as the case in which a single manufacturer supplies the same number of

units would.13 Thing are, however, very different if m < 1, for in such a case the

empirical co-evolution of prices and quantities is rather different. A monopolistic

seller facing limited capacity will always increase the price following a period of high

sales and will let the price drop if the demand has been sluggish in the previous

period. On the other hand, a competitive seller’s behavior will always decrease the

price following a period of higher sales because her own capacity constraint has

not been softened but the total future demand drops. Thus, whether a market

is better modelled through competition or monopoly may be tested directly using

the correlation between lagged demand and current prices. Moreover, our model

predicts that the price change brought about by earlier sales is bigger the higher is

the ratio of buyers to sellers. For instance, if m = 0, profits are zero in every period

and so prices are independent of earlier sales.

4 Comparative Statics

We now focus on the case in whichm = 1, so that matching probabilities are constant

over time.14 As a result the sequence of reservation values and prices are independent

of T ∗ and, therefore there is always a unique equilibrium. Furthermore, if valuations

are distributed according to the Generalized Pareto Distribution, the inverse hazard

rate of the distribution of valuations is linear (Ausubel et al., 2014), which allows us

to derive the difference equation that describes the evolution of reservation values

over time and derive the associated differential equation in the continuous time

model. For some distributions within this class, including the exponential, the

uniform (linear demand) and the Pareto (with scale v = 2, representing a constant

13Meisner (2016) provides a similar result, but in his case the allocation must also be efficient.
14While we do not model entry or exit, the rents of the long side of the market are low enough

that a balanced market is probably a good approximation. Furthermore, by Propositions 2 and 3,
the case of m = 1 provides a lower-bound in terms of welfare. See also Subsection 6.2. for the case
of a sellers’ market.
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elasticity of 1/2), we can then solve for the time-span of the market and derive

the initial prices, seller expected profits and buyers’ surplus as a function of the

fundamental parameters only.

4.1 Evolution of Reservation Values

Suppose then that both sides of the market are evenly matched, m = 1, and the

distribution of valuations belongs to the Generalized Pareto Distribution class, so

that F (v) = 1−(1+ξw−µ
σ

)−1/ξ.15 In this case, H(w) = σ−ξµ+ξw, with ξ < 1. This

class includes the uniform, the exponential, the Pareto as well as some particular

cases of other distributions like the Beta(1, b). Notice that as long as ξ < 1, virtual

valuations are increasing so that a unique (un-dominated) equilibrium exists.

For this class of distributions, we can express the gains from search for a consumer

using a reservation value of w as,∫ ∞
w

(u− w)dF (u) =
1

1− ξ
H(w)(1− F (w)).

In terms of demand theory, this implies that consumer surplus and monopoly profits

are proportional to each other, so that increases in consumer surplus always coincide

with consumer surplus. In the context of a model with search, this implies that the

private returns from search are a constant fraction of the social surplus they generate.

Since the price in period t can be expressed as,

pt = Πt−1 +H(wt) = q
t−1∑
τ=1

(1− F (wτ ))H(wτ ) +H(wt),

we can obtain the reservation value in period t as,

wt = q
2− ξ
1− ξ

t−1∑
τ=1

(1− F (wτ ))H(wτ ) +H(wt)− (t− 1)s.

Further, because H(wt) = σ − ξµ+ ξwt, we can rewrite the previous expression as

wt = q
2− ξ

(1− ξ)2

t−1∑
τ=1

(1− F (wτ ))H(wτ )−
1

1− ξ
(t− 1)s+

σ − ξµ
1− ξ

. (8)

Therefore, the reservation value in period t is a linear function of the sum of the

15In demand theory, if buyers’ valuations are drawn from a GPD, their demand function satisfies
the constant-curvature assumption so that in a monopolistic market with constant marginal costs
the pass-through rate is constant.
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expected consumer and producer surpluses in every future period net of search costs

plus a term that depends on the hazard rate. As it happens, this term coincides

with the static monopoly price if it is interior (i.e. if σ > µ). Notice further that

wt is increasing in t and concave since (1 − F (w))H(w) is decreasing in w as long

as H ′(w) = ξ < 1. This property of the evolution of the reservation values directly

translates to prices and, as a result, as the deadline approaches, prices decrease at

increasing rates.

Recall that w∗ provides a good approximation of wT ∗ when (q, s) are small

enough. In the case of the Generalized Pareto Distribution, we can also obtain

a closed-form solution for w∗ as a function of the parameters of the distribution and

the search cost only as,

w∗ =
1

ξ

(
s(1− ξ)
qσ

) ξ
ξ−1

σ − σ − ξµ
ξ

.

If ξ < 0, the support of the distribution is [µ,−σ−ξµ
ξ

] so as s → 0, w∗ approaches

the upper bound at a rate s
ξ
ξ−1 . On the other hand, if ξ > 0, the support is [µ,∞)

and as s→ 0, the second term vanishes so that w∗ tends to ksξξ − 1 for some k > 0.

Notice also that w∗ is homogeneous of degree zero in (q, s) so that only their ratio

matters and if ξ ≥ 0, as s→ 0, w∗ is independent of µ and decreasing in σ for ξ ≤ 0.

We can now use Eq. (8) to obtain an expression of the price that a firm would

charge in the first period in which she expects consumers to be active, T ∗,

pT ∗ = q
T ∗−1∑
τ=1

(1− F (wτ ))H(wτ ) +H(wT ∗) (9)

≈ 1

2− ξ
w∗ +

1

2− ξ
σ − ξµ
1− ξ

+
1− ξ
2− ξ

(T ∗ − 2)s. (10)

According to (9) the initial price is a linear combination of the (second-best) gains

from trade and the initial price (if interior) plus a share of the total search expendi-

ture. Using (9) we can derive the profits that a seller expects to make when entering

the market. To see this notice that ΠT ∗−1 ≈ pT ∗ −H(w∗), which yields,

ΠT ∗ = q

T ∗∑
τ=1

(1− F (wτ ))H(wτ )

=
1− ξ
2− ξ

(w∗ −H(w∗)) +
1− ξ
2− ξ

(T ∗ − 2).

As a result, sellers obtain a fraction 1−ξ
2−ξ of the equilibrium gains from trade and
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the buyers’ search effort. The fraction of the social surplus accruing to sellers is,

therefore, bounded below by 1−ξ
2−ξ , their static share. Similarly, buyers’ surplus is

VT ∗ ≈ w∗ −H(w∗)− ΠT ∗ =
1

2− ξ
(w∗ −H(w∗))− 1− ξ

2− ξ
(T ∗ − 2).

So that buyers extract at most their static fraction of the gains from trade. We now

summarize these results in the following Proposition.

Proposition 5. Suppose that the distribution of valuations belongs to the GPD and

m = 1. Then, there exists a unique equilibrium. Further,

1. Prices and reservation values decrease at increasing rates over time.

2. Buyers appropriate at most a fraction 1
2−ξ of the social surplus.

3. If search costs increase,

• The equilibrium price in any active period (after the change), decreases.

• The quantity traded in any period in any active period increases.

A typical equilibrium outcome is depicted in Figure 2. The blue line depicts

the reservation value as a function of the number of periods before the deadline

for consumers whose valuations are exponentially distributed with unitary mean

(ξ = 0, σ = 0). For t > T ∗, wt is constant since consumers are too picky to find

search profitable. Eventually, wt decreases as consumers run out of options and face

decreasing prices (red line). The green line depicts the expected continuation profit

of a seller in period t and equals the price minus the (constant) markup. The total

welfare in the market can be obtained by subtracting the difference between the red

and the green lines from the value of the blue line.

4.2 Examples

For some distributions, the differential equation describing the evolution of reserva-

tion values can be solved analytically and used to obtain a closed-form characteri-

zation of T ∗. In particular, the differential equation

ẇ = q
2− ξ

(1− ξ)2
(σ + ξ(w − µ))(1 + ξ

w − µ
σ

)−1/ξ − 1

1− ξ
s,

with boundary conditions w(0) = max{σ−ξµ
1−ξ , µ} and w(T ∗) = w∗ can be solved if

F (v) is uniform, exponential or Pareto with shape parameter 2.
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Figure 2: Prices (red), Profits (green) and Reservation Values (blue) for exponen-
tially distributed valuations σ = 1 and s = 0.004.

Exponential Distribution

If valuations are distributed exponentially according to F (v) = 1−e−λv, the Hazard

Rate is constant and equal to λ, so that ξ = 0 and σ = λ−1 and the equilibrium

gains from trade, as shown in Proposition 3, equal w∗ −H(w∗) = w∗ − σ, with

w∗ = σ ln

(
σq

s

)
It follows that the differential equation describing the evolution of reservation values

is

ẇ = 2qσe−
w
σ − s (11)

with initial conditions w(0) = σ and w(T ∗) = w∗. This equation can be solved in

closed-form to obtain

T ∗ ≈ σ

s
ln

(
2− es

qσ

)
. (12)

Therefore T ∗s is decreasing in s but the elasticity of the total expenditure with

respect to s is proportional to s and therefore very small in magnitude. Since the

exponential distribution has a constant hazard rate, the gains from search decrease

(almost) proportionally as w increases so that, if s is small enough, a one percent

increase in the search cost leads to a one percent increase in the number of active

trading periods. As a result, initial prices, profits and buyers’ surplus decrease in

search costs and the share of rents accruing to buyers also decreases in search costs

and is bounded above by 1/2. In the static monopoly model, total surplus is split

evenly among buyers and sellers, while in this dynamic market sellers obtain some

extra surplus due to buyers’ search effort.
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Perhaps surprisingly, as search frictions vanish prices in the initial period in-

crease. More trading periods increase the opportunities to trade, pushing prices

upwards. On the other hand, if we compare prices in a given period, with higher

search costs, consumers are less picky and, therefore, the probability of future trade

is higher so that prices decrease as search frictions decrease. This result is depicted

in Figure 3.
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Figure 3: Prices in periods T = T ∗ and T = 50 as a function of search costs.

Uniform Distribution

If valuations are uniformly distributed, so that F (v) = v−µ
σ

, the inverse hazard

rate is decreasing and equal to σ + µ − v, so that in equilibrium sellers charge a

decreasing markup. The price at the deadline (p1) satisfies p1 = σ+µ− p1, and the

reservation value in the initial period is w∗ = µ+σ−
√

2s
q

. As shown in Proposition

3, equilibrium gains from trade are µ + σ − 2
√

2s/q, which converges to w∗ as

s → 0, so the market becomes approximately efficient as search frictions vanish.

The differential equation is

ẇ =
3

2σ
q(µ+ σ − w)2 − 1

2
s

with boundary conditions w(0) = p1 and w(T ∗) = w∗. This gives w(t) as the solution

of Riccati equation with constant coefficients (Egorov (2007)). Normalizing q = 1

and for s small enough, the total search expenditure can be well approximated by,

C(s) = T ∗s ≈
√

8σs

3
A(s, σ, µ) (13)
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This function is increasing in s for s sufficiently small so that the number of periods

can be well-approximated for a continuum (i.e. s < (10σ)−3). Further, C(0) = 0

and C(s) is increasing in σ and µ. Using these observations we obtain the following

expression for the value of a buyer who begins her search in period T ∗,

VT ∗ ≈
1

3
− 2

3

√
2s

q
− 2

3
C(s),

which is decreasing in s, and for the final price,

pT ∗ ≈
2

3
− 1

3

√
2s

q
+

2

3
C(s),

which can also be shown to be decreasing in s since the marginal effect of a reduction

in search costs on total effort is an order of magnitude lower than its effect on total

surplus. Naturally, then, the share of total surplus accruing to buyers decreases in

search costs and converges to 1/3 as s→ 0. Notice that 1/3 is also the static share

of rents for buyers.

Pareto Distribution

If valuations are distributed according to a Pareto with shape parameter a = 2

and lower bound xm = 1, so that F (v) = 1 − v−2, the inverse hazard rate is

simply v/2. Notice then that the static monopoly price is given by the corner

solution p1 = w1 = 1 and the threshold reservation value is w∗ = q/s. As shown

in Proposition 3, equilibrium gains from trade as w∗/2. The associated differential

equation is,

ẇ =
−3q

w
+ 2s,

which can be solved in closed-form to obtain

T ∗ ≈
3q

(
ln
(
3q − 2s

)
− ln(q)

)
− 2(q − s)

4s2
,

so that T ∗s ≈ E(q, s)/s which explodes as s→ 0. In this case the gains from search

decrease faster than the cost as w increases because of the long tail of the Pareto.

The value of a buyer who enters the market in the first trading period can be written

as

VT ∗ =
1

3

q − E(q, s)

s
− 1

3
,
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decreasing in s. Similarly,

pT ∗ =
1

3

2q + E(q, s)

s
+

1

3

which is also decreasing in s. The share of the gains from trade accruing to buyers

is less than 45% and decreases in search costs.

4.3 Summary

Remarkably, these different distributions yield a consistent picture. First, prices and

reservation values decrease at increasing rates as the deadline approaches. This is

indeed consistent both with casual observations and the available empirical evidence.

For instance, there are a number of commercial software providers that help hosts

in Airbnb who want to implement simple dynamic pricing schemes. By and large,

they suggest that hosts should keep the base-rate price unchanged until the last

week or so and then start decreasing it at increasing rates. In the last period, they

suggest some 50% markup over the reported marginal cost of the seller, while the

average markup is approximately 100%.16 Sweeting (2012) and Sweeting (2015)

provide substantial evidence that in the secondary market for sports tickets, prices

decrease at increasing rates as the event approaches and that trading probabilities

are increasing and convex.

In Figure 4 we depict the trading probabilities (red line) and the unsold quantities

(blue line) at each period t for the exponential case with the search cost calibrated so

that the total quantity sold is approximately 75% of the available units (s = 0.011).
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Figure 4: Unsold Quantities and Trading Probabilities over time.

Second, in markets with lower trading frictions (as captured by search costs),

16See, for instance, BeyondPricing.com
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prices and trading probabilities, in a given time period are lower. For instance, the

model predicts that the establishment of an online marketplace in a decentralized

market leads to a decrease in prices in those periods that are sufficiently close to

the deadline. Equilibrium profits and consumer surplus in the market, however,

do increase as search costs vanish. The intuition is that lower search costs have a

direct effect on the number of periods in which buyers actively search, increasing the

likelihood that a given unit is sold and, thereby, increasing their option value. In a

way, the positive effect of search intensity on prices stems on the activation of an

extensive margin (the number of periods) rather than an intensive margin (a change

in the reservation values) and, therefore, is related to the results in Moraga-González

et al. (2015).

Third, the elasticity of the number of trading periods with respect to search costs

depends on the shape of the distribution of valuations. Distributions with decreasing

hazard rates have fat tails and induce buyers to increase their search effort when

search costs drop while distributions with increasing hazard rates allow buyers to

slack-off. The expenditure in search effort has an important redistributive effect, so

that higher search costs lead to lower rents for buyers as search costs increase.

5 Pass-Through

The welfare and redistributive effects of many policies depend on the response of

prices to changes in marginal costs. While in most static models of search with

differentiated products, cost is passed one-to-one to consumers, in our dynamic

setup the degree of pass-through is determined by the elasticity of demand and the

response of search effort to changes in prices. In order to characterize the pass-

through rates of the model, therefore, assume that sellers face a cost c to deliver

their unit. This cost may be intrinsic to the service (e.g. cleaning of an apartment),

represent a tax or a fixed fee charged by a platform.17

In every period t, a seller carrying a unit will set up a markup equal to her

continuation profit, so that

pt − c = Πt−1 +H(wt).

17Variable taxes or fees do not have effects on equilibrium outcomes since we do not explicitly
model entry and buyers have unit demand.
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Solving for wT ∗ we obtain,

wT ∗ =
σ − µξ + c

(1− ξ)
+

2− ξ
(1− ξ)2

q

T ∗−1∑
τ=1

(1− F (wτ ))H(wτ )−
1

1− ξ
s(T ∗ − 2) = w∗,

because w∗ is independent of c. Hence, we can solve for pT ∗ as

pT ∗ =
1

2− ξ
(w∗ + σ − µξ + c) +

1− ξ
2− ξ

s(T ∗ − 2).

Recall that if σ + c ≥ µ, this expression can be rewritten as,

pT ∗ =
1

2− ξ
w∗ +

1− ξ
2− ξ

p1(c) +
1− ξ
2− ξ

s(T ∗ − 2).

where we use the fact that p1(c) is the static monopoly price. Notice then that T ∗

now depends on c only through the initial price. Absent any effects on the total

search expenditure, therefore, the dynamic pass-through rate of a unit increase in

the marginal cost is (2 − ξ)−1 < (1 − ξ)−1, which is the pass-through rate at the

deadline. In addition, higher marginal costs lead to an increase in the price at the

deadline which represents the initial condition for the difference equation describing

the evolution of wt. Therefore, the total number of periods, T ∗, and the associated

search effort decrease as c increases. As a result, the pass-through rate of the initial

price, which determines the change in the distribution of rents across buyers and

sellers, is at most (2− ξ)−1.18

For the exponential case, we can solve for the price as a function of t in the

continuous time limit as well as the equilibrium quantities in every period so that

we can go further and study the effect of increases in marginal costs on the sequence

of prices. Since prices are homogeneous of degree zero in (q, s), throughout we

assume that q = 1. The price at time t equals,

p(t) = σ + c+
σ

2
ln

eσ+cσ s+ 2σ
(
e
st
σ − 1

)
e
c+σ
σ s

 .

18In models of imperfect competition, under GPD, pass-through rates can be written as (1 −
ξθ)−1, where θ measures the degree of competition (see, e.g. Weyl and Fabinger (2013)). Typically,
0 ≤ θ ≤ 1, so that pass-through rates are substantially higher in static frameworks than in this
dynamic market.
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As a result, the pass-through rate in time t, ρ(t) equals

ρ(t) =
p(t)

∂c
= 1−

(
e
σ+c
σ s

σ − σe stσ − 2

)

Naturally, at the deadline, ρ(0) = 1, while

ρ(T ∗) =
σ

2σ − eσ+cσ s
.

As s→ 0, ρ(T ∗) approaches (2− ξ)−1 while as frictions increase so that the market

collapses, ρ(T ∗)→ ρ(0). In general, ρ(t) is decreasing and convex in t.

Pass-through rates are also useful as a method for identification of the shape

of the distribution of valuations and the search costs. For this purpose, suppose

that we have a good estimate of marginal costs and we have the sequence of prices

and quantities. Provided that we have enough observations and we are able to

assume exponentially distributed valuations, we can consistently estimate σ from

the transactions sufficiently close to the deadline. In principle, using σ we could

directly estimate s from ρ(T ∗). However, by definition, the number of transactions

at T ∗ will be very limited and subject to outliers. A more practical approach is to

use data on quantities and prices over time and infer from those the search cost.

As it turns out, as we show in Figure 5, one can infer search costs from either the

(un)weighted average over time of the pass-through rates (i.e.
∫
ρ(t)q(t)dt) but not

from the pass-through rate on the average transaction price (i.e. ρ(
∫
p(t)q(t)dt)).

This is because higher marginal costs lead to a reduction of total quantity and a

shift from earlier to later periods so that the average transaction price becomes

non-monotone on search costs. Hence, the model suggests that an effective way to

recover search costs from dynamic markets is to compute the average change in the

time-specific price following a change in marginal costs.

6 Cancellation Policy

In many of these markets, buyers hold the right to renege on their promise in a later

period with or without some compensation to the seller (Xu (2005)). Many platforms

such as Uber and Airbnb establish cancellation policies with the stated goal of

reducing uncertainty and promoting fairness. Airbnb allows for a sophisticated

menu of options that the seller may offer, depending on market characteristics. In

markets with low demand, the typical seller will keep the option to cancel without

penalty up to 24 hours before the arranged date, while in markets with extremely
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Figure 5: Pass-Through on the Average Price (Blue), Weighted (Green) and Un-
weighted (Red) Average Pass-Through, Pass-Through on Inital Price (Orange)

high demand, Airbnb offers options that allow for partial refund only for very early

cancellations.

From the perspective of the buyer, the right of cancellation is valuable since it

decouples purchase from search, allowing a buyer to gather more information before

committing to a final decision. From the perspective of the seller, the cancellation

policy is a blessing and a curse. On the one hand, since prices decrease over time,

locking in early buyers is profitable. On the other hand, given his capacity constraint,

a seller who offers a cancellation policy is excluded from the market and faces a risk

of not matching with a buyer. This risk is mitigated if the buyer has to pay a penalty

to those sellers whose option she gives up.19.

In order to compare the results with the benchmark model and ensure a tractable

characterization we simply extend the model to incorporate a renegotiation clause

so that if a buyer purchased a good in period t but found a better good in period

t′ < t, the buyer can make a take-it-or-leave-it offer to the seller to return her the

good in exchange of a refund ft′ . This arrangement is consistent with the original

model since it always gives the current owner of the good the right to post a price.

Since the seller has no private information, the buyer will naturally make an

offer that gives him no additional surplus so that the continuation surplus of the

seller is Πt′ . Therefore, upon purchasing the good, the buyer becomes the residual

claimant on the joint continuation surplus of the match and the optimal offer is

simply to compensate the seller from the incurred losses if he executes the offer in

any future period (i.e. her externality on the buyer).20 Since the continuation refund

19The literature on consumer search has studied the role of costly recall extensively, both because
of exogenous costs and through an optimal seller policy (Armstrong and Zhou (2015), Janssen and
Parakhonyak (2014))

20Since there is no discounting, the resulting allocation can be implemented in multiple ways.
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is independent of the initial price p or the period of purchase t, the problem of the

buyer is fully characterized by the pair period s and continuation utility u, while

the seller is perfectly insured against the risk of cancellation.21

Therefore, consider a buyer who holds an offer with utility u in period t′+ 1 and

meets a seller with an offer (u′, p′). Taking up the option gives a expected surplus

of Vt′(u
′)− p′ while keeping up the previous offer delivers Vt′(u)−Πt′ . Thus, taking

up the option is profitable if Vt′(u
′)−Vt′(u) ≥ p′−Πt′ , which, in equilibrium, equals

the period-t′ markup. In order to further simplify the problem, we shall assume

that F (u) is exponential with parameter µ−1, so the markup is constant and equal

to µ.22 Hence, the condition simply translates to Vt′(u
′) ≥ Vt′(u) + µ. If the buyer

does not currently hold an option, she obtains a value of Vt′ = wt′ − pt′ . Let wt′(u)

be such that Vt′(wt′(u)) = Vt′(u)− µ.

Given this ex-post payoffs, the returns from search of a buyer in period t, when

a measure αt of buyers have no option and a measure βt of buyers have one option

but participate in the market are

q
αt

αt + βt

∫ ∞
wt(u)

(Vt−1(v)− Vt−1(u)− µ)dF (v)− s.

if he holds a draw u and

q
αt

αt + βt

∫ ∞
wt

(Vt−1(u)− Vt−1)dF (u)− s

if he does not currently hold any option. A buyer stops her search if this returns

are negative and continues as long as they are positive. This induces a cutoff value

vt as a function of αt, such that if the current alternative is u ≥ vt, the buyer leaves

the market. Since vt is decreasing in αt and αt = F (vt) − F (wt), is increasing in

vt, there is a unique solution for the system. Using the second expression, we can

derive the reservation value of a consumer who joins the market for the first time in

For instance, the buyer may pay the markup µ upon visiting the seller and then a rental price of
Πt′ −Πt′−1 for each period in which he holds the good. Alternatively, the buyer may pay upfront
the whole price and then enter the market as a seller to recover Πt′−1.

21It should be noticed that this contract is also locally optimal if the seller had the right to
sell the good. This follows because of the special nature of the screening problem at hand. High
valuation buyers are much less likely to execute the policy, and, therefore, price reductions that
attract more buyers lead to higher costs and become comparatively less profitable. On the other
hand, a price increase that is compensated with a more lenient policy is comparatively unattractive
because the infra-marginal buyers are unlikely to execute it.

22For general distributions, the markup would be a function of the distribution of values of
buyers in the market.
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period T ∗.

q

∫ ∞
w∗

(VT ∗(u)− VT ∗−1)dF (u) = s

since βT ∗ = 0. Further notice that if a buyer purchases the right to buy a good

in period T ∗ he will never search in period T ∗ − 1 because the gains from search

jump down by µ while the difference between periods is negligible (if needed take

(s, q)→ 0). In other words, cancellation policies are only useful if the buyer expects

to search further but his incentives to do so are sharply reduced by the very fact that

he holds a much improved outside option. This implies that VT ∗−1(wt) = wt and the

previous formula collapses to the condition of the benchmark model. Namely,

q

∫ ∞
w∗

(u− v∗)dF (v) = s.

Since the cancellation policy are never taken up in the initial periods, gains from

trade are unaffected. This is in sharp contrast with models of demand uncertainty,

whereby the probability that a contract is cancelled is decreasing in the date at which

the contract is signed. In addition, cancellation policies under demand uncertainty

should be better understood as an add-on clause in the original contract that allows

sellers to price discriminate among buyers (which are common in flight tickets),

while cancellation policies in the context of search and horizontally differentiated

products are better understood as a compensation for the losses that a seller incurs

should he be excluded from the market (such as the one that Airbnb uses).

This insight can also be used to derive a necessary condition for cancellations to

be taken up in any equilibrium, since it must be that a buyer is willing to search

following the purchase of any good with a utility draw marginally below {vt}. Since

v1 = H(v1), v2 > v1, this condition becomes approximately,

q

∫ ∞
2v1

(u− 2v1)dF (v) ≥ s, (14)

which in the case of the exponential distribution becomes s ≤ qe−2σ. Hence, for

s ∈ (qe−2σ, qe−1σ), the equilibrium involves search but no cancellations.23 If can-

cellations do occur, they lead to a speeding up of trade and may have a significant

impact on the distribution of the gains from trade.

Figure 6 depicts the equilibrium in the case of exponentially distributed valua-

tions with mean 1, q = 1 and s = 0.006. It can be shown that cancellations are only

23For the uniform distribution, the markup equals σ + µ − wt so that in every period wt +
H(wt) = 1, and, therefore, cancellations never occur. For the Pareto distribution with 1−v−2, the
equilibrium involves cancellations only if 2s < q, while there is an equilibrium without cancellations
if s < q.
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Figure 6: Prices and Reservation Values with and without Cancellation policies.
The price with cancellation (blue) is always above the one without possibilities of
cancellation (red).

relevant in period t = 2, where buyers accept matches with a utility draw u > 1.66

while they continue searching if u < 1.73, so that in period 1, approximately 1.5%

of buyers hold an offer from a previous period. As it turns out, this leads to a sharp

reduction in the gains from trade that buyers appropriate in the last period, which

leads to faster trading and higher profits for sellers in earlier periods. As a result,

the distribution of the gains from trade changes substantially, so that sellers’ share

of the pie increases by 3%.

7 Extensions

We now discuss several ways in which the basic model can be extended in order to

incorporate some realistic features of many markets. The first extension corresponds

to the case in which a single buyer may visit various sellers in different periods,

introducing within period competition. We then highlight the role that strategic

buyers play in our analysis by studying the cases in which buyers are the long side

of the market, and, therefore, obtain limited rents and also the case in which buyers

behave myopically.
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7.1 Contemporaneous Seller Competition

A crucial feature of the model is that buyers are matched to at most one buyer within

a given period. Thus, the current seller only competes against future sellers. This

assumption allows us to focus on dynamic pricing while keeping the analysis simple

but a fixed-sample search within each period can be easily incorporated. To this end,

assume that, upon paying a search cost s, each buyer gets matched with probability

q = 1/2 with two different sellers.24 Given the sequence of prices, she buys from

the seller who offers the highest surplus today provided that ui,j − pj > wt−1− pt−1.

Thus, the only difference concerns the case in which at both sellers provided higher

surplus than wt−1. In this case, the gains from search are

q

∫ ∞
w

(v − w)dF 2(x)− s,

where F 2(x) is the distribution of the highest of two draws. Let w∗ be the associated

cutoff value. Sellers choose prices to maximize

Πt−1 + (pj − Πt−1))

∫ ∞
wt−pt+pj

F (v + pt − pj)f(v)dv.

which yields pt = Πt−1 + µ(wt)(wt−1), for some µ(wt). It should be noted that

µ(wt) ≤ H(wt) if and only if the distribution has a non-increasing hazard rate. For

our benchmark example with exponentially distributed valuations and σ = 1, this

equation simplifies so that pt = Πt−1 + 1. In this case, profits can be written as

Πt =
1

2

t−1∑
τ=1

e−2wτ (2ewτ − 1).

On the other hand, continuation values are given by

Vt = q
1

2

t−1∑
τ=1

e−2wτ (4ewτ − 1)− ts.

So that the reservation values simplify to

wt = 1 +
t−1∑
τ=1

e−2wτ (2ewτ − (3/4))− (t− 1)s.

24The general case of k sellers is analogous but the expressions become considerably more com-
plex.
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Buyers search as long as wt < w∗ with

w∗ = ln

(
q(1 +

√
1− s)

2s

)
.

Although we can no longer solve for pT ∗ using wT ∗ = w∗ in closed form, one can

show that all these expressions are rather close to the ones derived in the benchmark

model.

The numerical results are presented in Figures 7 and 8. In Figure 7, the red

and blue lines represent the reservation values and prices as a function of time

in the model with contemporaneous seller competition, exponentially distributed

valuations (λ = 1) and search cost s = 0.0001. The purple and yellow lines depict

the evolution of reservation values and prices in the benchmark model, with q = 1/2

and a search cost such that both models have the same w∗. As we can see the market

evolution over time is quite different but the distribution of the surplus in the initial

period (which is what determines the gains from trade) is remarkably similar. Figure

8 depicts the effect of competition on the distribution of the surplus for different

values of the search cost. As we saw earlier, higher search costs help sellers in both

setups but the gains are smaller in the case of contemporaneous competition.

Figure 7: Prices and Reservation Values. The red and blue lines correspond to the
case of within period competition (k = 2).

7.2 Sellers Market

Dynamic pricing is particularly relevant in markets with scarcity, like tickets for

popular events (Sweeting, 2012). In this case, it is buyers rather than sellers who

become pessimistic over time, which corresponds to m > 1.
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Figure 8: Share of the rents appropriated by sellers as a function of search costs
with (blue line) and without (red line) within period competition.

The problem for buyers is now substantially more complex, because the gains

from search crucially depend on how many other buyers are searching. In any given

period, a consumer searches only if

qt

∫ ∞
wt

(v − wt)dF (v) ≥ s (15)

where qt = q/(mtηt) and ηt is the proportion of consumers searching. Therefore, if

q

mt

∫ ∞
wt

(v − wt)dF (v) > s

then ηt = 1. Otherwise, ηt < 1 adjusts so that (15) holds with equality. This leads

to two novel effects. First, it must still be true that qT ∗ = 1, for otherwise a buyer

could deviate and visit a retailer in period T ∗ + 1 and observe a price arbitrarily

close to pT ∗ and match with probability one and then wait in the following period,

obtaining higher expected utility.25 Hence, trade always starts slowly in the sense

that for a number of periods some buyers abstain from participating and, therefore,

derive no rents from the market.

Second, it may also occur that in some later period t′, ηt′ < 1 because mt

dropped faster than the expected gains from search.26 Furthermore, if m is large

25The fact that the price does not change significantly follows from the fact that (a) no firm
expects to sell in period T ∗ + 1 and so ΠT∗+1 = ΠT∗ and (b) buyers do not expect to make
substantial rents in period T ∗ so that their reservation value in T ∗ + 1 is similar.

26For instance, for the case of exponentially distributed valuations and q = 1, if 1 − F (wt) >
mt −

√
mt(mt − 1), the expected gains from search are decreasing in t if η = 1.
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enough, in every single period buyers are indifferent between participating or not,

and, therefore, derive zero rents in expectation. In this case, we have that wt = pt.

A sufficient condition for this to hold is that

q

m

∫ ∞
pm

(v − pm)dF (v) ≤ s.

Notice that wt ≥ pm and mt ≥ m so that this establishes an upper bound on the

gains from search in any particular period. For instance, in the case of exponential

valuations with σ = 1 and q = 1, this holds if s ∈ [ 1
me
, 1
e
].

We now turn our attention to welfare. The average gains from trade per unit

available in the market can be written as

W = w∗ −H(w∗) + (m− 1)(w∗ − pT ∗).

Thus, and similarly to the case of scarce buyers, per-unit welfare is larger than

w∗ − H(w∗). In this case, restricting entry of some buyers, leads to an increase in

VT ∗ , so that buyers delay entry, reducing total welfare.27 Furthermore, we have that

total surplus must still be bounded above by the second-best gains from trade, i.e.

W ≤ w∗. Therefore, VT ∗ <
1

m−1
H(w∗). Hence, we have the following result.

Proposition 6. In a sellers’ market (m > 1), as search costs vanish

1. If the distribution is log-concave, for every m > 1, buyers’ surplus represents

a negligible share of total gains from trade.

2. There exists some 1 < m∗(q, s) <∞ such that if m > m∗, VT ∗ = 0, pT ∗ = w∗

and buyer participation (ηt) increases as t approaches the deadline.

The proof is similar to that of Proposition 4 and thus, omitted. From the per-

spective of an outsider, a market in which m >> 1 looks rather similar to one in

which buyers are myopic. In that case, ηt can be thought of as the arrival rate. As

we shall see in the next Subsection, the property that the arrival rate is increasing

over time also carries over to that environment.

7.3 Myopic Buyers

In many settings, it may be convenient to assume that buyers are myopic. This

assumption is common in the theoretical literature on dynamic pricing in monopoly

(Talluri and Van Ryzin, 2006) and in many empirical applications (Sweeting, 2015).

27A simple way to see this here is that if m − 1 buyers are restricted to enter, active buyers
know they will match in every future period and will bid up their reservation values, leading to
less trade.
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A buyer participating in period t will buy if and only if their valuation exceeds

the price so that their demand is given by 1−F (p). The continuation value for the

seller remains unchanged. Namely,

ΠM
t =

t−1∑
τ=1

(1− F (pMτ ))H(pMτ ),

so that pMt − pMt−1 = H(pMt ) − F (pMt−1)H(pMt−1) describes the evolution of prices.

Buyers are indifferent whether to participate or not in period t if pt = w∗ and so

let TM denote the associated number of trading periods. In equilibrium, gains from

trade are given (approximately) by

WM = w∗ −H(w∗) + S(w∗) (16)

where S(w∗) are the average gains of a consumer in this market. Notice that S(w∗) >

0 since in every period t < TM search yields positive expected value. Because

consumers do not have the option to wait and the equilibrium with long-run buyers

involved inefficient delay, the myopic equilibrium is more efficient.28

Proposition 7. Suppose that the Hazard Rate is non-decreasing. Then, in an equi-

librium with myopic buyers, trade starts at an earlier date TM ≥ T ∗ and gains from

trade are WM > W ∗.

A caveat of this analysis is that it assumes that the number of trading periods

will be determined by the indifference condition of buyers. Since buyers are myopic,

this is no longer a natural restriction but it is the one that (i) maximizes welfare

and (ii) yields a natural benchmark for the dynamic model.

A final remark regarding identification. Suppose that we have data on quantities

and prices in each date but we do not have data on individual buyers’ behavior or

their arrival rates in the market, can we identify whether buyers are myopic in equi-

librium? If we knew the distribution of valuations, the answer would naturally follow

from observed prices, once we estimate expected profits in each period. Indeed, if

buyers are myopic we have that pt = H(pt)+Πt−1 which can be directly verified from

the data. If, on the other hand, we do not now the distribution of valuations, these

models cannot be distinguished from each other. In particular, suppose that buyers

are fully strategic, let F (v) be the true distribution of valuations and let {wt} be

28Notice that if sellers are myopic, the equilibrium corresponds to the case where m = 0. In this
case, the equilibrium welfare is exactly the same as the case of looking-forward sellers. If sellers
are forward-looking but cannot adjust prices over time, however, equilibrium welfare is given by
w∗ − p∗(1−Q(p∗)), where Q is the total quantity sold over time.
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the sequence of reservation values. Then, prices and quantities are fully consistent

with a model in which buyers are myopic and the distribution of valuations is F ′(v)

and arrival rate λt if (1− F ′(pt))λt = 1− F (wt) and H(pt) = H(wt).

Figure 8 depicts the implied λt for the case of exponentially distributed valuations

so that the markup is constant. Naturally, λt ≤ 1 since forward-looking buyers are

pickier. Second, as time approaches the deadline, wt → pt and so λt → 1. Finally,

λt is decreasing around T ∗ if ξ ≤ 0

10 20 30 40 50 60
Time Period

0.4

0.6

0.8

1.0

Relative Arrival Rate

Figure 9: Implied arrival rates for myopic buyers for the case of σ = 1, ξ = 0, q = 1
and s = 0.01.

8 Conclusions

In this paper we have provided a tractable, yet rich, model of dynamic pricing in

markets with search frictions. The equilibrium of the model is consistent with many

empirical patterns of real-world markets. First, although trade occurs over a long-

horizon, a large share of transactions occur in the last few periods. Second, prices

decrease over time at increasing rates and approach the static optimum only in the

very last period. Third, the division of rents crucially depends on the buyer-to-seller

ratio so that if sellers are relatively abundant, and become even more abundant over

time, they appropriate a negligible source of the surplus.

The model delivers a number of welfare implications. First, the degree of inef-

ficiency in the market depends mostly on the markup in the initial period (which

does not translate directly to profits). For some distributions, this markup may be

substantial even as search frictions vanish. Second, if buyers and sellers are similar

in number, reducing search frictions increases rents for buyers but also profits. This

is because sellers benefit from the activation of an extensive margin of search that
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induces more trade and increases the value of holding a unit of the good. Impor-

tantly, a model that fails to account for strategic buyers and for an endogenous

time span of the market may actually obtain the opposite answers to these ques-

tions. Finally, and from a market-design perspective, we find that taxes, subsidies

and cancellation policies have a very limited impact on gains from trade but a very

substantial impact on its distribution.

The model can be extended in many dimensions but two obvious features are

missing. First, we have not included endogenous participation of buyers and sellers,

although our results regarding the distribution of the gains from trade as a function

of the relative sizes of both sides of the market suggest that this channel may induce

equilibria with an even measure of each. Second, the current version of the model

assumes that all sellers are ex-ante homogeneous but some heterogeneity in either

capacity or quality may be relevant in some applications. These assumptions allow

us to give analytical insights on a very rich model but are not crucial once the model

is solved numerically for the purpose of its empirical implementation.
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A Omitted Proofs

Proof of Lemma 1. We first establish that if v −H(v) is increasing, then pt follows

(5). To see this notice that the Second Order Condition is

−f ′(wt − pt + pj)(pj − Πt−1)− 2f(wt − pt + pj) ≤ 0

since in a symmetric equilibrium pj = pt and pj = Πt−1 +H(wt) we have,

f ′(wt)(1− F (wt)) + 2f 2(wt) ≤ 0,

which holds iff H ′(w) ≤ 1.

We now show that there cannot be an equilibrium in which buyers are indifferent

between entering or not in multiple periods and a positive mass of them participate.

In such a case, Vt = 0 so that wt = w∗. Since m > 0, Πt − Πt−1 > 0 if there is a

positive measure of buyers who participate, so that pt > pt−1. But this means that if

wt = w∗, then wt−1 < w∗ and Vt−1 > 0. Thus, all equilibria are outcome equivalent

to one in which trade starts at some T ∗.

wt = wt−1 +H(wt)−H(wt−1) + qmt−1H(wt−1)(1− F (wt−1)) +

∫ ∞
wt−1

(v − wt−1)dF (v)− s

Since H ′(w) < 1, H(wt)−H(wt−1) < (wt − wt−1), then wt > wt−1.

Proof of Proposition 2. The main argument is sketched in the main text. Here we

simply establish that wlt > wl+1
t if τ(l) > l and τ(l + 1) > l. To see this notice that

wl1 is independent of l and

wl2 = wl1 + ψ(wl1) + ∆(wl1, l) = wl+1
1 + ψ(wl+1

1 ) + ∆(wl+1
1 , 1, l)

> wl+1
1 + ψ(wl+1

1 ) + ∆(wl+1
1 , 1, l + 1),

where ψ(w) represents the returns from search with a reservation value of w and

∆(w, t, l) represents the expected change in price assuming full participation from

period l and a current reservation value of w. Thus, assume that wlt > wl+1
t . It

follows that,

wlt+1 = wlt + ψ(wlt) + ∆(wlt, l) > wl+1
t + ψ(wl+1

t ) + ∆(wl+1
t , t, l)

> wl+1
t + ψ(wl+1

t ) + ∆(wl+1
t , t, l + 1).

Therefore, τ(l) < τ(l + 1), so that if τ(l) ≥ l, τ(l + 1) ≥ l, τ(l) ≥ τ(l + 1).

Since τ(∞) = T1 < ∞, there must exist some lowest l∗ such that τ(l∗) ≤ l∗, while
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τ(l∗ − 1) > l∗ − 1. If τ(l∗) = l∗, this constitutes a fixed-point and the associated

sequence corresponds to a pure-strategy equilibrium. Otherwise, we construct an

equilibrium by assuming that buyers randomize in period l∗ whether they participate

or not. If no buyer participates, then ml∗−1 = ml∗−1
l∗−1 and the continuation sequence

of reservation values must be that associated with an initial period of l∗− 1, so that

wl∗−1 < w∗. If every buyer participates, we know that wl∗−1 > w∗ since τ(l∗) > l∗.

Thus, there exists some η ∈ [0, 1) such that if η proportion of buyers participate

in period l∗, ml∗−1 is such that wl∗ = w∗. Because wl∗ = w∗, buyers are willing to

randomize.

In order to complete the proof, notice that in an un-dominated equilibrium

wT ∗ + ψ(wT ∗) + ∆(wT ∗ , T
∗, T ∗) > w∗, for otherwise a deviating buyer would find it

profitable to search at T ∗ + 1. Hence wT ∗ → w∗ as q → 0. Further, if m = 1 or

m = 0, {wlt} are independent of l so that an undominated equilibrium is necessarily

unique. Similarly, in the case of exponential valuations, H(v) is constant so that

there is at most one fixed point of τ(l).

Proofs of Proposition 3. Most of the argument follows from the main text for (q, s)→
0. We now derive exact bounds for welfare as a function of s (and, crucially, in-

dependently of q), so that as we take (s, q) → 0, the results hold exactly. Recall

that,

W = mVT ∗ + ΠT ∗

= m
(
wT ∗ − pT ∗

)
+
(
pT ∗ −H(wT ∗)

)
+ qm

(
1− F (wT ∗)

)
H(wT ∗).

Since in any un-dominated equilibrium wT ∗ + ψ(wT ∗) + ∆(T ∗) ≥ w∗ ≥ wT ∗ , then

W ≥ m
(
w∗ − ψ(wT ∗)−∆(T ∗)− pT ∗

)
+
(
pT ∗ −H(wT ∗)

)
+ ∆(T ∗) +H(wT ∗)−H(wT ∗+1)

≥ m
(
w∗ − ψ(wT ∗)−∆(T ∗)− pT ∗

)
+
(
pT ∗ + ∆T ∗ −H(wT ∗+1)

)
.

If m = 1, we have,

W ≥ w∗ − ψ(wT ∗)−H(wT ∗+1) ≥ w∗ − s−H(wT ∗+1).

Therefore, for H(w) decreasing, w∗−H(w∗) ≤ W ≥ w∗−s−H(w∗). It then follows

that as s→ 0, W → lims→0w
∗ −H(w∗) as required. For the case in which F (v) is
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Pareto, we have,

W = wT ∗ −H(wT ∗) + qm
(
1− F (wT ∗)

)
H(wT ∗).

Since w − H(w) is increasing, W ≤ wT ∗+1 − H(wT ∗+1) + qm(1 − F (wT ∗))H(wT ∗).

For the case of the Pareto distribution, we have that qm
(
1−F (wT ∗)

)
H(wT ∗) < ms

(see Section 4). Therefore, wT ∗ −H(wT ∗) + s ≤ W ∗ ≤ wT ∗+1−H(wT ∗+1) + s. Since

H(w) = αw, we have that lims→0W → α
1−αw

∗.

Proofs of Proposition 4 and Corollary 1. The analysis is similar to that of Proposi-

tion 3. Suppose that F (v) is log-concave. Then, H(v) ≥ w1 by definition of the

monopoly price. We have,

W ≥ m
(
w∗ − ψ(wT ∗)−∆(T ∗)− pT ∗

)
+
(
pT ∗ −H(wT ∗)

)
+ ∆(T ∗) +H(wT ∗)−H(wT ∗+1)

= m(w∗ − ψ(wT ∗)−m(pT ∗ + ∆(T ∗)) +
(
pT ∗ + ∆(T ∗)−H(wT ∗+1)

)
≥ m(w∗ − s−H(wT ∗+1)) + (1−m)(pT ∗ + ∆T ∗ −H(wT ∗+1)).

But, W ≤ mw∗ by definition. Hence,

(1−m)

(
ΠT ∗+1 − (H(wT ∗)−H(wT ∗+1))

)
−m(s+H(wT ∗+1)) ≤ 0

. Thus,

ΠT ∗+1 ≤
m

1−m
(s+H(wT ∗+1)) +H(wT ∗ −H(wT ∗+1) ≤ m

1−m
H(w∗) + γs.

for some γ ≤ w1

1−m . Using implicit differentiation in (3) and since s
1−F (w∗)

=

MRL(w∗), where MRL(w∗) is the mean-residual life of w∗ which is decreasing for

F (w) log-concave, we have that

H ′(w∗)
dw

ds
= 2MRL(w∗) +

f ′(w∗)

f 2(w∗)
s < 2MRL(w∗) < 2

∫
vdF (v)

. Thus,

H(w∗) < lim
s→0

H(w∗) + 2s

∫
vdF (v).

Summarizing, we have that for every ε > 0, ΠT ∗+1 < ε if

2m

1−m

∫
vdF (v) lim

s→0
(H(w∗) + s) + γs < ε.

So that if lims→0H(w∗) = 0, for every ε, ΠT ∗+1 < ε if s < s(m, ε). For the case in
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which H(w) converges to a constant, we have that ΠT ∗+1/w
∗ → 0 since w∗ → ∞.

Finally, Corollary 3 follows from Proposition 3 since lims→s̄ ΠT ∗ = qmp1(1− F (p1))

is independent of s.

Proof of Proposition 5. The first statement follows from wt − wt−1 > 0 and pt −
pt−1 > 0 being decreasing functions of wt−1. The second statement follows from

the text. To prove the third statement, consider the equilibria in two markets with

the same distribution function but which differ in s, so that in a given market the

search cost is s1, while in the other the search cost is s2 > s1 and let wi(t) be the

reservation value of at instant t in each of the markets (similarly for pi(t), etc.)

Notice that in both markets w1(0) = σ−ξµ
1−ξ , independent on s, but ẇ1(0) > ẇ2(0).

Hence, for t < t∗, w1(t) > w2(t), for some t∗ sufficiently small. Both w1(t) and w2(t)

are continuous functions so that if at some time t < T ∗(s2), w1(t) < w2(t), it must

be that at some earlier time t∗∗, w1(t∗∗) = w2(t∗∗). But then,

w1(t∗∗) =

∫ t∗∗

0

ẇ1(t)dt =

∫ t∗∗

0

1

1− ξ

(
(σ − ξµ+ ξw1(t))(1− F (w1(t)))− s1

)
dt

>

∫ t∗∗

0

1

1− ξ

(
(σ − ξµ+ ξw2(t))(1− F (w2(t)))− s1

)
dt

>

∫ t∗∗

0

1

1− ξ

(
(σ − ξµ+ ξw2(t))(1− F (w2(t)))− s2

)
dt = w2(t∗∗).

The first line follows by definition, the second line follows from w1(t) > w2(t) for all

t and the fact that of (σ−ξµ+ξw)(1−F (w)) is decreasing in w and the third follows

from s1 < s2. Hence, if w1(t∗∗) = w2(t∗∗) it must be the case that t∗∗ > T ∗(s2).

Using the definition of p(t), it follows that p1(t) > p2(t). The last two comparative

statics follow directly from the definitions of those variables with the appropriate

assumption on the elasticity of total expenditure on search costs.

Proof of Proposition 8. From (16) we need to show that w∗ −H(w∗) > S(w∗) > 0.

Notice that

S(w∗) ≈
T ∗−1∑
τ=1

T ∗∏
r=τ+1

F (pr)

(∫ ∞
pτ

(v − pτ )dF (v)− s
)
,

since all the elements of the sum are positive, S(w∗) > 0. For the second part, we

first prove that at every period t, pMt ≤ wt, that is, prices (and reservation values)

move slower with myopic buyers. To see this notice that pM1 = w1 and assume that
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for every τ < t, pMτ ≤ wτ . It follows that

pMt = pMt−1 +H(pMt )− F (pMt−1)H(pMt−1)

≤ wt−1 +H(pMt )− F (pMt−1)H(pMt−1) ≤ wt−1 +H(wt)− F (wt−1)H(wt−1)

≤ wt−1 + +H(wt)− F (wt−1)H(wt−1) +

∫ ∞
wt−1

(v − wt−1)dF (v)− s = wt

where all steps follow from the definition except for the second inequality that follows

from Non-Decreasing hazard rate. Thus, if wT ∗−1 < w∗, pMT ∗−1 < w∗ so that TM ≥
T ∗.

Details of the Examples in Section 4.

Exponential

We begin with part the exponential distribution. The associated differential equation

is

ẇ = 2σqe−
w(t)
σ − s

with initial condition w(0) = 1. This yields a solution

w(t) = σ ln

(
2qσ − e−

ts
σ (2qσ − es)

)
− σ ln(s).

and

p(t) = σ + qσ

∫ t

0

e−
w(y)
σ dy

=
σ

2

(
1− ln(s) + ln

(
2σq(estσ − 1) + es

)
This function is increasing in s for fixed t < T ∗, while

pT ∗ =
σ

2

(
1− ln(s) + ln(2qσ − es)

)
is decreasing in s. Solving for w(T ∗) = w∗ gives (12). On the other hand, the share

of surplus that accrues to buyers is

VT ∗

w∗ −H(w∗)
≈ 1

2

(w∗ −H(w∗))− σ ln

(
2− es

qσ

)
w∗ −H(w∗)

<
1

2
.

45



Since w∗−H(w∗) decreases in s and the search expenditure increases in s, the share

of gains from search going to buyers decrease in s.

Uniform

To solve the differential equation we simply use the integration method in

dw

dt
=

3

4σ
q(σ + µ− w)2 − 1

2
s.

we get ∫ w∗

w(0)

dw
3

4σ
q(σ + µ− w)2 − 1

2
s

=

∫ w∗

0

dt = T ∗,

with w(0) = σ+µ
2

and w∗ = σ + µ −
√

2sσ
q

. Since T is homogeneous of degree one

in (q, s) we normalize q = 1. Factoring the polynomial and integrating by parts we

obtain,

T ∗ =

√
8σ

3s

1

2
ln

(√
2
(
3 +
√

3
)

(µ+ σ)− 4
(
1 +
√

3
)√

s
√
σ

√
2
(
3−
√

3
)

(µ+ σ) + 4
(√

3− 1
)√

s
√
σ

)
. (17)

Since total expenditure is T ∗s, it is of the order of s1/2 for s small enough, although

it is hump-shaped for the whole range of s such that T ∗ > 1. The approximation is

however poor for s > 10−3 since the total number of periods is very small. Since σ

and µ scale up the gains from search, the derivative of total effort with respect to

σ and µ is positive. Figure 10 below represents the total expenditure for σ = 1 and

µ = 0 as a function of search costs in the continuous-time limit and the numerical

simulation of the discrete-time model. Finally, to see that pT ∗ is increasing in s

notice that,

∂pT ∗

∂s
=

4σ

3σ − 8s
+

1

6
√
s

√
2
√
σ

(
3−
√

3 ln

(
2
√

2
(
3 +
√

3
)√

s− 3
(
1 +
√

3
)√

σ

2
√

2
(√

3− 3
)√

s− 3
(√

3− 1
)√

σ

))

which is increasing in s.29 Therefore,

∂pT ∗

∂s
<
−4

3
− 1

6
√
s

√
2σ(3− ln(2 +

√
3))

<
4

3
+

1

6
√
s

√
2σ(3− 2 ln(2)) < 0.

29For simplicity, we took µ = 0 but µ is only a location coefficient that does not affect the sign
of the derivative.

46



Figure 10: Expenditure in search effort as a function of search costs for F (v) = v.

Pareto

The differential equation,

ẇ =
−3q

w
+ 2s = 0

admits as a solution,

w(t) =

3

(
qW

(
− e
− 4s2(t−c1)

3q −1

3q

)
+ q

)
2s

where W (x) is the Lambert function and c1 is a constant. Imposing w(1) = 1, yields,

c1 =
3q ln

(
e

2s
3q (3q − 2s)

)
4s2

and solving for w(T ∗) = w∗ = q
s
, yields,

T ∗ =
3q ln

(
3− 2s

q

)
− 2(q − s)

4s2

and so T ∗s ≈ E(q, s)/s with E(q, s) > 0 decreasing in s, E(q, 0) = (1/4)q(3 ln(3)−
2) < q and E(q, q) = 0. To see that the gains from trade accruing to buyers are

bounded above by 0.45 notice that

VT ∗

VT ∗ + ΠT ∗
=

2

3q

(
3

2
(q − s)− 3

4
q(ln(3q − 2s)− ln(q))

)
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which is decreasing in s for s < q. Hence, the upper-bound of the share of the gains

from trade accruing to buyers can be obtained when s → 0, where it approaches

1− 1
2

ln(3) ≈ 0.45.

B Partial Commitment

Suppose now that sellers can commit to a single price for the next k periods. For

simplicity, we assume that m = 1 and q = 1. Then, their problem is simply to

maximize,

Πt = max
pj

k∑
l=0

(
l−1∏
τ=0

F (wt+τ − pt + pj)

)
(1−F (wt+l−pt+pj))pj+

k−1∏
τ=0

F (wt+τ−pt+pj)Πt+k.

Intuitively, the firm faces a sequence of consumers with different demand functions

(as indexed by wt) and has a unit capacity to sell to each of them plus a terminal

payoff Πt+k if none of them buy. This expression simplifies to,

Πt = max
pj

(
1−

k−1∏
l=0

F (wt+l − pt + pj)

)
pj +

k−1∏
τ=0

F (wt+τ − pt + pj)Πt+k.

In a symmetric equilibrium, the condition for optimality is(
1−

k−1∏
l=0

F (wt+l)

)
− (pj − Πt+k)

(
k−1∑
l=0

f(wt+l)
∏
τ 6=l

F (wt+τ )

)
,

or

pj = Πt+k +

(
1−

∏k−1
l=0 F (wt+l)

)
(∑k−1

l=0 f(wt+l)
∏

τ 6=l F (wt+τ )
) . (18)

The second term in Eq. (18) is the average inverse elasticity of demand in the next

k periods.

The problem of buyers is unchanged except for the fact that in periods in which

sellers do not change prices,

wt − wt−1 =

∫ ∞
wt−1

(u− wt−1)dF (u)− s

while in periods when they change prices,

wt − wt−1 = (Πt−k−1 − Πt−1) + ∆H(t, t− k) +

∫ ∞
wt−1

(u− wt−1)dF (u)− s,
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where ∆H(t, t−k) measures the change in elasticity between periods. The evolution

of reservation values is no longer guaranteed to be monotone under the assumption

that w−H(w) is increasing. Nevertheless, log-concavity of 1−F (w) is still sufficient.
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