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1 Introduction

In recent years, the Combinatorial Clock Auction (CCA) has been used in

many countries around the world to allocate telecommunication spectrum.

The CCA is basically a dynamic version of the Vickrey-Clarke-Groves

(VCG) mechanism and consists of two integrated phases.1 Throughout

the auction bidders bid on packages, thereby solving the exposure prob-

lem associated with the simultaneous ascending auction (SAA). The first

phase of the CCA is a clock phase where bidders express their demand

on packages at given prices in every round. In the second, supplementary,

phase bidders can bid on as many additional packages as they like and

may raise bids on packages they have bid on in the clock phase, subject

to some constraints that are derived from the behavior in the clock phase.

At the end of the supplementary phase, goods are allocated and prices are

determined according to the (second-price) VCG rules (see, e.g. Milgrom,

2004). Thus, the CCA is a kind of VCG mechanism preceded by a clock

phase. The main rationale for this complex auction format that can be

found in the literature is that the clock phase facilitates price and package

discovery (see, e.g. Ausubel, Cramton and Milgrom, 2006),2 while the VCG

pricing rule is chosen to foster an efficient allocation and to provide bidders

with incentives to bid truthfully (Cramton, 2013).

In this paper we want to better understand how the clock phase changes

the incentives of bidders to bid strategically. Thus, we provide a full equi-

librium analysis of the bidding behavior in the two stages of the CCA and

compare the equilibria to the equilibria of the VCG mechanism. We do

so in a simple, elegant set-up that was introduced by Levin and Skrzy-

pacz (forthcoming) where two bidders with private information bid how to

divide a perfectly divisible object.

To reduce the number of equilibria, we assume that ceteris paribus bid-

ders value outcomes where the competitor pay more. That is, bidders have

1In practice there is a third phase - the assignment phase. In this phase generic
packages are allocated. We abstract away from this phase since it does not effect our
analysis.

2In large combinatorial auctions, computing the values of packages can be costly.
A dynamic auction can lead bidders in focusing on relevant packages and might help
forecasting final prices.
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(weak) spiteful preferences to raise rival’s costs, where the spite motive is

modeled in a lexicographic manner implying that if two strategies yield the

same expected surplus to a bidder, the bidder chooses the strategy that

increases the price of the other bidder. Thus, the analysis with lexico-

graphic preferences can be considered a robustness check on the equilibria

under standard preferences: equilibria under our preferences are also equi-

libria under standard preferences, but the reverse does not necessarily hold

true. The raising rivals’ cost motive is an important concern of bidders

in real-world auctions. Janssen and Karamychev (2014) argue that the

raising rivals’ cost motive may stem from (i) principal-agent issues within

a firm (bidder)3 or from (ii) the fact that (in spectrum auctions) bidders

face weaker competitors in the market after an auction if competitors have

paid more for their licenses. If firm A makes B pay more for spectrum, B’s

credit rating will fall and its cost of capital will go up, weakening its strate-

gic position. Milgrom (2004) and Cramton and Ockenfels (2014) mention

fairness as a reason for why bidders may want to raise rivals’ cost.4

The raising rivals’ cost motive is also of concern to regulators designing

auctions.5 After the 2013 auction the Austrian regulator RTR attributed

the high revenue to overly aggressive behavior by bidders: during the clock

phase, bidders were bidding very offensively and the majority of the sup-

plementary bids were on very large packages that had a low probability of

winning but played a crucial role in determining other bidders’ prices. The

fact that payments in the Austrian auction were essentially the same as the

final clock prices, is a clear signal of aggressive bidding: with Vickrey pric-

ing and ”downward sloping demand”, one would not expect marginal and

average prices to be identical. Moreover, regulators usually publicly discuss

3In spectrum auctions, given the large amount of uncertainty concerning future tech-
nological developments and uptake of data services, it is difficult for bidders to evaluate
what the spectrum is really worth. Valuations are highly subjective. Accordingly, if
a bidder wants to have a more objective evaluation measure of its bidding team’s per-
formance, it is better to evaluate performance relative to other bidders, than it is to
evaluate relative to the uncertain and subjective own valuation.

4In a part of their paper, Levin and Skrzypacz (forthcoming) also consider bidders
that have a lexicographic preference to raise rivals’ cost.

5See, e.g., (i) BAKOM (2012) on the outcome of the Swiss auction and subsequent
discussion on why Sunrise paid much more for comparable spectrum than other bidders,
(ii) Ofcom (2012, page 122, point 7.9.) in response to an earlier consultation on the UK
LTE auction in 2013.
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with stakeholders different features of a particular design before the start of

the auction. In a consultation document on the award of the 2.3 GHz and

3.4 GHz bands, the British regulator Ofcom (2014, p. 38, 6.73-6.77) ex-

plicitly mentions the possibility of price driving by placing ”risk-free bids”

in the supplementary phase as a problematic aspect of the CCA. Some of

the potential bidders’ responses share this concern.6 Although, none of

these arguments for raising rivals’ cost implies that bidders should have a

lexicographic preference for doing so, lexicographic preferences are a useful

modeling approach to inquire into the effects of this motive.

Our main result is that under raising rivals’ cost preferences if the un-

certainty concerning the competitor’s type is sufficiently large, all equilibria

of the CCA are inefficient, while the VCG mechanism always has efficient

equilibria. In this sense, the clock phase may cause the allocation mech-

anism to loose its efficiency properties. The source of inefficiency can be

understood along the following lines. With a potentially large difference

between the valuation of bidders, there does not exist a final clock price

that is such that, first, weak bidders would like to stay active in the clock

phase, and, second, the truthful demand of strong bidders is smaller than

half of the available perfectly divisible object. In this case, if the clock

phase continues, a weak bidder is able to infer that their competitor is

a relatively strong bidder. This learning, or price discovery, creates the

opportunity for weak bidders to make their supplementary round behav-

ior conditional on the price at which the clock phase stops. Knowing the

competitor is strong, they can raise the rival’s cost more (without running

the risk of winning more spectrum than they would like to win) than when

they do not know. In order to prevent weak bidders to raise their cost,

strong bidders find it optimal to reduce their demand towards the end of

the clock phase in such a way that the CCA rules prevent strong bidders

to express their true valuation for all possible allocations. This creates the

possibility of an inefficient final allocation.

We also provide some other interesting characterization results. First,

all symmetric equilibria have bidders bidding for the full spectrum in the

beginning of the clock phase, with sudden drops in demand at later mo-

ments. At lower prices, where no bidder wants to drop demand and leave

6See, e.g. the response of BT (2015).
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the auction, bidders find it optimal to bid for the full amount to be allo-

cated in order to be able to maximally raise rivals’ cost in the supplemen-

tary round.7 This is in line with, for example, the Austrian 2013 auction

where (as mentioned above) bidders were bidding very aggressively in the

clock phase. An extreme form of such equilibrium behavior is when all

bidders bid for the full spectrum until the last clock round price and then

drop demand to at most half of the available spectrum. In this case, there

is no price discovery whatsoever during the clock phase.

Second, in all (efficient) equilibria the clock phase stops with excess

supply with positive probability.8 This result is also in line with some

real world auctions.9 Many observers of the CCA have argued that excess

supply at the end of the clock phase severely limits the possibility of bidders

to raise rivals’ cost.10 We show that despite the existence of excess supply,

bidders are still able to raise rival’s cost considerably. By bidding for the

full spectrum until the last clock round, bidders are able to express their

true marginal values in the supplementary phase on all allocation shares

they potentially could win. As winning the full spectrum is not feasible

if both bidders are active in the final clock round, bidders can maximally

raise their bid on the full spectrum to raise rivals’ cost.

Third, there are equilibria where two almost identical bidders pay sig-

7Thus, truthful bidding cannot be sustained as equilibrium behavior.
8This is in stark contrast with the fact that the clock would always end with market

clearing under truthful bidding in our framework.
9The Austrian mobile network operator Telekom Austria (2013) indicates in a press

release after the auction that the clock phase ended with excess supply in key spectrum
bands.

10See, e.g., Levin and Skrzypacz (forthcoming, remark 2 on page 19) where they
observe that ”If we allowed bidder 2 to create excess supply at the end of the clock phase,
she could increase bidder 1 payment even more. ... Such extreme predatory behavior is
even more difficult to execute and even more risky for player 2 than what we describe.
Moreover, analyzing equilibria in this case is difficult, so we maintain the assumption
that player 2 is not allowed to create excess supply in the clock phase.” Similarly,
Kroemer et al. (2015, p.6) observe that ”In recent spectrum auction implementations,
the regulator decided not to reveal excess supply in the last round, in order to make
spiteful bidding risky. It depends on the market specifics, if this risk is high enough to
eliminate spiteful bidding”. In a recent consultation document on annual license fees,
the UK regulator Ofcom (2015, A8.48 on page 16) also writes in a similar vein when they
consider the Austrian 2013 CCA outcome: ”We also noted that at the end of the clock
rounds there was an excess supply of 2x10 MHz in each of the 900 MHz and 1800 MHz
bands. ... This further suggested a possible reason why bidders may have considered
price driving in the supplementary bids to be a risky strategy, ... .”
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nificantly different amounts for an almost identical share (half) of the spec-

trum. The reason for this is as follows. In this type of equilibrium, there

is a critical type of bidder that is such that all bidders with values lower

than this type drop demand at a certain clock price in such a way that

for many type combinations of bidders the clock will stop. High valuation

bidders above this critical type continue to bid for the full spectrum until

a much larger clock price and drop demand discontinuously at this higher

price. If the two bidders in the auction happen to have valuations close

to either side of this critical type, then the efficient allocation is imple-

mented because of the bidding behavior in the supplementary round, but

the (marginally) higher valuation bidder has a much higher ability to raise

rivals’ cost.

Finally, despite the introduction of a lexicographic preference for rais-

ing rival’s cost, to resolve potential indeterminacies in bidder’s optimal

strategies, there is a continuum of equilibria in the CCA, like in the VCG.

Equilibrium revenue in the CCA is never larger than in a ”corresponding”

equilibrium of the VCG, but sometimes strictly smaller as the equilibrium

bidding behavior in the clock phase may introduce restrictions that severely

limit the ability of bidders to raise rivals’ cost.

As discussed above, the model we use is essentially that of Levin and

Skrzypacz (forthcoming). Levin and Skrzypacz (forthcoming) present a

sequence of three closely related and stylized models of the CCA. There are

two bidders with a quadratic utility function over a divisible object. In all of

these models the clock is required to end with market clearing and at least

one out of two bidders restricts himself to linear proxy strategies. Levin and

Skrzypacz (forthcoming) are mostly interested in how different (expected)

bidding behaviors in the supplementary round may affect bidding behavior

in the clock. They do not consider, however, whether any bidder wants to

use a continuous clock demand function. That is, they do not provide a

full equilibrium analysis of their model. In contrast to Levin and Skrzypacz

(forthcoming), we do provide an equilibrium analysis and the constraints

on bidders’ bidding behavior in the supplementary round are endogenously

determined by their bidding behavior in the clock phase (as in real CCAs).

Bidders are not restricted to linear proxy strategies and we do not insist in

the clock phase ending with market clearing.
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In practice, CCAs have different regimes concerning the information

that is released to the bidders in the clock phase. In one regime, bidders

are only informed about the fact that there is still excess demand and

that the clock phase continues. In another regime, bidders are informed

about total demand at every clock price. The first regime was used in the

first part of the Austrian auction and seems to be favored in case there is

some suspicion that collusion between bidders may be something to worry

about.11 This is also the information regime we focus on in this paper. As

indicated above, even though no direct information is revealed to bidders,

bidders may infer information about their competitors’ type as the length

of the clock phase may differ depending on whether or not the competitor

is a strong bidder.

Auctions where bidders do not know competitors’ demand are easier

to analyze as bidders cannot condition their demand on what rivals have

demanded in previous clock rounds and can only condition their behavior

on the prices they observe. In the consultation document on the award of

the 2.3 GHz and 3.4 GHz bands, Ofcom (2014) proposes to use either the

CCA or the SAA without demand disclosure. In a reaction for Hutchinson

3G, Power Auctions LLC (2015) claims that a dynamic auction with no

demand disclosure is basically a sealed-bid auction. We show, however, that

the equilibria that can be sustained in a CCA without demand disclosure

during the clock phase can fundamentally differ from the equilibria of the

VCG.

This paper contributes to the growing literature that explores real-world

auction mechanisms. Ausubel et al. (2014) analyze the discriminatory and

the uniform price auction in a similar framework. Goeree and Lien (2014a)

derive equilibria for the SAA and find that the exposure problem is indeed

problematic for efficiency and revenue. However, as the number of items

grows large, outcomes converge to VCG outcomes. Bichler et al. (2013)

report experimental evidence on the CCA and present a simple example

in which one bidder submits a spiteful bid. Gretschko et al. (forthcoming)

discuss why bidding can be complicated in a CCA. Ausubel and Baranov

(2014) discuss the evolution of the CCA. A variant of the CCA has first

11Not revealing the final clock demand was done for example in the Canadian 700
MHz spectrum auction (Power Auctions LLC 2015, p. 3).
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been suggested by Ausubel et al. (2006) and further developed in Cramton

(2013).

The rest of this paper is organized as follows. Section 2 describes the

different auction models and the environment we analyze. Section 3 ana-

lyzes equilibrium behavior of the VCG mechanism. Section 4 presents an

example of an efficient equilibrium of the CCA where the clock phase does

not provide reveal any information to bidders. In Section 5 we prove our

main result and discuss other general properties of the CCA. Section 6 pro-

vides other examples of efficient and inefficient equilibria and demonstrates

that bidders may pay very different amounts for an almost identical share

of the total supply. Section 7 concludes with a discussion. Proofs are in

the Appendix.

2 The auction models

We use the same set-up as in Levin and Skrzypacz (forthcoming). There

is one divisible good in unit mass supply to be allocated over two bidders.

Bidders have a strictly increasing quadratic utility function of the form

U(ai, x) = aix−
b

2
x2, (1)

where ai is randomly drawn from an atom-less distribution with support

[a, a], with a ≥ b > 0 and x ∈ [0, 1]. The intercept of the marginal utility

function ai is private information, while (to have a one dimensional type

space) the slope is the same for both players.12 The condition a ≥ b guaran-

tees that the utility function is increasing in x for all types. The support of

the distribution of types is common knowledge among the bidders. When

it is convenient we write Ui(x) instead of U(ai, x). Throughout the paper

we denote level functions with capital letters and the respective derivative

with small letters. For example, we write Ui for the utility function and

ui for marginal utility. Also, U = U(a, ·) (U = U(a, ·)) denotes the utility

function of the weakest (strongest) possible bidder.

12Following Levin and Skrzypacz (forthcoming), we could allow for the two bidders
having different, but commonly known, values of b. This would only complicate the
analysis without adding new insights.
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Given the type profile (ai, aj), the efficient share of bidder i is

x∗i (ai, aj) =
ai − aj + b

2b
∈ arg max

x
U(ai, x) + U(aj, 1− x)

We adopt the assumption of Levin and Skrzypacz (forthcoming) that a −
a < b, which guarantees that the efficient allocation is always in the interior

of (0, 1) as ui(0) > uj(1), j 6= i.

The largest and the smallest efficient shares of bidder i are denoted by

xi = x∗i (ai, a) and xi = x∗i (ai, a) respectively. The smallest efficient share

of any bidder is x = x∗i (a, a). When there is no danger of causing confusion,

we sometimes drop the i in x∗i .

Besides these standard preferences, the two bidders have a spite motive.

Like Janssen and Karamychev (2014) and in some of the models in Levin

and Skrzypacz (forthcoming), we model this spite motive in a lexicographic

way. In the first dimension, bidders maximize their surplus from the auc-

tion and in the second dimension they want to maximize the other bidder’s

price. This spite motive is relatively weak since bidders do not want to

damage the other bidder if this implies getting a lower surplus themselves.

Introducing a spite motive in a lexicographic manner resolves indifferences

concerning auction outcomes in favor of those outcomes that harm the other

bidder most. Consequently, studying auction outcomes under lexicographic

preferences can be seen as a robustness check for equilibria under standard

preferences. Some equilibria under standard preferences stop being equilib-

ria under lexicographic preferences, but all equilibria under lexicographic

preferences are equilibria with standard preferences.13

VCG Rules

In the VCG mechanism, every bidder submits a bidding function Si :

[0, 1]→ R+. The auctioneer chooses the allocation (x1, x2) such that14

(x1, x2) ∈ arg max
x1+x2≤1

S1(x1) + S2(x2).

13When we talk about efficiency we talk about efficiency in the first dimension of the
preferences.

14If two allocations are optimal, the auctioneer implements the allocation in which
the distance to the allocation

(
1
2 ,

1
2

)
is minimized.
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Bidder i gets xi and pays the VCG price maxy Sj(y)−Sj(xj), the opportu-

nity cost he imposes on the other bidder. If bidders submit nondecreasing

bidding functions, the payment of bidder i is given by Sj(1) − Sj(xj). If

the final allocation is (x, 1− x), then bidder i’s surplus from the auction is

given by

Ui(x)−max
y
Sj(y) + Sj(1− x).

In Section 3 our solution concept is Bayesian Nash equilibrium. In a

Bayesian Nash equilibrium players choose a pure strategy based on their

type and the information they have about the other player. The strategy

is optimal given the believe about the other bidder’s chosen strategy.

CCA Rules

Next consider the CCA rules. The CCA is a two stage auction with a

clock and a supplementary phase. In the clock phase bidders express a

(weakly) decreasing demand for every price, while in the supplementary

phase a VCG auction is held where bidders can submit many bids subject

to certain activity rules that are described below. Different real-world

CCAs have had different rules concerning the information that is disclosed

in the clock phase: the auctioneer can disclose individual demands to all

bidders, only aggregate demand or no demand information at all. In the

case of two bidders the first and the second case are equivalent. As recent

auctions (e.g. in Austria) did not provide any direct information concerning

demand to bidders and as this case is also easier to analyze, we focus on

that case.

The details of the auction rules are as follows. The clock phase begins at

an initial price p0 = 0. At each price, both bidders demand a certain share

xi ∈ [0, 1]. The price is increased continuously if there is excess demand,

i.e. if x1 + x2 > 1. Bidders cannot increase their demand at higher prices.

Since bidders neither learn individual nor aggregate demand, they can only

condition their actions on the current price and their own past demand.

Bidder i’s action in the clock phase is a weakly decreasing demand function

xi : R+ → [0, 1] that maps prices to demand.15

15An alternative way is to disclose information in the clock, but restrict bidders to
proxy strategies. This approach was used by Levin and Skrzypacz (forthcoming).
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In the subsequent supplementary phase, bidders submit bidding func-

tions Si : [0, 1] → R+. The auctioneer chooses the allocation x = (x1, x2)

that maximizes the total value, x ∈ arg maxS1(x1) + S2(x2) and bidder i

pays the VCG payment supyj Sj(yj)− Sj(xj) for his share xi.
16 The choice

of the supplementary bidding function Si is constrained by three activity

rules. First, the clock bids are still valid so that if bidder i demanded

x at clock price p, then Si(x) ≥ px. Second, supplementary bids must

satisfy the final cap, that is, revealed preference with respect to the final

clock round: Si(x) ≤ Si(x̃i) + p̃(x − x̃i), x 6= x̃i, where p̃ is the final clock

round price at which i demanded x̃i. Lastly, if in the clock phase bidder

i was demanding x at a price p, then in the supplementary round for any

x′ > x, bidder i cannot express an incremental value for x above p , i.e.,

Si(x) − px ≥ Si(x
′) − px′, or si(x

′) ≤ p, if Si differentiable. Levin and

Skrzypacz (forthcoming) call this the ’local revealed preference rule,’ but it

is also known as the relative cap.

In our analysis we derive Bayesian Nash equilibria for the CCA. A

strategy consists of a non-increasing clock demand function x : R+ → [0, 1]

and a supplementary bidding function S : [0, 1] → R+ for every possible

final clock price. Any supplementary bidding function S needs to satisfy the

activity rules with respect to the clock demand x and at the materialized

final clock price. Moreover, in equilibrium bidders use the fact that the

clock has not ended and the final clock price to update their prior about

the other bidder.

3 Equilibria in the VCG mechanism

We first examine the opportunities that arise in equilibrium to raise rival’s

cost in the VCG auction. The supplementary phase of the CCA is a VCG

auction in which the bidders are constrained by the activity rule. It is

therefore a natural starting point to investigate the equilibrium outcomes if

16The real payment rule is slightly more complicated (”core-selecting”), but for the
environment we consider here this would not make a difference. The core restricting
elements in the pricing rule of real CCA auctions (see, e.g. Day and Milgrom (2008),
Day and Cramton (2012), and Erdil and Klemperer (2010), as well as Goeree and Lien
(2014b) and Ausubel and Baranov (2013)) are not binding in our case with only two
bidders as in our case the CCA rule is exactly equal to the pricing rule of the CCA.
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no constraints apply. This sets the natural benchmark to study the impact

of the clock phase on the equilibrium outcomes of the auction. Given the

assumption that a − a < b, if bidders bid their true marginal values, they

know that the final allocation is such that all bidders are winners. This

implies that certain bids on large packages cannot be winning and they can

choose bidding strategies with high bids on large packages to raise rival’s

cost.

With standard preferences it is well-known that bidding value is a

weakly dominant strategy (e.g. Milgrom 2004). With lexicographic prefer-

ences, however, it is straightforward to see that this is not true anymore.

Suppose that bidder j bids truthfully and consider bidder i. By bidding

Si(x) = Ui(x) bidder i wins an amount in the interval [xi, xi] as defined in

the previous section, with xi < 1. If bidder i slightly lowers his bid on all

shares in [xi, xi] by the same amount, then he does not change the winning

allocation, but he increases the difference between his winning bid and the

highest bid in the bid strategy, thereby increasing the payment of the rival

bidder. Thus, under a lexicographic preference to raise rivals’ cost, this

strategy gives a higher pay-off if bidder j bids truthfully. On the other

hand, like in the standard analysis without a lexicographic preference to

raise rivals’ cost, it may also be that by bidding in this way a bidder will

loose the auction. Thus, none of these two strategies dominates the other.

In what follows we therefore perform an equilibrium analysis, rather than

an analysis in terms of weak dominance.

We first show that in any equilibrium where bidders use a continuously

differentiable and increasing bidding function, each bidder i’s marginal bids

have to be equal to marginal value over the relevant domain [xi, xi]. To

see this, note that given the bidding functions Si(x), Sj(x), the auctioneer

implements the allocation (x, 1 − x) such that si(x) = sj(1 − x). In equi-

librium, a bidder wants to maximize his surplus given the strategy of the

other bidder, i.e., bidder i wants to maximize

Ui(x)−maxSj(y) + Sj(1− x).

A necessary condition for this to be the case is that ui(x) = sj(1− x).

Since sj(1 − x) = si(x), it follows that over the relevant domain si(x) =

12



ui(x) has to hold in any equilibrium. Note that this implies that an equilib-

rium where bidders use continuously differentiable and increasing bidding

functions is efficient. Outside this domain, the bidder’s strategy is undeter-

mined. Without lexicographic preferences, bidder i is indifferent between

many bids on (xi, 1]. The lexicographic bidder j knows, however, that he

can increase the price bidder i has to pay by raising the bid on shares that

cannot be winning. The easiest way to do so is to increase the bid Si(1) as

much as possible under the constraint that it is not winning.17 He never

wins the full supply if for all aj ∈ [a, a]

Si (x
∗
i (ai, aj)) + Sj (1− x∗ (ai, aj)) ≥ Si (1) . (2)

Lemma 1. The value of the efficient allocation

U(ai, x
∗
i (ai, aj)) + U(aj, 1− x∗i (ai, aj))

is increasing in ai and in aj.

Using Lemma 1 and the fact that in equilibrium the marginal bids are

equal to marginal utilities, the left-hand side of (2), is increasing in aj.

Therefore bidder i can use his private information and the information on

the lowest possible type to raise the bid on the full supply. To protect

themselves against the possibility for others to raise their price, bidders

can also reduce their bids over the relevant domain of possibly efficient

allocations without affecting the marginal bid. Thus, as the following result

formalizes, we have a continuum of equilibria.

Proposition 1. For any (c1, c2) ∈
[
0, (a−a+b)

2

4b

]2
there exists a Bayesian

Nash equilibrium, where, for i = 1, 2,

Si(x) =


Ui(x)− ci if x ∈ [xi, xi]

Ui(xi) + U(1− xi)− ci − cj if x = 1

0 otherwise.

Each of these equilibria implements the efficient allocation.

17He could also increase his bid on other x ∈ (xi, 1), but this does not create any
benefit.
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It is interesting to note the nature of the multiplicity of efficient equilib-

ria and the boundaries on how far bidders can go in their bid shading. The

raising rivals’ cost motive makes that bidders want to increase their bid on

the full supply as much as possible without winning it. If a bidder bids

above value in the relevant interior domain, others can raise this bidder’s

payment above value so that a bidder would make a loss in the auction.

Thus, bidders do not bid above value. However, if bidder i shades his bids

a little, then bidder j cannot raise rival’s cost as much as before without

winning everything at a price that is too high to be worthwhile. Reversely,

if bidder j does not raise rival’s cost to the full extent, then bidders are

indifferent between further shading their bids and not doing so. Together

these arguments provide scope for multiple equilibria, resulting in different

revenues. If bidder i would shade his bid too much, however, then bid-

der j prefers to win everything. This imposes the upper bound on ci as

mentioned in the Proposition. For c = 0, the revenue is the largest that is

consistent with an ex-post efficient allocation.18 In the Online Appendix

we provide some indication how much bidders can raise rivals’ cost. To this

end, we compare the highest possible revenue in the VCG auction to the

revenue under truthful bidding.

Next, we show by means of an example that inefficient equilibria also

exist. Consider the following symmetric functions

Si(x) =


p if x = 1

p
2

if x = 1
2

0 else.

(3)

and suppose that ties are broken in favor of equal allocations. If bidders

follow these strategies, the tie-breaking rule implies that the allocation

(1/2, 1/2) is implemented and bidders pay the VCG price p/2. we will

argue that these strategies constitute an equilibrium if a − a < b
2

and

a − 3
4
b < p < a − b

4
. To see this, note that if a bidder wants to get more

than 1/2, the VCG price becomes p. Since the utility function is strictly

18Note that in general lower values of ci increase the chance of winning without af-
fecting the allocation provided it is in the interior. However, depending on the other
bidders’ bids, a too low value of ci may make the bid on the full supply winning.
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increasing and the price for shares larger than 1/2 is always p, this bidder

wants to win either 1/2 or 1. Winning 1/2 is strictly preferred to winning 1

for all types since p > a− 3
4
b.19 Moreover, all types prefer to win 1/2 above

not winning anything.20 Bidders cannot raise each other’s prices because

every bidder already pays his bid.

4 Clock-pooling Equilibrium in the CCA

We now come to the main body of the paper and describe when, and if

so how, because of the clock phase equilibrium behavior and equilibrium

outcomes in the CCA are different from those in the VCG mechanism. We

proceed as follows. To gain some understanding what equilibrium bidding

behavior in the CCA may look like, we start in this Section by consider-

ing a simple example of an efficient equilibrium where in the clock phase,

all types of bidders choose the same (clock-pooling) strategies. We use

the term ”clock-pooling” as the clock phase does not reveal any infor-

mation concerning opponents’ types. We show this type of equilibrium

exists when the uncertainty concerning competitor’s type is small, i.e.,

a − a <
(
1
2
− 1

4

√
2
)
b. The next Section subsequently shows that efficient

equilibria only come in two different varieties of which the clock-pooling

equilibrium is one. We then show that if the uncertainty concerning bid-

ders’ types is relatively large, i.e., a− a > b/2 all equilibria must be ineffi-

cient. Section 6 then provides examples of the second equilibrium variety

and characterizes properties of equilibrium behavior.

The main idea behind the examples of efficient equilibria in this and

later Sections is that if given the proposed bidding strategy of the opponent,

bidders can figure out that the clock will not stop below a certain threshold

price, then bidders can demand 1 without the risk of obtaining it at any

price up to the threshold price. This provides them with the flexibility

to fully raise their bid on the full supply in the supplementary round in

order to raise rivals’ cost maximally. At the threshold price, they may

drop demand to being truthful at that price. It is clear that such bidding

19To see this, note that Ui

(
1
2

)
− p

2 > Ui(1)− p⇔ p > ai − 3
4 .

20This follows from consider the low type a and the upper bound on p, i.e., U
(
1
2

)
− p

2 >

0⇔ a− b
4 > p.
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strategies involve jumps and are discontinuous and non-linear.21

In the clock-pooling equilibrium, all bidders bid on the full supply until a

certain threshold price is reached and bid truthfully at this threshold price.

The clock phase ends at this price, because all type’s truthful demand is less

than or equal to half of the full supply. In the subsequent supplementary

phase, bidders bid true marginal values on possibly efficient shares and

maximally raise the bid on the full supply such that it does not become

winning and it satisfies the activity rule. Note that in this equilibrium, the

clock phase ends with excess supply with probability 1.

Pooling in the clock phase can nevertheless lead to efficient outcomes if

all types are active in the last clock round and the price is such that all types

are able to bid their marginal values in the supplementary round. This is

the case if the final clock price is sufficiently high, i.e. if p̃ ≥ a − b/2 (the

marginal utility of the highest type at his smallest efficient share, which

equals 1/2). This will allow all bidders to bid their true marginal values

in the relevant demand range [xi, xi] in the supplementary round. The

flexibility in the supplementary phase and the incentive structure makes

that bidders bid in such a way that the final allocation is efficient.

The threshold price must not be too high either. All types are re-

quired to demand more than 1/2 of the supply until the threshold price p̃

is reached, because otherwise the clock may end earlier for some combina-

tion of types. If the threshold price is too high, then bidders are forced

to bid above utility such that the efficient allocation becomes winning and

the activity rule is satisfied. As in the VCG mechanism it is necessary

that bidders do not bid above their true utility level since this allows the

other bidder to raise their payments even more, yielding negative surplus.

Therefore it must be that U(1/2) ≥ p̃/2. This condition is satisfied when-

ever a− b/4 ≥ p̃.

Formally, in an efficient clock-pooling equilibrium, bidders demand the

full supply throughout the clock until the price reaches p̃ and then drop

demand to their true demand x̃i = ai−p̃
b

, i.e. they use the clock demand

21Levin and Skrzypacz (forthcoming) restrict bidders to linear strategies in many of
their equilibria. However, any of these bidders can raise rival’s costs by expanding
demand in early phases of the clock.
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a â a

2U
(
1
2

)

Ui(xi) + U(1− xi)
Ui(x̃i) + p̃(1− x̃i)

Figure 1: Constraints in the supplementary bidding function

function

xi(p) =

1 if p < p̃

max
{
ai−p
b
, 0
}

if p ≥ p̃
(4)

After p̃ bidders drop demand to zero.

Thus, to have an efficient clock-pooling equilibrium for all distributions

of types over [a, a] the final clock price p̃ at which bidders drop demand

should satisfy two conditions: a − b
4
≥ p̃ ≥ a − b

2
. If the difference a − a

is sufficiently small in relation to b, then the clock-pooling price is so high

that all types demand less than their lowest efficient share if they demand

truthfully at this price.

In the supplementary phase, bidders’ marginal bids on units in the in-

terval [x̃i, xi] are equal to their marginal values. Their bids on [0, x̃i) and

(xi, 1) are irrelevant as at the end of the clock all bidders know they will

not win units in this interval. The only thing that is left to be determined

is how they can raise rivals’ cost as much as possible without running the

risk of winning the full supply and satisfying the activity rule. Depending

on the final clock price p̃ and on the type of bidder, bidders either use the

opportunity to maximally raise their bid on the full supply (or decreasing

their bids on interior shares) or not. Whatever they bid in the supplemen-

tary round on their last clock round package x̃i, by the final and the relative

cap, they can bid maximally p̃(1− x̃i) more on the full supply. However, if

their bid on the full supply is more than Si(xi)− Si(x̃i) + S(1− xi) larger

than their bid on x̃i they run the risk of winning the full supply if the rival
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bidder is of low type. In the equilibrium that we consider, bidders raise the

supplementary bids to the level of true utility.

We will now show that bidders do not fully raise their bids on 1. They

bid less than they are allowed by the activity rule, because the expressed

value of the efficient allocation might be less. Therefore, we equate

Ui(xi) + U(1− xi) = Ui(x̃i) + p̃(1− x̃i),

which gives the following two roots in ai,

â1(p̃) = 2p̃+ b− a+
√

2(p̃− a),

â2(p̃) = 2p̃+ b− a−
√

2(p̃− a),

when 0 < p̃ < a. In all equilibria we consider in this Section, we have that

p̃ ≥ min(a − b
2
, a − b

4
). It is easy to see that â2(p̃) > a for these values of

p̃ and that we effectively only have to consider whether or not ai < â1(p̃).

We drop the subscript 1 and simply write â(p̃). If â(p̃) < ai then

Ui(x̃i) + p̃(1− x̃i) < Ui(xi) + U(1− xi),

that is, the activity rule constrains type ai from (i) bidding value in the

relevant interior [x̃i, xi] and (ii) maximally raising rivals’ cost. On the other

hand, if ai < â(p̃) then bidder i can bid value in the relevant interior and

maximally raise rivals’ cost. In particular, if a ≤ â(p̃) then this condition

is satisfied for all types. This inequality can be transformed into a lower

bound on p̃ :
a+ a(1 +

√
2)− b

2 +
√

2
≤ p̃. (5)

Thus, after the proposed equilibrium path of the clock phase bidders

will submit a supplementary round bidding function of the form:

Si(x) =



0 for x < x̃i

Ui(x) for x ∈ [x̃i, xi]

0 for x ∈ (xi, 1)

Ui(xi) + U(1− xi) for x = 1.

(6)
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A necessary condition for a clock-pooling equilibrium to exist is that a−a <
b
4
, because then a− b

2
< a− b

4
. Under this constraint of the support of the

type distribution, the lower bound from equation (5) is always higher than

a− b
2
. Therefore, we restrict the threshold prices to be in the interval

a+ a(1 +
√

2)− b
2 +
√

2
≤ p̃ ≤ a− b

4
.

In the following Proposition we give a sufficient condition on the size of

the support such that an efficient clock-pooling equilibrium exists. If this

condition is satisfied, then a− a < b/4 is also satisfied. If this condition is

not satisfied, then there may still exist clock-pooling equilibria, but then

the high types will shade their supplementary bids in the interior to be able

to fully raise rivals’ cost. As the necessary calculations are then somewhat

more cumbersome and the idea here is to provide examples of possible

equilibria, we do not provide the full range of parameter values where a

clock-pooling equilibrium exists.

Proposition 2. If a− a <
(
1
2
− 1

4

√
2
)
b, there exists a continuum of sym-

metric efficient clock-pooling equilibria, where in the clock bidders demand

according to function (4), that is, they demand the full supply for prices

lower than p̃, with a − b
4
≥ p̃ ≥ a+a(1+

√
2)−b

2+
√
2

, and then drop demand to

x̃i = ai−p̃
b

. In the supplementary phase bidders submit the bidding function

(6).

To see that this behavior can be supported as an equilibrium, the proof

in the Appendix specifies some remaining parts of the strategy profiles.

The final equilibrium allocation of these clock-pooling equilibria is al-

ways ex-post efficient and bidders are able to fully raise their rivals’ cost

without knowing the type of their rival. Thus in the parameter range spec-

ified in the Proposition, the CCA yields the same revenue as the maximum

revenue in the unconstrained VCG mechanism. There is, however, no price

discovery in the clock, since bidders do not reveal any private information.
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5 Equilibrium behavior in the CCA: general

properties

In the previous Section we have provided one example of a symmetric ef-

ficient equilibrium of the CCA. In this Section we show our main result,

namely that the CCA does not have efficient equilibria when the uncer-

tainty concerning competitor’s type is too large. To show this, we denote

by p(ai) the lowest clock price at which along the equilibrium path the

clock phase may end for type ai. Formally, let p : [a, a] → R+. In the

clock-pooling equilibrium, we have that p(ai) = p̃ for all types ai ∈ [a, a].22

In the second example of the next Section we have that the image of the

function p is a pair of two prices. To show our main result, we first show

that there do not exist symmetric efficient equilibria with three or more

lowest possible final clock prices or where the function p is continuously

increasing on some interval. In this sense, the examples in the previous

and the next Section are not arbitrary: other symmetric efficient equilibria

do not exist. We then use this result to show that efficiency requires that

the uncertainty concerning rivals’ types is relatively small, i.e., a− a ≤ b
2
.

Lemma 2. In any symmetric efficient equilibrium of the CCA, the image

of the function p(ai) is either a singleton or a pair.

The main idea that is exploited in the proof is as follows. It is clear that

the function p(ai) is non-decreasing such that in equilibrium if the clock

phase is over for type combinations (a′i, a
′
j), then it is also finished for all

type combinations (ai, aj) with ai < a′i and aj < a′j as otherwise type a′i

would like to imitate the behavior of the low type bidder ai. If there are

three or more prices p̃k then there must be three or more intervals Ak of

bidders’ types such that p(ak) = p̃k for all ak ∈ Ak, with higher intervals

representing higher types and p̃1 < p̃2 < ... . If the clock phase is over

for a certain type of bidder ak bidding against a type aj, then because

bidders’ demands are weakly increasing in their types, it must also be the

case that the clock phase is over for the same bidder ak bidding against

22The semi-separating equilibrium described in the Online Appendix is another variety
of equilibrium that has only one element in the image of the p function. The semi-
separating equilibrium allows for some price discovery, however.
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any type ai < aj. Thus, we can define a set ak of critical types such that

these are the highest types for which the clock possibly ends at p̃k and

a set of xki = xi((a
k + ai − b)/2) which is the maximally efficient share

knowing that your competitor is of a type at least as large as ak. A set of

lowest type bidders will then learn from the price at which the clock phase

is over that their rival bidder is of a type in class Ak and not in class Ak−1.

These lowest types of bidders can then adjust their clock phase bidding

and their supplementary phase bidding such that they raise their rivals’

cost by a discrete amount more if they learn they bid against a type in

interval A3 compared to if they learn they bid against a type in interval

A2. In a two-step equilibrium, there is no possibility for weak bidders to use

the information that their competitor is strong as the lowest type wants

to bind true marginal values on all possibly efficient shares smaller than

x̃1i . This is no longer true in a three step-equilibrium, where x̃2i > xi and

upon learning that the clock did not stop at prices at or close to p̃2 the

lowest types may actually increase their supplementary bids in the interval

between x2i and x̃2i . The lowest types in interval A3 would then prefer to

deviate and pretend they are in class A2 and can do so by reducing their

bids in the clock phase such that the clock phase is also over for them at

prices p̃2 if their rival is of the lowest possible types. By doing so, they give

up getting the efficient share against all rival types in order to pay less. An

example of an inefficient equilibrium that shares this feature of high types

reducing demand in the clock phase to pay less is in the next Section.

Our main result is that efficient equilibria do not exist if a− a > b
2
.

Proposition 3. A necessary condition for an efficient equilibrium of the

CCA to exist is a− a ≤ b
2
.

Given Proposition 3, the only thing to check is that efficient equilibria

where the image of p(a) is a singleton or a pair require that a− a ≤ b
2
. At

the highest possible clock price in both cases it should be true that (i) all

types, including type a, demand not less than their truthful demand (to be

able to implement the efficient allocation) and (ii) even if both bidders are

of the high type a, the clock phase is over so that together they demand

not more than the full supply. This implies that 2a−p̃
2

b
≤ 1 for the two-step

equilibrium, or p̃2 ≥ a− b
2

(and similarly for the clock-pooling equilibrium).
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On the other hand, as in both cases, the lowest possible type a is required

to be still active at the highest possible clock price, we need that a ≥ p̃2

as otherwise the lowest type bidder a will not want to be active in the

clock phase and the high types win (undesirably and inefficiently) the full

supply. Together these constraints imply that one can only find relevant

clock prices if a− a ≤ b
2
.23

Finally, we show that demand expansion in an early stage of the clock

phase is an essential ingredient of any equilibrium, in the sense that bidders

start by maximally expanding demand and demand the full supply at low

prices.

Proposition 4. In any symmetric efficient equilibrium of the CCA, bidders

bid on the full supply when the clock price is smaller than a− b/2.

The idea behind this Proposition is clear. When the clock price is still

smaller than a − b
2
, no bidder will want to drop out of the clock phase

as this would seriously restrict the bidder’s behavior in the supplementary

round. When the other bidder is active in the clock phase, however, the

clock phase will never finish if you demand the full supply, and you want

to do so to maximally be able to raise rival’s cost.

6 Two-step equilibria

To argue that efficiency in the CCA requires that the uncertainty concern-

ing competitors’ types is not too large, we have proved in the previous

Section an intermediate result, namely that in any efficient equilibrium the

lowest price at which the clock phase may stop for type ai is either the

same for all types, or there are at most two such prices p̃1 and p̃2 so that

we have that p(ai) = p̃1 for all types ai ∈ [a, a1) and p(ai) = p̃2 for all

types ai ∈ [a1, a]. In this Section, we provide more detail into how such

an equilibrium with two clock prices may look like. We first consider an

efficient equilibrium in this class and provide more intuition why this equi-

librium only exist for a−a < b
2
. We also show here that two types that are

very close to each other may en up paying very different prices for almost

23For the clock-pooling equilibrium the constraint is even more severe than what we
have indicated here.
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identical shares of the total supply. Finally, we show that in the parameter

region where efficient equilibria do not exist, inefficient equilibria exist that

share many of the features of the efficient two-step equilibria.

6.1 Efficient two-step equilibria: b(
√

2− 1) < a− a < b
2

The main feature of the two-step equilibrium is that it classifies bidders’

types into two categories: weak and strong types. Weak types demand the

full supply for all prices p < p̃1 and demand truthfully at p̃1. Weak types

are types in [a, a1) such that a1 is the highest type for which the clock can

possibly end if both bidders demand truthfully at p̃1: a1 = 2p̃1 + b − a.

Strong types demand the full supply for all prices p < p̃2, where p̃2 > p̃1

and demand truthfully at p̃2. The price p̃2 can be chosen such that under

truthful bidding the clock ends for all types at this price and all types are

active in the clock phase for all prices p < p̃2. If a−a < b
2
, which is what we

assume in this subsection, p̃2 can be any price in the interval [a− b
2
, a]. For

simplicity, and to be easily characterize the structure of this equilibrium,

we choose p̃2 = a. The price p̃1 is chosen such that no weak type can further

raise rivals’ cost if he learns that the rival is a strong bidder. This is the

case if â(p̃) ≤ a and we choose p̃1 to be the largest price that satisfies the

inequality:

p̃1 = a− b

2 +
√

2
. (7)

It follows that a1 = a+ (b
√

2)/(2 +
√

2) = a+ b
(√

2− 1
)
, which is smaller

than a given the parameter space in this subsection.

To finish the description of the clock phase, we still have to describe

how weak types bid for prices p such that p̃1 < p < p̃2. We specify that they

bid according to true marginal values until they learn that the other bidder

is strong. Given this strategy, a weak type ai learns that the rival bidder

is a strong bidder if the clock phase is not over at a price (a1 + ai− b)/2.24

Once they learn, their rival is strong, they keep their demand at that level

x1i = xi((a
1 + ai − b)/2) to be maximally able to raise their rival’s cost as

long as p ≤ Ui(x)
x
. At this price they demand their truthful demand.

This description of clock phase behavior is summarized in Figure 2. If

24As (a1 + ai − b)/2 < a all weak types learn this before the clock reaches price p̃2.
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a a1
a

a1

2p̃1 + b− ai

2p+ b− ai

a

a

2p̃2 + b− ai

Figure 2: Illustration of the two-step equilibrium

the types are such that they are in the gray area, the clock phase stops at

price p̃1. If the types are such that each ai, aj < a1, but (ai, aj) is not in the

gray area, then the clock phase stops at a price p such that p̃1 < p < p̃2. If

at least one type is strong, then the clock phase stops at price p̃2.

We will now specify the behavior in the supplementary phase. If the

clock ends at p̃1 by both bidders demanding truthfully, then these weak

bidders submit the supplementary bidding function

S p̃
1

i (x) =



0 if x < x̃1i

Ui(x) if x̃1i ≤ x ≤ xi

0 if xi < x < 1

Ui(x̃
1
i ) + p̃1(1− x̃1i ) if x = 1,

(8)

where x̃ii = xi(p̃
i), i = 1, 2. If the clock ends at p̃1 along the equilibrium

path, weak bidders know that the efficient share lies in the interval [x̃1i , xi]

and want to bid true marginal values in this area and maximally raise rivals’

bids by increasing their bid on 1 maximally. This is what is achieved by

the bidding strategy in (8). For future reference, the location of different

relevant cut-off values are presented in Figure 3.

If the clock phase ends at price p∗ such that p̃1 < p∗ < p̃2, it ends

with market clearing and bidder i believes that the efficient share x∗i has
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been implemented. Since they have submitted positive, truthful, bids for

x ∈ [x∗i , x̃
1
i ], they submit the bidding function

Sp
∗

i (x) =



0 if x < x∗

Ui(x) if x ∈ [x∗i , x̃
1
i ]

0 if x ∈ (x̃1i , 1)

Ui(x̃
1
i ) + p̃1(1− x̃1i ) if x = 1.

(9)

Bidders cannot further raise the competitor’s cost compared to the situa-

tion when the clock ends at p̃1, since the relative cap was already binding

at p̃1.

Finally, if the clock ends at p̃2 strong bidders submit the following

supplementary bidding function

S p̃
2

i (x) =



0 if x < x̃2i

Ui(x) if x̃2i ≤ x ≤ xi

0 if xi < x < 1

Ui(xi) + U(1− xi) if x = 1.

(10)

If the clock ends at p̃2 along the equilibrium path, strong bidders have

received no information where their efficient share may lie and any share

in the interval [xi, xi] is possible. If, x̃2i < xi, which is certainly the case for

all i if a − a < b
2
, then the clock phase behavior allows them to bid their

true value on the whole domain by bidding true value on [x̃2i , xi]. Hence,

they want to bid true marginal values in this interval. Moreover, as it is

well possible that their competitor is the weakest possible, they will not

use the ability to fully raise rivals’ cost as they risk winning the full supply

at too high a price. If the clock ends at p̃2, weak bidders bid

S p̃
2

i (x) =



0 if x < x̃2i

Ui(x) if x̃2i ≤ x ≤ x̃1i

0 if x̃1i < x < 1

Ui(x̃
1
i ) + p̃1(1− x̃1i ) if x = 1.

(11)
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xi x1i x̃1i xi xi

Figure 3: Prominent shares in the two-step equilibrium

Note that knowing that the clock phase finished at p̃2 and that despite the

fact that they kept their demand at x1i for all prices p with (a1+ai−b)/2 <
p < p̃2 to be maximally able to raise their rival’s cost, weak bidders bid

truthfully for all x̃2i ≤ x ≤ x1i as this maximizes their primary surplus.

Together with the fact that they were bidding truthfully in the clock phase

on the interval x1i ≤ x ≤ x̃1i implies they will their true value on the whole

interval x̃2i ≤ x ≤ x̃1i .

Given the nature of the supplementary bidding functions it is not diffi-

cult to see that these candidate equilibrium strategies produces an ex post

efficient outcome. Thus, we can claim the following:

Proposition 5. If b(
√

2 − 1) < a − a < b
2
, then there exists an efficient

two-step equilibrium where the clock demand functions are specified above

and the corresponding supplementary bidding functions are (8), (9), (10)

and (11).

Two issues of the current equilibrium require further discussion: (i) to

understand why strong bidders do not want to reduce demand to stop the

clock phase earlier, and (ii) to understand why weak bidders do not want

to raise the cost of the strong bidders further. The first issue follows from

the fact that we have constructed p̃1 in such a way that â(p̃) = a, i.e., in the

equilibrium all weak types already raise rivals’ cost to the maximal extent

possible and they cannot increase this cost further even if they learn the

rival is a strong bidder. Strong bidders therefore have nothing to gain by

reducing demand.

The argument that weak bidders do not want to raise the cost of the

strong bidders further by extending their demand on the full supply at

prices p > p̃1 is more involved. Consider a type ai = a+b(
√

2−1)−2bε < a1

for some ε > 0. We will argue that there are some types of the rival bidder

such that the only time type ai can get the efficient share is by bidding

truthfully at p̃1. It is clear that the bidder does not want to reduce demand

as this will prevent him from always getting the efficient share at a price he
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wants to pay for it. Compare then the situation where he bids truthfully

at p̃1 and one where he expands demand. If he bids truthfully and the rival

is of type aj = a+ bε, then their truthful demands at p̃1 are

x̃1i =
a+ b(

√
2− 1)− 2bε− a− b

(
1√
2
− 1
)

b
=

1√
2
− 2ε

x̃1j =
a+ bε− a− b

(
1√
2
− 1
)

b
= 1− 1√

2
+ ε

and under truthful demand the clock ends at p̃1 with excess supply, i.e.

x̃1i + x̃1j =
1√
2
− 2ε+ 1− 1√

2
+ ε = 1− ε < 1.

Importantly, note that the efficient share x∗j = a+bε−a−b(
√
2−1)+2bε+b

2b
for bid-

der j is larger than his demand x̃1j . Given that the supplementary bidding

function (8) applies in this case, the efficient allocation will be implemented.

If, however, bidder i expands demand so that the clock phase does not end

at p̃1, bidder j believes that ai > a + b(
√

2− 1)− bε and that his efficient

share is smaller than x̃1j . Given the specification of the supplementary bid-

ding function (9), he will only bid on shares that are smaller than x̃1j , while

the true efficient share is larger. Thus, the only time in the auction when

aj submits a positive bid for x∗j is when the clock ends at p̃1. Consequently,

if bidder ai does not drop demand to x̃1i , there is a positive probability

he misses the chance of acquiring the efficient share and this reduces his

expected surplus since Ui(x
∗
i ) +Uj(x

∗
j) > Ui(1− x̃1j) +Uj(x̃

1
j). Thus, as the

other weak bidder bids truthfully at p̃1, all weak bidders want to bid truth-

fully too, at least until they learn that the other bidder is not weak. This

argument does not hold true for types ai ≥ a1 as they have zero probability

that the clock ends at p̃1 under truthful bidding.

Note that again there is a multiplicity of two-step equilibria, as p̃1 and p̃2

can be chosen smaller than we have chosen here. In order not to complicate

the argument too much, however, we have focused this example on precise

values of these two clock prices.

Finally, we show that in a two-step equilibrium types that are close

to each other may pay very different amounts of money for very similar
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shares of the full supply. Let ε be positive but arbitrarily small. Suppose

the two bidders have very similar types, but one is strong, while the other is

weak, i.e. they have types a1 + ε, a− ε, respectively. Along the equilibrium

path, the clock will end at p̃2 and both will express true utility for the

efficient share, which is roughly 1/2. However, the two bidders face different

constraints on the bid on 1 and will consequently submit different bids.

The CCA price for the strong bidder a1 + ε is approximately equal to

Ui(xi) + U(1 − xi) − Ui(12), while the price for the weak bidder a1 − ε is

approximately equal to Ui(x̃
1
i ) + p̃1(1− x̃1i )−Ui(12). Thus, the relative price

of the strong bidder a1 + ε is approximately

Ui (xi) + U (1− xi)− Ui
(
1
2

)
Ui (x̃1i ) + p̃1 (1− x̃1i )− Ui

(
1
2

) − 1 = 2− 4
√

2

3
≈ 0.1143

lower than what type a1− ε pays. In a symmetric equilibrium of the VCG

auction the price for both bidders would be the same.

Finally, we show that in a two-step equilibrium types that are close to

each other may pay very different amounts of money for very similar shares

of the full supply. Given the equilibrium strategies, the clock phase does

not finish for a type a1 + ε until the clock price p̃2 is reached. On the other

hand, the clock phase may stop at clock price p̃1 (or just above it) for type

a1 − ε if the rival is weak. If the clock stops at (much) lower prices than

p̃2 these weak types are restricted in raising rivals’ cost. If b = a, then we

can compute how large this effect can be. We consider the difference in the

CCA price if a type a1 − ε faces a type a1 + ε when ε is arbitrarily small.

To see this, note that the CCA price for the strong bidder a1 + ε (facing a

weak bidder a1 − ε) is approximately equal to Ui(xi) + U(1− xi)− Ui(12),

where ai = a1,while the same price for the weak bidder a1 − ε (facing a

strong bidder a1 + ε) is approximately equal to Ui(x̃
1
i ) + p̃1(1− x̃1i )−Ui(12).

Thus, the relative price of the strong bidder a1 + ε is approximately

Ui (xi) + U (1− xi)− Ui
(
1
2

)
Ui (x̃1i ) + p̃1 (1− x̃1i )− Ui

(
1
2

) − 1 = 2− 4
√

2

3
≈ 0.1143

lower than what type a1 − ε pays.

28



6.2 An Inefficient Equilibrium: b
2 < a− a < b(2−

√
2)

We finally show that inefficient equilibria exist for parameter values for

which symmetric efficient equilibria do not exist. We do not want to give

a full characterization of inefficient equilibria, but instead just show how

inefficiencies may naturally arise.

The inefficient equilibrium we construct has the same features as the

efficient two-step equilibrium, but now the uncertainty concerning rival

types is so large that high types prefer to reduce demand to half the full

supply even if this is smaller than their truthful demand at the last final

clock price. That is, there is a positive mass of types whose truthful demand

at p̃2 = a, (ai − a)/b, is more than 1/2 but in the equilibrium, these types

reduce demand to 1/2 in order to end the clock for sure at p̃2. To distinguish

these types ai > a+ b
2

from the strong bidders that drop demand truthfully

to less than 1/2 at p2 = a, we call these types ”super-strong”. All other

types behave in both phases of the auction in exactly the same way as in

the efficient two-step equilibrium. This leads to the clock demand function

xi(p) =


1 if p < p̃2

min
{
x̃2i ,

1
2

}
if p = p̃2

0 if p > p̃2

(12)

of strong and super-strong types.

In the supplementary phase strong types bid supplementary bidding

function (10) and super-strong types bid according to the following strat-

egy:

S p̃
2

i (x) =



0 if x < 1
2

Ui(x̃
2
i ) + p̃2(x− x̃2i ) if x ∈ [1

2
, x̃2i )

Ui(x) if x ∈ [x̃2i , xi]

0 if x ∈ (xi, 1)

Ui(xi) + U(1− xi) if x = 1.

(13)

Super-strong bidders cannot bid true marginal values in the supplementary

round that are higher than p̃2 as their clock phase behavior in combination

with the local revealed preference rule does not allow them to do so. This
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is the source of inefficiency.

To complete the description of the equilibrium strategies, we should

specify some aspects of bidder behavior if the clock continues out-of-equilibrium

at prices p > p̃2. The main thing that is important here is that we specify

that bidders believe that it is the super-strong bidders that have deviated

and demand more than 1/2 and that this is the reason why the clock did

not stop at p̃2. Given this belief the strong and super-strong bidders that

did not deviate will respond to this deviation by adapting their bid on the

full supply from what is specified in (13) to at least Ui(x̃
2
i ) + p̃2(1− x̃2i ).

Using these strategies, we can state the following Proposition.

Proposition 6. If b/2 < a−a < b(2−
√

2), then there exists an inefficient

two-step equilibrium.

There are two possible final allocations that lead to inefficiencies. First,

if both bidders are super-strong, then the allocation is (1/2, 1/2) as both

bidders demanded 1/2 in the final clock round. The final cap rule implies

that this is the final allocation independent of the bidders’ true types.

This is clearly inefficient. Second, it can be the case that a super-strong

bidder i meets another bidder j and that the sum of their truthful demands

(ai − p̃2)/b + (aj − p̃2)/b is larger than 1. In this case the final allocation

is (1− x̃2j , x̃2j), where 1− x̃2j < x̃2i . The efficient allocation would be to give

bidder i more than 1 − x̃2j and bidder i less than x̃2j . However, bidder i

cannot express a marginal bid that is larger than p̃2 and at this expressed

marginal bid of bider i, it is optimal for bidder j to acquire x̃2i .
25 By

restricting ourselves to the parameter region a− a < b(2−
√

2) we simplify

the proof as for these parameter values if the super-strong bidder were

to deviate to his true demand, the clock phase would still be finished if

his competitor were a weak type. In that case, the deviation to demand

truthfully at p̃2 does not benefit the super-strong bidder. The proof shows

that given the continuation strategies after a deviation (and the belief that

the deviation is from a super-strong type), the additional efficiency gains

to be achieved by deviating do not outweigh the cost of having to pay

discontinuously higher prices.

25The condition a − a < b(2 −
√

2) implies that if one bidder is weak, then the final
allocation is efficient in equilibrium. In the proof of the Proposition we will see that this
rules out a case where the existence of the equilibrium depends on the type distribution.
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7 Discussion and Conclusion

This paper provides a full equilibrium analysis of the CCA where the strate-

gic interaction between the clock phase and the supplementary round is

studied in an environment where bidders not only care about their own

pay-off, but also (lexicographically) about how much rivals pay. In an en-

vironment where bidders only care about own pay-off there are many (un-

dominated) equilibria due to the second-price rule implying that bidders

only affect the allocation, but not their payment (given the same alloca-

tion). The lexicographic preferences provide a robustness check in the sense

that all of our environment are also equilibria when bidders only care about

own pay-offs, but not vice versa. Previous studies using the lexicographic

preference ordering mainly considered the supplementary round (Janssen

and Karamychev (2014) or exogenously assumed how much bidders can

raise their bids in the supplementary round without taking into account

the rules that relate clock phase bids to supplementary bids (Levin and

Skrzypacz (forthcoming)).

We arrive at the following surprising results. First, the CCA is ineffi-

cient when there is quite some uncertainty concerning the rivals’ type. If

this uncertainty is small, then there are efficient equilibria that take on

unusual forms. For example, we have characterized an equilibrium where

no information is revealed during the clock phase and where bidders bid

on the full supply before dropping demand truthfully. In this equilibrium,

the clock phase ends with excess supply with positive probability. We have

also derived a ”two-step” equilibrium where weak bidders drop much earlier

than strong bidders and where two bidders of almost equal type pay quite

different amounts for the same allocation. Finally, we see that the clock

phase imposes constraints on how much bidders are able to raise rival’s

cost, implying that the CCA often results in lower payments than in the

VCG mechanism, but in (much) higher payments than the ones if bidders

would bid truthfully.

Ausubel and Baranov (2015) have worked on alternative activity rules

with the purpose of providing bidders with stricter incentives to bid ac-

cording to their intrinsic preferences. They propose to replace the relative

cap we used in this paper by GARP (the generalized axiom of revealed
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preference). We observe that in none of the three equilibria we constructed

bidders violate GARP, and we conclude therefore that our conclusion con-

tinue to hold if we would adopt the GARP activity rule.

We think it is very natural for bidders to care about what others pay. In

the introduction we have provided some of the arguments. It is even likely

that they are able to give up some own pay-off in exchange for being able

to substantially raise rivals’ cost. We expect this would further reinforce

our results. In our case, bidders would not like to raise their bid on the

full spectrum if there is a chance this becomes winning. Information about

how weak their competitor(s) can be is important in this respect. In real-

world auctions, bidders may never know for sure how weak their competitor

is. Raising rival’s cost in these situations is still feasible if the probability

that a rival is really very weak is small and bidders have more than just

a lexicographic preference for raising rivals’ cost. As it is difficult to know

how bidders would make the trade-off between own surplus and being able

to raise rivals’ cost, we think the analysis with lexicographic preferences

provide a good reference point of what we may expect in real world auction.

Bidders paying different amounts for similar spectrum (as in our two-step

equilibria and in the 2012 Swiss auction) or clock phases ending with excess

supply (as in our clock-pooling equilibria and in the 2013 Austrian auction)

are examples of phenomena where our equilibria clearly coincide with the

limited information we have about real-world spectrum auctions.

This paper has studied a simplified model where additional units have

a decreasing marginal value and complementarities between units do not

play a role. We think this is a useful step in better understanding the

equilibrium properties of the CCA in a more complicated (multi-band) set-

ting. Obviously, to what extent the results of this paper extend to more

complicated settings should be seen in follow-up research. Also, we want

to stress that this paper should not be read as saying that the CCA should

not be used in practice, as it may be the case that there is no alternative

mechanism that performs better than the CCA. The main aim of the cur-

rent paper is to contribute to an understanding of the relative advantages

of the CCA versus other auction formats by studying the properties of the

equilibria of the CCA under more realistic assumptions concerning bidders’

preferences.
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A Proofs

Lemma 1. The value of the efficient allocation

U(ai, x
∗
i (ai, aj)) + U(aj, 1− x∗i (ai, aj))

is increasing in ai and in aj.

Proof. Let V (ai, aj) = U(ai, x
∗
i (ai, aj))+U(aj, 1−x∗i (ai, aj)). The gradient

of V is

∇V (ai, aj) = (x∗i , 1− x∗i ) > 0

by virtue of the assumption that the efficient allocation is interior.

Proposition 1. For any (c1, c2) ∈
[
0, (a−a+b)

2

4b

]2
there exists a Bayesian

Nash equilibrium, where, for i = 1, 2,

Si(x) =


Ui(x)− ci if x ∈ [xi, xi]

Ui(xi) + U(1− xi)− ci − cj if x = 1

0 otherwise.

Each of these equilibria implements the efficient allocation.

Proof. The proof is by construction. We show that the bidding function

Si(x) =



0 if x < xi

Ui(x)− ci if x ∈ [xi, xi]

0 if x ∈ (xi, 1)

Ui(xi) + U(1− xi)− c1 − c2 if x = 1.

is an equilibrium bidding function for every (c1, c2) ∈
[
0, (a−a+b)

2

4b

]2
. Fix

(c1, c2) in this interval. First, we will show that the auctioneer implements

the efficient allocation. Second, we will point out that bidder’s surplus is

maximized globally by the efficient allocation. Third, we will demonstrate

that no bidder can further raise the VCG price the other bidder has to pay.

First, we consider the implemented allocation by the auctioneer. The

auctioneer maximizes the function Si(xi) +Sj(1−xi). Whenever this func-
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tion is differentiable, si(x) = sj(1−x) must hold in the optimal allocation.

Since bidders bid true marginal values on relevant interior shares, the nec-

essary condition for an interior allocation is satisfied by the efficient alloca-

tion. However, the bidding function is not concave, since bidders raise their

bid on 1 relative to interior shares. As a result, the auctioneer has to check

whether the value of the efficient allocation is higher than Si(1). The bid on

Si(1) is constructed, however, such that it is the minimal value of the effi-

cient allocation. Therefore it is always true that Si(x
∗
i )+Sj(1−x∗i ) ≥ Si(1).

Second, the efficient allocation maximizes bidder i’s surplus, given bid-

der j bids according to the proposed equilibrium behavior. If bidder i wins

x then either Sj(1− x) = 0 or Sj(1− x) > 0. In the last case, the surplus

Ui(x)− Sj(1) + Sj(1− x) = Ui(x)− Uj(xj)− U(1− xj) + cj + Uj(1− x)

is maximized if si(x) = ui(x) = uj(1−x) = sj(1−x). The efficient allocation

satisfies this condition. Now we consider the case where Sj(1− x) = 0. If

bidder i wins x such that Sj(1− x) = 0, then bidder i pays the VCG price

Sj(1) for x. Thus, if bidder i does not want to win 1 at a VCG price of Sj(1)

then he also does not want to win any smaller share at this VCG price. It

remains to compare the surplus from the efficient outcome to the surplus

from winning 1. For the bidding function to constitute an equilibrium, it

must be true that for all types i and j the surplus from winning 1 must be

smaller than the surplus from the efficient share, that is,

Ui(x
∗
i )− Sj(1) + Sj(1− x∗i ) ≥ Ui(1)− Sj(1)

must be true. This inequality can be transformed to

Ui(x
∗
i ) + Uj(1− x∗i )− Ui(1) ≥ cj.

As the LHS of this inequality is minimized if bidder i has the highest pos-

sible type and bidder j is as weak as possible, it follows that this inequality

holds if

U(x) + U(x)− U(1) = U(1− x) + U(x)− U(1) ≥ cj.
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As the LHS equals (a−a+b)2
4b

this condition holds if the values of cj are in

the interval. In conclusion, bidder j never shades the bids too much such

that bidder i wants to win everything and therefore the efficient allocation

is the surplus maximizing allocation for bidder i.

Third, no bidder can further raise the rival’s cost since the value of the

efficient allocation equals Ui(x
∗
i ) + Uj(1− x∗i )− ci − cj, which could be as

low as Ui(xi) + U(1 − xi) − ci − cj. If a bidder would increase the bid on

the full supply, there would be a positive probability for this bid to become

winning, resulting in a decrease in the bidder’s expected surplus from the

auction.

Proposition 2. If a− a <
(
1
2
− 1

4

√
2
)
b, there exists a continuum of sym-

metric efficient clock-pooling equilibria, where in the clock bidders demand

according to function (4), that is, they demand the full supply for prices

lower than p̃, with a − b
4
≥ p̃ ≥ a+a(1+

√
2)−b

2+
√
2

, and then drop demand to

x̃i = ai−p̃
b

. In the supplementary phase bidders submit the bidding function

(6).

Proof. If the clock ends at p̃, no deviation is profitable in the supplementary

phase. The efficient share is implemented and this share maximizes surplus

in the interior. No bidder wants to win everything under truthful bidding,

since

Ui(x
∗
i ) + Uj(1− x∗i )− Sj(1) ≥ Ui(1)− Sj(1),

by construction of the efficient allocation.

No deviation in the clock phase results in a higher expected surplus.

At p̃, no bidder can improve his surplus by not demanding truthfully, since

the efficient allocation is implemented and the other bidder has to already

pay the highest possible price at this level of information. Ending the clock

by dropping demand to 0 at p < p̃ yields zero surplus. Dropping demand

to some positive share limits the possibilities to raise Si(1) and does not

yield a higher surplus. Bidders cannot improve on the final allocation by

expanding demand until a price higher than p̃. However, they might try to

learn something new about the other bidder’s type and use this information

to raise the other bidder’s price. Since the other bidder is bidding truthfully,

the only way to get new information is to keep demand at 1 and wait until
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the lowest type drops demand to 0. The deviating bidder cannot demand 1

at a price of at least a, but he still needs to create excess demand in order

to learn something about the other bidder’s type. However, he cannot

create excess demand without the risk of winning the demanded share by

the clock ending with market clearing.

As a result, neither ending the clock earlier nor later pays off. No

deviation in the clock and the supplementary phase is therefore profitable.

Lemma 2. In any symmetric efficient equilibrium of the CCA, the image

of the function p(ai) is either a singleton or a pair.

Proof. We look at monotone equilibria, that is, Spi (x) ≥ Spj (x) for all x and

ai ≥ aj if p(ai) ≥ p(aj).

Before we prove the Lemma, we proof an auxiliary Lemma. The Lemma

says that there cannot be an efficient equilibrium if the price p(a) is so high

that, if the clock ends at this price, the efficient share for low types ai is

less than the true demand. We will show that if the true demand is indeed

less than the lowest efficient share, then these types can make the CCA

price dependent on the final clock round price and this induces other types

to deviate from equilibrium play.

Lemma 3. Let p([a, a′)) = p̃1 and p([a′, a′′)) = p̃2, where a < a′ < a′′ ≤ a.

There is no efficient equilibrium if there exists a δ > 0 such that for all

ai ∈ [a, a + δ) the truthful demand at p̃1 is less than the lowest efficient

share at p̃1, i.e. if x̃1i = ai−p̃1
b

< ai−a′+b
2b

= x′i.

Proof. Suppose there is an efficient equilibrium where this is the case. We

consider two cases. First, it can be the case that x′′i = ai−a′′+b
2b

< x̃1i < x′i

for types close to a. Otherwise, it has to be that case that x̃1i < x′′i < x′i

for types close to a. In these two cases bidders have different opportunities

to raise rivals’ cost. In any case, the boundary type a′ must be indifferent

between meeting a weak type at p̃1 and p̃2 in the first dimension of the

preferences. If the boundary type were not indifferent, there would be an

open set of types that wants to deviate by dropping demand earlier or later.

We first consider the case x′′i < x̃1i < x′i. The structure of the argument

is as follows. First, we show what the supplementary bidding function at p̃2
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for weak types must look like. As the boundary type a′ must be indifferent

between dropping demand at p̃1 and p̃2, low types must basically use the

same supplementary bidding functions at p̃1 and p̃2. The supplementary

bidding function after the clock finishes at p̃2 then determines the supple-

mentary bidding function after the clock finishes at p̃1. Second, low types

want to raise rival’s cost at p̃1 and we use this to pin down the supple-

mentary bidding function of the lowest type a. Third, we show that other

low types can raise rival’s cost by lowering the bids on possibly efficient

shares. This is allowed by the activity rule and does not change the final

allocation. The CCA price rivals have to pay when the clock finishes at p̃1

can then be raised relative to the price rivals have to pay when the clock

finishes at p̃2 implying the boundary type a′ is no longer indifferent.

First, we will argue how the supplementary bidding function of low

types must look like. At p̃2, in order to implement all possible efficient

allocations low types have to bid true marginal values on [x′′i , x
′
i]. Note

that in this first case x̃1i ∈ (x′′i , x
′
i) and that the relative cap prescribes

Si(1) ≤ Si(x̃
1
i ) + p̃1(1 − x̃1i ). It should hold that Si(1) = Sj(x̃

1
i ) + p̃1(1 −

x̃1i ), as otherwise the bid on 1 would be different relative to the bid on

the efficient share at p̃1 and p̃2 respectively, and a′ will not be indifferent

between dropping demand at p̃1 and p̃2. In order to implement the same

CCA price for the rival bidder after the clock stops at p̃1, bidder i has, in

addition, to bid

Si(x) = Ui(x)− Ui(x̃1i ) + Si(x̃
1
i ) (14)

for x ∈ [x̃1i , xi]. In this case, the relation of the bid Si(1) to the bid on the

efficient share is the same.26 Note that the level of the bidding function can

be different, but this does not play a role in the determination of prices.

Second, we do now pin down the level of the bidding function for the

lowest type a. If two bidders with type aj = a meet, then 2Sj(
1
2
) = Sj(1)

must hold. If 2Sj(
1
2
) < Sj(1), the efficient allocation would not be imple-

mented. If 2Sj(
1
2
) > Sj(1), low types would want to lower bids on efficient

shares in order to raise the competitor’s price. From equation (14) it follows

26Types in [a + δ, a′) make supplementary bids in Si(1) = Si(x̃
1
i ) + p̃1(1 − x̃1i ) and

Si(x) = Ui(x)− Ui(x̃
1
i ) + Si(x̃

1
i ) for the relevant shares afte the clock finishes at p̃1 and

p̃2, respectively. The CCA price the rival has to pay is consequently the same at both
endings of the clock.
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that

2Sj

(
1

2

)
= 2

(
Uj

(
1

2

)
− Uj

(
x̃1j
)

+ Sj
(
x̃1j
))

= Sj(1)

= Sj
(
x̃1j
)

+ p̃1
(
1− x̃1j

)
⇔

Sj(x̃
1
j) = p̃1(1− x̃1j)− 2

(
Uj

(
1

2

)
− Uj(x̃1j)

)
.

Note that this bid satisfies the activity rule, since it is higher than the

expressed value for x̃1j in the clock, i.e.,

Sj(x̃
1
j) = p̃1(1− x̃1j)− 2

(
Uj

(
1

2

)
− Uj

(
x̃1j
))

> p̃1x̃1j ⇔

p̃1
(

1

2
− x̃1j

)
> Uj

(
1

2

)
− Uj(x̃1j).

Third, we now consider bidder i with type ai > a, but sufficiently close

to a so that x̃1i < x′i continues to hold. As the value of the efficient allocation

is increasing in types, if he bids in such a way that he still gets an interior

solution when meeting the weakest possible type a, then the same would

hold when meeting other types. If he meets the lowest possible type aj = a

and both bidders use bidding function (14), then bidder i can lower the

bids on [x′i, xi], because the efficient allocation would still be implemented,

but the CCA price would be higher. To see this, note that

Si(1) = Si(x̃
1
i ) + p̃1(1− x̃1i ) < Si(x

∗
i ) + Sj(1− x∗i )⇔

Si(x̃
1
i ) + p̃1(1− x̃1i ) < Ui(x

∗
i )− Ui(x̃1i ) + Si(x̃

1
i ) + Uj(1− x∗i )− Uj(x̃1j) + Sj(x̃

1
j)⇔

p̃1(x̃1j − x̃1i ) + 2Uj

(
1

2

)
< Ui(x

∗
i ) + Uj(1− x∗i ) + Uj(x̃

1
j)− Ui(x̃1i )⇔

p̃1
aj − ai
b

+ aj −
b

4
<
a2i − 2aiaj + a2j + 2aib+ 2ajb− b2

4b
+
a2j − a2i

2b
⇔

4p̃1(aj − ai) + 2baj < −2aiaj + 2aib+ 3a2j − a2i ⇔

(ai − aj)(ai + 3aj − 2b− 4p̃1) < 0⇔

ai + 3a < 2b+ 4p̃1.

As the right-hand side of the last inequality is increasing in p̃1 the inequality

will certainly hold if we plug in the lower bound (ai+a
′−b)/2. Doing so, the
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inequality simplifies to 3a < ai + 2a′, which is certainly true. As a result,

types ai ∈ [a, a + δ) can lower the bids on the efficient allocation without

changing the final allocation. By doing so they raise the competitor’s price.

At p̃2, however, they cannot do this, since they have to bid true marginal

values around x̃1i . Thus, the CCA prices bidders have to pay against a rival

with type around a′ are different for when the clock finishes at p̃1 and p̃2,

respectively, and type a′ cannot be indifferent in the first dimension of the

preferences between dropping demand at p̃1 and at p̃2.

Now consider the second case, where x̃1i < x′′i < x′i for certain low

enough types [a, a+δ). Let S2(a′, x) be the equilibrium bidding function of

type a′ if the clock ends at p̃2 = p(a′). Call bidders in [a, a + δ) weak and

bidders who drop demand at p̃2 strong.

Weak bidders demand truthfully at p̃1 = p(a) because this allows them

to raise the CCA price as much as possible. Demand at p̃1 is increasing in

type and all weak types demand less than 1/2 since a′−p̃1
b

< a′−a′+b
2b

= 1
2
.

Therefore, if the clock does not end at p̃1, then all weak types know that

the other bidder’s type is at least a′.

After the clock ends at p̃2 weak types bid true marginal utilities on

[x′′i , x
′
i], because these are the efficient shares that are possible. The dif-

ference with the previous case is that now x̃1i is not in this interval. By

bidding Si(x
′
i) = Si(1) − S2(a′, 1 − x′i) in the supplementary round weak

types maximally increase the CCA price for the strong types. If the bids in

the range (xj, 1), i.e. Sj(1− x̃1i ) for all aj and ai, are low enough, then the

bid Si(x̃
1
i ) can be chosen high enough such that the activity rule is satisfied.

However, it can also be true that the activity rule is not satisfied by the

desired bid. Thus, we have to consider two sub-cases. In both sub-cases,

we set Si(1) = Si(x̃
1
i ) + p̃1(1 − x̃1i ) and vary the bid Si(x̃

1
i ) such that the

efficient allocation is always implemented and the activity rule is satisfied.

The weak bidder’s bids on x ∈ [x′′i , x
′
i] are

Si(x) = min
{
Si(x̃

1
i ) + p̃1(x′′i − x̃1i ), Ui(x′′i )− Ui(x′i) + Sj(1− x′i)

}
+Ui(x)−Ui(x′′i ),

if the clock ends at p̃2, where Sj(1 − x′i) = S2(a′, 1 − x′i), that is, where

aj = a′.

Consider first the sub-case where the minimum is attained for Ui(x
′′
i )−
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Ui(x
′
i)+Sj(1−x′i). In this case, weak bidders use the supplementary bidding

function

Si(x) = Ui(x)− Ui(x′i) + Sj(1− x′i)

for x ∈ [x′′i , x
′
i], where aj = a′ and Si(1) = Si(x̃

1
i ) + p̃1(1 − x̃1i ). Using this

supplementary bidding function raises the CCA price at p̃2 of strong types

as much as possible. If the clock ends at p̃2 and a weak bidder ai meets the

boundary type aj = a′, then

Si(x
∗
i ) + Sj(1− x∗i ) = Si(1).

If the other bidder has type aj > a′, then the left-hand side of the last

equation is higher as it is increasing in aj. Weak bidders cannot further

lower the bids on [x′′i , x
′
i] relative to the bid on 1 because otherwise they

risk winning the full supply.

Recall that weak types must bid in such a way that the same CCA price

is implemented after the clock stops at p̃1. That is, Si(1) must have the

same relation to Si(x
∗
i ) after the clock stops at p̃1 and p̃2. As after the clock

stops at p̃1 all types (know that all types) are smaller than a′, the efficient

allocation cannot be implemented at p̃1 if weak types bid in the same way

at both prices.

Consider now the sub-case where Si(x̃
1
i ) + p̃1(x′′i − x̃1i ) is the strict mini-

mum for a. By continuity, it is also the minimum for types ai close enough

to a. We will look at the bidding behavior of these types. The sub-case

occurs when the activity rule cannot simply be satisfied by raising Si(x̃
1
i ),

because the other bidder’s bids on (xj, 1) are too high, so that the alloca-

tion (x̃1i , 1− x̃1i ) may become winning. In this case Si(x̃
1
i ) + p̃1(x′′i − x̃1i ) can

be the minimum the bidder can bid. By the indifference argument, weak

types have to use the bidding function Si(1) = Si(x̃
1
i ) + p̃1(1− x̃1i ) and

Si(x) = Ui(x)− Ui(x′′i ) + Si(x̃
1
i ) + p̃1(x′′i − x̃1i )

for x ∈ [x′i, xi] if the clock ends at p̃1.

The proof follows the following two steps. First, we use the supple-

mentary bidding behavior of the weakest type to pin down the level of

the bidding function of the weakest type at p̃1. Second, we show that at
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this level of the bidding function weak types want to change their bidding

function after the clock ends at p̃1 because they can further raise rival’s

cost. As a result, there is no bidding function of weak types such that the

efficient allocation is always implemented and they fully raise rival’s cost

at both endings of the clock phase.

In order to pin down the level of the bidding function at p̃1 consider the

case when two identical weak types aj = a meet. It must be true that

2Sj

(
1

2

)
= Sj(1)⇔

2

(
Uj

(
1

2

)
− Uj(x′′j ) + Sj(x̃

1
j) + p̃1(x′′j − x̃1j)

)
= Sj(x̃

1
j) + p̃1(1− x̃1j)

because otherwise the types want to lower the interior of the bidding func-

tion. This equality can be transformed into

Sj(x̃
1
j) = p̃

(
1 + x̃j − 2x′′j

)
− 2

(
Uj

(
1

2

)
− Uj(x′′j )

)
, (15)

which pins down the bid of the lowest type on the share x̃1j .

To show that weak types want to change their bidding function after

the clock ends at p̃1, note that as the value of the efficient allocation is

increasing in types, if a weak bidder bids in such a way that he still gets

an interior solution when meeting the weakest possible type a, then the

same would hold when meeting other types. Thus, consider the case where

a weak type ai < a + δ meets aj = a. Again, from the raising rivals’ cost

motive it must be that Si(xi) + Sj(1− xi) = Si(1). If the joint bid on the

efficient allocation is higher than the bid on 1, then the type ai wants to

lower the bids in the interior at p̃1, i.e. the bids on (x′i, xi]. Lowering these
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bids is always possible by the activity rule. Using (15) it turns out that

Si(xi) + Sj(1− xi) > Si(1)⇔

Si(x̃
1
i ) + p̃1(x′′i − x̃1i ) + Ui(xi)− Ui(x′′i ) + Sj(x̃

1
j) + p̃1(x′′j − x̃1j) + Uj(1− xi)− Uj(x′′j ) >

Si(x̃
1
i ) + p̃1(1− x̃1i )⇔

Ui(xi) + Uj(1− xi) + p̃(x′′i − x′′j ) > 2Uj

(
1

2

)
+ Ui(x

′′
i )− Uj(x′′j )⇔

(ai − aj)2 + 2aib+ 2ajb− b2

4b
− (ai − aj)(3ai + 3aj − 2a′′ + 2b)

8b
> aj −

b

4
− p̃(ai − aj)

2b
⇔

2(ai − aj)2 + 4b(ai − aj) + 4p̃(ai − aj) > (ai − aj)(3ai + 3aj − 2a′′ + 2b)⇔

4p̃+ 2b+ 2a′′ > ai + 5a.

The left-hand side is increasing in p̃1 implying that if the condition holds

at the lower bound (ai + a′′ − b)/2, then it always holds. Plugging in

the lower bound gives 5a < 4a′′ + ai,which is certainly true. Thus, weak

bidders want to lower their bids on efficient shares relative to the bid on 1,

thereby raising rivals’ cost. Consequently, the boundary type is no longer

indifferent between dropping demand at p̃1 and p̃2 and there is an open set

of types who want to deviate.

We can use Lemma 3 to prove the next Lemma.

Lemma 4. In any efficient equilibrium, if p(a) > a−b/2, then p(ai) = p(a)

must hold for all ai ∈ [a, a′), where a′ = 2p(a) + b− a.

Proof. The case of p being flat around a follows from the Lemma: suppose

a′ = sup{a : p(a) = p(a)} < a′. Then x̃i < x∗i (ai, a
′) for types sufficiently

close to a and the Lemma applies. The Lemma deals with the case of p

being flat around a. However, the same rational also applies if p is strictly

increasing. If p is strictly increasing and p(a) > a − b/2, then the lowest

type drops demand truthfully at p(a) to a share that is less than the lowest

possible efficient share, which is 1/2. By continuity, sufficiently weak types

do the same in a neighborhood of p(a), they all drop demand to less than

the lowest efficient share. Since they know that the other bidder drops

demand to less than 1/2, too, they can keep demand constant at x̃
p(ai)
i .

Therefore, very low types can condition the CCA price on the ending of
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the clock price like in the second case of the proof of the Lemma 3 (x̃i < x′′i )

and there are low types who want to end the clock earlier.

We can now return to Lemma 2. We distinguish the following two

cases. First, it can be that the case that the function p is continuous at

a′. It does not really matter for this case whether p(a) = a− b/2 (in which

case a′ = a) or p(a) > a− b/2. This is the case, for example, if bidders bid

truthfully in the clock phase. Second, it can be the case that the function

p is discontinuous at a′. In this case it must be that p(a) > a − b/2 (as

otherwise it is the case that the clock will only finish with probability 0 at

prices close to p(a)).

We first consider the case of p being continuous at a′. In this case the

function must be strictly increasing at a′, because otherwise the function

would not be continuous or the equilibrium would not always be efficient.

Let a′′ > a′ be a type such that for all ai, aj such that a′ ≤ aj < ai ≤ a′′,

p(aj) < p(ai). Let p̃1 = p(a) and p̃2 = p(a′′). First, we argue that types in

[a, a′) have to demand truthfully after p(a). Second, we show that types in

[a′, a′′) want to expand demand further in order to raise rival’s cost more.

This can be done without a decrease of surplus in the first dimension of

the preferences.

First, we show that types in [a, a′) demand truthfully after p̃1 = p(a).

Suppose types close to a keep demand constant for prices slightly higher

than p(a). Then the clock does not end if types above a′ drop demand

(truthfully). If they reduce demand, then the clock might end too soon and

only an inefficient allocation can be implemented. Therefore, they have to

lower demand truthfully. But if types close to a lower demand truthfully,

other types have to lower demand truthfully, too, because otherwise the

final allocation might be inefficient. Second, consider the following devi-

ation by ai ∈ [a′, a′′). Instead of demanding truthfully at p(ai), type ai

expands demand further and drops demand only at p̃2. By doing so he

further weakens the constraints of the activity rule and can increase his

utility in the second dimension of the lexicographic preferences. The sur-

plus in the first dimension of the preferences remains unchanged, however.

If the clock ends at p̃2, then the clock would have ended without demand

expansion at a price in the interval [p(ai), p̃
2] with market clearing. The

43



other bidder j demanded his efficient share at this price and expressed true

marginal utilities for shares in [xj(p̃
2), xj(p̃

1)] throughout the clock. When

the clock ends, bidder j will fully raise the bids on these shares in order

to raise rival’s costs most. Thus, he bids true marginal utilities on these

shares in the supplementary phase. Bidder i bids true marginal values on

shares in [x̃2i , xi], which, together with the right level of the bidding func-

tion of bidder i, implements the efficient share. The price bidder i has to

pay must not change, because otherwise bidder j is able to make the CCA

price dependent on the final clock price. In this case high types would have

an incentive to reduce demand in order to avoid the raise in the CCA price.

To summarize, there is an open set of types that wants to expand demand

further in order to raise rival’s cost more without changing the surplus in

the first dimension of the preferences.

The second case is when the function p is discontinuous at a′. We will

show there cannot be more than two prices in the image of p(ai). Three

prices in the image of p are enough to show that there are high types that

want to reduce demand to an inefficient share. Let p̃1 < p̃2 < p̃3, where

p([a, a1)) = {p̃1}, p([a1, a2)) = {p̃2}, and p([a2, a)) = {p̃3}. By Lemma 3

we know that all types in [a, a1) must demand at least the lowest possible

efficient share at p̃1.

For δ small enough, there must exist a p′ < p̃2 such that all types in

[a, a + δ) learn that if the clock does not finish at a price p̃ ≤ p′ their

opponent is a type ai > a′. This is, for example, the case in our two-step

equilibrium where bidders bid truthfully and the market clears at prices just

above p̃1. In that case types in the interval [a, a+δ) will continue to demand

x′ (which is what they were demanding at price p′) as long as p ∈ [p′, p̃2).

In the supplementary round, this bidder will use different supplementary

round bid functions, depending on whether the clock phase stopped at

a price p̃ ≤ p̃2 or whether the clock phase stopped at a price p̃3 > p̃2. In

particular, if the clock phase stopped at a price p̃ ≤ p̃2 these types will want

to achieve an efficient allocation for all possibly efficient shares x̃2i ≤ x ≤ x̃1i

at that price and raise their CCA price to be p̃1(1− x̃1i ) +Ui(x
∗
i )−Ui(x̃2i ).

On the other hand, if the clock phase stopped at a price p̃3 > p̃2 these types

will want to achieve an efficient allocation only on shares x < x̃2i the CCA

price will be raised to Ui(x
∗
i )−Ui(x̃3i ) + p̃2(x̃1i − x̃2i ) + p̃1(1− x̃1i ). This will
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give types just above a2 an incentive to reduce their bid in the clock phase

to imitate types just below a2.

Proposition 4. In any symmetric efficient equilibrium of the CCA, bidders

bid on the full supply when the clock price is smaller than a− b/2.

Proof. In any efficient equilibrium the clock cannot end before the clock

price reaches a − b/2, because otherwise bidders are restricted by the rel-

ative cap to bid true marginal bids on efficient shares. In any efficient

equilibrium bidders demand 1 up to the lowest price at which the clock can

end. Suppose an equilibrium prescribes a bidder to drop demand below 1

before the clock can possibly end. The bidder can still demand 1 without

the other bidder noticing this deviation. At the lowest price at which the

clock can end he does whatever the equilibrium requires him to do. The

clock will consequently stop at the same price as without the deviation.

In the supplementary phase it might be necessary to raise bids on interior

shares above what equilibrium would prescribe, but that is of no concern

because the other bidder does not know of the deviation. Thus, the equi-

librium allocation can be implemented. The gain from the deviation is

a looser constraint on Si(1) which can be used to raise the final price of

the other bidder. Therefore, bidders demand the full supply at least until

p = a− b/2 in any efficient equilibrium.

Proposition 5. If b(
√

2 − 1) < a − a < b
2
, then there exists an efficient

two-step equilibrium where the clock demand functions are specified above

and the corresponding supplementary bidding functions are (8), (9), (10)

and (11).

Proof. The only thing that remains to check is whether the activity rule is

satisfied for strong bidders. Recall that they demand 1 for p < p̃2 and x̃2i

at p̃2. It must be true that Ui(xi) + U(1 − xi) ≤ Ui(x̃
2
i ) + p̃2(1 − x̃2i ). We

have to check whether a1 < a ≤ â(a) = a + b. This is true by the present

assumption on the type distribution a− a < b/2.

Proposition 6. If b/2 < a−a < b(2−
√

2), then there exists an inefficient

two-step equilibrium.
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Proof. We will now demonstrate that the above can indeed be an equilib-

rium. First, consider the stipulated behavior in the supplementary round.

Given the marginal bids of all the different types at different ending of the

clock phase, it is clear that the weak and strong bidders do not want to

change the allocation, and as their payment is determined by the behavior

of their opponent, the only thing they can do is to raise rival’s cost as much

as possible given that they do not want to change the allocation and given

the constraints imposed by the clock behavior. This is exactly what the

proposed strategies do.

Second, let us consider deviating in the clock phase. The only devi-

ations we seriously have to consider are, first, when super-strong types

demand truthfully at p̃2 and thereafter, and second, any type demands the

full supply at p > p̃2. These are the only deviations we have to consider,

because in the other cases the deviation has either no effect compared to

equilibrium play or a very similar effect as the two deviations. For exam-

ple, if a super-strong bidder demands more than truthful demand, but less

than the full supply at p̃2, he decreases the likelihood of the clock ending at

p̃2 even more compared to demanding truthfully, but in addition that the

optimal subsequent supplementary behavior after p̃2 is the same. Similarly,

demanding less than x̃2i at p̃2 is not better than demanding x̃2i , since it still

involves demand reduction and it does not allow the same, possibly ben-

eficial, subsequent supplementary bidding behavior. Moreover, if a bidder

has an incentive to deviate it is the super-strong bidder.

We first argue that no super-strong bidder wants to demand truthfully

at p̃2. If a super-strong bidder i faces a strong bidder j his equilibrium

pay-off equals

Ui(1− x̃2j)− Uj(xj)− U(1− xj) + Uj(x̃
2
j).

Given the continuation strategy of the competitor, the best possible devia-

tion pay-off equals Ui(x
∗
i ) − Uj(x̃

2
j) − p̃2(1 − x̃2j) + Uj(1 − x∗i ). To make

deviating not profitable, we will now show that the necessary inequal-

ity is equivalent to a simpler inequality which is always true. Note that

xj = 1/2 + x̃2j/2. Thus, the inequality is equivalent to
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Ui(1− x̃2j) + 2Uj
(
x̃2j
)
− Uj

(
1

2
+
x̃2j
2

)
− U

(
1

2
−
x̃2j
2

)
+ a(1− x̃2j) >

Ui(x
∗
i ) + Uj(1− x∗i )⇔

− (1− x̃2j)
(

3

2
aj −

1

2
a− ai

)
+
b

4
− 5

4
bx̃2

2

j + bx̃2j >
(ai − aj + b)2

4b
⇔

− 4aiaj + a2j + 4aia+ 2aja− 3a2 + 4aib− 2ajb− 2ab+ b2 >

a2i − 2aiaj + a2j + 2aib− 2ajb+ b2 ⇔

− 2aiaj + 4aia+ 2aja− 3a2 + 2aib− 2ab > a2i ⇔

(ai − a)(ai + 2aj − 3a− 2b) < 0.

Since ai > a, the first term is positive. The maximum of the second term

is achieved by taking the maximum admissible type aj and as j is a strong

(but not super-strong) bidder, we have aj − b/2 ≤ a, Substituting aj =

a+ b/2 yields ai − a− b, which is always negative, even if ai = a.

We now consider the case when a super-strong bidder i meets another

super-strong bidder j. The equilibrium pay-off in this case equals

Ui

(
1

2

)
− Uj(xj)− U(1− xj) + Uj(x̃

2
j) + p̃2

(
1

2
− x̃2j

)
(16)

and we will show that it is larger than the best possible deviation pay-off

Ui(x
∗
i ) +Uj(1− x∗i )−Uj(x̃2j)− p̃2(1− x̃2j). The inequality we have to show

to hold is equivalent to

4aiaj + 4a2j + 6a2 + 8ab+ 3b2 > 2(a2i + 6aja+ 4ajb). (17)

Taking the derivative of the left-hand side minus the right-hand side with

respect to aj gives 4ai + 8aj − 2(6a + 4b) and this is negative if, and only

if, 4ai + 8aj − 12a < 8b.This condition can only be violated if ai and aj

are as large as possible. But if ai = aj = a, then this condition reduces to

a−a < 2
3
b, which is implied by the condition a−a < b(2−

√
2). Taking the

same derivative with respect to ai and substituting aj = a yields −4ai+4a,

which is non-negative. Thus, if (17) holds true for ai = aj = a, it holds

true for all type combinations. Substituting, yields
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6(a− a)2 − 8b(a− a) + 3b2 > 0,

which is always true.

As under the condition a− a < b(2−
√

2), the clock is over at p̃2 if the

competitor is a weak type and the final allocation (and payment) is not

affected, it follows that super-strong bidders do not have an incentive to

bid truthfully at p̃2.

The other deviation to consider is such that the deviating bidder wins

the full supply. If the non-deviating bidder is weak, then he is able to make

the winning bidder pay at least S p̃
1

j (1) = Uj(x̃
1
j) + p̃1(1− x̃1j). Bidder i does

not want to win 1 if

Ui(x
∗
i )− S

p̃2

j (1) + Uj(1− x∗i ) > Ui(1)− S p̃
1

j (1).

This inequality is true since S p̃
2

j (1) ≤ S p̃
1

j and by definition of the efficient

allocation. If the competitor is strong or super-strong, they are able to

make the deviating bidder to pay p̃2 = a, which is larger than what the

weak bidder can make him pay. In addition, the equilibrium pay-off is

higher in case the competitor is weak compared to the cases where the

competitor is strong or super-strong. Thus, as we have shown the super-

strong bidder does not want to win the full supply against a weak bidder,

he certainly does not want to win the full supply against a strong or super-

strong bidder.
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