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gases (smog, black carbon, etc.) as well as from the external effects caused by climate change.

The countries decide individually on investments in clean (i.e., emission free) technologies for

energy production, whereas a supranational environmental authority decides for each country

on the maximally permitted amount of emissions of greenhouse gases. We demonstrate that

the authority faces a dynamic inconsistency problem that leads to welfare losses. Yet these

welfare losses can be kept small if the mandate for the authority penalizes the local cost of

emissions very heavily but puts little or no weight at all on the cost of climate change.

Journal of Economic Literature classification codes: F53, H87, O33, O44, Q43, Q54,

Key words: Climate change; supranational environmental authority; dynamic inconsistency;

optimal delegation.

∗ The authors would like to thank B̊ard Harstad and Franz Wirl for helpful discussions and comments.

a Department of Economics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

b Economic Studies Division, Austrian National Bank, Otto-Wagner-Platz 3, A-1011 Vienna, Austria

1



1 Introduction

Many scientists today consider climate change as the biggest threat humanity has ever faced. It

will lead to severe disruptions of everyday life around the globe and it is an extremely difficult

problem to tackle. The difficulties arise primarily for two reasons. First, climate change is due

to strong negative external effects of economic activity (in particular energy production and

transportation) which prevent its solution by market mechanisms.1 Second, climate change is

an inherently global phenomenon that can only be addressed on a global basis. To be effective,

measures against climate change have to be implemented on a broad international scale, which

requires difficult and protracted negotiations between many heterogeneous countries with very

diverse goals; see, e.g., Barrett (2003) or Nordhaus (2013). In the past, such negotiations

often had limited success or failed altogether.2 Against this background, there have been pleas

to create a supranational environmental authority (SEA) with the explicit mandate to fight

climate change, and to delegate decision power over certain climate-relevant policies to this

authority; see, e.g., Esty (1994), Runge (1994), Hempel (1996), or Yadav (2014).

This paper takes the suggestion to establish an SEA with the power to impose emission limits on

the countries of the world as its starting point and analyzes a few issues that would have to be

taken into account in order to make such an authority function well.3 First we argue that, even

if the SEA has global welfare as its mandate and all countries respect its policy prescriptions,

the authority will face a serious commitment problem. To this end we show that the optimal

policy of a benevolent SEA is in general dynamically inconsistent. Discretionary behavior of

the authority causes under-investment in clean technologies, over-pollution and, accordingly, a

welfare loss relative to the situation when it has commitment power. We then demonstrate that

the dynamic inconsistency problem can be ameliorated by giving the SEA a goal that differs

from the maximization of global welfare.4 We find that an SEA that attaches more weight to

1Stern (2007, p. 1) refers to climate change as “the greatest example of market failure we have ever seen”.
2Barrett (1994) argues that international environmental agreements need to be self-enforcing and, therefore,

they are not likely to be signed by many countries unless the global benefits of cooperation are small.
3An alternative interpretation of our model is that of an environmental protection agency (EPA) which has

the power to impose emission standards on firms on a national level. Due to the global nature of climate change,

however, we prefer the to think of the authority as a supranational one.
4The idea of optimal delegation is borrowed from the literature on monetary policy, where dynamic incon-
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the local costs of emissions (stemming from smog, polluted water, black carbon, etc.) than

the individual countries themselves but less or even zero weight to the damage caused by the

global stock of greenhouse gases, can implement a discretionary policy with significantly smaller

welfare losses than a benevolent SEA. This seemingly counter-intuitive result obtains because

an authority with these preferences provides stronger incentives for the individual countries

to invest in clean technologies. We also prove that the optimal mandate of the authority

depends on the initial level of global pollution: the higher is the stock of greenhouse gases,

the more weight should be given to the local cost of emissions. This creates another dynamic

inconsistency problem, this time on the side of the individual countries: even if they can commit

to set up an SEA and to respect its policy prescriptions, they have a recurrent incentive to

change the authority’s mandate as the stock of greenhouse gases accumulates.

The framework in which we study the above mentioned issues is explained in section 2. It is a

modification of the model used by Harstad (2012) and Harstad (2016), which was developed to

analyze international environmental agreements.5 Our model describes the world as consisting

of many small countries, which derive utility from consuming energy and which suffer both

from local emissions of greenhouse gases and from the consequences of climate change. Energy

can be produced either by dirty technologies creating greenhouse gas emissions (e.g., power

plants based on fossil fuels) or by clean technologies that do not generate such emissions (e.g.,

power plants using waterpower, solar energy, or wind power). In order to assess the value of

commitment and delegation we start in section 3 by considering two extreme benchmarks: the

first-best solution and business as usual (BAU). The first-best solution is the allocation that

would be implemented by a social planner who makes all investment and emission decisions for

all countries and seeks to maximize aggregate welfare in the world. BAU, on the other hand,

describes the situation in which all individual countries pursue their own interests without any

coordination among them.

sistency problems can be extenuated by augmenting the central bank’s mandate by strong inflation aversion,

as in Rogoff (1985), or by a desire for policy inertia, as in Woodford (2003). In the context of environmental

policy, optimal delegation has been studied by Helm et al. (2004); see below.
5Battaglini and Harstad (2016) study participation and duration of environmental agreements in a closely

related modelling framework.
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Suppose now that there exists an SEA which sets the (maximum) emission levels, whereas the

countries themselves decide on how much they invest into clean technologies. In section 4 we

assume that the authority is benevolent , that is, it maximizes aggregate welfare in the world. In

our setup it turns out that such an authority can implement the first-best solution provided it

has full commitment power . In other words, by announcing the optimal emission levels at time 0

and by credibly committing to enforce these levels, the countries are given the correct incentives

for investment in clean technologies. This property follows from the fact that the environmental

externality operates solely through the stock of greenhouse gases, which does not depend on the

technology stocks but only on the amount of emissions. The more interesting case, however,

is when the authority lacks commitment power and acts under discretion. Maintaining the

assumption of benevolence of the SEA, we show that it looses its ability to provide the correct

incentives for investment. As a matter of fact, the countries choose the same technology stocks

as under BAU, which fall short of the technology levels in the first-best solution. Given that

less clean technology is available than in the first-best solution, it is not optimal for the SEA

to impose the tight emission limits from the first-best solution. Taken together, these effects

result in a welfare loss relative to the case of commitment.

In section 5 we drop the assumption of benevolence and turn to the question of optimal dele-

gation. More specifically, we demonstrate that it can be advantageous to endow the authority

with preferences that attach higher weight to the local costs of emissions rather than to the

global costs of the stock of greenhouse gases in the atmosphere. The reason for this seemingly

counter-intuitive result is that an authority with these preferences provides stronger incentives

for the individual countries to invest in clean technologies which, in turn, mitigates the dynamic

inconsistency problem of the authority and thereby moves the solution closer to the first-best

allocation. One could also interpret our finding in the way that putting more weight on the

cost of emissions (as compared to the cost of climate change) creates a more direct incentive

for the authority to curb emissions.

Interestingly, the optimal relative weight of local costs (optimal with regard to global welfare)

depends on the state of the model, i.e., on the initial stock of greenhouse gases in the atmo-

sphere. A higher initial concentration of greenhouse gases would require a higher weight on

local costs. This creates a new problem regarding the design of the SEA’s mandate. Either
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one has to allow that the mandate is specified in terms of a rule that describes the goal of

the SEA in state-dependent form, or there arises another dynamic inconsistency in the sense

that the assembly of countries wants to change the mandate of the SEA as the concentration

of greenhouse gases evolves. We address this issue in supplementary material contained in an

online appendix. It turns out that the welfare loss due to this (second) dynamic inconsistency

problem of the countries is very small relative to the one affecting the SEA (which we analyze

in the main part of the paper).

It is worthwhile to discuss the role of local costs of greenhouse gas emissions both in reality

and in our model. The most prominent greenhouse gas is carbon dioxide (CO2), which is

also the most plentiful after water vapour. CO2 itself has no negative effects at the location

where it is emitted but it stays in the atmosphere for very long and causes global warming (the

global cost). However, many economic activities that generate CO2 typically also lead to other

emission that have short-lived but local effects, e.g., methane, hydrofluorocarbons, sulphur, or

black carbon (soot). The policy prescription of our analysis is that endowing the SEA with a

mandate that gives high weight to these local costs helps the authority to curb CO2 emissions

and their negative global consequences. In addition to that, it is known that restricting the

short-lived greenhouse gas emissions would have noticeable direct effects on climate change;

see, e.g., The Economist (2015ab).

Dynamic inconsistency of environmental policy has been studied in a variety of settings. Gers-

bach and Glazer (1999) point out that dynamic inconsistency creates a hold-up problem for

firms, which can be solved by a introducing a market for emission permits. Petrakis and Xepa-

padeas (2003) study the location decisions of a monopolistic firm that is subject to emission

taxes in its home country. Among other things they show that the government’s commitment

to an emission tax is not necessarily welfare improving. D’Amato and Dijkstra (2015) analyze

firms’ investment decisions in clean technologies under asymmetric information about costs of

abatement with the new technology. They show that a regulator who sets emission taxes or

emission permits cannot implement the first-best solution under commitment, but that this

can be done with a time consistent discretionary policy. All of these papers, however, use a

modelling framework that is very different from the one in the present paper, and they do not

address the question of optimal delegation at all. The possibility of solving a dynamic incon-
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sistency problem of environmental policy by delegation to a non-benevolent authority has been

investigated by Helm et al. (2004). These authors study emission taxation of firms in a very

simple, essentially static model and find that delegation to an “environmentalist policy maker”

is beneficial to the society. The environmentalist policy maker attaches higher weight than the

society to the disutility from pollution. Due to its simple structure, however, the model in

Helm et al. (2004) does not capture the stock externality of greenhouse gas emissions at all,

nor does it distinguish between local and global costs. The present paper, in contrast, analyzes

the design of an SEA in a fully dynamic framework featuring the accumulation of greenhouse

gases in the atmosphere and the resulting negative stock externality.

2 The economic environment

We consider a world consisting of a unit interval of infinitesimally small countries i ∈ [0, 1].

Energy can be produced either by a clean technology or by a dirty one. Only the latter generates

greenhouse gas emissions. We denote by Ri,t the stock of clean technology available in country

i at time t and by gi,t the amount of emissions generated by this country in period t. We choose

units of measurement in such a way that Ri,t+gi,t denotes the total amount of energy available

to country i in period t. Furthermore, we denote by ri,t country i’s investment in the clean

technology in period t. This implies that

Ri,t = ri,t + ρRi,t−1, (1)

where 1 − ρ ∈ (0, 1) is the rate of depreciation of the technology stock. An initial value Ri,−1

is exogenously given for every country i ∈ [0, 1].

The total stock of greenhouse gases in the atmosphere at time t is denoted by Gt. It is assumed

that

Gt =

∫ 1

0

gi,t di+ γGt−1, (2)

where 1 − γ ∈ (0, 1) is the natural decay rate of greenhouse gases. The initial stock G−1 is

exogenously given.
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The utility derived by country i during period t is measured by

U(Gt, Ri,t, gi,t, ri,t) = B(Ri,t + gi,t)− C(gi,t)−D(Gt)− kri,t,

where B(Ri,t + gi,t) is the benefit derived from energy consumption, C(gi,t) measures the cost

of (local) emissions generated by country i, D(Gt) denotes the cost generated by the (global)

stock of greenhouse gases, and k is the constant unit cost of investment. Note that all countries

have the same utility function but that the countries can differ from each other with respect

to their initial technology levels. We assume that B : R 7→ R is concave and smooth, that

C : R 7→ R and D : R 7→ R are strictly convex and smooth, and that k is a positive constant.

Denoting the common time-preference factor of all countries by β ∈ (0, 1), we can write total

discounted welfare derived by country i as

+∞∑
t=0

βtU(Gt, Ri,t, gi,t, ri,t) (3)

and aggregate world-welfare as

+∞∑
t=0

βt

∫ 1

0

U(Gt, Ri,t, gi,t, ri,t) di. (4)

The setup described above is very similar to that used by Harstad (2012, 2016). In particular,

we use an additively separable utility function and a linear investment cost function. This

specification ensures high analytical tractability. The only two differences between the model

described above and that in Harstad (2012, 2016) are (i) that we assume a continuum of

countries whereas Harstad (2012, 2016) considers a world consisting of finitely many countries

and (ii) that the countries in our model face costs of local emissions (described by the function

C) which are absent in Harstad (2012, 2016). Besides the fact that the emission of greenhouse

gases typically generates local costs (as has been argued in the introduction), there is also a

technical reason why we include a local cost of emission. Contrary to the framework studied

by Harstad (2012, 2016), in our model there is no strategic interaction between the countries

because each one is infinitesimally small. If the global cost of climate change were the only

negative consequence of emissions, all countries would like to increase their emissions and,

consequently, their benefits from energy consumption without bound, because the global cost

of climate change is a purely external effect. The local costs of emitting greenhouse gases
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serves as a limiting factor to energy production and thereby ensures that an equilibrium exists.

Finally, note that from section 4 onwards, we will introduce a supranational environmental

authority, which is also absent from Harstad (2012, 2016).

3 Benchmarks

In this section we describe two benchmarks that will be useful for assessing the value of com-

mitment and delegation in the main part of the paper. The first benchmark describes business

as usual, a situation in which all countries pursue their own interests and there is no coordina-

tion among them whatsoever. For the second benchmark we assume that there exists a social

planner who chooses allocations in such a way that aggregate welfare is maximized. These

two benchmarks correspond to no internalisation of the environmental externality and to full

internalisation, respectively.

3.1 Business as usual

Suppose that all countries act separately in their own interest. The countries do neither co-

ordinate their actions nor is there any institution that facilitates such a coordination. Since

every country is infinitesimally small, it disregards its influence on the global stock of green-

house gases. In other words, it neglects (2) and treats the stocks of greenhouse gases (Gt)
+∞
t=0

as exogenous to its own decision problem. We refer to the resulting equilibrium as business as

usual (BAU-equilibrium).

Definition 1 A BAU-equilibrium consists of a global sequence (Gt)
+∞
t=0 and individual se-

quences {(Ri,t, gi,t, ri,t)
+∞
t=0 | i ∈ [0, 1]} such that the following two conditions are satisfied:

(i) Given (Gt)
+∞
t=0 it holds for all i ∈ [0, 1] that (Ri,t, gi,t, ri,t)

+∞
t=0 maximizes (3) subject to (1).

(ii) Equation (2) holds for all t ≥ 0.

Lemma 1 The unique BAU-equilibrium is given by

gi,t = gBAU, (5)

8



Ri,t = RBAU, (6)

Gt =
gBAU

1− γ
+

(
G−1 −

gBAU

1− γ

)
γt+1 (7)

for all i ∈ [0, 1] and all t ≥ 0, where gBAU and RBAU are determined by

B′(RBAU + gBAU) = C ′(gBAU) = (1− βρ)k.

All formal proofs are relegated to the appendix. The above lemma shows that in the BAU-

equilibrium all countries, irrespective of their initial technology levels, choose the same emission

rates and technology stocks from period t = 0 onwards. The global stock of greenhouse gases

evolves according to equation (7), which implies that it converges to the steady state GBAU

determined by

C ′((1− γ)GBAU) = (1− βρ)k. (8)

3.2 First-best solution

Now suppose that a social planner makes the investment and emission decisions for all countries

in order to maximize world welfare as given by (4). We call the resulting solution the first-best

solution.

Definition 2 The first-best solution consists of a global sequence (Gt)
+∞
t=0 and individual se-

quences {(Ri,t, gi,t, ri,t)
+∞
t=0 | i ∈ [0, 1]} which together maximize (4) subject to (1)-(2).

Lemma 2 The first-best solution is characterized by equations (1)-(2) along with the first-order

conditions

gi,t = gt, (9)

Ri,t = Rt, (10)

B′(Rt + gt) = (1− βρ)k, (11)

D′(Gt) = (1− βγ)(1− βρ)k − C ′(gt) + βγC ′(gt+1) (12)

for all i ∈ [0, 1] and all t ≥ 0 as well as the transversality condition

lim
t→∞

βt[(1− βρ)k − C ′(gt)]Gt = 0. (13)
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Comparing the first-best solution with the BAU-equilibrium, we see that total energy con-

sumption Ri,t + gi,t by every country i ∈ [0, 1] and in any given period t ≥ 0 is the same in

both solutions. The only difference in the two solutions consists therefore in the way how this

amount of energy is produced. In the BAU-equilibrium the technology level RBAU is installed

in period 0 and maintained forever, whereas in the first-best solution the sequences (gi,t)
+∞
t=0

and (Ri,t)
+∞
t=0 are not constant. Their evolution together with that of (Gt)

+∞
t=0 is determined by

equations (2) and (11)-(13). The stock of greenhouse gases converges to GFB defined by

D′(GFB) = (1− βγ)[(1− βρ)k − C ′((1− γ)GFB)].

Comparing this equation to (8) and using strict convexity of C and D it follows that GFB is

smaller than GBAU. This implies of course that the steady state emission rate gFB in the first-

best solution is smaller than gBAU and, consequently, that the steady state technology stock

RFB in the first-best solution must be larger than RBAU. To summarize, full internalisation

of the external effects of greenhouse gas emission does not change the benefit from energy

consumption for any country but it speeds up the replacement of the dirty technology by the

clean one.

3.3 The linear-quadratic case

Throughout the paper we will illustrate our results by considering a version of the model in

which the benefit and cost functions are given by

B(y) = −(y − z)2

2
, C(g) =

cg2

2
, D(G) =

dG2

2
, (14)

where c and d are positive parameters and z is a bliss point for energy consumption. These

functional forms are borrowed from Harstad (2016), except for C(g) which is absent in his

analysis. The quadratic specifications allow us to compute the two benchmark solutions easily.

For example, the steady state values in the BAU-equilibrium are given by

GBAU =
(1− βρ)k

(1− γ)c
,

RBAU = z − (1− βρ)(1 + c)k

c
,
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whereas the corresponding values in the first-best solution are

GFB =
(1− βγ)(1− βρ)k

d+ (1− γ)(1− βγ)c
,

RFB = z − [d+ (1− γ)(1− βγ)(1 + c)](1− βρ)k

d+ (1− γ)(1− βγ)c
.

As has been mentioned before, it holds that GFB < GBAU and RBAU < RFB.

Example 1 Assume the functional forms stated in (14) with the following parameters: k = 1,

z = 1, β = 0.96, ρ = 0.9, γ = 0.9, c = 1, and d = 0.1. Under these assumptions, the steady

state in the BAU-equilibrium is given by GBAU = 1.36 and RBAU = 0.728, whereas the steady

state in the first-best solution is GFB = 0.1628 and RFB = 0.8477.

4 Delegation to a benevolent authority

In this section we turn to the main investigation of this paper by introducing a supranational

environmental authority (SEA), to which all countries i ∈ [0, 1] delegate their decisions on the

emission levels (gi,t)
+∞
t=0 . The countries keep control over their investments (ri,t)

+∞
t=0 and seek to

maximize their individual welfare given in (3). We distinguish between the case where the SEA

has commitment power so that it can announce and implement the entire family of sequences

{(gi,t)+∞
t=0 | i ∈ [0, 1]} at the outset of period 0, and the case where it lacks such commitment

power. In both cases we assume that the SEA is benevolent in the sense that it seeks to

maximize aggregate welfare as given in (4).6

4.1 Commitment

In this subsection we assume that the SEA has commitment power and announces the emission

levels for all countries and all periods at the outset of period 0. The countries act as followers.

We start by determining the best response of an arbitrary country i ∈ [0, 1] to the fixed family

of sequences {(gj,t)+∞
t=0 | j ∈ [0, 1]}.

6We shall drop the assumption of benevolence in section 5.
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Lemma 3 Let (Gt)
+∞
t=0 and {(gj,t)+∞

t=0 | j ∈ [0, 1]} be given sequences such that condition (2)

holds. For every i ∈ [0, 1], country i’s best response is characterized by

B′(Ri,t + gi,t) = (1− βρ)k for all t ≥ 0. (15)

Using the above characterization of best responses, we can define an equilibrium under commit-

ment. Our first main result demonstrates that such an equilibrium coincides with the first-best

solution.

Definition 3 An equilibrium under commitment consists of a global sequence (Gt)
+∞
t=0 and

individual sequences {(Ri,t, gi,t, ri,t)
+∞
t=0 | i ∈ [0, 1]} which maximize (4) subject to (1), (2), and

(15).

Theorem 1 An equilibrium under commitment coincides with the first-best solution.

The above result follows from the observation that in the case where the authority commits to

any family of sequences of emissions {(gj,t)+∞
t=0 | j ∈ [0, 1]}, the countries choose corresponding

efficient investment levels. This is reflected by the coincidence of equations (11) and (15).

On a more intuitive level, one can say that the negative external effect operates solely via

the emissions and the resulting stock of greenhouse gases and, hence, by setting the emission

levels at the socially optimal values, the first-best solution can be achieved. The problem with

this solution, however, is that it is not dynamically consistent. By announcing low emission

levels for the future, the SEA provides the correct incentives for the countries to invest into

clean technologies. But once these technologies are implemented, the authority itself faces an

incentive to allow higher emission levels in order to provide more energy consumption to the

countries. If the SEA lacks full commitment power, it will therefore not want to stick to its

announced policy. We now turn to the analysis of this case.
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4.2 Discretion

Consider the situation where the SEA cannot make a binding commitment. To formalize this

idea, we assume that the authority makes a consistent plan in the sense of Strotz (1955-1956).7

This means that the SEA consists of an infinite sequence of selves, one for each period. In

every period t the current self of the SEA decides on {gi,t | i ∈ [0, 1]} only. But in doing this, it

correctly anticipates how its choice of the emission rates affects the investment behavior of the

individual countries and the future emission levels determined by later selves of the authority.

Formally, the different selves of the authority play a game among each other. We solve this

game for a stationary Markov-perfect Nash equilibrium.8

A stationary Markov-perfect equilibrium can be defined most easily in recursive form using

recursive notation. Consider any given period t. Variables dated t will be written without a

subscript, e.g., G, Ri, gi, and ri. Variables of the preceding period t − 1 will be denoted by

the subscript −, e.g., G−, Ri,−, gi,−, and ri,−. At the start of a given period the aggregate

states G− and R̃− = {Ri,− | i ∈ [0, 1]} are known to all countries and to the SEA, where R̃−

is interpreted as the distribution of technology levels.9 As for the timing, we follow Harstad

(2012) and assume that every time period is split into two stages. In the first stage all countries

invest into clean technologies (investment stage) and in the second stage the authority sets the

emission levels and the countries consume (emission stage). Note that the emission stage begins

once the investment costs are sunk and that the SEA knows the countries’ technology stocks

at the end of the investment stage, R̃ = {Ri | i ∈ [0, 1]}, when it has to decide on the emission

levels {gi | i ∈ [0, 1]}.
7This approach is often called the sophisticated solution according to the multiple-selves model; see, e.g.,

chapter 6 in Sorger (2015) for a recent textbook presentation.
8Here, stationarity is used synonymously to symmetry: it means that every self of the SEA uses the same

strategy. Markov-perfection is ensured by allowing only strategies that depend solely on the payoff-relevant

state variables and by using backward induction for defining the equilibrium.
9By referring to these variables as ‘aggregate states’ we indicate that no individual country can affect them

by unilateral actions. In particular, country i can decide on its own technology level Ri, but it cannot alter the

entire distribution R̃. It will turn out that the equilibrium strategies are independent of the distribution R̃−

and that the equilibrium value functions depend on R̃− only via the aggregate (or, equivalently, the average)

technology level
∫ 1

0
Ri,− di; see lemma 4 below.
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We restrict attention to those stationary Markovian strategies g of the SEA according to which

the authority’s choice of the emission level for country i depends only on the aggregate state

variables G− and R̃ as well as on country i’s own technology stock Ri. We write such a strategy

in the form gi = g(G−, R̃, Ri).
10

Before we can define an equilibrium under discretion, we need to explain some preliminary

considerations. To begin with, we need to find out how the countries react to a given strategy

g of the SEA. Suppose therefore that all selves of the SEA play the strategy g. It follows from

(2) that the stock of greenhouse gases evolves according to

G = G(G−, R̃), (16)

where

G(G−, R̃) =

∫ 1

0

g(G−, R̃, Ri) di+ γG−. (17)

Now suppose that we are at the beginning of period t and consider an arbitrary country i that

has technology stock Ri,t−1. Since country i is infinitesimally small, it takes (Gs)
+∞
s=t−1 and

(R̃s)
+∞
s=t−1 as given and maximizes

+∞∑
s=t

βs−t
[
B(Ri,s + g(Gs−1, R̃s, Ri,s))− C(g(Gs−1, R̃s, Ri,s))−D(Gs)− k(Ri,s − ρRi,s−1)

]
= kρRi,t−1

+
+∞∑
s=t

βs−t
[
B(Ri,s + g(Gs−1, R̃s, Ri,s))− C(g(Gs−1, R̃s, Ri,s))−D(Gs)− (1− βρ)kRi,s

]
by choosing (Ri,s)

+∞
s=t . This is equivalent to setting Ri,t = R(Gt−1, R̃t), where

R(G−, R̃) = argmax{B(x+ g(G−, R̃, x))− C(g(G−, R̃, x))− (1− βρ)kx |x ∈ R}. (18)

We proceed under the assumption that the maximization problem in (18) has a unique solution,

i.e., that R is a single-valued function.11 This implies in particular that, independently of the

10In general, stationary Markovian strategies would be of the form gi = g(G−, R̃, i). An example of a strategy

that is ruled out in our analysis is gi = aG−+ bRi/2, where a and b are constants. In this example, the emission

of country i depends explicitly on the stock of technology available in country j = i/2.
11Whether the problem in (18) has a solution and, if so, whether this solution is unique depends among other

things on the properties of the strategy g. In the linear-quadratic example from section 3.3 the strategy g

is a linear function and concavity of B together with strict convexity of C implies that there exists a unique

solution.
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form of the distribution R̃−, all countries i ∈ [0, 1] choose the same technology level R(G−, R̃)

so that the distribution R̃ is degenerate. This feature is due to the linear investment cost. The

distribution R̃ can of course depend on G− and we therefore write

R̃ = R(G−). (19)

By definition, the mapping R must satisfy

R(G−)i = R(G−,R(G−)) for all i ∈ [0, 1]. (20)

We assume that R(G−) is the unique fixed point of equation (20), which is indeed true in the

linear-quadratic case. Equations (16) and (19) together form the law of motion of the aggregate

states G and R̃ corresponding to the given strategy g. One can combine these two equations

to obtain

G = G0(G−) (21)

where

G0(G−) = G(G−,R(G−)). (22)

This shows that the dynamics of the greenhouse gas stock can be separated from the accumu-

lation of technology.

Now that we have determined the reaction of the countries to a fixed strategy g and have

described the induced dynamics of the aggregate state variables, we can evaluate the strategy g

according to the SEA’s welfare measure. Let us denote by V (G−, R̃−) the value of the strategy

g for a self of the authority that takes over control in a situation when the aggregate states are

given by G− and R̃−. The value function must satisfy the recursive equation

V (G−, R̃−) =

∫ 1

0

{
B(R(G−)i + g(G−,R(G−),R(G−)i))− C(g(G−,R(G−),R(G−)i))

−D(G0(G−))− k[R(G−)i − ρRi,−]
}
di+ βV (G0(G−),R(G−)).

It remains to determine the equilibrium policy function g. To this end, we have to find out how

off-equilibrium choices of the emission levels {gi | i ∈ [0, 1]} affect the countries’ investments

and future technology stocks under the assumption that all future emission levels are chosen

according to the equilibrium policy function g. Consider a self that takes over control when
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the aggregate states are G− and R̃−. This self rationally anticipates that all its successors play

the equilibrium strategy g. Since the countries make their investment decisions before the SEA

sets the emission levels, the self in charge can react to off-equilibrium choices of the countries’

technology stocks. Thus the self under consideration needs to find the optimal emission levels

{gi | i ∈ [0, 1]} for given aggregate states G− and R̃. The individual countries, on the other

hand, move before the SEA and, hence, their only rational expectation about the authority’s

behavior is the SEA’s equilibrium strategy. Formally, even under off-equilibrium behavior of the

authority, every country chooses its technology level such that (18)-(20) hold. To summarize,

the self under consideration chooses the emission levels {gi | i ∈ [0, 1]} so as to maximize∫ 1

0

[B(Ri + gi)− C(gi)−D(G)− k(Ri − ρRi,−)] di+ βV (G, R̃)

subject to (2). Dropping terms that do not depend on the emission levels and using (2) to

eliminate G, it follows that the mapping i 7→ gi = g(G−, R̃, Ri) maximizes the functional∫ 1

0

[
B(Ri + gi)− C(gi)−D

(∫ 1

0

gj dj + γG−

)]
di+ βV

(∫ 1

0

gj dj + γG−, R̃

)
. (23)

We are finally ready to define an equilibrium under discretion.

Definition 4 An equilibrium under discretion consists of functions (g,R,G,G0,R, V ) such

that conditions (17)-(18), (20), and (22)-(23) hold and such that, for all G− and all R̃, the

mapping i 7→ gi = g(G−, R̃, Ri) maximizes (23).

It is easy to verify that the first-best solution does not qualify as an equilibrium under discretion,

as stated in the following theorem.

Theorem 2 The first-best solution cannot be implemented as an equilibrium under discretion.

The separability and linearity assumptions made in section 2 imply a number of useful properties

of an equilibrium under discretion which we state in the following lemma. To this end, we denote

by R̄− the average technology stock of the distribution R̃−, that is, R̄− =
∫ 1

0
Ri,− di.

Lemma 4 (a) The authority’s equilibrium value function V is of the form

V (G−, R̃−) = V0(G−) + kρR̄−.
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(b) The equilibrium strategy g is of the form

g(G−, R̃, Ri) = g0(G−, Ri).

(c) The function R is of the form

R(G−, R̃) = R0(G−)

and R(G−)i = R0(G−) holds for all i ∈ [0, 1].

(d) The functions V0, g0, and R0 from parts (a)-(c) satisfy

V0(G−) = B(R0(G−) + g0(G−,R0(G−)))− C(g0(G−,R0(G−))) (24)

−D(G0(G−))− (1− βρ)kR0(G−) + βV0(G0(G−))

and

B′(Ri + g0(G−, Ri))− C ′(g0(G−, Ri)) = D′ (G0(G−))− βV ′
0 (G0(G−)) (25)

for all G− and all Ri.

An interesting property of the equilibrium emission strategy g0 is that its sensitivity with

respect to the technology level Ri is independent of how the stock of greenhouse gases affects

country i’s utility (i.e., it is independent of the form of the cost function D) whereas it does

depend on how the local emissions by country i impact its own welfare (i.e., it depends on the

form of the cost function C). This observation, which will become relevant in section 5 below,

is formalized in the following lemma.

Lemma 5 Suppose that the strategy g0 is differentiable. Then it holds that ∂g0(G−, Ri)/(∂Ri) ∈

(−1, 0) and that this partial derivative is independent of the form of the function D.

4.3 The linear-quadratic case

In this subsection we determine an equilibrium under discretion in the linear-quadratic envi-

ronment introduced in section 3.3.
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Theorem 3 Consider the linear-quadratic specification from section 3.3. There exists an equi-

librium under discretion in which the policy functions take the forms

g0(G−, Ri) = h1 + hGG− + hRRi (26)

and

R0(G−) = RBAU. (27)

The coefficients h1, hG, and hR are given by

h1 =
(1 + c)(z + βvG) + (d− βvGG)R

BAU

(1 + c)(1 + c+ d− βvGG)
, (28)

hG = − (d− βvGG)γ

1 + c+ d− βvGG

, (29)

hR = − 1

1 + c
, (30)

where

vGG =
1 + c+ d− β(1 + c)γ2 −

√
[1 + c+ d− β(1 + c)γ2]2 + 4(1 + c)βdγ2

2β
, (31)

vG =
γ(d− βvGG)R

BAU

(1 + c)(1− βγ) + d− βvGG

. (32)

In this equilibrium, the stock of greenhouse gases converges monotonically to

GDIS =
(1 + c)(1− βγ)(1− βρ)k

c[d+ (1− γ)(1− βγ)(1 + c)]
. (33)

The equilibrium described in the above theorem has a number of interesting properties that we

would like to point out. First of all, all countries choose the technology stock RBAU in period

0 and maintain that stock forever. This shows that, if the SEA lacks commitment power, it is

unable to induce the countries to invest more than in the BAU-equilibrium. As can be seen

from the proof of the theorem, this property is due to the fact that the equilibrium strategy g0

of the authority has the reaction coefficient hR = −1/(1 + c) as stated in (30). This, in turn,

has the consequence that the countries play the constant investment strategy R0 described in

(27). Given that in equilibrium the countries’ investments are not responsive to any changes in

the stock of greenhouse gases, the SEA can improve welfare only by curtailing emission rates
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relative to business as usual. As shown in the theorem, this results in the long-run stock of

greenhouse gases to be equal to GDIS stated in (33). It is easy to see that

GFB < GDIS < GBAU

holds whenever d is strictly positive.12

Example 2 Assume the same functional forms and parameters as in example 1. The steady

state in a discretionary equilibrium with a benevolent SEA that has commitment power co-

incides with the first-best steady state, GFB = 0.1628 and RFB = 0.8477. By contrast, the

steady state in the equilibrium where emission decisions are delegated to a discretionary and

benevolent SEA is given by GDIS = 0.2908 and RDIS = 0.7280.

Figure 1 expands on example 2 by plotting the welfare functions under business as usual,

commitment, and discretion over the domain G− ∈ [0, 0.45].13 As can be seen, delegation to

a benevolent SEA noticeably improves welfare relative to the BAU equilibrium even when the

authority lacks commitment.

5 Delegation to a non-benevolent authority

The delegation of emission control to an SEA can improve aggregate welfare relative to business

as usual because the authority can internalize the external spillover effects of greenhouse gas

emissions. However, as we have seen in theorem 3, the authority cannot accelerate the conver-

sion from fossil fuel based-energy production to emission free technologies if it lacks commitment

power. As will be shown in the present section, the dynamic inconsistency problem at the root

of this result can be mitigated by endowing the SEA with an objective functional that differs

from aggregate welfare (4). The idea of optimal delegation is borrowed from the literature on

monetary policy, where dynamic inconsistency problems can be extenuated by augmenting the

central bank’s mandate by strong inflation aversion, as in Rogoff (1985), or by a desire for

policy inertia, as in Woodford (2003).

12If d would be equal to 0, the steady state values GBAU, GFB, and GDIS would coincide.
13This choice of the domain is motivated by the property that the steady states under commitment and under

discretion lie well within this interval.
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Figure 1: Welfare comparisons

5.1 Equilibrium definition

Let us for example assume that the objective functional of the SEA is of the form

+∞∑
t=0

βt

∫ 1

0

Û(Gt, Ri,t, gi,t, ri,t) di,

where

Û(Gt, Ri,t, gi,t, ri,t) = B(Ri,t + gi,t)− kri,t − Ĉ(gi,t)− D̂(Gt)

and where Ĉ and D̂ are strictly concave cost functions that may be different from the functions

C and D describing the preferences of the countries. Of course, one could consider much more

general mandates for the authority but the proposed form will be sufficient to make our point.

We are particularly interested in the question of whether the SEA should attach more weight

to the cost of local emissions gi,t or to the cost of the global stock of greenhouse gases Gt.

An equilibrium under discretion in this situation can be defined along the same lines as in

the previous section. The only difference to the previous arguments is that one needs to take
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into account that the SEA evaluates its policy using the functions Ĉ and D̂. Analogously to

section 4.2 we can therefore obtain the following equilibrium conditions.14

Definition 5 An equilibrium under discretion consists of functions (g0,R0,G,G0,R, V̂0) such

that the following conditions hold:

G(G−, R̃) =

∫ 1

0

g0(G−, Ri) di+ γG−, (34)

R0(G−) = argmax{B(x+ g0(G−, x))− C(g0(G−, x))− (1− βρ)kx |x ∈ R}, (35)

R(G−)i = R0(G−) for all i, (36)

G0(G−) = G(G−,R(G−)), (37)

V̂0(G−) = B(R0(G−) + g0(G−,R0(G−)))− Ĉ(g0(G−,R0(G−)))

−D̂(G0(G−))− (1− βρ)kR0(G−) + βV̂0(G0(G−)), (38)

B′(Ri + g0(G−, Ri))− Ĉ ′(g0(G−, Ri)) = D̂′(G0(G−))− βV̂ ′
0(G0(G−)). (39)

Note that the function V̂ defined by V̂ (G−, R̃−) = V̂0(G−) + kρR̄− is the equilibrium value

function of the authority. Aggregate welfare according to (4) is given by V (G−, R̃−) = V0(G−)+

kρR̄−, where V0 solves the recursive equation

V0(G−) = B(R0(G−) + g0(G−,R0(G−)))− C(g0(G−,R0(G−)))

−D(G0(G−))− (1− βρ)kR0(G−) + βV0(G0(G−)). (40)

We would like to find out how the SEA’s cost functions Ĉ and D̂ must be chosen so that aggre-

gate welfare is improved relative to the equilibrium under a benevolent SEA. In the following

subsection, we derive a few analytical results for the linear-quadratic example from section 3.3.

5.2 The linear-quadratic case

We consider the same specifications as introduced in section 3.3 and assume furthermore that

Ĉ(g) =
ĉg2

2
, D̂(G) =

d̂G2

2
,

14Note, in particular, that a result analogous to lemma 4 holds also in the present situation.
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where ĉ and d̂ are positive parameters.

On first thought, one may think that the value of ĉ is of subordinate importance but that

the authority should be given a high value of d̂. After all, the external effect operates via the

global stock of greenhouse gases, and it is tempting to suggest that this stock must be highly

penalized. The following analysis, however, proves that this conjecture is wrong and shows that

the parameter ĉ of the cost of local emissions plays the key role.

We start by deriving an equilibrium under discretion in the case where ĉ = c holds and where

d̂ is an arbitrary positive number.

Lemma 6 Assume that ĉ = c and d̂ > 0. There exists an equilibrium under discretion in which

the functions g0 and V̂0 have the forms

g0(G−, Ri) = ĥ1 + ĥGG− + ĥRRi, (41)

and

V̂0(G−) = v̂1 + v̂GG− +
v̂GG

2
(G−)

2 (42)

and in which (27) holds. The coefficients ĥ1, ĥG, ĥR, v̂1, v̂G, and v̂GG are described by the same

formulas as the corresponding coefficients h1, hG, hR, v1, vG, and vGG in theorem 3 except that

the parameter d is replaced by d̂ wherever it appears. The stock of greenhouse gases converges

monotonically to

ĜDIS =
(1− βγ)(1− βρ)(1 + c)k

c[d̂+ (1− γ)(1− βγ)(1 + c)]
. (43)

It will be convenient to refer to the pair (ĉ, d̂) as the type of the SEA. The benevolent authority,

for example, is of type (c, d). The following theorem demonstrates that it is not possible to

reduce the welfare loss caused by discretionary behavior by variations of d̂ alone (i.e., by keeping

ĉ equal to c).

Theorem 4 Let d̂ > 0 be arbitrarily given. Aggregate welfare in the discretionary equilibrium

with a non-benevolent SEA of type (c, d̂) is smaller than or equal to aggregate welfare in the

discretionary equilibrium with a benevolent SEA of type (c, d) (which is described in theorem 3).
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The intuitive explanation for this result is that it is not the externality per se that causes the

discretionary equilibrium to have poor welfare, but the dynamic inconsistency. The dynamic

inconsistency, in turn, can only be mitigated by changing the incentives for the countries to

invest in green technologies. As we have seen in lemma 5, these incentives are independent of

the cost function D (or D̂, respectively) but do depend on C (or Ĉ, respectively). What, then,

is the role of the parameter d̂ in the present example? It is obvious from equation (43) that by

varying d̂ between 0 and +∞ one can generate any steady state greenhouse gas stock between

0 and

GBAU =
(1− βρ)k

(1− γ)c
.

For example, by choosing d̂ = (1 + c)d/c > d one obtains the first-best steady state GFB. One

could also try to find that value of d̂ which maximizes per-period welfare in steady state. To

this end, recall from lemma 6 that independently of the value of d̂ it holds in the discretionary

equilibrium for all i ∈ [0, 1] and all t ≥ 0 that Ri,t = RBAU. Furthermore, in steady state we

must have gi,t = (1− γ)G. When one maximizes per-period welfare across those steady states

for which Ri,t = RBAU holds, one must therefore choose G in such a way that

B(RBAU + (1− γ)G)− C((1− γ)G)−D(G)

is maximized. One might call this a restricted Golden Rule, where the word ‘restricted’ indicates

that Ri,t = RBAU is imposed. Solving the first-order condition for this problem yields

G =
(1− γ)(z −RBAU)

d+ (1− γ)2(1 + c)
,

which can be achieved by setting d̂ = (1− βγ)d/(1− γ) > d.

To summarize, by fixing the value of ĉ at c and varying the cost parameter d̂ only, one can

steer the stock of greenhouse gases towards its first-best steady state or other desirable values

(like the Golden Rule stock) but one cannot achieve higher welfare than the benevolent SEA

would implement. We must therefore also consider variations of the cost parameter for local

emissions ĉ. Whereas the general procedure to compute the equilibrium remains the same as

in lemma 6, the algebra becomes more cumbersome. In particular, it is no longer the case that

(27) holds. We therefore relegate the relevant formulas to the appendix and proceed with an

illustrative example.
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Example 3 Assume the same parameters as in example 1. Under this assumption, the optimal

type of the discretionary SEA, i.e., the pair of parameters (ĉ, d̂) that maximizes aggregate

welfare over the domain G− ∈ [0, 0.45] is given by ĉ = 10.48 and d̂ = 0. The steady state in a

discretionary equilibrium with an authority of type (ĉ, d̂) = (10.48, 0) is given by ĜDIS = 0.1409

and R̂DIS = 0.8382.

Surprisingly, optimal delegation under discretion requires the authority to place a large weight

on local emission costs and zero weight on the global costs of climate change. While this result

may seem counter-intuitive at first, the underlying mechanism is readily seen. Preferences that

put a large weight on local pollution costs endow the SEA with an incentive to punish countries

that underinvest in green technologies, which in turn alleviates the SEA’s time inconsistency

problem. A large weight on local pollution costs, in turn, makes it optimal to put relatively

little weight on global pollution costs in order not to distort the optimal trade-off between

green and dirty energy consumption too much. Delegation of emission policies to an ‘optimally

designed’ discretionary SEA eliminates almost the entire welfare loss resulting from lack of

commitment, as is visualized in figure 2.

Example 4 Assume the same parameters as in example 1. Assume furthermore that the initial

state is given by the steady state of the BAU-equilibrium, G− = 1.36 and R− = 0.728. Under

these assumptions, optimal delegation under discretion requires an authority with type (ĉ, d̂) =

(8.4010, 0.44131). The resulting steady state is given by ĜDIS = 0.0401 and R̂DIS = 0.8442.

By contrast, if the initial state is the first-best steady state, G− = 0.1628 and R− = 0.8477,

the optimal type of the authority is (ĉ, d̂) = (9.7927, 0) and the resulting steady state features

ĜDIS = 0.1515 and R̂DIS = 0.8365.

Example 4 illustrates that the optimal type of the SEA (i.e., the optimal choice of preference

parameters ĉ and d̂) in our model depends on the initial state (G−, R−). For any given state,

the optimal preference parameters are given by

argminĉ,d̂

∣∣∣V FB(G−, R−)− V DIS(G−, R− | ĉ, d̂)
∣∣∣ . (44)

Figure 3 displays the optimal type as a function of G−, while holding R− constant. It shows

that when G− is not too large, the optimal choice is to set ĉ > c and d̂ = 0, in line with our
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Figure 2: Welfare comparison: commitment versus discretion

Note: κc = ĉ/c and κd = d̂/d.

discussion of example 3. If, however, the initial stock of greenhouse gases is very large relative

to the steady state, then it is optimal to put a positive weight on the global costs of climate

change, d̂ > 0.

The above finding points to a further complication of the optimal specification of an SEA’s

mandate. If the countries establish an SEA with optimal type (ĉ, d̂) at time 0, when the stock

of greenhouse gases is equal to G−1, they will face an incentive to revise this mandate when

the greenhouse gas concentration changes in the course of time. One can think of two possible

ways to approach this situation. One possibility is to allow for state-dependent mandates, that

is, for SEA types (ĉ(G−), D̂(G−)). A SEA which is endowed with such a mandate would of

course anticipate that it has to use different evaluations of the respective local and global costs

if the greenhouse gas concentration changes. The strategies derived above would therefore no

longer be an equilibrium. Another possible approach would be to maintain the assumption of

state-independent mandates (ĉ, d̂) but to take the incentives of the countries for a revision of

25



Figure 3: Welfare comparison: commitment versus discretion

Note: κc = ĉ/c and κd = d̂/d.

the mandate into account. In other words, one would have to address yet another dynamic

inconsistency problem, this time one that pertains to the decision over the mandate of the SEA

made by the countries. We further elaborate on this issue in the online appendix.

6 Concluding remarks

Dynamic inconsistency is ubiquitous in economic policy, and environmental policy is no ex-

ception. In the present paper we have pointed out that such a problem would also occur if

a supranational environmental authority were established in order to control the emission of

greenhouse gases in a world consisting of many individual countries. We have used a very

simple and stylized, yet fully dynamic model to make our point. The main result is that the

welfare loss that results from lack of commitment power can be kept very small by endowing

the authority with a mandate to heavily penalize the local costs of emissions and to attach only
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little weight to the cost of the resulting (global) climate change.

Appendix

Proof of lemma 1

Consider an arbitrary country i ∈ [0, 1]. Since this country takes (Gt)
+∞
t=0 as given, one can drop

the additively separated terms −βtD(Gt) from its objective functional (3) and it follows from

(1) that country i maximizes

+∞∑
t=0

βt [B(Ri,t + gi,t)− C(gi,t)− k(Ri,t − ρRi,t−1)]

= kρRi,−1 +
+∞∑
t=0

βt [B(Ri,t + gi,t)− C(gi,t)− (1− βρ)kRi,t]

with respect to (Ri,t, gi,t)
+∞
t=0 . Obviously, this is the case if and only if

B′(Ri,t + gi,t) = C ′(gi,t) = (1− βρ)k (45)

holds for all i ∈ [0, 1] and all t ≥ 0. Since the latter condition does neither explicitly depend

on the country index i nor on time t, we obtain (5)-(6). Finally, by combining (2) and (5) one

obtains (7).

Proof of lemma 2

Using (1) we can rewrite (4) as

+∞∑
t=0

βt

∫ 1

0

[B(Ri,t + gi,t)− C(gi,t)−D(Gt)− k(Ri,t − ρRi,t−1)] di

= kρ

∫ 1

0

Ri,−1 di+
+∞∑
t=0

βt

∫ 1

0

[B(Ri,t + gi,t)− C(gi,t)−D(Gt)− (1− βρ)kRi,t] di.

This expression is maximized with respect to the variables Ri,t for all i ∈ [0, 1] and all t ≥ 0 if

and only if

B′(Ri,t + gi,t) = (1− βρ)k, (46)
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which implies B(Ri,t+gi,t)− (1−βρ)kRi,t = B(A)− (1−βρ)k(A−gi,t), where A = (B′)−1((1−

βρ)k). It follows therefore that the family of sequences {(gi,t)+∞
t=0 | i ∈ [0, 1]} has to be chosen

so as to maximize
+∞∑
t=0

βt

∫ 1

0

[(1− βρ)kgi,t − C(gi,t)−D(Gt)] di (47)

subject to (2). Since the emission rates gi,t enter the constraint (2) only via the integral
∫ 1

0
gi,t di

and since the cost function C is strictly convex, it follows that for every fixed t ≥ 0 all countries’

emission levels gi,t must be equal. Denoting the common value by gt it follows from (46) that

(9)-(11) hold. The Lagrangian function of the optimization problem is therefore

L =
+∞∑
t=0

βt {(1− βρ)kgt − C(gt)−D(Gt) + λt[gt + γGt−1 −Gt]} ,

where λt denotes the Lagrange multiplier corresponding to constraint (2). Writing down the

necessary and sufficient first-order conditions plus transversality condition and eliminating the

Lagrange multipliers from these conditions yields (12)-(13).

Proof of lemma 3

Given (Gt)
+∞
t=0 and {(gj,t)+∞

t=0 | j ∈ [0, 1]}, the maximization of (3) with respect to (Ri,t)
+∞
t=0 is

equivalent to the maximization of

+∞∑
t=0

βt [B(Ri,t + gi,t)− k(Ri,t − ρRi,t−1)] = kρRi,−1 +
+∞∑
t=0

βt[B(Ri,t + gi,t)− (1− βρ)kRi,t]

with respect to (Ri,t)
+∞
t=0 . Obviously, the latter expression is maximized if and only if (15) is

satisfied.

Proof of theorem 1

Condition (15) coincides with condition (46). Using the same arguments as in the proof of

lemma 2 it can be seen that the authority’s optimization problem is equivalent to the max-

imization of (47) subject to (2). Since this is the same problem that a social planner would

solve, the proof of the theorem is complete.
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Proof of theorem 2

The first-order condition associated with problem (18) requires that in any equilibrium under

discretion it holds for all i ∈ [0, 1] that

0 = B′(Ri + g(G−, R̃, Ri))− (1− βρ)k

+
[
B′(Ri + g(G−, R̃, Ri))− C ′(g(G−, R̃, Ri))

] ∂g(G−, R̃, Ri)

Ri

. (48)

Now suppose that the first-best solution is an equilibrium under discretion. Combining the

above condition with (11) one obtains

0 =
[
B′(Ri + g(G−, R̃, Ri))− C ′(g(G−, R̃, Ri))

] ∂g(G−, R̃, Ri)

Ri

.

We claim that this cannot be the case. Suppose first that ∂g(G−, R̃, Ri)/Ri = 0. In this

case, the authority’s equilibrium policy would assign the same emission level to all countries

independent of their technology level Ri, that is, there would exist an emission level g such

that the optimal solution of problem (23) satisfies gi = g for all i ∈ [0, 1]. Holding the total

amount of emissions
∫ 1

0
gj dj constant at the optimal level g, a reallocation of emission rights

from countries with larger technology stocks to those with smaller ones would improve world

welfare because B is concave. Formally, this can be seen from the first-order condition for the

maximization of (23) subject to the constraint
∫ 1

0
gj dj = g. As a matter of fact, this condition

is

B′(Ri + g)− C ′(g) + λ = 0,

where λ is the Lagrange multiplier of the constraint. Obviously, this equation cannot hold for

all i ∈ [0, 1] if there exist countries with different technology levels.

Now assume that B′(Ri + g(G−, R̃, Ri))−C ′(g(G−, R̃, Ri)) = 0 is satisfied along the first-best

equilibrium path. Then it follows from equations (11)-(12) that D′(Gt) = 0 holds along this

path, which cannot be true as D is a strictly convex function. This completes the proof.

Proof of lemma 4

The result in (a) follows immediately from equation (23). Using the result from part (a), the

result in (b) follows easily from equation (23) and the result in (c) follows from (18) and (20).
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Due to the results in (a) and (b), equation (23) simplifies to (24). A necessary and sufficient

first-order condition for the maximization of (23) with respect to {gi | i ∈ [0, 1]} is

B′(Ri + g0(G−, Ri))− C ′(g0(G−, Ri))

= D′
(∫ 1

0

g0(G−, Rj) dj + γG−

)
− βV ′

0

(∫ 1

0

g0(G−, Rj) dj + γG−

)
for all i ∈ [0, 1], where we have utilized the results from parts (a) and (b). Applying part (b)

once more and combining it with (17), (19), and (22) we obtain (25).

Proof of lemma 5

Differentiating equation (25) with respect to Ri it follows that

B′′(Ri + g0(G−, Ri))[1 + ∂g0(G−, Ri)/∂Ri] = C ′′(g0(G−, Ri))∂g0(G−, Ri)/∂Ri,

which yields
∂g0(G−, Ri)

∂Ri

=
B′′(Ri + g0(G−, Ri))

C ′′(g0(G−, Ri))−B′′(Ri + g0(G−, Ri))
.

Since B is concave and C is strictly convex, the above formula proves the first claim. Since the

above formula does not involve the function D, the second claim holds as well.

Proof of lemma 6

Starting from the conjectures stated in (41)-(42) one can proceed analogously to the proof of

theorem 3 to find that

g0(G−, Ri) =
z −Ri − d̂G0(G−) + β[v̂G + v̂GGG0(G−)]

1 + c
,

ĥR = − 1

1 + c
,

R0(G−) = RBAU,

G0(G−) = ĥ1 + (ĥG + γ)G− − RBAU

1 + c
.

It is not difficult to see that there is no structural difference between the situation analyzed in

theorem 3 and the present case. That is, all we need to do is replace the parameter d wherever

it appears by d̂. This completes the proof.
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Proof of theorem 3

Due to the linear-quadratic structure of the problem, we guess that the equilibrium strategy g

is linear and that the equilibrium value function V is quadratic in G−. According to lemma 4

this means that (26) and

V0(G−) = v1 + vGG− +
vGG

2
(G−)

2

must hold, where h1, hG, hR, v1, vG, and vGG are undetermined coefficients. Solving equation

(25) for g0(G−, Ri) yields

g0(G−, Ri) =
z −Ri − dG0(G−) + β[vG + vGG G0(G−)]

1 + c
, (49)

which proves (30). Using (30) it is straightforward to solve (18) and we obtain

R0(G−) = z − 1 + c

c
(1− βρ)k = RBAU,

which proves (27). Condition (20) implies that the function R is constant as well. Its constant

value is the degenerate distribution with

R(G−)i = RBAU (50)

for all i ∈ [0, 1]. From (17) and (26) we obtain

G(G−, R̃) = h1 + (hG + γ)G− − R̄

1 + c

and from (22) and (50) it follows therefore that

G0(G−) = h1 + (hG + γ)G− − RBAU

1 + c
. (51)

Substituting this into (49) and equating the coefficients of the powers of G− on both sides yields

two linear equations for h1 and hG. These equations have a solution if and only if

vGG ̸= 1 + c+ d

β
. (52)

If (52) holds, the unique solution is given by (28)-(29).
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It remains to determine the coefficients v1, vG, and vGG. To this end, we evaluate (24). Using

the above results, this equation can be written as

v1 + vGG− +
vGG

2
(G−)

2 (53)

= −1

2

(
h1 + hGG− +

cRBAU

1 + c

)2

− c

2

(
h1 + hGG− − RBAU

1 + c

)2

−d

2

[
h1 + (hG + γ)G− − RBAU

1 + c

]2
− (1− βρ)kRBAU

+β

{
v1 + vG

[
h1 + (hG + γ)G− − RBAU

1 + c

]
+

vGG

2

[
h1 + (hG + γ)G− − RBAU

1 + c

]2}
.

Equating the coefficients of G− on both sides of equation (53) and replacing h1 and hG by the

values from (28)-(29) one obtains (32). Equating the coefficients of G2
− on both sides of (53)

yields

vGG = −(1 + c)h2
G + d(hG + γ)2

1− β(hG + γ)2
.

Substituting for hG from (29) and noting (52), it follows that

βv2GG − [1 + c+ d− β(1 + c)γ2]vGG − (1 + c)dγ2 = 0.

This quadratic equation has one negative and one positive root. Since the equilibrium value

function must be concave, we consider only the negative root, which is given by (31). Since

vGG is negative, condition (52) is trivially satisfied.

Next, we compute the steady state values GDIS, RDIS, and gDIS that correspond to the above

equilibrium. We already know that RDIS = RBAU. Using the fact that R0 is a constant

function and that ∂g0(G−, Ri)/(∂G−) = hG and ∂G0(G−)/(∂G−) = hG+γ, it follows from (24)

by differentiating and evaluating at the steady state that

V ′
0(G

DIS) = [B′(RBAU + gDIS)− C ′(gDIS)]hG − [D′(GDIS)− βV ′
0(G

DIS)](hG + γ).

Furthermore, evaluation of (25) at the steady state leads to

B′(RBAU + gDIS)− C ′(gDIS) = D′(GDIS)− βV ′
0(G

DIS).

Solving the last two equations for V ′
0(G

DIS) and B′(RBAU + gDIS) − C ′(gDIS) one obtains in

particular

B′(RBAU + gDIS)− C ′(gDIS) =
D′(GDIS)

1− βγ
.
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Using the functional forms of B, C, and D as well as gDIS = γGDIS, this equation can be written

as

−RBAU − (1− γ)(1 + c)GDIS + z =
dGDIS

1− βγ
,

from which we obtain (33).

Finally, it has to be shown that the greenhouse gas stock converges monotonically to GDIS.

Because of (21) and (51) it is sufficient to verify that 0 < hG + γ < 1 holds. Using (29) we

obtain

hG + γ =
γ(1 + c)

1 + c+ d− βvGG

.

It follows immediately from this expression, from γ < 1, and from vGG < 0 that 0 < hG+γ < 1

is satisfied. This completes the proof of the theorem.

Proof of theorem 4

We know from lemma 6 that ĉ = c implies that R0(G−) = RBAU. This result is independent

of the value of d̂. In order to prove theorem 4 it is therefore sufficient to show that the

maximization of aggregate welfare (4) subject to (2) and Ri,t = RBAU for all i ∈ [0, 1] and

all t ≥ 0 leads to the same emission levels as the equilibrium under a benevolent authority

described in theorem 3.

The maximization of (4) subject to (2) and Ri,t = RBAU for all i ∈ [0, 1] and all t ≥ 0 is

equivalent to the maximization of

+∞∑
t=0

βt

∫ 1

0

[B(RBAU + gi,t)− C(gi,t)−D(Gt)] di

subject to (2). Concavity of B and strict convexity of C imply that gi,t = gt holds for all

i ∈ [0, 1]. The necessary and sufficient first-order optimality conditions are

Gt = gt + γGt−1,

D′(Gt) + C ′(gt)−B′(RBAU + gt) = βγ[C ′(gt+1)−B′(RBAU + gt+1)],

lim
t→+∞

βt[C ′(gt)−B′(RBAU + gt)]Gt = 0.
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Using the specification of the functions B, C, and D, the first two of these conditions can be

rewritten as

βγ(1 + c)Gt+1 − [d+ (1 + βγ2)(1 + c)]Gt + γ(1 + c)Gt−1 = (1− βγ)(RBAU − z).

Using the definition of RBAU it is easy to see that the unique fixed point of this difference

equation is GDIS as defined in (33). The eigenvalues of the difference equation are

λ1,2 =
(1 + βγ2)(1 + c) + d±

√
[(1 + βγ2)(1 + c) + d]2 − 4βγ2(1 + c)2

2βγ(1 + c)
.

One can show that the smaller one of these two eigenvalues coincides with hG + γ where hG is

specified in (29). We also know from the proof of theorem 3 that this value is an element of the

interval (0, 1). Hence, it follows that the optimal state trajectory of the optimization problem

under consideration satisfies

Gt = (hG + γ)Gt−1 + (1− hG − γ)GDIS.

Since this difference equation coincides with the aggregate law of motion Gt = G0(Gt−1) from

theorem 3, the proof of the present theorem is complete.

Formulas for the case ĉ ̸= c

Consider the example from subsection 5.2 with ĉ ̸= c. Equation (39) implies that

g0(G−, Ri) = ĥ1 + ĥGG− + ĥRRi =
z −Ri − d̂G0(G−) + β[v̂G + v̂GGG0(G−)]

1 + ĉ
, (54)

such that

ĥR = − 1

1 + ĉ
.

Equation (34) therefore gives

G(G−, R̃) = ĥ1 + (ĥG + γ)G− − 1

1 + ĉ
R̄. (55)

Solving condition (35) we obtain

R0(G−) =
(1 + ĉ)[ĥ1(c− ĉ)− (1− βρ)k(1 + ĉ) + ĉz]

c+ ĉ2
+

(1 + ĉ)ĥG(c− ĉ)

c+ ĉ2
G−. (56)
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Combining (36), (37), (55), and (56) it follows that

G0(G−) = ĥ1 + (ĥG + γ)G− − 1

1 + ĉ
R0(G−) (57)

=
ĥ1(ĉ+ ĉ2) + (1− βρ)k(1 + ĉ)− ĉz

c+ ĉ2
+

(
γ +

ĉ+ ĉ2

c+ ĉ2
ĥG

)
G−.

Substituting (57) into (54) and comparing the coefficients of G− on both sides, we can solve

for ĥ1 and ĥG in terms of v̂G and v̂GG, which yields

ĥ1 =
(c+ ĉ2)z + d̂[ĉz − (1 + ĉ)(1− βρ)k] + β[(c+ ĉ2)v̂G + (k + ĉk − ĉz)v̂GG]− β2(1 + ĉ)kρv̂GG

(1 + ĉ)[c+ ĉ(ĉ+ d̂− βv̂GG)]
,

ĥG = − (c+ ĉ2)γ(d̂− βv̂GG)

(1 + ĉ)[c+ ĉ(ĉ+ d̂− βv̂GG)]
.

Combining these two results with (56) and (57) we can express R0(G−), g0(G−,R0(G−)), and

G0(G−) in terms of the variable G− and the undetermined coefficients v̂G and v̂GG. If we

substitute these expressions into equation (38) and compare the coefficients of equal powers of

G− on both sides of the equation, we obtain three non-linear equations for the coefficients v̂1,

v̂G, and v̂GG. Once we have solved these equations, we have determined an equilibrium under

discretion, i.e., the authority’s policy function g0 and value function V̂0. One can then solve

equation (40) to determine aggregate welfare in this equilibrium.
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7 Online appendix

In this appendix we assume that the countries decide on the SEA’s mandate in a discre-

tionary fashion, a situation one could call discretionary delegation. At the start of every

time period, the countries jointly choose the mandate (ĉ, d̂) for the current authority. Sub-

sequently they make their individual investment decisions and, finally, the SEA chooses the

emission levels assigned to all countries. To simplify the exposition we restrict attention

to the linear quadratic case.

In the environment under consideration, the mandate given to the authority will be a func-

tion of the stock of greenhouse gases, G−. We refer to this function as a mandate rule and

use the notation (ĉ, d̂) = M(G−).
15 To determine the equilibrium mandate rule we proceed

in three steps. First, we define equilibrium for a given arbitrary mandate rule M , which

allows us to determine the welfare levels of the countries and the authority conditional

on the mandate rule M being in place forever. Second, we determine the optimal current

mandate m = (ĉ, d̂) under the assumption that future mandates are determined by the rule

M . Since the optimal current mandate depends on the current stock of greenhouse gases

G−, this step defines an optimal current mandate rule for any given future mandate rule,

i.e., M̃(G−;M). Finally, we define the equilibrium mandate rule M∗ as the fixed-point

satisfying M̃(G−;M
∗) = M∗(G−).

16

The equilibrium under an arbitrary mandate rule M can be characterized in analogy to

definition 5 so that we do not present further details here. Let us denote the value functions

of the SEA and the countries in this equilibrium by

V̂ (G−, R̃−;M) = V̂0(G−;M) + kρR̄−,

V (G−, R̃−;M) = V0(G−;M) + kρR̄−,

where the notation we use makes explicit that the value functions depend on the mandate

rule in place.

15By taking the limit of a finite horizon economy when the time horizon approaches infinity, it can be shown

that in equilibrium the mandate rule is independent of R̃− .
16Note that the equilibrium mandate rule derived in this way is time-consistent since the countries do not

have an incentive to change the rule today if they perceive that this rule is in place from tomorrow onwards.
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Let us now consider the optimal emission policies by a self of the SEA that is endowed

with the mandate m = (ĉ, d̂) and perceives future mandates to be determined by the rule

M . This self chooses the emission levels {gi | i ∈ [0, 1]} so as to maximize∫ 1

0

[
−1

2
(Ri + gi − z)2 − ĉ

2
g2i −

d̂

2
G2

]
di+ βV̂0(G;M)

subject to (2). Let the solution to this maximization problem be denoted by

gi(G−, Ri;m,M), i ∈ [0, 1]. Given the current mandate m and the policies

gi(G−, Ri;m,M), The countries’ optimal investment decisions can be derived as

R(G−;m,M) = argmaxR{−
1

2
(R+gi(G−, R;m,M)−z)2− c

2
gi(G−, R;m,M)2−(1−βρ)kR}.

Note that, as before, all countries choose the same technology level, independent of their

initial stock Ri,−. Hence all countries will also receive the same emission quota,

g(G−;m,M) = gi(G−,R(G−;m,M);m,M).

Aggregate world welfare, conditional on the current mandate m and the future mandate

rule M , can be expressed as

V0(G−;m,M) + kρR̄− = −1

2
[R(G−;m,M) + g(G−;m,M)− z]2 − c

2
g(G−;m,M)2

−d

2
[g(G−;m,M) + γG−]

2 − k[R(G−;m,M)− ρR̄−]

+βV0(g(G−;m,M) + γG−;M) + βkρR(G−;m,M).

The optimal current mandate rule given the future mandate rule M can thus be computed

as

M̃(G−;M) = argmax
(ĉ,d̂)

V0(G−; (ĉ, d̂),M).

Finally, the equilibrium mandate rule is determined as the fixed-point satisfyingM∗(G−) =

M̃(G−;M
∗).

Example 5 Assume the same parameters as in example 1. The steady state in the equi-

librium with discretionary delegation is given by GDD = 0.1485 and RDD = 0.8342. In this

steady state, the mandate given to the supranational environmental authority is ĉ = 8.0784,

d̂ = 0.
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Figure 4 expands on example 5 by illustrating the mandate rule in the neighborhood of

the steady state. It shows that the optimal mandate rule for ĉ is strongly increasing in the

stock of greenhouse gases G−, whereas the the optimal mandate rule for d̂ is flat at d̂ = 0.

Figure 5 compares world welfare under discretionary delegation (blue dashed line) to the

Figure 4: Discretionary delegation: mandate

Note: optimal mandate rule for ĉ (blue line) and d̂ (green line).

welfare levels in the first best (red line) and under optimal delgation to a non-benevolent

authority with a time-invariant mandate (green line). Quantitatively, differences between

the welfare levels under discretionary delegation and optimal time-invariant delegation are

very small. Interestingly, the welfare functions intersect. This is possible because there

are two mechanisms at work that are responsible for the welfare differences. First, in our

environment with discretionary delegation the mandate is allowed to depend on the state

of the economy. This greater flexibility compared to the case of a constant, time-invariant

mandate leads to welfare gains. Second, the countries cannot commit over time to an op-

timal mandate, which leads to welfare losses relative to the case where countries commit

to a constant, time-invariant mandate. These two opposing effects determine the welfare

differences that we observe in figure 5. Finally, figure 6 shows the adjustment process to
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Figure 5: Discretionary delegation: welfare

Note: World welfare under discretionary delegation (blue dashed line) to the welfare levels in the first best (red

line) and under optimal delgation to a non-benevolent authority with a time-invariant mandate (green line).

the steady state, starting from a relatively large initial stock of greenhouse gases equal

to G− = 0.25. Under commitment and discretionary delegation, greenhouse gases are re-

duced noticeably faster compared to optimal delegation to a non-benevolent, discretionary

authority with a time-invariant mandate. The stock of green technologies adjusts gradu-

ally under commitment and discretionary delegation, whereas it jumps to the steady state

level instantaneously under optimal delegation to a non-benevolent, discretionary author-

ity. The latter property is due to the fact that the optimal mandate prescribes d̂ = 0 in

the region of the state space we consider, which implies in our model that both g and R

are constant and independent of G−.
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Figure 6: Adjustment to the steady state
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