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Abstract

We report on experiments conducted to study the effect of strategic substitutability

and strategic complementarity on the extent of cooperative behavior in indefinitely

repeated two-player games. On average, choices in our experiment do not differ between

the strategic complements and substitutes treatments. However, the aggregate data

mask two countervailing effects. First, the percentage of joint-payoff maximizing choices

is significantly higher under strategic substitutes than under strategic complements. We

argue that this difference is driven by the fact that it is less risky to cooperate under

substitutes than under complements. Second, choices of subjects in pairs that do not

succeed in cooperating at the joint-payoff maximum tend to be lower (i.e. are less

cooperative) under strategic substitutes than under strategic complements. We relate

the latter result to non-equilibrium forces stemming from a combination of heterogeneity

of subjects and differences in the slope of the response function between substitutes and

complements.
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1. Introduction

The study of cooperation and its determinants has attracted a great deal of attention in the

literature. It is well-known, for instance, that in indefinitely repeated games, cooperation

can be supported in equilibrium if the discount factor is sufficiently high (Friedman, 1971).

Not much is known, however, about how, empirically, the strategic environment—whether

actions are strategic complements or substitutes—influences cooperative behavior in indef-

initely repeated games. In this paper we report on experiments conducted to study the

effect of strategic substitutability and strategic complementarity on the extent of cooperative

behavior in indefinitely repeated games.

Strategic complementarity refers to the property that best-response functions slope up-

ward, whereas under strategic substitutability best-response functions slope downward.1 The

complements/substitutes distinction is relevant in several important applications. For exam-

ple, depending on whether firms in oligopolistic markets with homogeneous goods are engaged

in price or quantity competition, actions are strategic complements or substitutes, and vice

versa in markets with complementary goods. Also, depending on whether skills of members

in teams are complementary or substitutable, efforts of team members are strategic comple-

ments or substitutes. Moreover, depending on whether the production of a public good is

characterized by increasing or decreasing returns, contributions are strategic complements or

substitutes. Finally, when spillovers are high or low, R&D competition is characterized by

strategic complementarity or substitutability, respectively.

While real-world interactions in some of these applications might be best approximated

by games with a finite and definite ending, in others decision makers might be uncertain

about the number and the time horizon of interactions, so that these interactions might best

be approximated and modeled by indefinitely repeated games. For the case of a finite and

known number of repetitions, Potters and Suetens (2009) show that there is significantly

more cooperation when actions are strategic complements rather than strategic substitutes.

For the case of indefinitely repeated games such evidence is missing.2 Moreover, as we

1A game is characterized by strategic complements (substitutes) if ∀i, j and i 6= j: ∂2π/∂xi∂xj > 0 (<
0), implying that the best-response functions are upward- (downward-) sloping (see Topkis, 1978; Bulow,
Genakoplos and Klemperer, 1985; Fudenberg and Tirole, 1984).

2An important exception is Embrey, Mengel and Peeters (2014). This paper focuses on the effect of
commitment on cooperation games of strategic substitutes and complements. We discuss how our paper and
results relates to this paper in the discussion section.
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explain further below, theory and earlier experimental results do not lead to an unambiguous

prediction regarding the effect of the strategic environment (substitutes versus complements)

on the extent of cooperative behavior in indefinitely repeated games. This is, hence, an

additional motivation for our study, as experiments seem to be particularly well-suited to

help understand which effects prevail if predictions are unclear.

In our experiment, pairs of subjects play games with an indeterminate final period that

feature either strategic complementarity or strategic substitutability. The games are borrowed

from Potters and Suetens (2009), henceforth referred to as PS. Across the two treatments,

several variables are kept constant, namely, the actions and payoffs in the Nash equilibrium of

the stage game and in the symmetric joint-payoff maximum, the optimal defection payoff and

the absolute value of the slope of the stage-game best-response function. Subjects know that

after each period the game proceeds to a next period with a fixed continuation probability.

In order to allow for learning across games, subjects play at least 20 repeated games. After

a repeated game ends, players are randomly re-matched to play another repeated game with

the same continuation probability. The treatments are designed so that cooperation at the

joint-payoff maximum can be sustained as a subgame-perfect Nash equilibrium. In particular,

the treatments have the same critical discount factor above which such “full” cooperation is

supported by, for example, a grim trigger strategy.

On average, choices in our experiment do not differ significantly between the strategic

complements and substitutes treatments. This is in clear contrast to PS, who find in a

finitely repeated game that an environment with strategic complements is more conducive

to cooperation than one with strategic substitutes. However, our aggregate result masks

two countervailing results that are in line with two distinct literatures. The first of these

results is that the percentage of choices at the joint-payoff maximum is significantly higher

under strategic substitutes than under strategic complements. This result fits well with

the notion that strategic risk related to cooperation at the joint-payoff maximum is lower

under substitutes than under complements. Recent theoretical and experimental studies

on indefinitely repeated prisoner’s dilemma games show that strategic risk is an important

determinant of behavior. In particular, Blonski, Ockenfels and Spagnolo (2011) formalize the

intuition that cooperation gets riskier, and thus less likely, the more it hurts to cooperate if the

partner defects (that is, the lower the“sucker”payoff). In particular, they propose a threshold

for the discount factor in an indefinitely repeated game above which cooperation at the joint-
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payoff maximum is supported in equilibrium, which is higher than the standard threshold

based on e.g. grim-trigger strategies (see Blonski and Spagnolo, 2015). Blonski, Ockenfels

and Spagnolo (2011) and Dal Bó and Fréchette (2011) provide experimental evidence showing

that this threshold is necessary for cooperation in a prisoner’s dilemma to increase to very

high levels. This adjusted threshold is lower in games of strategic substitutes than in games

of strategic complements, thus making it easier to cooperate in the former than in the latter

case.

The second result in our experiment hidden at the aggregate level is that choices of

subjects in pairs that do not succeed in cooperating at the joint-payoff maximum tend to be

lower, i.e. are less cooperative, under strategic substitutes than under strategic complements.

This finding squares well with theoretical and experimental findings on the differential effects

of strategic substitutes and complements on cooperation in the presence of heterogeneous

player types. To illustrate, if a cooperator is matched with a best-responder, the aggregate

outcome in a pair will be less cooperative under strategic substitutes than under complements

(Haltiwanger and Waldman, 1991, 1993; Camerer and Fehr, 2006). The reason is that a best-

response to a cooperative choice is less cooperative under strategic substitutes than under

complements in the sense that it deviates less from the static Nash equilibrium in the former

than in the latter case.3 Experimental evidence for this intuition in the context of a “long”

finitely repeated dilemma game is provided by PS.4

The remainder of this paper is organized as follows. In Section 2 we introduce the exper-

imental design and procedures. In Section 3 we develop the conjectures concerning predicted

behavior in our experiment, focusing on the comparative static predictions between the treat-

ments with complements and substitutes. In Section 4 we present the experimental results.

In Section 5 we summarize and discuss our findings in the light of the existing literature.

3In contrast to theory, the estimated response functions in our two treatments have the same positive sign,
but it still holds that the slope in the case of complements is larger than the one in the case of substitutes.

4See Haltiwanger and Waldman (1985) and Fehr and Tyran (2008) for applications where aggregate
outcomes depend on the strategic environment if individuals are heterogeneous in the rationality of their
expectations.
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2. Experimental Design and Procedures

2.1. Experimental Design

Our experiment has two treatments: one where choices are strategic complements (Comp)

and another where choices are strategic substitutes (Subs). In each treatment, subjects play

an indefinite repetition of the same stage game. The stage game has a unique and Pareto

dominated Nash equilibrium and a symmetric socially efficient (joint-payoff maximizing)

outcome (JPM). The payoffs in each treatment are determined according to the following

payoff functions (borrowed from PS):

πComp
i (xi, xj) = −28 + 5.474xi + 0.01xj − 0.278x2i + 0.0055x2j + 0.165xixj, (1)

πSubs
i (xi, xj) = −28 + 2.969xi + 2.515xj − 0.082x2i + 0.023x2j − 0.0485xixj. (2)

The coefficients in the payoff functions are chosen in order to ensure a fair comparison between

the two treatments. First, in both treatments the Nash-equilibrium choices are the same and

the JPM-choices are the same. Second, the payoffs corresponding to the Nash equilibrium

and the JPM are the same across the two treatments. Third, the payoff achieved by best

responding to JPM play of the matched player, referred to as the defection payoff, is the

same in the two treatments.5 Lastly, the absolute value of the slopes of the best-response

curves are the same in the two treatments to guarantee that the same speed of convergence is

generated by best-response dynamics. Table 1 summarizes the main theoretical benchmarks

of our design.

Table 1: Theoretical Benchmarks

Comp Subs
ChoiceNash 14.0 14.0
ChoiceJPM 25.5 25.5
ΠNash 27.71 27.71
ΠJPM 41.97 41.97
ΠDefect 60.14 60.14
Slope of reaction function 0.30 −0.30

Notes: This table shows the theoretical benchmarks regarding choices and payoffs in the experiment.

5The combination of the second and third condition mentioned above has as the consequence that payoffs
on the best-response function are the same in the two treatments.
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In order to allow for learning, in our experiment subjects played a series of one of the two

games described above. We refer to each repeated game, that is, each sequence of periods

determined by the continuation probability of 0.9, as a match. Once a match ended and

depending on the time left, another one started. In each session, subjects participated in as

many matches as possible such that at least 20 matches were played. If at least 20 matches

had already been played, a session ended after one and a half hours of play. Subjects played

with the same partner throughout a match. Once a match ended, subjects were randomly

re-matched with another subject.

By using the payoff functions given in (1) and (2), we keep several actions and payoffs

constant across treatments. We felt the same should be done with respect to the sequence of

matches and their respective lengths. At the same time, because of possible order effects, we

did not only want to have one sequence of matches to be played in each of the two treatments.

We therefore decided to have five different draws of the lengths of matches prior to the start of

the experiments, each of which was administered in one session for each of the two treatments

Comp and Subs.6 The length of each match in a draw was determined randomly with the

continuation probability of 0.9. Figure VIII in the Web Appendix F shows the distribution

of realized match lengths across all five draws.7

Since there is always the possibility of continuing to a next round, the randomization gen-

erates a game that is strategically equivalent to an indefinitely repeated game. In particular,

the continuation probability δ is equivalent to the discount factor in an indefinitely repeated

game assuming that within the time slot of an experiment, there is no discounting (Roth and

Murnighan, 1978).

2.2. Experimental Procedures

The experiment consists of 10 sessions (five for each of the two treatments Comp and Subs)

that were conducted at CentERlab at Tilburg University during September-October 2011.8

A total number of 160 students participated in the experiment. Participants were recruited

through an email list of students who are interested in participating in the experiments. In

6For instance, under draw number 1, the randomly determined lengths of the matches played was: 11, 5,
9, 5, 18, 33, 7, 7, 5, 12, 4, 16, 11, 1, 5, 4, 23, 9, 14, 6, 6, 10, 2, 7, 1.

7In an indefinitely repeated game with continuation probability δ = 0.9, the expected number of periods
in each match is 10.

8We used the experimental software toolkit Z-Tree to program and conduct the experiment (see Fis-
chbacher, 2007).
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each session, 16 subjects interacted anonymously in a sequence of matches, that is, indefinite

repetitions of the same stage game. In each session subjects participated in between 20 and

25 matches. Each session lasted not more than two hours (including the time to read the

instructions and payment of the subjects).

All participants were given the same instructions (see Web Appendix A). At the beginning

of each match, subjects were randomly paired with each other. During a match, subjects

played with the same partner. The matching rule was explained clearly before the experiment

started. The identity of the partners was not revealed to subjects. It was explained to

the subjects that their final earnings depended on their own choices and the choices of the

matched participants. The subjects were asked to choose a number between 0.0 and 28.0 (up

to one digit after the comma) in each round of a match. Subjects were provided an earnings

calculator on the computer screen enabling them to calculate their earnings in points for

any combination of hypothetical choices, and a payoff table for combinations of hypothetical

choices that are multiples of two (see Figure I and Figure II in the Web Appendix A).

After choices were submitted in each round, subjects were informed about whether or not

the match would continue to a next round. In the case the game continued to a next round,

subjects received the message “The match continues to the next round.” on the computer

screen. In the case the match ended, subjects received the message “The match is over.”

on the computer screen. Once a match ended, another match would begin, depending on

the time available. Moreover, after each round of a match subjects were provided with

information of the previous round on the screen, namely their own choice and earnings and

the matched partner’s choice and earnings.

After subjects finished reading the instructions, we explained to them that the experiment

itself would proceed for about 1.5 hours.

The payoffs in the experiment were expressed in points. At the end of the experiment, the

sum of a subject’s earnings in points in all rounds of all matches were converted into Euro

at the exchange rate of 480 points = 1 Euro, and privately paid to subjects. The average

earnings in the experiment was 16.45 Euro.

7



3. Predictions

A first prediction builds on the standard theory of infinitely repeated games. Based on simple

grim-trigger strategies, this theory predicts that cooperation can be supported as a subgame

perfect Nash equilibrium (SPNE) if the following condition holds:

ΠJPM

1− δ
≥ ΠDefect +

δΠNash

1− δ
. (3)

The left-hand side of (3) is the discounted sum of payoffs from cooperation, while the right-

hand side is the discounted sum of payoffs from a one-time deviation followed by Nash

equilibrium play forever after. By design, the JPM payoff, the defection payoff, and the

static Nash equilibrium payoff are the same in both treatments. Rearranging condition (3)

and using the numbers given in Table 1, we get

δ ≥ δ :=
ΠDefect − ΠJPM

ΠDefect − ΠNash

=
60.14− 41.94

60.14− 27.71
= 0.56 (4)

for both treatments. We thus conclude that the critical discount factor above which cooper-

ation at the joint-payoff maximum (full cooperation) is supported by a grim-trigger strategy

is the same in both treatments.9, 10

A second prediction takes into account differences in the relative riskiness of cooperation

in the two treatments. Inspecting the payoffs in Subs and Comp, one notices that if one

player plays fully cooperatively, while the other player in the market defects optimally, the

cooperating player’s (“sucker”) payoff is lower with complements than with substitutes. In

addition, the payoff players get if they both optimally defect, is lower in Subs than in Comp.

Intuitively, these two forces make it less attractive to choose actions that maximize joint

payoffs in Comp than in Subs, because doing so is relatively more risky in the former than in

the latter treatment.

9The range of actions that Pareto-dominate the static Nash equilibrium, and thus also the range of actions
that can be sustained in equilibrium in an indefinitely repeated game, is larger under substitutes than under
complements. This can be seen in Figure VII in the Web Appendix F that shows the iso-payoff contours
in both cases. Given the findings of Gazzale (2009), we did not expect that this difference would lead to
differences in the extent to which subjects succeed in fully cooperating. It may lead to larger variability in
actions under substitutes than under complements, though.

10However, note the following. Any feasible and admissible average payoff vector “above” the NE of the
stage game can be supported as a SPNE provided that δ is sufficiently high. The area of these payoff vectors
for Comp is 386.648, while for Subs it is 403.246.
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Table 2: A general and reduced PD games for the two treatments

(a) (b) (c)
A general PD game The reduced PD game for Comp The reduced PD game for Subs

C D
C c, c a, b
D b, a d, d

C D
C 41.94, 41.94 5.89, 60.14
D 60.14, 5.89 34.90, 34.90

C D
C 41.94, 41.94 10.71, 60.14
D 60.14, 10.71 18.17, 18.17

Notes: This table illustrates the payoff matrices for a general PD game and the reduced PD games for Comp
and Subs treatments.

Recently, this intuitive idea received formal support in Blonski, Ockenfels and Spagnolo

(2011). These authors suggest an axiomatic approach to equilibrium selection in indefinitely

repeated prisoner’s dilemma (PD) games. They show that a set of five axioms leads to a

discount factor δ∗ that is strictly larger than the standard discount factor δ derived above and

that, more importantly for our purposes, also reflects the influence of the sucker payoff on the

incidence of fully cooperative play.11 In particular, given a PD stage game of the form shown

in Panel (a) in Table 2 with b > c > d > a and 2c > b+ a, Blonski, Ockenfels and Spagnolo

(2011, Proposition 2) show that their five axioms imply the threshold δ∗ = (b−c+d−a)/(b−a)

above which a cooperation equilibrium is predicted to be played in the indefinitely repeated

PD. Note that this threshold features the sucker payoff a, while the threshold δ derived above

does not (there δ = (b− c)/(b−d)). Note also that ∂δ∗/∂a = − (c− d) / (a− b)2 < 0, so that

a lower sucker payoff increases the threshold above which cooperation should be observed.

Put differently, the lower the sucker payoff, the smaller the range of discount factors for which

cooperation can be supported in equilibrium.

Blonski, Ockenfels and Spagnolo (2011) develop their approach in the context of a stan-

dard 2×2 PD game. Our stage game, however, has many more than just two actions. Still, we

believe that the intuitive idea that a lower “sucker” payoff and higher “mutual optimal defec-

tion” payoff should ceteris paribus lead to less full cooperation is also relevant in the context

of our stage games. A prediction that translates Blonski et al.’s approach to our games can

be generated if one is willing to make the simplifying assumption that the action space of our

stage games consists of just two strategies, say C = ChoiceJPM and D = ChoiceDefect. Using

11The five axioms in Blonski, Ockenfels and Spagnolo (2011) are called (1) positive linear payoff transfor-
mation invariance; (2) δ-monotonicity, (3) boundary conditions (which is the crucial axiom that highlights
the influence of the sucker payoff on the incidence of cooperation); (4) incentive independence; and (5) equal
weight.
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the payoff functions given in (1) and (2), these two choices lead to the two games shown in

Panels (b) and (c) in Table 2.12 It follows that δ∗Comp = 0.870 and δ∗Subs = 0.518 , so that full

cooperation can be sustained for a larger range of discount factors in treatment Subs than in

treatment Comp.13

An alternative concept leading to the same comparative static prediction as the approach

suggested by Blonski, Ockenfels and Spagnolo (2011) is based on the idea of the basin of

attraction of a cooperative strategy in comparison to a defecting strategy (see Dal Bó and

Fréchette (2011)). We provide details of this idea in Web Appendix B.

A third prediction is based on the literature that studies the interaction between the

strategic environment (complements versus substitutes) and heterogeneity of players (Halti-

wanger and Waldman, 1991; Camerer and Fehr, 2006), as well as its application to repeated-

game experiments (see PS). The intuition goes as follows. In games of strategic complements

a change in the matched player’s choice gives a payoff-maximizing player an incentive to

move in the same direction, while in games of strategic substitutes the incentive is to move

in the opposite direction. Given that several experiments have shown that some individuals

are (conditionally) cooperative in the sense that they try to induce cooperation and follow

it when established by others, even when there is no future interaction, (see Fehr and Fis-

chbacher, 2002; Clark and Sefton, 2001; Reuben and Suetens, 2009), it is plausible to assume

that players are heterogeneous in their cooperativeness and defection strategies. Consider,

for example, a cooperative player who is matched with a defector in the above-described

games of complements and substitutes. If the cooperative player makes a cooperative choice

(higher than the static Nash equilibrium), and the matched defector is an optimal defector

in the sense that he best-responds to this move, then, in sum, choices will be higher (more

cooperative) in Comp than in Subs. This is because in Comp, the best-response to a coop-

erative move is to (partly) follow the move and make a higher choice as well, whereas in

Subs the best-response is to make a less cooperative choice. This mechanism may facilitate

cooperation in Comp and may hamper it in Subs. In addition, a similar mechanism occurs

when a cooperative player is matched with a spiteful defector who aims at maximizing the

payoff difference between himself and the cooperator. In order to employ the same level of

12The choice C = ChoiceJPM is equal to 25.5 in both treatments, while D = ChoiceDefect = 17. 42 in
Comp and D = ChoiceDefect = 10. 64 in Subs.

13In the case the two choices are C = ChoiceJPM = 25.5 and D = ChoiceNash = 14 in both treatments,
we get δ∗Comp = 0.7834 and δ∗Subs = 0.664 , and so, again, δ∗Comp > δ∗Subs.
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punishment (in payoff terms), a spiteful defector must choose much lower choices in the Subs

treatment than in the Comp treatment. So here as well, choices will, on average, be higher,

i.e. more cooperative in Comp than in Subs. PS provide evidence for this intuition in the

context of a finitely repeated game.

Summarizing, based on theory and earlier experimental results no unambiguous prediction

can be made regarding the higher prevalence of cooperation in our two treatments. Hence,

we formulate the following research question:

Research Question In the context of an indefinitely repeated game, which environment is

more conducive to cooperation: strategic substitutes or strategic complements?

4. Experimental Results

In this section we describe our main results. We analyze data from matches 1-20 for which

we have observations in all sessions.

Averaged over all subjects, rounds and matches, the mean choice is 19.09 in treatment

Subs and 18.70 in treatment Comp. In the last 10 matches the mean choice in the Subs

treatment is 20.12 and that in the Comp treatment is 19.87.14 The average choice is thus

roughly the same in the two treatments.

Figure 1: Evolution of Average Individual Choices
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Notes: This figure shows the evolution of average individual choices across matches.

14The summary statistics for average choice is presented in Table V in the Web Appendix G.
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Figure 1 illustrates the evolution of average choices over time under strategic complements

and strategic substitutes. In both treatments, the average choice is increasing over the

matches. However, there is no clear difference between the two treatments.15 To formally

quantify the difference between the two treatments, and to test whether it is statistically

significant, we estimate the effect of strategic complementarity on the individual choice.

We do so by regressing the choice of an individual on a treatment dummy, and clustering

standard errors at the session level. Results are reported in column (1) of Table 3. The

regression results confirm that the difference between the two treatments is small in size,

and not statistically significant (the treatment dummy coefficient is −0.365 and statistically

insignificant at p = 0.679).16,17

However, some properties of the data might be hidden when looking at aggregates. To

analyze the data in more detail, in a next step we present the distribution of choices for

strategic substitutes and complements. Figure 2 shows that choices in the Subs treatment

are spread over the whole interval, while choices in the Comp treatment are somewhat more

concentrated. Moreover, the modal choice in both treatments is a choice at or very close to

the JPM level of 25.5. This is particularly accentuated in treatment Subs. To illustrate, in

Subs almost 30% of the choices are at or very close to the JPM level of 25.5, whereas in Comp

we only observe about 15% of such choices.

To further explore potential differences between Subs and Comp, we distinguish “fully-

cooperative” and “non-fully cooperative” choices. We define a choice to be fully-cooperative

if it lies within the interval [25, 26], where 25.5 is the JPM choice in both treatments. We

refer to a choice as non-fully cooperative if it lies outside the range [25, 26].18

The left-hand panel of Figure 3 illustrates for both treatments the share of fully coop-

erative choices across matches. From this graph it becomes clear that the share of fully

15There is also no significant difference in payoffs between the two treatments as reported in Table IV in
the Web Appendix G.

16The estimated treatment effect of strategic complementarity on individual choice becomes −0.386 at
p = 0.505 when we control for the match and the interaction between treatment and match. No significant
differences are obtained in payoffs either. This can be seen in Table IV in the Web Appendix G.

17Mann-Whitney-U tests based on independent observations yield similar results, both when the average
choice is based on all matches or the last 10 matches (p = 0.750 in both cases).

18The choice of such a range is to some extent arbitrary, and one may argue that choices above 26 are
also fully cooperative. For example, 28, which is the maximum choice possible, can serve as a focal point for
subjects to coordinate on (almost) full cooperation. Enlarging the fully-cooperative interval to [25, 28], does
not affect any of our qualitative results in what follows. Choices above 26 correspond to 0.68 % of all choices
in the experiment.
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Table 3: Regression results on choice

(1) (2) (3) (4)
VARIABLES Choiceit Choiceit Choiceit Choiceit

Comp −0.365 −0.386 −2.421*** −2.190***
(0.853) (0.557) (0.179) (0.200)

Choicejt−1 0.743*** 0.734***
(0.012) (0.010)

Comp*Choicejt−1 0.129*** 0.126***
(0.013) (0.013)

Match 0.208*** 0.0602***
(0.041) (0.015)

Comp*Match 0.001 −0.015
(0.060) (0.018)

Constant 19.210*** 16.951*** 5.005*** 4.530***
(0.703) (0.487) (0.118) (0.096)

Observations 33,024 33,024 29,824 29,824
R-squared 0.001 0.043 0.604 0.607

Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at the
1% (5%) [10%] level. The dependent variable is a subject’s choice in all specifications.

Figure 2: Distribution of Choices
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Notes: This figure shows the distribution of individual choices in the experiment.

cooperative choices is higher in Subs than in Comp. In addition, the share of fully coopera-

tive choices increases in both treatments, but more so in Subs than in Comp. In the last 10

matches, the percentage of fully cooperative choices is around 40% in Subs, while it is around
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Figure 3: Cooperative vs Non-Cooperative Behavior
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Notes: This figure shows the evolution of cooperative and non-cooperative behavior. The left-hand
panel depicts the evolution of full cooperation rate across matches and the right-hand panel depicts
the evolution of average non-fully cooperative choices across matches.

25% in Comp.19

The right-hand panel of Figure 3 depicts the evolution of averages of non-fully cooperative

choices (those that fall outside the interval [25, 26]) across matches. Here we observe that

the average choice of subjects is, overall, higher in Comp than in Subs. So it seems the effect

of strategic complementarity on behavior switches—behavior is more cooperative because

choices are higher—when we focus on non-fully-cooperative choices. To illustrate, averaged

over subjects, rounds and matches, the mean non-fully cooperative choice is 16.65 in the Subs

treatment and it is 17.59 in the Comp treatment. In the second half of the experiment, the

average non-fully cooperative choice is 16.85 in Subs and 18.33 in Comp.20

In sum, although we do not observe a difference between the two treatments at the

aggregate level, analyzing fully cooperative and non-fully cooperative behavior separately

suggests that, overall, behavior is driven by two countervailing forces. On the one hand,

subjects make choices at the fully cooperative level more frequently under Subs than under

Comp. On the other hand, the average choice of subjects who do not make fully-cooperative

choices is higher under Comp than under Subs. To understand which forces drive these

two results, we analyze fully cooperative behavior in section 4.1 and non-fully cooperative

19For an in-depth analysis of the statistical significance of these observations see Section 4.1.
20For a more detailed analysis of the statistical significance of these results see Section 4.2.
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behavior in 4.2 in more detail. Web Appendix C focuses on results at the pair level. Moreover,

in view of the time trends visible in Figures 1 and 3, we explore learning across matches in

Web Appendix D.

4.1. Full Cooperation Rates

In this section we take a closer look at full cooperation rates, that is, choices in the interval

[25, 26] at the level of subjects. In doing so, we examine the first and all rounds of a match

separately since the cooperation rate might evolve within a match, depending on the number

of rounds in that match (see Dal Bó and Fréchette, 2011). In addition, in the first rounds

of each match subjects are playing with a new partner so that they do not have experience

with their partners’ behavior (or cannot recall it due to random matching). In this respect,

subjects’ behavior in the first round of each match is mainly driven by the fundamentals of

the game they are playing (and possibly their experiences in the previous matches) and not

by the current partners’ behavior.

Figure 4 illustrates the evolution of the full cooperation rate across matches, in the left-

hand panel for the first rounds and in the right-hand panel for all rounds of a match. The left-

hand panel shows that in the first rounds of a match subjects make fully cooperative choices

more frequently under Subs than under Comp. In addition, the first-round full cooperation

rate follows an increasing trend in Subs, while in Comp it is more steady across matches.

The full cooperation rate in the first match is almost the same for the two treatments, while

towards the end of the experiment there is a considerable difference in full cooperation rates

between the two treatments. Moreover, the first-round full cooperation rate reaches the level

of about 25% in the Subs treatment by the end of the experiment, while it remains at around

5% in the Comp treatment.

In order to test whether these differences are statistically significant, we ran two speci-

fications of a probit regression in which the dependent variable is a dummy referring to a

subject making a fully cooperative choice or not. In the first specification shown in Table 4

we include as an independent variable a treatment dummy. In the second specification, next

to the treatment dummy, we control for the match, and the interaction between treatment

and match. As shown in Table 4, in both specifications the treatment dummy has a negative

sign—the full cooperation rate in Subs is thus lower than the one in Comp—and is statistically
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Figure 4: Full Cooperation Rate
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Notes: This figure shows the evolution of full cooperation rate across matches, on the left-hand
panel for the first rounds only and on the right-hand panel for all rounds.

significant. The estimated marginal effect is −0.127 and −0.50, respectively.21 In addition,

column (2) shows that the first-round full cooperation rate significantly increases over the

matches in Subs (marginal effect is 0.005, p ≤ 0.001), but not so in Comp (marginal effect is

−0.002, p ≤ 0.001).

Next, we focus on the right-hand panel of Figure 4 and the remainder of Table 4. As

illustrated in the figure, there is again a clear difference between the two treatments in the

full cooperation rate. In contrast to the first rounds, the full cooperation rate now increases

over matches in Comp as well. The full cooperation rate raises up to about 25% in Comp and

up to about 45% in Subs.

The results of probit regressions, which we report in columns (3) and (4) of Table 4,

indicate that the treatment effects are again statistically significant. Moreover, as shown

in column (4), the full cooperation rate increases significantly over the matches in both

treatments (marginal effect is 0.016, p = 0.001).

Summarizing, we find significantly more initiation of full cooperation at the beginning of

a new match as well as more fully cooperative choices in general in Subs than in Comp. This

result is in line with the discussion of the differences in the “riskiness of cooperation” in our

two treatments in Section 3.

21The p-values in Mann-Whitney-U tests based on sessions averages are 0.016 if all matches are taken into
account and 0.075 if only matches 11-20 are taken into account.
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Table 4: Regression results on full cooperation

First rounds All rounds

(1) (2) (3) (4)
VARIABLES FullCoopit FullCoopit FullCoopit FullCoopit

Comp −0.127*** −0.050*** −0.115*** −0.178***
(0.031) (0.022) (0.042) (0.043)

Round 0.004***
(0.002)

Comp*Round 0.004**
(0.002)

Match 0.005*** 0.016***
(0.002) (0.002)

Comp*Match −0.007*** 0.001
(0.003) (0.004)

Observations 3,200 3,200 33,024 33,024

Notes: This table reports marginal effects from probit regressions with delta-method standard errors
(in parentheses) clustered at the session level. The dependent variable is a dummy which is equal to
1 if the choice is fully cooperative and 0 otherwise. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient
is significant at the 1% (5%) [10%] level. Specifications (1) and (2) are based on observations from
the first rounds of matches only and specifications (3) and (4) are based on all observations.

4.2. Non-Fully Cooperative Behavior

In this section we analyze the effect of strategic complementarity on non-fully-cooperative

behavior. In doing so, we focus on those data points that are not in the fully cooperative

range of [25, 26]. Figure 5 depicts the evolution of the average non-fully-cooperative choice

over matches, in the left-hand panel for the first rounds and in the right-hand panel for all

rounds of a match.

The figure in the left-hand panel shows that in the first rounds of the matches there is

no clear difference in non-fully-cooperative behavior between the two treatments. The figure

also shows that in both treatments the average non-fully cooperative choice in the first rounds

is initially above the static Nash equilibrium choice of 14 and increases over the matches.

As shown in Table 5, presenting results from linear regressions where the average non-fully-

cooperative choice is regressed on a treatment dummy, the treatment effect is small and not

significant. In addition, as shown in column (2) of this table, the average choice significantly
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Figure 5: Average Non-Fully Cooperative Choices
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Notes: This figure shows the evolution of non-fully cooperative choices (i.e. choices outside the
range [25, 26]) across matches, on the left-hand panel for the first rounds only and on the right-hand
panel for all rounds.

increases over time.22

Next, we consider average non-fully-cooperative choices across all rounds. The evoloution

of these choices across matches is shown in the right-hand panel of Figure 5.23 Here, a

different behavior emerges. When averages are taken across all rounds instead of just the

first rounds of a match, the average non-fully-cooperative choice is higher in Comp than in

Subs, although this difference is not significant (p = 0.301, see column (3) in Table 5).

Next we analyze the adjustments across rounds. During a match, subjects observe the

past choice(s) of the matched subject and are likely to adjust their own behavior. If at

least some of the subjects (noisily) best-respond it should be the case that in Comp the

estimated response function has a higher slope than in Subs (see Table 1). Columns (4)

and (5) of Table 5 report estimates of the observed response functions. The reported results

come from linear regressions where the choice of a player is regressed on the choice of the

matched player in the previous round (in the same match) as well as the interaction of the

other subject’s past choice and a treatment dummy. In column (5) additional controls are

22We also tested whether average choices of subjects who do not play fully cooperatively is the same in
the two treatments by using a two-sided Mann-Whitney-U Test. The p-value of the null hypothesis that the
average non-fully cooperative choice is the same in the two treatments is 0.25, for both the entire experiment
and the second half of the experiment. So we fail to reject the null hypothesis.

23The right-hand panel of Figure 5 is the same as the right-hand panel of Figure 3.
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Table 5: Regression results on non-fully cooperative choices

First rounds All rounds

(1) (2) (3) (4) (5)
VARIABLES Choiceit Choiceit Choiceit Choiceit Choiceit

Comp 0.007 0.175 0.999 −2.830*** −2.968***
(0.546) (0.417) (0.911) (0.269) (0.462)

Choicejt−1 0.583*** 0.582***
(0.031) (0.028)

Comp*Choicejt−1 0.202*** 0.192***
(0.033) (0.031)

Match 0.109*** 0.017
(0.018) (0.033)

Comp*Match −0.019 0.029
(0.032) (0.038)

Constant 17.016*** 15.909*** 16.334*** 6.607*** 6.453***
(0.404) (0.361) (0.773) (0.171) (0.397)

Observations 2,823 2,823 25,061 22,238 22,238
R-squared 0.001 0.021 0.010 0.444 0.446

Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at the
1% (5%) [10%] level. Specifications (1) and (2) are based on observations from the first rounds of
matches only and specifications (3), (4) and (5) are based on all observations.

included for the match and the interaction between match and treatment. Both columns

show that in both treatments subjects (partially) follow each other (i.e., an increase in the

choice of the rival is followed by an increase in one’s own choice in the current period), and

the effect is statistically significant.24 Importantly, the extent to which subjects follow each

other is significantly greater in Comp than in Subs. To illustrate, an increase in the choice

by a subject, increases the choice of the matched subject in the next round by 0.58 in Subs

and by 0.78 in Comp. The effects are very similar when we control for the match and the

interaction between match and treatment.

The positive effect of Comp shown in column (3) of Table 5 in combination with the

result that the extent to which subjects follow each other is greater in Comp than in Subs (cf.

columns (4) and (5) in Table 5), suggest that at least some subjects try to induce cooperation,

24Reaction functions being positively sloped in both treatments can be explained by endogenous comple-
mentarity that arises when subjects use reciprocal strategies (see also PS).
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to which others (noisily) best-respond. For example, if a subject who increases its choice

above the static Nash equilibrium, with the intention to move towards full cooperation, is

matched with a (noisily) best-responding subject or a spiteful subject, choices in this pair will

on average end up to be higher (more cooperative) in Comp than in Subs, which is exactly

what we observe. This is the mechanism behind our prediction based on heterogeneity of

subjects’ types in Section 3.

Summarizing, when we focus on non-fully-cooperative choices, we find that behavior is

in agreement with the mechanism based on heterogeneity of subjects, so that the average

(non-fully-cooperative) choice tends to be higher in Comp than in Subs.

We also present the results of regressions of treatment effects and responses of subjects

using all choices, so including those in the fully-cooperative range. Table 3 summarizes the

results. Recall that the specification in column (1) shows the aggregate (non-significant)

treatment effect on choices. The specifications in columns (3) and (4) show the estimated

response of subjects to the matched subject’s choice, as well as the treatment effect on

this response (with and without controlling for the match). As can be seen, the estimated

responses are qualitatively similar to those shown in Table 5. The size of the estimated

response is larger now, because fully cooperative choices as well as subjects responding to

full cooperation by fully cooperating themselves are included as well.

The heterogeneity explanation elaborated on above is supported by results of simulations

assuming two different types of players: cooperative and non-cooperative players. A cooper-

ative player is assumed to reciprocate full mutual cooperation and to induce full cooperation

with a certain probability by playing fully cooperatively. This probability is positively related

to the cooperativeness of the matched partner’s cooperative response to his own cooperative-

ness in the previous period. Otherwise, this type of player either punishes by playing a

best-reply or playing spitefully with a certain probability (where spiteful behavior consists

of maximizing the difference in payoffs). A non-cooperative player plays either a best-reply

or spitefully, each with a certain probability. These two types of players imply three types

of possible matchings: those of two cooperative players, those of a cooperative and a non-

cooperative player, and those of two non-cooperative players. To this basic setup (that draws

on simulations presented in PS), we add the assumption of a differential propensity of initi-

ating cooperation depending on the treatment, just as we found in our experiment. Finally,

we simulate indefinitely repeated games in the same way we did in our experiment. The two
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versions of simulations ran replicate the key findings of our experiment (see Web Appendix E

for details): On the one hand, we obtain similar average choices within a match in treatments

Comp and Subs. On the other hand, we obtain full cooperation rates within a match, which

are higher under Subs than under Comp, and average non-fully cooperative choices within a

match, which are higher under Comp than under Subs.

5. Discussion

In our experiment subjects play indefinitely repeated dilemma games of strategic substitutes

or complements. Our first result is that, on average, we find no significant difference in choices

between the two environments. Thus we do not recover the result obtained in PS who find

that average choices in a finitely-repeated game are higher (more cooperative) under strategic

complementarity. However, an analysis based on averages masks two opposing forces that

cancel out each other in the aggregate, which we refer to as our second and third result,

respectively.

Our second result is is different from what PS find. Our data indicate that this is because

under substitutes subjects more often take the risk to initiate full cooperation at the beginning

of each repeated game. They do so more frequently the more repeated games they play. To

illustrate, in the second half of the substitutes treatment the percentage of full cooperation

in the first periods has increased to a level above 20%. In contrast, under complements,

subjects rarely take this risk, and the percentage remains at about 5% in the second half.

Our third result is that if we focus on choices of subjects who do not succeed in fully

cooperating, that is, who do not make joint-payoff maximizing choices, we find that, on

average, choices tend to be less cooperative (lower) under strategic substitutes than under

complements (although not statistically significantly so). Relatedly, we find that under com-

plements, the slope of the estimated response function is (significantly) higher than under

substitutes.

Our second result goes against PS, who find that, if anything, full cooperation is lower

under substitutes. However, the result is in line with the idea that strategic risk has an

effect on behavior in games. Loosely speaking, how much a player loses by cooperating

in the case the other player defects has an impact on whether this player will choose to

cooperate or not. In our games, it is less risky to fully cooperate or initiate full cooperation
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with strategic substitutes than with strategic complements. In this sense, the result is in

line with theory and experiments on indefinitely repeated prisoner’s dilemma games taking

into account strategic risk (Blonski, Ockenfels and Spagnolo, 2011; Dal Bó and Fréchette,

2011; Blonski and Spagnolo, 2015) and on coordination games that have shown that payoff-

dominant actions are chosen less frequently if they involve more strategic risk (Van Huyck,

Battalio and Beil, 1990; Schmidt et al., 2003).

Our third result is in line with theory and experiments in the literature that studies

the interaction between the strategic environment and heterogeneity of players (see also

Haltiwanger and Waldman, 1991, 1993; Camerer and Fehr, 2006). This literature finds that if

players are heterogeneous, aggregate outcomes tend to be different depending on the strategic

environment. In particular, they tend to be more cooperative under strategic complements

than under substitutes. This is what PS observe in finitely repeated games of strategic

complements and substitutes.

Are the two opposing forces summarized above (Results 2 and 3) two “isolated” effects or

are they in some way related to each other? Although there is some evidence that suggests

the latter,25 we argue that it is the former. It just seems to be the case that starting

(and maintaining) collusion is easier under substitutes than under complements and that

simple response dynamics (and the slopes of predicted and estimated response functions) are

such that non-fully cooperative choices are on average lower under substitutes than under

complements.

To the extent that our experimental results have implications outside the lab, e.g. for

competition policies, the main message would be as follows. Our result regarding significant

differences in fully-cooperative choices suggests that markets characterized by strategic sub-

stitutability are more prone to collusion than markets characterized by strategic complemen-

25The two forces could be related in the sense that episodes of collusion (which happen more often in
treatment SUBS) are also followed by harsher punishments in the form of lower choices once collusion breaks
down. To see whether this is the case, we analysed punishment choices of subjects when their partner
deviates from a collusive episode that was sustained for at least three consecutive rounds. That is, we looked
for example at the choices in period t of non-cheating subjects in pairs in which both players made JPM
choices for at least three consecutive rounds (in rounds t − 4, t − 3 and t − 2), and one player started to
cheat in period t−1. We observe that subjects who make punishment choices typically choose actions around
the static Nash equilibrium in treatment Comp, while they choose actions much lower than the static Nash
equilibrium in treatment Subs. While this appears to be as conjectured at the beginning of this footnote,
note that one needs to choose a lower action in Subs than in Comp in order to induce, c.p., the same level of
punishment for a cheating partner. Moreover, the number of incidences in which collusion breaks down and
is followed by punishments is very low in both treatments, such that this mechanism cannot account for the
two opposing forces observed in our data.

22



Figure 6: Collusion Index
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Notes: This figure shows the distributions of the average collusion index per individual match.

tarity. To illustrate this, define the collusion index CI := (πObserved−πNash)/(πJPM −πNash),

where πObserved is the average observed payoff of the two players in a match. Clearly, the

collusion index equals 1 in the joint-profit maximum, and it is 0 if both players make Nash-

equilibrium choices. Figure 6 shows histograms of the average collusion index per individual

match in our two treatments. The most salient feature of this Figure is the large share of

CI = 1 outcomes in treatment Subs. This would, if anything, justify increased monitoring of

markets that are characterized by strategic substitutes.26 Our result regarding differences in

non-fully cooperative choices in pairs that do not succeed in cooperating at the joint-payoff

maximum suggests that episodes resembling some kind of “price wars” could also be more

likely under substitutes than under complements. These would be markets in which the

collusion index is negative. However, Figure 6 shows that this is much less of a concern as

the share of negative collusion indices is not too different across the two treatments (22.88

percent in treatment Subs versus 16.25 percent in treatment Comp, difference not significant).

Why do our results partly differ from those in PS? We speculate that the difference

between our results and PS is driven by differences in the nature of the game. The repeated

game in PS is a long finitely repeated game. It is played with the same partner for 30 rounds,

and subjects know this. In contrast, in our experiment, subjects repeatedly play the repeated

game with different partners and subjects do not know when each repeated game ends. The

26Ivaldi et al. (2003) discuss factors that are conducive to tacit collusion. The analysis above suggests that
“strategic substitutes” should be added to this list of factors.
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fundamentals of the interactions are thus very different. In the repeated game of PS, full

cooperation, if it occurs, is typically built up gradually: subjects gradually increase their

choice towards the level that maximizes joint payoffs. To illustrate, it often takes around 10

rounds to get to this level. In addition, subjects only participate in one first round, that is, at

the very start of the repeated game, and they do not initiate full cooperation more frequently

in the games with strategic substitutes than in those with complements in this first round.

In our indefinitely repeated games, gradual build-up is difficult to obtain: subjects do not

know how long the repeated game will last, and the expected length is much smaller (10

rounds versus 30 rounds). As compared to PS, full cooperation (if it occurs) hinges more on

subjects taking the risk to fully cooperate in the first round of each repeated game. Therefore,

we suspect that the higher strategic risk inherent in the games of strategic complements as

compared to substitutes has played a fundamental role in our experiment, and not so in PS.

Next, consider our findings in relation to Embrey, Mengel and Peeters (2014). This paper

studies in an experiment the effect of strategic commitment on cooperation in indefinitely

repeated games of strategic complements and substitutes. Subjects choose an initial action

and a strategy (a “machine”) at the beginning of each repeated game. Treatments vary with

respect to the level of commitment, that is, the costs at which strategies can be adjusted in

each round of the repeated game. The treatments vary as well with respect to the strate-

gic environment, with joint-payoff maximization being relatively more risky under strategic

complements than under strategic substitutes.27 Interestingly, subjects choose more often

joint-payoff maximizing actions under strategic substitutes than under complements when

the level of commitment is high, whereas the opposite holds when the level of commitment

is low. Strategic risk thus seems to have a substantial impact on behavior when the level of

commitment is high, but not so when it is low.

If we combine our findings with those of PS and Embrey, Mengel and Peeters (2014), then

it seems that the effect of the strategic environment on cooperation in repeated games depends

on the extent to which strategic risk has an effect on behavior of players. A testable hypothesis

could be that in environments where strategic risk is an important factor (for example,

relatively short games with an unknown end, or games with high levels of commitment),

an environment of strategic substitutes is relatively more conducive of cooperation than an

27The difference in minimum thresholds above which full cooperation can be sustained between the two
treatments is not as large as in our experiment, though. To illustrate, the minimum thresholds are δ∗Comp =
0.77 and δ∗Subs = 0.58 (compared to δ∗Comp = 0.870 and δ∗Subs = 0.518 , in our experiment).
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environment of strategic complements. Moreover, in games where strategic risk tends to

be less important (for example, long repeated games with a known end, or games with low

commitment), more cooperation can be expected under strategic complements than under

strategic substitutes. A preliminary meta-analysis performed by one of the authors of this

paper that uses data from Cournot and Bertrand experiments and other experiments with

strategic complements or substitutes suggests that there indeed seems to be a positive and

significant interaction between strategic complementarity and whether or not the game has

a known end.
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Web Appendix

A. Instructions

You are participating in an experiment on decision making. You are not allowed to talk or

try to communicate with other participants during the experiment. If you have a question,

please raise your hand.

Description of the Experiment

In this experiment you will be asked to make a decision in several periods. You will be

randomly paired with another participant for a sequence of periods. Each sequence of periods

is referred to as a match.

The length of a match is randomly determined. After each round, there is a 90% prob-

ability that the match will continue for at least another round. So, for instance, if you are

in round 2 of a match, the probability there will be a third round is 90 % and if you are in

round 9 of a match, the probability there will be another round is also 90%.

Once a match ends, you will be randomly paired with another participant for a new

match.

In each round you and the other participant you will be matched with (referred to as the

“other”) will be asked to choose a number between 0.0 and 28.0 (in 0.1 steps). The following

table gives information about your earnings for some combinations of your and the other’s

choice. Every participant is given the same table.

You can calculate your and the other’s earnings in more detail (for choices that are not

multiples of 2 for instance) by using the EARNINGS CALCULATOR on your screen. By

filling in a hypothetical value for your own choice and a hypothetical value for the other’s

choice you can calculate your and the other’s earnings for this combination of choices.

Once you have made up your mind, you will enter your decision under DECISION ENTRY

and then clicking the button ENTER. In each round you have about 1 minute to enter your

decision.

Starting with round 2 of a match, you will be given information about the previous round

on your screen. That is, you will be informed about your own and the other participant’s

choice and your own earnings in points in the previous round.

The identity of the other participants you will be matched with will be unknown to you.
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At the end of the experiment you will be paid your earnings in cash and in private. Your

total earnings in points are the sum of your earnings in points over all periods of all matches

of the experiment. Your earnings in points will be converted into EUR according to the

following rate: 300 points = 1 EUR.

Summary

The experiment will consist of a sequence of matches. Each match will consist of a

sequence of periods. The number of periods of each match is determined randomly by the

computer. After each round, with probability 90% the match continues to another round.

You will interact with the same participant for an entire match. After a match is finished,

you will be randomly matched with another participant. In each round of a match, you

and the other participant you are matched with will choose a number between 0.0 and 28.0

simultaneously.

Payoff tables

Figure I: Payoff table handed out to subjects in the Comp treatment.

      The  Other’s Choice →        

 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 

 0.0 -28.00 -27.96 -27.87 -27.74 27.57 -27.35 -27.09 -26.78 -26.43 -26.04 -25.60 -25.12 -24.59 -24.02 -23.41 

 2.0 -18.16 -17.46 -16.72 -15.93 -15.09 -14.21 -13.29 -12.33 -11.32 -10.26 -9.16 -8.02 -6.84 -5.61 -4.33 

 4.0 -10.55 -9.19 -7.78 -6.33 -4.84 -3.30 -1.72 -0.09 1.58 3.29 5.05 6.85 8.70 10.59 12.52 

 6.0 -5.16 -3.14 -1.08 1.03 3.19 5.39 7.63 9.91 12.24 14.62 17.04 19.50 22.00 24.55 27.15 

 8,0 -2.00 0.68 3.41 6.18 8.99 11.85 14.75 17.70 20.69 23.72 26.80 29.92 33.09 36.30 39.55 

 10.0 -1.06 2.28 5.67 9.10 12.57 16.09 19.65 23.26 26.91 30.60 34.34 38.12 41.95 45.82 49.73 

Your 12.0 -2.34 1.66 5.70 9.79 13.93 18.11 22.33 26.59 30.90 35.26 39.66 44.10 48.58 53.11 57.69 

Choice 14.0 -5.85 -1.19 3.52 8.27 13.06 17.90 22.78 27.71 32.68 37.69 42.75 47.85 53.00 58.19 63.42 

    ↓ 16.0 -11.58  -6.26 -0.90 4.51 9.97 15.47 21.01 26.59 32.22 37.90 43.62 49.38 55.18 61.03 66.93 

 18.0 -19.54 -13.56 -7.53 -1.46 4.65 10.81 17.01 23.26 29.55 35.88 42.26 48.68 55.15 61.66 68.21 

 20.0 -29.72 -23.08 -16.39 -9.66 -2.89 3.93 10.79 17.70 24.65 31.64 38.68 45.76 52.89 60.06 67.27 

 22.0 -42.12 -34.82 -27.48 -20.09 -12.65 -5.17 2.35 9.91 17.52 25.18 32.88 40.62 48.40 56.23 64.11 

 24.0 -56.75 -48.79 -40.78 -32.73 -24.64 -16.50 -8.32 -0.09 8.18 16.49 24.85 33.25 41.70 50.19 58.72 

 26.0 -73.60 -64.98 -56.32 -47.61 -38.85 -30.05 -21.21 -12.33 -3.40 5.58 14.60 23.66 32.76 41.91 51.11 

 28.0 -92.68 -83.40 -74.07 -64.70 -55.29 -45.83 -36.33 -26.78 -17.90 -7.56 2.12 11.84 21.61 31.42 41.27 
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Figure II: Payoff table handed out to subjects in the Subs treatment.

      The  Other’s Choice →        

 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 

 0.0 -28.00 -22.88 -17.57 -12.09 -6.42 -0.57 5.47 11.68 18.08 24.66 31.42 38.37 45.49 52.80 60.29 

 2.0 -22.39 -17.46 -12.35 -7.06 -1.58 4.07 9.91 15.93 22.14 28.52 35.09 41.84 48.77 55.89 63.19 

 4.0 -17.43 -12.70 -7.78 -2.69 2.59 8.06 13.70 19.53 25.54 31.73 38.11 44.66 51.40 58.32 65.43 

 6.0 -13.13 -8.59 -3.87 1.03 6.12 11.39 16.84 22.47 28.29 34.29 40.47 46.83 53.37 60.10 67.01 

 8,0 -9.48 -5.14 -0.61 4.10 8.99 14.07 19.32 24.76 30.38 36.19 42.17 48.34 54.69 61.23 67.94 

 10.0 -6.49 -2.34 2.00 6.51 11.21 16.09 21.15 26.40 31.83 37.43 43.23 49.20 55.36 61.70 68.22 

Your 12.0 -4.15 -0.19 3.95 8.27 12.77 17.46 22.33 27.38 32.61 38.03 43.63 49.41 55.37 61.51 67.84 

Choice 14.0 -2.46 1.30 5.24 9.37 13.68 18.17 22.85 27.71 32.75 37.97 43.37 48.96 54.72 60.67 66.81 

    ↓ 16.0 -1.43 2.14 5.89 9.82 13.94 18.24 22.72 27.38 32.22 37.25 42.46 47.85 53.43 59.18 65.12 

 18.0 -1.06 2.32 5.88 9.62 13.54 17.64 21.93 26.40 31.05 35.88 40.90 46.10 51.48 57.04 62.78 

 20.0 -1.33 1.85 5.21 8.76 12.49 16.40 20.49 24.76 29.22 33.86 38.68 43.68 48.57 54.24 59.79 

 22.0 -2.26 0.72 3.89 7.25 10.78 14.49 18.39 22.47 26.74 31.18 35.81 40.62 45.61 50.78 56.14 

 24.0 -3.85 -1.05 1.92 5.08 8.42 11.94 15.64 19.53 23.60 27.85 32.28 36.90 41.70 46.68 51.84 

 26.0 -6.09 -3.49 -0.71 2.26 5.40 8.73 12.24 15.93 19.81 23.86 28.10 32.52 37.13 41.91 46.88 

 28.0 -8.98 -6.57 -3.99 -1.22 1.73 4.87 8.18 11.68 15.36 19.22 23.27 27.50 31.91 36.50 41.27 

B. Prediction based on the basin of attraction

Based on Blonski, Ockenfels and Spagnolo (2011), in Section 3 we derived the prediction that

cooperation can be sustained as an equilibrium for a larger set of discount factors in treatment

Subs than in treatment Comp. Here we use the notion of a basin of attraction to derive the

same comparative statics prediction. To understand the idea of the basin of attraction,

assume (again, a strong assumption) that players either play “tit for tat” (a cooperative

strategy) or “always defect” (a defective strategy) and nothing else in the repeated PD game

and that this is common knowledge (see Dal Bó and Fréchette, 2011). Then a player needs to

determine which of these two strategies generates the higher expected payoff given the belief

that with probability p the other player plays “tit for tat” and with probability 1 − p plays

“always defect”. The basin of attraction of the cooperative strategy is the set of beliefs p for

which playing this strategy gives a higher expected payoff than the defective strategy. In the
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context of the general game shown in Panel (a) in Table 2 in the main text, the expected

payoff for the cooperative strategy is equal to

C(a, c, d, δ) = p(c+ δc+ δ2c+ ...) + (1− p)(a+ δd+ δ2d+ ...) (5)

= 1/(1− δ) (a− aδ + dδ − ap+ cp+ apδ − dpδ) ,

while the expected payoff for the defecting strategy is equal to

D(a, b, d, δ) = p(b+ δd+ δ2d+ ...) + (1− p)(d+ δd+ δ2d+ ...) (6)

= 1/(1− δ) (d+ bp− dp− bpδ + dpδ) .

Equating the two expressions in (5) and (6) gives the threshold p∗ above which playing the

cooperating strategy is the payoff maximizing choice. That is, the lower p∗ the larger the

basin of attraction of the cooperative strategy and the more likely it is that subjects will

choose to fully cooperate. For the games shown in Panel (b) and (c) in Table 2, we find

p∗Comp = 0.391 and p∗Subs = 0.038 , so that, again, full cooperation is predicted to emerge for

a larger range of beliefs in Subs than in Comp.28

C. Cooperative versus Non-Cooperative Pairs

In this section we look at the experimental data from a different angle by focusing on the

evolution of choices and cooperation at the pair level within matches. To do so, we divide

the pairs into those in which the two players succeed in maximizing joint payoff and those

in which the two players do not succeed in doing so (along the lines of PS). We classify a

pair to be collusive if both subjects choose a number in the interval [25, 26] in at least 60%

of the rounds in their individual match. This threshold may look rather low, but if we do

not choose the threshold sufficiently low, given that many pairs only play few rounds, they

would easily be classified as non-JPM pairs.29 For example, in order to classify pairs that

only play 3 rounds in total in the indefinitely repeated game as JPM pairs if they maximize

joint payoff in 2 out of 3 rounds, we need to put the threshold below 66.66%. In any case,

28If the 2×2 PD games are generated using the actions mentioned in footnote 13, we find p∗Comp = 0.784
and p∗Subs = 0.664, and so again p∗Comp > p∗Subs.

29Figure VIII in the Web Appendix F illustrates the distribution of realized match lengths in the experiment.
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Figure III: JPM vs Non-JPM Pairs
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs
respectively on the right- and left-hand sides. A pair is referred to as JPM if both subjects makes
a choice in the interval [25, 26] in at least 60% of the rounds in their individual match.

any of the qualitative conclusions that are made in this section, are robust to changes in this

threshold.

Figure III illustrates the evolution of average choices over time under strategic comple-

ments and strategic substitutes for JPM and non-JPM pairs respectively on the left- and

right-hand panels. This graph suggests that different choice patterns emerge between JPM

and non-JPM pairs. The left-hand panel of Figure III shows that in Subs pairs who succeed

in full cooperation in at least 60% of a match, play higher choices than those in Comp. In the

first rounds, the average choice of JPM pairs in Comp is 20, while it is 22 in Subs. As subjects

gain experience over time the difference between the treatments disappears. That is, in both

treatments once subjects reach the fully cooperative level they remain there. After round 5,

the average choice in both treatments is around 25. (Table II summarizes the average choice

for JPM and non-JPM pairs in the first and all rounds of the first match, all matches and

the last 10 matches.)

The right-hand panel of Figure III illustrates the evolution of average choices of non-

JPM pairs over time. Here we observe that the average choice is higher in Comp than in

Subs, p = 0.303, see column (1) in Table I). In both treatments the average choice follows a

decreasing trend over time. The estimated effect of round on the average choice is −0.061

with p = 0.004, see column (2) in Table I). We argue that the difference in the average choice
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Table I: Regression results on average choice of non-JPM pairs

(1) (2) (3)
VARIABLES Choiceij Choiceij Choiceij

Comp 0.972 0.797 0.183
(0.890) (0.853) (0.665)

Round −0.061*** −0.051**
(0.015) (0.018)

Comp*Round 0.020 0.027
(0.028) (0.027)

Match 0.098
(0.071)

Comp*Match 0.051
(0.095)

Constant 17.04*** 17.58*** 16.50***
(0.754) (0639) (0.398)

Observations 26,500 26,500 26,500
R-squared 0.008 0.013 0.031

Notes: This table reports results from linear regression with standard errors (in parentheses) clus-
tered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at the 1%
(5%) [10%] level. A pair is referred to as JPM if both subjects makes a choice in the interval [25, 26]
in at least 60% of the rounds in their individual match.

Table II: Summary statistics at the pair level for JPM and non-JPM pairs

Average choices in JPM pairs
First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs
First round - 16 19.63 21.96 19.33 22.30
All rounds - 23.90 24.64 25.10 24.60 25.18

Average choices in non-JPM pairs
First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs
First round 17.55 18.26 17.26 17.83 17.55 18.26
All rounds 16.31 16.67 18.16 17.53 18.99 17.92

Notes: This table summarizes average choices for JPM and non-JPM pairs. A pair is referred to
as a JPM pair if subjects in this pair sustain full cooperation in at least 60 % of the rounds in that
match. We present the averages for the first round and all rounds of the first match, all matches
and the last 10 matches separately.
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of non-JPM pairs between the two treatments is due to the interaction between pairs. Since

these subjects do not succeed in reaching full cooperation in 40% of the time in a match, their

behavior depends on the choice of the matched subject, captured by the estimated coefficient

of round. Again, choosing different thresholds of mutual cooperation (say, from from 65% to

80%), we observe almost the same patterns as the one discussed in this section.

D. Learning across matches

In this section we explore learning across matches. To do so, we study how the behavior of

a subject in the first round of a match is affected by (a) the behavior of the partner in the

previous match, (b) the length of the previous match, and (c) a subject’s own behavior in

the previous match (in the spirit of Dal Bó and Fréchette, 2011). We do this in two ways.

We check how the variables just mentioned affect the average subject’s probability to start

a match fully cooperatively (i.e., by making a choice in the interval [25,26]), and how these

variables affect a subject’s level of choice. We present the results in Table III.

In column (1) and (2) of Table III we report, for each treatment separately, the results

from probit regressions where the dependent variable is a dummy which equals 1 if the choice

in the first round of a match is fully cooperative and 0 otherwise. In column (3) and (4)

regression results are reported where the dependent variable is a subject’s choice in the first

round of a match. In all specifications we use the same independent variables: a dummy

indicating whether or not the partner in the previous match made a fully cooperative choice

in the first round of the previous match, the length of the previous match, and a dummy

indicating whether a subject himself made a fully cooperative choice in the very first round

of the experiment.

Consider first columns (1) and (2) of Table III. A subject who was matched with someone

who played fully cooperatively in the first round of the previous match is more likely to start

the current match fully cooperatively in both treatments. However, this effect is statistically

significant only in treatment Comp in which cooperation is more risky. Furthermore, in both

treatments there is a positive and significant relationship between the length of the previous

match and subjects’ likelihood of starting a match fully cooperatively. This suggests that

after a longer match, during which mutual cooperation is more likely to develop, subjects

more often take the risk to start the new match fully cooperatively than after a shorter
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Table III: Learning across matches

FullCoopit Choiceit

(1) (2) (3) (4)
Comp Subs Comp Subs

Partner cooperated in 0.065*** 0.038 1.609* 0.633
round 1 of previous match (0.016) (0.036) (0.662) (0.328)

Previous match length 0.001*** 0.001** 0.013 0.044**
(0.001) (0.001) (0.008) (0.014)

Subject cooperated in 0.053 0.271*** −0.293 4.972***
round 1 of match 1 (0.059) (0.098) (0.465) (0.911)

Constant 17.319*** 17.673***
(0.542) (0.441)

Observations 1,520 1,520 1,520 1,520

Notes: Column (1) and (2) report marginal effects from probit regressions with delta-method stan-
dard errors (in parentheses) clustered at the session level. The dependent variable is a dummy
which is equal to 1 if the choice is fully cooperatively and 0 otherwise. Column (3) and (4) report
results from linear regression with standard errors (in parentheses) clustered at the session level.
The dependent variable is a subject’s choice. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is
significant at the 1% (5%) [10%] level.

match. Lastly, a subject who fully cooperated in the first round of the first match in the

experiment is more likely to start a new match by full cooperation than someone who did

not start the experiment by full cooperation. However, this result is much more pronounced

and statistically significant in treatment Subs.

Consider next columns (3) and (4) in Table III where we report the estimates from

linear regressions in which the dependent variable is a subject’s choice in the first round of

a match. We find that subjects start a match with a higher choice if the partner in the

previous match fully cooperated in the first round of the previous match, with the effect

being more pronounced in treatment Comp. Also, subjects make higher or more cooperative

choices after a longer previous match, where this effect is significant only in treatment Subs.

Finally, a subject in treatment Subs makes significantly higher choices if he had chosen a fully

cooperative choice himself in the first round of the first match. In treatment Comp, however,

the effect is negative and insignificant.

To sum up, a partner’s full cooperation in the previous match and a longer previous match

increase the choice and the likelihood of full cooperation in the next match. Also, subjects

who fully cooperate in the very first round of the experiment are significantly more likely to
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cooperate later in the experiment in Subs but not so in treatment Comp. Taken together,

these results suggest that subjects’ behavior is influenced by learning across matches as well

as by the nature of the game being being played (complements or substitutes).

E. Simulation Results

In this section, we first present our experimental data in an alternative way by focusing on

the evolution of choices and cooperation within matches and not across matches as we did

in the main body of the paper.30 This better enables us to compare our experimental results

with those obtained by simulations. Second, we present results from two sets of simulations

to show that the key features of our experimental data can be replicated.

The upper panel of Figure IV depicts the evolution of average choices within matches.

We observe that average choices are roughly the same in the two treatments, similar to the

observed behavior illustrated in Figure 1. The lower left-hand panel in Figure IV illustrates

the evolution of full cooperation rates within matches. We observe that subjects make a

fully cooperative choice more often under Subs than under Comp, similar to the left-hand

panel of Figure 3. The lower right-hand panel of Figure IV depicts the evolution of average

non-fully cooperative choices within matches. We see that subjects on average play higher

choices under Comp than under Subs, similar to the right-hand panel of Figure 3.

Next, we report the results from two sets of simulations that build on those reported in

PS, featuring cooperative and non-cooperative types of players. Basically, the first version of

our simulation model is the one of PS to which we add a differential propensity of initiating

cooperation depending on the treatment, and the adjustment to an indefinitely repeated

game. The second version is a model that is based on all features of the first version, except

that we use a redefinition of the non-cooperative type.

In both simulations models we assume that there are two types of players: a cooperative

and a non-cooperative player. In the first simulation model, non-cooperative players are

defined as follows. In the first period of a match, non-cooperative types always randomize

over the entire action set, while in each other period of a match they condition their choice

on the previous choice of the partner. They play a myopic best-reply with probability β

and play spitefully with probability 1 − β. Cooperative players are defined as follows. In

30In doing so, we only present the averages for the first 10 rounds, which is the expected length of a match
in our experiment.
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Figure IV: Observed Within-Match Behavior
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Notes: This figure shows the observed evolution of choices and cooperation within matches. In the
upper panel for all choices, in the lower left-hand panel for full cooperation rates, and on the lower
right-hand panel for non-fully cooperative choices (i.e. choices outside the range [25, 26]).

the first round, cooperative types play fully cooperatively with probability α and otherwise

randomize over the entire action set. In any later period cooperative types always reciprocate

full mutual cooperation and also try to induce it with a certain probability: if the pair reached

full cooperation in round t − 1, they play fully cooperatively in round t, otherwise the play

fully cooperatively with probability αt and non-cooperatively with probability 1−αt. Here we

take αt to be history dependent to add the intuition that the probability of fully cooperative

play depends on the response of the partner to one’s own cooperation. Given one’s own full

cooperation in round t− 2, we assume that αt is the following positive function of the degree
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Figure V: Simulation Results for Within-Match Behavior (Model 1)
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Notes: This figure shows the simulated evolution of choices and cooperation within matches for
model 1. In the upper panel for all choices, in the lower left-hand panel for full cooperation rates,
and on the lower right-hand panel for non-fully cooperative choices (i.e. choices outside the range
[25, 26]).

of cooperativeness of the partner in round t − 1: αt = 1/(1 + e−k(yt−1−14)) (as in PS). In

the first two rounds of play αt is constant, say, equal to α. In our experiment we observe

different levels of full cooperation in the first rounds. For this reason, in our simulations

we employ different values of α for the two treatments: αComp and αSubs, which are based

on the full cooperation rates observed in the first rounds. The non-cooperative play of a

cooperative type consists of myopic best-reply with probability β(1 − αt) and spiteful play

with probability (1− β)(1− α).

We assume that the share of cooperative players is p and the share of non-cooperative

38



players is 1− p. This implies that in our simulations a share of p2 matches consists of pairs

where both players are cooperative types, a share of (1 − p)2 of matches consists of pairs

where both players are non-cooperative types, and a share of 2(1 − p)p of matches consists

of pairs with a cooperative player and a non-cooperative player. In our simulations, we set

p2 = 0.4 and note that the key features obtained in the simulations we present are robust to

changes in p. Finally, we determine the length of a match on our simulations by using the

same continuation probability as in our experiment (δ = 0.9).

Figure V shows the evolution of average choices, full cooperation rates, and average non-

fully cooperative choices across rounds for model 1, each based on 1000 simulations with

k = 0.5, αComp = 0.06, αSubs = 0.18, and β = 0.95. We see that the simulations replicate

the key features of the experimental data, except for the fact that the averages for non-

fully cooperative choices are higher in our experiment in comparison to those obtained from

the simulation. This might be due to the experience human subjects gain throughout our

experiment. More specifically, towards the end of the experiment, when subjects gain more

experience, it might be that non-cooperative players are also playing cooperatively to some

extend. Indeed we observe in our experimental data that the average level of choices increases

across matches. To add this intuition to our simulations, we modify the definition of non-

cooperative players and run a second simulation model.31.

In this second model, we define non-cooperative players to not only play non-cooperatively,

but to also try to induce cooperation with a certain probability. We do so by assuming that

non-cooperative players randomly choose an action above the Nash equilibrium of the stage

game with a certain probability. More precisely, non-cooperative players play spitefully with

probability (1−β), play myopic best-reply with probability β(1−γ), and play the maximum

of a myopic best-reply and random choice above the static Nash equilibrium with probability

βγ.32

Figure VI shows the evolution of average choices, full cooperation rates and average non-

fully cooperative choices across rounds for model 2, each based on 1000 simulations with

k = 0.5, αComp = 0.06, αSubs = 0.18, β = 0.95, and γ = 0.4. One can see that with the

new definition of non-cooperative players, we obtain higher levels for non-fully cooperative

31The only difference between the two simulations we present is the definition of a non-cooperative type
32We take the maximum of the myopic best-reply and the random choice above Nash to avoid the case

where the best-reply is a higher choice than the random choice above static Nash, as such a case would be in
conflict with the intuition that the non-cooperative player is trying to induce cooperation.
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Figure VI: Simulation Results for Within-Match Behavior (Model 2)
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Notes: This figure shows the simulated evolution of choices and cooperation within matches for
model 2. In the upper panel for all choices, in the lower left-hand panel for full cooperation rates,
and on the lower right-hand panel for non-fully cooperative choices (i.e. choices outside the range
[25, 26]).

choices, bringing them closer to the levels we observe in our experiment.

40



F. Additional Graphs

Figure VII: Equilibrium Range
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Notes: This figure shows the best-reply functions and iso-payoff contours for our experimental
games.

Figure VIII: Distribution of Match Lengths in the Experiment
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Notes: This figure shows the distribution of the randomly determined match lengths.
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G. Additional Tables

Table IV: Regression results on payoffs

(1) (2) (3)
VARIABLES Payoffi Payoffi Payoffi

Comp 0.208 −0.246 −1.306
(1.640) (1.424) (1.256)

Round −0.085 −0.059
(0.051) (0.049)

Comp*Round 0.050 0.059
(0.062) (0.060)

Match 0.255**
(0.086)

Comp*Match 0.091
(0.116)

Constant 33.68*** 34.45*** 31.45***
(1.370) (1.034) (1.041)

Observations 33,024 33,024 33,024
R-squared 0.001 0.002 0.022

Notes: This table reports results from linear regression with standard errors (in parentheses) clus-
tered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at the 1%
(5%) [10%] level.
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Table V: Summary statistics at the individual level

Average choices
First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs
First round 17.33 17.55 17.50 18.63 17.90 19.37
All rounds 16.31 17.47 18.70 19.09 19.87 20.12

Full Cooperation Rate
First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs
First round 0.05 0.18 0.05 0.18 0.13 0.25
All rounds 0.06 0.09 0.14 0.27 0.20 0.36

Average non-fully cooperative choices
First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs
First round 16.08 16.69 17.02 17.03 17.51 17.58
All rounds 16.71 16.55 17.59 16.64 18.33 16.85

Notes: This table summarizes average choices (top panel), full cooperation rates (middle panel) and
average non-fully cooperative choices (bottom panel). The results are reported for the first rounds
and all rounds of the first match, all and the last 10 matches.

43


	Cooperation in Infinitely Repeated Games of Strategic Complements and Substitutes 2016_05_30.pdf
	Introduction
	Experimental Design and Procedures
	Experimental Design
	Experimental Procedures

	Predictions
	Experimental Results
	Full Cooperation Rates
	Non-Fully Cooperative Behavior

	Discussion
	Instructions
	Prediction based on the basin of attraction
	Cooperative versus Non-Cooperative Pairs
	Learning across matches
	Simulation Results
	Additional Graphs
	Additional Tables


