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Abstract

We report on experiments conducted to study the effect of strategic substitutability
and strategic complementarity on the extent of cooperative behavior in indefinitely
repeated two-player games. On average, choices in our experiment do not differ between
the strategic complements and substitutes treatments. However, the aggregate data
mask two countervailing effects. First, the percentage of joint-payoff maximizing choices
is significantly higher under strategic substitutes than under strategic complements. We
argue that this difference is driven by the fact that it is less risky to cooperate under
substitutes than under complements. Second, choices of subjects in pairs that do not
succeed in cooperating at the joint-payoff maximum tend to be lower (i.e. are less
cooperative) under strategic substitutes than under strategic complements. We relate
the latter result to non-equilibrium forces stemming from a combination of heterogeneity
of subjects and differences in the slope of the response function between substitutes and
complements.
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1. Introduction

The study of cooperation and its determinants has attracted a great deal of attention in the
literature. It is well-known, for instance, that in indefinitely repeated games, cooperation
can be supported in equilibrium if the discount factor is sufficiently high (Friedmanl, [1971)).
Not much is known, however, about how, empirically, the strategic environment—whether
actions are strategic complements or substitutes—influences cooperative behavior in indef-
initely repeated games. In this paper we report on experiments conducted to study the
effect of strategic substitutability and strategic complementarity on the extent of cooperative
behavior in indefinitely repeated games.

Strategic complementarity refers to the property that best-response functions slope up-
ward, whereas under strategic substitutability best-response functions slope downward[[| The
complements /substitutes distinction is relevant in several important applications. For exam-
ple, depending on whether firms in oligopolistic markets with homogeneous goods are engaged
in price or quantity competition, actions are strategic complements or substitutes, and wice
versa in markets with complementary goods. Also, depending on whether skills of members
in teams are complementary or substitutable, efforts of team members are strategic comple-
ments or substitutes. Moreover, depending on whether the production of a public good is
characterized by increasing or decreasing returns, contributions are strategic complements or
substitutes. Finally, when spillovers are high or low, R&D competition is characterized by
strategic complementarity or substitutability, respectively.

While real-world interactions in some of these applications might be best approximated
by games with a finite and definite ending, in others decision makers might be uncertain
about the number and the time horizon of interactions, so that these interactions might best
be approximated and modeled by indefinitely repeated games. For the case of a finite and
known number of repetitions, |[Potters and Suetens| (2009)) show that there is significantly
more cooperation when actions are strategic complements rather than strategic substitutes.

For the case of indefinitely repeated games such evidence is missingE] Moreover, as we

YA game is characterized by strategic complements (substitutes) if Vi, j and i # j: 9*n/0x;0z; > 0 (<
0), implying that the best-response functions are upward- (downward-) sloping (see |Topkis| 1978; Bulow,
Genakoplos and Klemperer, [1985; [Fudenberg and Tirole} [1984]).

2An important exception is [Embrey, Mengel and Peeters| (2014). This paper focuses on the effect of
commitment on cooperation games of strategic substitutes and complements. We discuss how our paper and
results relates to this paper in the discussion section.



explain further below, theory and earlier experimental results do not lead to an unambiguous
prediction regarding the effect of the strategic environment (substitutes versus complements)
on the extent of cooperative behavior in indefinitely repeated games. This is, hence, an
additional motivation for our study, as experiments seem to be particularly well-suited to
help understand which effects prevail if predictions are unclear.

In our experiment, pairs of subjects play games with an indeterminate final period that
feature either strategic complementarity or strategic substitutability. The games are borrowed
from [Potters and Suetens| (2009)), henceforth referred to as PS. Across the two treatments,
several variables are kept constant, namely, the actions and payoffs in the Nash equilibrium of
the stage game and in the symmetric joint-payoff maximum, the optimal defection payoff and
the absolute value of the slope of the stage-game best-response function. Subjects know that
after each period the game proceeds to a next period with a fixed continuation probability.
In order to allow for learning across games, subjects play at least 20 repeated games. After
a repeated game ends, players are randomly re-matched to play another repeated game with
the same continuation probability. The treatments are designed so that cooperation at the
joint-payoff maximum can be sustained as a subgame-perfect Nash equilibrium. In particular,
the treatments have the same critical discount factor above which such “full” cooperation is
supported by, for example, a grim trigger strategy.

On average, choices in our experiment do not differ significantly between the strategic
complements and substitutes treatments. This is in clear contrast to PS, who find in a
finitely repeated game that an environment with strategic complements is more conducive
to cooperation than one with strategic substitutes. However, our aggregate result masks
two countervailing results that are in line with two distinct literatures. The first of these
results is that the percentage of choices at the joint-payoff maximum is significantly higher
under strategic substitutes than under strategic complements. This result fits well with
the notion that strategic risk related to cooperation at the joint-payoff maximum is lower
under substitutes than under complements. Recent theoretical and experimental studies
on indefinitely repeated prisoner’s dilemma games show that strategic risk is an important
determinant of behavior. In particular, Blonski, Ockenfels and Spagnolo (2011]) formalize the
intuition that cooperation gets riskier, and thus less likely, the more it hurts to cooperate if the
partner defects (that is, the lower the “sucker” payoff). In particular, they propose a threshold

for the discount factor in an indefinitely repeated game above which cooperation at the joint-



payoff maximum is supported in equilibrium, which is higher than the standard threshold
based on e.g. grim-trigger strategies (see |Blonski and Spagnolo| [2015)). Blonski, Ockenfels
and Spagnolo| (2011]) and |Dal B6 and Fréchette| (2011]) provide experimental evidence showing
that this threshold is necessary for cooperation in a prisoner’s dilemma to increase to very
high levels. This adjusted threshold is lower in games of strategic substitutes than in games
of strategic complements, thus making it easier to cooperate in the former than in the latter
case.

The second result in our experiment hidden at the aggregate level is that choices of
subjects in pairs that do not succeed in cooperating at the joint-payoff maximum tend to be
lower, i.e. are less cooperative, under strategic substitutes than under strategic complements.
This finding squares well with theoretical and experimental findings on the differential effects
of strategic substitutes and complements on cooperation in the presence of heterogeneous
player types. To illustrate, if a cooperator is matched with a best-responder, the aggregate
outcome in a pair will be less cooperative under strategic substitutes than under complements
(Haltiwanger and Waldman, (1991}, [1993; Camerer and Fehr, 2006). The reason is that a best-
response to a cooperative choice is less cooperative under strategic substitutes than under
complements in the sense that it deviates less from the static Nash equilibrium in the former
than in the latter casef| Experimental evidence for this intuition in the context of a “long”
finitely repeated dilemma game is provided by PS[]

The remainder of this paper is organized as follows. In Section 2 we introduce the exper-
imental design and procedures. In Section 3 we develop the conjectures concerning predicted
behavior in our experiment, focusing on the comparative static predictions between the treat-
ments with complements and substitutes. In Section 4 we present the experimental results.

In Section 5 we summarize and discuss our findings in the light of the existing literature.

3In contrast to theory, the estimated response functions in our two treatments have the same positive sign,
but it still holds that the slope in the case of complements is larger than the one in the case of substitutes.

4See Haltiwanger and Waldman (1985) and [Fehr and Tyran| (2008) for applications where aggregate
outcomes depend on the strategic environment if individuals are heterogeneous in the rationality of their
expectations.



2. Experimental Design and Procedures

2.1. Experimental Design

Our experiment has two treatments: one where choices are strategic complements (Comp)
and another where choices are strategic substitutes (Subs). In each treatment, subjects play
an indefinite repetition of the same stage game. The stage game has a unique and Pareto
dominated Nash equilibrium and a symmetric socially efficient (joint-payoff maximizing)
outcome (JPM). The payoffs in each treatment are determined according to the following

payoff functions (borrowed from PS):

m O™ (2, 1) = —28 + 5.4T4w; + 0.01z; — 0.278z7 + 0.005527 + 0.1652;2;, (1)
w0 (g, m5) = —28 + 2.9697; + 2.5152; — 0.08227 + 0.023x7 — 0.0485z;2;. (2)

The coefficients in the payoff functions are chosen in order to ensure a fair comparison between
the two treatments. First, in both treatments the Nash-equilibrium choices are the same and
the JPM-choices are the same. Second, the payoffs corresponding to the Nash equilibrium
and the JPM are the same across the two treatments. Third, the payoff achieved by best
responding to JPM play of the matched player, referred to as the defection payoff, is the
same in the two treatmentSE] Lastly, the absolute value of the slopes of the best-response
curves are the same in the two treatments to guarantee that the same speed of convergence is
generated by best-response dynamics. Table [1| summarizes the main theoretical benchmarks

of our design.

Table 1: Theoretical Benchmarks

Comp Subs
Choicenash 14.0 14.0
ChOiCQ}PM 25.5 25.5
Myash 27.71 27.71
Iypm 41.97 41.97
pefect 60.14 60.14
Slope of reaction function 0.30 —0.30

Notes: This table shows the theoretical benchmarks regarding choices and payoffs in the experiment.

5The combination of the second and third condition mentioned above has as the consequence that payoffs
on the best-response function are the same in the two treatments.



In order to allow for learning, in our experiment subjects played a series of one of the two
games described above. We refer to each repeated game, that is, each sequence of periods
determined by the continuation probability of 0.9, as a match. Once a match ended and
depending on the time left, another one started. In each session, subjects participated in as
many matches as possible such that at least 20 matches were played. If at least 20 matches
had already been played, a session ended after one and a half hours of play. Subjects played
with the same partner throughout a match. Once a match ended, subjects were randomly
re-matched with another subject.

By using the payoff functions given in and , we keep several actions and payoffs
constant across treatments. We felt the same should be done with respect to the sequence of
matches and their respective lengths. At the same time, because of possible order effects, we
did not only want to have one sequence of matches to be played in each of the two treatments.
We therefore decided to have five different draws of the lengths of matches prior to the start of
the experiments, each of which was administered in one session for each of the two treatments
Comp and Subsﬁ The length of each match in a draw was determined randomly with the
continuation probability of 0.9. Figure [VIII] in the Web Appendix [F] shows the distribution
of realized match lengths across all five draws]]

Since there is always the possibility of continuing to a next round, the randomization gen-
erates a game that is strategically equivalent to an indefinitely repeated game. In particular,
the continuation probability J is equivalent to the discount factor in an indefinitely repeated
game assuming that within the time slot of an experiment, there is no discounting (Roth and

Murnighan), |1978)).

2.2. Experimental Procedures

The experiment consists of 10 sessions (five for each of the two treatments Comp and Subs)
that were conducted at CentERlab at Tilburg University during September-October 2011E|
A total number of 160 students participated in the experiment. Participants were recruited

through an email list of students who are interested in participating in the experiments. In

SFor instance, under draw number 1, the randomly determined lengths of the matches played was: 11, 5,
9,5,18,33,7,7,5,12,4, 16, 11, 1, 5, 4, 23, 9, 14, 6, 6, 10, 2, 7, 1.

"In an indefinitely repeated game with continuation probability § = 0.9, the expected number of periods
in each match is 10.

8We used the experimental software toolkit Z-Tree to program and conduct the experiment (see |[Fis-
chbacher} 2007)).



each session, 16 subjects interacted anonymously in a sequence of matches, that is, indefinite
repetitions of the same stage game. In each session subjects participated in between 20 and
25 matches. Each session lasted not more than two hours (including the time to read the
instructions and payment of the subjects).

All participants were given the same instructions (see Web Appendix. At the beginning
of each match, subjects were randomly paired with each other. During a match, subjects
played with the same partner. The matching rule was explained clearly before the experiment
started. The identity of the partners was not revealed to subjects. It was explained to
the subjects that their final earnings depended on their own choices and the choices of the
matched participants. The subjects were asked to choose a number between 0.0 and 28.0 (up
to one digit after the comma) in each round of a match. Subjects were provided an earnings
calculator on the computer screen enabling them to calculate their earnings in points for
any combination of hypothetical choices, and a payoff table for combinations of hypothetical
choices that are multiples of two (see Figure [l and Figure [[I|in the Web Appendix [A)).

After choices were submitted in each round, subjects were informed about whether or not
the match would continue to a next round. In the case the game continued to a next round,
subjects received the message “The match continues to the next round.” on the computer
screen. In the case the match ended, subjects received the message “The match is over.”
on the computer screen. Once a match ended, another match would begin, depending on
the time available. Moreover, after each round of a match subjects were provided with
information of the previous round on the screen, namely their own choice and earnings and
the matched partner’s choice and earnings.

After subjects finished reading the instructions, we explained to them that the experiment
itself would proceed for about 1.5 hours.

The payoffs in the experiment were expressed in points. At the end of the experiment, the
sum of a subject’s earnings in points in all rounds of all matches were converted into Euro
at the exchange rate of 480 points = 1 Euro, and privately paid to subjects. The average

earnings in the experiment was 16.45 Euro.



3. Predictions

A first prediction builds on the standard theory of infinitely repeated games. Based on simple
grim-trigger strategies, this theory predicts that cooperation can be supported as a subgame

perfect Nash equilibrium (SPNE) if the following condition holds:

1_[JPM (SHNash
> I petec . 3

T R L ()

The left-hand side of is the discounted sum of payoffs from cooperation, while the right-
hand side is the discounted sum of payoffs from a one-time deviation followed by Nash
equilibrium play forever after. By design, the JPM payoff, the defection payoff, and the
static Nash equilibrium payoff are the same in both treatments. Rearranging condition ({3])

and using the numbers given in Table (1, we get

o HDefect - HJPM . 6014 — 4194
" Mpefect — Myasn  60.14 — 27.71

§>6: = 0.56 (4)

for both treatments. We thus conclude that the critical discount factor above which cooper-
ation at the joint-payoff maximum (full cooperation) is supported by a grim-trigger strategy
is the same in both treatments} [

A second prediction takes into account differences in the relative riskiness of cooperation
in the two treatments. Inspecting the payoffs in Subs and Comp, one notices that if one
player plays fully cooperatively, while the other player in the market defects optimally, the
cooperating player’s (“sucker”) payoff is lower with complements than with substitutes. In
addition, the payoff players get if they both optimally defect, is lower in Subs than in Comp.
Intuitively, these two forces make it less attractive to choose actions that maximize joint
payoffs in Comp than in Subs, because doing so is relatively more risky in the former than in

the latter treatment.

9The range of actions that Pareto-dominate the static Nash equilibrium, and thus also the range of actions
that can be sustained in equilibrium in an indefinitely repeated game, is larger under substitutes than under
complements. This can be seen in Figure [VII] in the Web Appendix [F] that shows the iso-payoff contours
in both cases. Given the findings of |Gazzale| (2009)), we did not expect that this difference would lead to
differences in the extent to which subjects succeed in fully cooperating. It may lead to larger variability in
actions under substitutes than under complements, though.

0However, note the following. Any feasible and admissible average payoff vector “above” the NE of the
stage game can be supported as a SPNE provided that ¢ is sufficiently high. The area of these payoff vectors
for Comp is 386.648, while for Subs it is 403.246.



Table 2: A general and reduced PD games for the two treatments

@) ®) ©
A general PD game The reduced PD game for Comp The reduced PD game for Subs
C D C D C D
Clccl|abd C | 41.94, 41.94 | 5.89, 60.14 C | 41.94, 41.94 | 10.71, 60.14
D|b,a|dd D | 60.14, 5.89 | 34.90, 34.90 D | 60.14, 10.71 | 18.17, 18.17

Notes: This table illustrates the payoff matrices for a general PD game and the reduced PD games for Comp
and Subs treatments.

Recently, this intuitive idea received formal support in [Blonski, Ockenfels and Spagnolo
(2011). These authors suggest an axiomatic approach to equilibrium selection in indefinitely
repeated prisoner’s dilemma (PD) games. They show that a set of five axioms leads to a
discount factor 0* that is strictly larger than the standard discount factor ¢ derived above and
that, more importantly for our purposes, also reflects the influence of the sucker payoff on the
incidence of fully cooperative play["| In particular, given a PD stage game of the form shown
in Panel (a) in Table |2 with b > ¢ > d > a and 2¢ > b+ a, Blonski, Ockenfels and Spagnolo
(2011, Proposition 2) show that their five axioms imply the threshold §* = (b—c+d—a)/(b—a)
above which a cooperation equilibrium is predicted to be played in the indefinitely repeated
PD. Note that this threshold features the sucker payoff a, while the threshold § derived above
does not (there § = (b—c)/(b—d)). Note also that 95*/da = — (¢ — d) / (a — b)* < 0, so that
a lower sucker payoff increases the threshold above which cooperation should be observed.
Put differently, the lower the sucker payoff, the smaller the range of discount factors for which
cooperation can be supported in equilibrium.

Blonski, Ockenfels and Spagnolo| (2011 develop their approach in the context of a stan-
dard 2x2 PD game. Our stage game, however, has many more than just two actions. Still, we
believe that the intuitive idea that a lower “sucker” payoff and higher “mutual optimal defec-
tion” payoff should ceteris paribus lead to less full cooperation is also relevant in the context
of our stage games. A prediction that translates Blonski et al.’s approach to our games can
be generated if one is willing to make the simplifying assumption that the action space of our

stage games consists of just two strategies, say C' = Choice py and D = Choicepefee. Using

" The five axioms in Blonski, Ockenfels and Spagnolo| (2011) are called (1) positive linear payoff transfor-
mation invariance; (2) d-monotonicity, (3) boundary conditions (which is the crucial axiom that highlights
the influence of the sucker payoff on the incidence of cooperation); (4) incentive independence; and (5) equal
weight.



the payoff functions given in and (2)), these two choices lead to the two games shown in
Panels (b) and (c) in Table H It follows that o, = 0.870 and 6¢,, = 0.518, so that full

cooperation can be sustained for a larger range of discount factors in treatment Subs than in

*
Comp

treatment Comp/["|

An alternative concept leading to the same comparative static prediction as the approach
suggested by Blonski, Ockenfels and Spagnolo| (2011)) is based on the idea of the basin of
attraction of a cooperative strategy in comparison to a defecting strategy (see Dal B6 and
Fréchette] (2011)). We provide details of this idea in Web Appendix

A third prediction is based on the literature that studies the interaction between the
strategic environment (complements versus substitutes) and heterogeneity of players (Halti-
wanger and Waldman, 1991} (Camerer and Fehr| [2006), as well as its application to repeated-
game experiments (see PS). The intuition goes as follows. In games of strategic complements
a change in the matched player’s choice gives a payoff-maximizing player an incentive to
move in the same direction, while in games of strategic substitutes the incentive is to move
in the opposite direction. Given that several experiments have shown that some individuals
are (conditionally) cooperative in the sense that they try to induce cooperation and follow
it when established by others, even when there is no future interaction, (see Fehr and Fis-
chbacher, 2002; Clark and Sefton), 2001; Reuben and Suetens|, 2009), it is plausible to assume
that players are heterogeneous in their cooperativeness and defection strategies. Consider,
for example, a cooperative player who is matched with a defector in the above-described
games of complements and substitutes. If the cooperative player makes a cooperative choice
(higher than the static Nash equilibrium), and the matched defector is an optimal defector
in the sense that he best-responds to this move, then, in sum, choices will be higher (more
cooperative) in Comp than in Subs. This is because in Comp, the best-response to a coop-
erative move is to (partly) follow the move and make a higher choice as well, whereas in
Subs the best-response is to make a less cooperative choice. This mechanism may facilitate
cooperation in Comp and may hamper it in Subs. In addition, a similar mechanism occurs
when a cooperative player is matched with a spiteful defector who aims at maximizing the

payoff difference between himself and the cooperator. In order to employ the same level of

12The choice C = Choicejpar is equal to 25.5 in both treatments, while D = Choicepefect = 17.42 in
Comp and D = Choicepefect = 10.64 in Subs.

13In the case the two choices are C' = Choicespyr = 25.5 and D = Choicengsy, = 14 in both treatments,
we get O¢ym, = 0.7834 and 0§, = 0.664, and so, again, 0¢ym, > 08,ps-

10



punishment (in payoff terms), a spiteful defector must choose much lower choices in the Subs
treatment than in the Comp treatment. So here as well, choices will, on average, be higher,
i.e. more cooperative in Comp than in Subs. PS provide evidence for this intuition in the
context of a finitely repeated game.

Summarizing, based on theory and earlier experimental results no unambiguous prediction
can be made regarding the higher prevalence of cooperation in our two treatments. Hence,

we formulate the following research question:

Research Question In the context of an indefinitely repeated game, which environment is

more conducive to cooperation: strategic substitutes or strategic complements?

4. Experimental Results

In this section we describe our main results. We analyze data from matches 1-20 for which
we have observations in all sessions.

Averaged over all subjects, rounds and matches, the mean choice is 19.09 in treatment
Subs and 18.70 in treatment Comp. In the last 10 matches the mean choice in the Subs
treatment is 20.12 and that in the Comp treatment is 19.87[ The average choice is thus

roughly the same in the two treatments.

Figure 1: Evolution of Average Individual Choices
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Notes: This figure shows the evolution of average individual choices across matches.

14The summary statistics for average choice is presented in Table [V|in the Web Appendix

11



Figure|l|illustrates the evolution of average choices over time under strategic complements
and strategic substitutes. In both treatments, the average choice is increasing over the
matches. However, there is no clear difference between the two treatments[”| To formally
quantify the difference between the two treatments, and to test whether it is statistically
significant, we estimate the effect of strategic complementarity on the individual choice.
We do so by regressing the choice of an individual on a treatment dummy, and clustering
standard errors at the session level. Results are reported in column (1) of Table [3| The
regression results confirm that the difference between the two treatments is small in size,
and not statistically significant (the treatment dummy coefficient is —0.365 and statistically
insignificant at p = 0.679) 7]

However, some properties of the data might be hidden when looking at aggregates. To
analyze the data in more detail, in a next step we present the distribution of choices for
strategic substitutes and complements. Figure [2| shows that choices in the Subs treatment
are spread over the whole interval, while choices in the Comp treatment are somewhat more
concentrated. Moreover, the modal choice in both treatments is a choice at or very close to
the JPM level of 25.5. This is particularly accentuated in treatment Subs. To illustrate, in
Subs almost 30% of the choices are at or very close to the JPM level of 25.5, whereas in Comp
we only observe about 15% of such choices.

To further explore potential differences between Subs and Comp, we distinguish “fully-
cooperative” and “non-fully cooperative” choices. We define a choice to be fully-cooperative
if it lies within the interval [25,26], where 25.5 is the JPM choice in both treatments. We
refer to a choice as non-fully cooperative if it lies outside the range [25, QG]E

The left-hand panel of Figure [3] illustrates for both treatments the share of fully coop-

erative choices across matches. From this graph it becomes clear that the share of fully

5There is also no significant difference in payoffs between the two treatments as reported in Table [[V]in
the Web Appendix @

16The estimated treatment effect of strategic complementarity on individual choice becomes —0.386 at
p = 0.505 when we control for the match and the interaction between treatment and match. No significant
differences are obtained in payoffs either. This can be seen in Table IIEI in the Web Appendix @

"Mann-Whitney-U tests based on independent observations yield similar results, both when the average
choice is based on all matches or the last 10 matches (p = 0.750 in both cases).

8The choice of such a range is to some extent arbitrary, and one may argue that choices above 26 are
also fully cooperative. For example, 28, which is the maximum choice possible, can serve as a focal point for
subjects to coordinate on (almost) full cooperation. Enlarging the fully-cooperative interval to [25, 28], does
not affect any of our qualitative results in what follows. Choices above 26 correspond to 0.68 % of all choices
in the experiment.

12



Table 3: Regression results on choice

(1) (2) (3) (4)
VARIABLES Choice;, Choice;; Choice;; Choice;;

Comp —0.365 —0.386 —2.421%F% 2 190%**
(0.853)  (0.557)  (0.179)  (0.200)

Choicej_q 0.743%F*%  (0.734%**
(0.012)  (0.010)

Comp*Choiceje_; 0.120%%%  (.126%**
(0.013)  (0.013)

Match 0.208%*** 0.0602%**

(0.041) (0.015)
Comp*Match 0.001 —0.015
(0.060) (0.018)

Constant 19.210%**  16.951%** 5.005%** 4.530%***

(0.703) (0.487) (0.118) (0.096)

Observations 33,024 33,024 29,824 29,824

R-squared 0.001 0.043 0.604 0.607
Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. *** (**) [*] indicate that the estimated coefficient is significant at the
1% (5%) [10%)] level. The dependent variable is a subject’s choice in all specifications.

Figure 2: Distribution of Choices
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Notes: This figure shows the distribution of individual choices in the experiment.

cooperative choices is higher in Subs than in Comp. In addition, the share of fully coopera-
tive choices increases in both treatments, but more so in Subs than in Comp. In the last 10

matches, the percentage of fully cooperative choices is around 40% in Subs, while it is around

13



Figure 3: Cooperative vs Non-Cooperative Behavior
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Notes: This figure shows the evolution of cooperative and non-cooperative behavior. The left-hand
panel depicts the evolution of full cooperation rate across matches and the right-hand panel depicts
the evolution of average non-fully cooperative choices across matches.

25% in Comp][H]

The right-hand panel of Figure |3|depicts the evolution of averages of non-fully cooperative
choices (those that fall outside the interval [25,26]) across matches. Here we observe that
the average choice of subjects is, overall, higher in Comp than in Subs. So it seems the effect
of strategic complementarity on behavior switches—behavior is more cooperative because
choices are higher—when we focus on non-fully-cooperative choices. To illustrate, averaged
over subjects, rounds and matches, the mean non-fully cooperative choice is 16.65 in the Subs
treatment and it is 17.59 in the Comp treatment. In the second half of the experiment, the
average non-fully cooperative choice is 16.85 in Subs and 18.33 in Compﬂ

In sum, although we do not observe a difference between the two treatments at the
aggregate level, analyzing fully cooperative and non-fully cooperative behavior separately
suggests that, overall, behavior is driven by two countervailing forces. On the one hand,
subjects make choices at the fully cooperative level more frequently under Subs than under
Comp. On the other hand, the average choice of subjects who do not make fully-cooperative
choices is higher under Comp than under Subs. To understand which forces drive these

two results, we analyze fully cooperative behavior in section and non-fully cooperative

9For an in-depth analysis of the statistical significance of these observations see Sectio

20For a more detailed analysis of the statistical significance of these results see Section
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behavior in [4.2]in more detail. Web Appendix[C|focuses on results at the pair level. Moreover,
in view of the time trends visible in Figures[I] and [3] we explore learning across matches in

Web Appendix [D]

4.1. Full Cooperation Rates

In this section we take a closer look at full cooperation rates, that is, choices in the interval
[25,26] at the level of subjects. In doing so, we examine the first and all rounds of a match
separately since the cooperation rate might evolve within a match, depending on the number
of rounds in that match (see Dal B6 and Fréchette, 2011)). In addition, in the first rounds
of each match subjects are playing with a new partner so that they do not have experience
with their partners’ behavior (or cannot recall it due to random matching). In this respect,
subjects’ behavior in the first round of each match is mainly driven by the fundamentals of
the game they are playing (and possibly their experiences in the previous matches) and not
by the current partners’ behavior.

Figure {] illustrates the evolution of the full cooperation rate across matches, in the left-
hand panel for the first rounds and in the right-hand panel for all rounds of a match. The left-
hand panel shows that in the first rounds of a match subjects make fully cooperative choices
more frequently under Subs than under Comp. In addition, the first-round full cooperation
rate follows an increasing trend in Subs, while in Comp it is more steady across matches.
The full cooperation rate in the first match is almost the same for the two treatments, while
towards the end of the experiment there is a considerable difference in full cooperation rates
between the two treatments. Moreover, the first-round full cooperation rate reaches the level
of about 25% in the Subs treatment by the end of the experiment, while it remains at around
5% in the Comp treatment.

In order to test whether these differences are statistically significant, we ran two speci-
fications of a probit regression in which the dependent variable is a dummy referring to a
subject making a fully cooperative choice or not. In the first specification shown in Table
we include as an independent variable a treatment dummy. In the second specification, next
to the treatment dummy, we control for the match, and the interaction between treatment
and match. As shown in Table[d] in both specifications the treatment dummy has a negative

sign—the full cooperation rate in Subs is thus lower than the one in Comp—and is statistically
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Figure 4: Full Cooperation Rate
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Notes: This figure shows the evolution of full cooperation rate across matches, on the left-hand
panel for the first rounds only and on the right-hand panel for all rounds.

significant. The estimated marginal effect is —0.127 and —0.50, respectivelyﬂ In addition,
column (2) shows that the first-round full cooperation rate significantly increases over the
matches in Subs (marginal effect is 0.005, p < 0.001), but not so in Comp (marginal effect is
—0.002, p < 0.001).

Next, we focus on the right-hand panel of Figure [4] and the remainder of Table 4 As
illustrated in the figure, there is again a clear difference between the two treatments in the
full cooperation rate. In contrast to the first rounds, the full cooperation rate now increases
over matches in Comp as well. The full cooperation rate raises up to about 25% in Comp and
up to about 45% in Subs.

The results of probit regressions, which we report in columns (3) and (4) of Table [4]
indicate that the treatment effects are again statistically significant. Moreover, as shown
in column (4), the full cooperation rate increases significantly over the matches in both
treatments (marginal effect is 0.016, p = 0.001).

Summarizing, we find significantly more initiation of full cooperation at the beginning of
a new match as well as more fully cooperative choices in general in Subs than in Comp. This
result is in line with the discussion of the differences in the “riskiness of cooperation” in our

two treatments in Section

21The p-values in Mann-Whitney-U tests based on sessions averages are 0.016 if all matches are taken into
account and 0.075 if only matches 11-20 are taken into account.
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Table 4: Regression results on full cooperation

First rounds All rounds
0 ) ) )
VARIABLES FullCoop;;  FullCoop;; FullCoop;;  FullCoop;;
Comp —0.127%FF  —0.050%** —0.115%F*  —0.178***
(0.031) (0.022) (0.042) (0.043)
Round 0.004***
(0.002)
Comp*Round 0.004**
(0.002)
Match 0.005*** 0.016***
(0.002) (0.002)
Comp*Match —0.007*** 0.001
(0.003) (0.004)
Observations 3,200 3,200 33,024 33,024

Notes: This table reports marginal effects from probit regressions with delta-method standard errors
(in parentheses) clustered at the session level. The dependent variable is a dummy which is equal to
1 if the choice is fully cooperative and 0 otherwise. *** (**) [*] indicate that the estimated coefficient
is significant at the 1% (5%) [10%] level. Specifications (1) and (2) are based on observations from
the first rounds of matches only and specifications (3) and (4) are based on all observations.

4.2. Non-Fully Cooperative Behavior

In this section we analyze the effect of strategic complementarity on non-fully-cooperative
behavior. In doing so, we focus on those data points that are not in the fully cooperative
range of [25,26]. Figure |5| depicts the evolution of the average non-fully-cooperative choice
over matches, in the left-hand panel for the first rounds and in the right-hand panel for all
rounds of a match.

The figure in the left-hand panel shows that in the first rounds of the matches there is
no clear difference in non-fully-cooperative behavior between the two treatments. The figure
also shows that in both treatments the average non-fully cooperative choice in the first rounds
is initially above the static Nash equilibrium choice of 14 and increases over the matches.
As shown in Table |5 presenting results from linear regressions where the average non-fully-
cooperative choice is regressed on a treatment dummy, the treatment effect is small and not

significant. In addition, as shown in column (2) of this table, the average choice significantly
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Figure 5: Average Non-Fully Cooperative Choices
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Notes: This figure shows the evolution of non-fully cooperative choices (i.e. choices outside the
range [25, 26]) across matches, on the left-hand panel for the first rounds only and on the right-hand
panel for all rounds.

increases over time [

Next, we consider average non-fully-cooperative choices across all rounds. The evoloution
of these choices across matches is shown in the right-hand panel of Figure E Here, a
different behavior emerges. When averages are taken across all rounds instead of just the
first rounds of a match, the average non-fully-cooperative choice is higher in Comp than in
Subs, although this difference is not significant (p = 0.301, see column (3) in Table .

Next we analyze the adjustments across rounds. During a match, subjects observe the
past choice(s) of the matched subject and are likely to adjust their own behavior. If at
least some of the subjects (noisily) best-respond it should be the case that in Comp the
estimated response function has a higher slope than in Subs (see Table [I). Columns (4)
and (5) of Table [5| report estimates of the observed response functions. The reported results
come from linear regressions where the choice of a player is regressed on the choice of the
matched player in the previous round (in the same match) as well as the interaction of the

other subject’s past choice and a treatment dummy. In column (5) additional controls are

22We also tested whether average choices of subjects who do not play fully cooperatively is the same in
the two treatments by using a two-sided Mann-Whitney-U Test. The p-value of the null hypothesis that the
average non-fully cooperative choice is the same in the two treatments is 0.25, for both the entire experiment
and the second half of the experiment. So we fail to reject the null hypothesis.

23The right-hand panel of Figure [5|is the same as the right-hand panel of Figure
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Table 5: Regression results on non-fully cooperative choices

First rounds All rounds
1) 2) 3) (4) 5)
VARIABLES Choice;; Choice;; Choice;; Choice;; Choice;;
Comp 0.007 0.175 0.999 —2.830%F*  —2.968***
(0.546) (0.417) (0.911) (0.269) (0.462)
Choicej;_4 0.583*** 0.582%**
(0.031) (0.028)
Comp*Choicej;_4 0.202%** 0.192%**
(0.033) (0.031)
Match 0.109%*** 0.017
(0.018) (0.033)
Comp*Match —0.019 0.029
(0.032) (0.038)
Constant 17.016%**  15.909*** 16.334%** 6.607*** 6.453%***
(0.404) (0.361) (0.773) (0.171) (0.397)
Observations 2,823 2,823 25,061 22,238 22,238
R-squared 0.001 0.021 0.010 0.444 0.446

Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. *** (**) [*] indicate that the estimated coefficient is significant at the
1% (5%) [10%] level. Specifications (1) and (2) are based on observations from the first rounds of
matches only and specifications (3), (4) and (5) are based on all observations.

included for the match and the interaction between match and treatment. Both columns
show that in both treatments subjects (partially) follow each other (i.e., an increase in the
choice of the rival is followed by an increase in one’s own choice in the current period), and
the effect is statistically significant ] Importantly, the extent to which subjects follow each
other is significantly greater in Comp than in Subs. To illustrate, an increase in the choice
by a subject, increases the choice of the matched subject in the next round by 0.58 in Subs
and by 0.78 in Comp. The effects are very similar when we control for the match and the
interaction between match and treatment.

The positive effect of Comp shown in column (3) of Table [5| in combination with the
result that the extent to which subjects follow each other is greater in Comp than in Subs (cf.

columns (4) and (5) in Table5]), suggest that at least some subjects try to induce cooperation,

24Reaction functions being positively sloped in both treatments can be explained by endogenous comple-
mentarity that arises when subjects use reciprocal strategies (see also PS).
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to which others (noisily) best-respond. For example, if a subject who increases its choice
above the static Nash equilibrium, with the intention to move towards full cooperation, is
matched with a (noisily) best-responding subject or a spiteful subject, choices in this pair will
on average end up to be higher (more cooperative) in Comp than in Subs, which is exactly
what we observe. This is the mechanism behind our prediction based on heterogeneity of
subjects’ types in Section [3]

Summarizing, when we focus on non-fully-cooperative choices, we find that behavior is
in agreement with the mechanism based on heterogeneity of subjects, so that the average
(non-fully-cooperative) choice tends to be higher in Comp than in Subs.

We also present the results of regressions of treatment effects and responses of subjects
using all choices, so including those in the fully-cooperative range. Table |3| summarizes the
results. Recall that the specification in column (1) shows the aggregate (non-significant)
treatment effect on choices. The specifications in columns (3) and (4) show the estimated
response of subjects to the matched subject’s choice, as well as the treatment effect on
this response (with and without controlling for the match). As can be seen, the estimated
responses are qualitatively similar to those shown in Table f The size of the estimated
response is larger now, because fully cooperative choices as well as subjects responding to
full cooperation by fully cooperating themselves are included as well.

The heterogeneity explanation elaborated on above is supported by results of simulations
assuming two different types of players: cooperative and non-cooperative players. A cooper-
ative player is assumed to reciprocate full mutual cooperation and to induce full cooperation
with a certain probability by playing fully cooperatively. This probability is positively related
to the cooperativeness of the matched partner’s cooperative response to his own cooperative-
ness in the previous period. Otherwise, this type of player either punishes by playing a
best-reply or playing spitefully with a certain probability (where spiteful behavior consists
of maximizing the difference in payoffs). A non-cooperative player plays either a best-reply
or spitefully, each with a certain probability. These two types of players imply three types
of possible matchings: those of two cooperative players, those of a cooperative and a non-
cooperative player, and those of two non-cooperative players. To this basic setup (that draws
on simulations presented in PS), we add the assumption of a differential propensity of initi-
ating cooperation depending on the treatment, just as we found in our experiment. Finally,

we simulate indefinitely repeated games in the same way we did in our experiment. The two
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versions of simulations ran replicate the key findings of our experiment (see Web Appendix
for details): On the one hand, we obtain similar average choices within a match in treatments
Comp and Subs. On the other hand, we obtain full cooperation rates within a match, which
are higher under Subs than under Comp, and average non-fully cooperative choices within a

match, which are higher under Comp than under Subs.

5. Discussion

In our experiment subjects play indefinitely repeated dilemma games of strategic substitutes
or complements. Our first result is that, on average, we find no significant difference in choices
between the two environments. Thus we do not recover the result obtained in PS who find
that average choices in a finitely-repeated game are higher (more cooperative) under strategic
complementarity. However, an analysis based on averages masks two opposing forces that
cancel out each other in the aggregate, which we refer to as our second and third result,
respectively.

Our second result is is different from what PS find. Our data indicate that this is because
under substitutes subjects more often take the risk to initiate full cooperation at the beginning
of each repeated game. They do so more frequently the more repeated games they play. To
illustrate, in the second half of the substitutes treatment the percentage of full cooperation
in the first periods has increased to a level above 20%. In contrast, under complements,
subjects rarely take this risk, and the percentage remains at about 5% in the second hallf.

Our third result is that if we focus on choices of subjects who do not succeed in fully
cooperating, that is, who do not make joint-payoff maximizing choices, we find that, on
average, choices tend to be less cooperative (lower) under strategic substitutes than under
complements (although not statistically significantly so). Relatedly, we find that under com-
plements, the slope of the estimated response function is (significantly) higher than under
substitutes.

Our second result goes against PS, who find that, if anything, full cooperation is lower
under substitutes. However, the result is in line with the idea that strategic risk has an
effect on behavior in games. Loosely speaking, how much a player loses by cooperating
in the case the other player defects has an impact on whether this player will choose to

cooperate or not. In our games, it is less risky to fully cooperate or initiate full cooperation

21



with strategic substitutes than with strategic complements. In this sense, the result is in
line with theory and experiments on indefinitely repeated prisoner’s dilemma games taking
into account strategic risk (Blonski, Ockenfels and Spagnolo|, 2011 Dal B6 and Fréchette,
2011; Blonski and Spagnolo|, 2015)) and on coordination games that have shown that payoff-
dominant actions are chosen less frequently if they involve more strategic risk (Van Huyck,
Battalio and Beil, [1990; [Schmidt et al., [2003)).

Our third result is in line with theory and experiments in the literature that studies
the interaction between the strategic environment and heterogeneity of players (see also
Haltiwanger and Waldman), |1991],|1993; Camerer and Fehr|, [2006). This literature finds that if
players are heterogeneous, aggregate outcomes tend to be different depending on the strategic
environment. In particular, they tend to be more cooperative under strategic complements
than under substitutes. This is what PS observe in finitely repeated games of strategic
complements and substitutes.

Are the two opposing forces summarized above (Results 2 and 3) two “isolated” effects or
are they in some way related to each other? Although there is some evidence that suggests
the latterﬁ we argue that it is the former. It just seems to be the case that starting
(and maintaining) collusion is easier under substitutes than under complements and that
simple response dynamics (and the slopes of predicted and estimated response functions) are
such that non-fully cooperative choices are on average lower under substitutes than under
complements.

To the extent that our experimental results have implications outside the lab, e.g. for
competition policies, the main message would be as follows. Our result regarding significant
differences in fully-cooperative choices suggests that markets characterized by strategic sub-

stitutability are more prone to collusion than markets characterized by strategic complemen-

2>The two forces could be related in the sense that episodes of collusion (which happen more often in
treatment SUBS) are also followed by harsher punishments in the form of lower choices once collusion breaks
down. To see whether this is the case, we analysed punishment choices of subjects when their partner
deviates from a collusive episode that was sustained for at least three consecutive rounds. That is, we looked
for example at the choices in period ¢ of non-cheating subjects in pairs in which both players made JPM
choices for at least three consecutive rounds (in rounds ¢ — 4, t — 3 and ¢ — 2), and one player started to
cheat in period t —1. We observe that subjects who make punishment choices typically choose actions around
the static Nash equilibrium in treatment Comp, while they choose actions much lower than the static Nash
equilibrium in treatment Subs. While this appears to be as conjectured at the beginning of this footnote,
note that one needs to choose a lower action in Subs than in Comp in order to induce, c.p., the same level of
punishment for a cheating partner. Moreover, the number of incidences in which collusion breaks down and
is followed by punishments is very low in both treatments, such that this mechanism cannot account for the
two opposing forces observed in our data.
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Figure 6: Collusion Index
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Notes: This figure shows the distributions of the average collusion index per individual match.

tarity. To illustrate this, define the collusion index CT := (Topserved — Tash)/ (TP — TNash)s
where Topserveq 1S the average observed payoff of the two players in a match. Clearly, the
collusion index equals 1 in the joint-profit maximum, and it is 0 if both players make Nash-
equilibrium choices. Figure [6] shows histograms of the average collusion index per individual
match in our two treatments. The most salient feature of this Figure is the large share of
C'I =1 outcomes in treatment Subs. This would, if anything, justify increased monitoring of
markets that are characterized by strategic substitutes’| Our result regarding differences in
non-fully cooperative choices in pairs that do not succeed in cooperating at the joint-payoff
maximum suggests that episodes resembling some kind of “price wars” could also be more
likely under substitutes than under complements. These would be markets in which the
collusion index is negative. However, Figure [6] shows that this is much less of a concern as
the share of negative collusion indices is not too different across the two treatments (22.88
percent in treatment Subs versus 16.25 percent in treatment Comp, difference not significant).

Why do our results partly differ from those in PS? We speculate that the difference
between our results and PS is driven by differences in the nature of the game. The repeated
game in PS is a long finitely repeated game. It is played with the same partner for 30 rounds,
and subjects know this. In contrast, in our experiment, subjects repeatedly play the repeated

game with different partners and subjects do not know when each repeated game ends. The

20Ivaldi et al. (2003) discuss factors that are conducive to tacit collusion. The analysis above suggests that
“strategic substitutes” should be added to this list of factors.
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fundamentals of the interactions are thus very different. In the repeated game of PS, full
cooperation, if it occurs, is typically built up gradually: subjects gradually increase their
choice towards the level that maximizes joint payoffs. To illustrate, it often takes around 10
rounds to get to this level. In addition, subjects only participate in one first round, that is, at
the very start of the repeated game, and they do not initiate full cooperation more frequently
in the games with strategic substitutes than in those with complements in this first round.
In our indefinitely repeated games, gradual build-up is difficult to obtain: subjects do not
know how long the repeated game will last, and the expected length is much smaller (10
rounds versus 30 rounds). As compared to PS, full cooperation (if it occurs) hinges more on
subjects taking the risk to fully cooperate in the first round of each repeated game. Therefore,
we suspect that the higher strategic risk inherent in the games of strategic complements as
compared to substitutes has played a fundamental role in our experiment, and not so in PS.

Next, consider our findings in relation to Embrey, Mengel and Peeters (2014)). This paper
studies in an experiment the effect of strategic commitment on cooperation in indefinitely
repeated games of strategic complements and substitutes. Subjects choose an initial action
and a strategy (a “machine”) at the beginning of each repeated game. Treatments vary with
respect to the level of commitment, that is, the costs at which strategies can be adjusted in
each round of the repeated game. The treatments vary as well with respect to the strate-
gic environment, with joint-payoff maximization being relatively more risky under strategic
complements than under strategic substitutes.@ Interestingly, subjects choose more often
joint-payoff maximizing actions under strategic substitutes than under complements when
the level of commitment is high, whereas the opposite holds when the level of commitment
is low. Strategic risk thus seems to have a substantial impact on behavior when the level of
commitment is high, but not so when it is low.

If we combine our findings with those of PS and [Embrey, Mengel and Peeters (2014), then
it seems that the effect of the strategic environment on cooperation in repeated games depends
on the extent to which strategic risk has an effect on behavior of players. A testable hypothesis
could be that in environments where strategic risk is an important factor (for example,
relatively short games with an unknown end, or games with high levels of commitment),

an environment of strategic substitutes is relatively more conducive of cooperation than an

2"The difference in minimum thresholds above which full cooperation can be sustained between the two
treatments is not as large as in our experiment, though. To illustrate, the minimum thresholds are 5éomp =
0.77 and 6g,,p,s = 0.58 (compared to 0¢,,, = 0.870 and g, = 0.518, in our experiment).
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environment of strategic complements. Moreover, in games where strategic risk tends to
be less important (for example, long repeated games with a known end, or games with low
commitment), more cooperation can be expected under strategic complements than under
strategic substitutes. A preliminary meta-analysis performed by one of the authors of this
paper that uses data from Cournot and Bertrand experiments and other experiments with
strategic complements or substitutes suggests that there indeed seems to be a positive and
significant interaction between strategic complementarity and whether or not the game has

a known end.
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Web Appendix

A. Instructions

You are participating in an experiment on decision making. You are not allowed to talk or
try to communicate with other participants during the experiment. If you have a question,

please raise your hand.

Description of the Experiment

In this experiment you will be asked to make a decision in several periods. You will be
randomly paired with another participant for a sequence of periods. Each sequence of periods
is referred to as a match.

The length of a match is randomly determined. After each round, there is a 90% prob-
ability that the match will continue for at least another round. So, for instance, if you are
in round 2 of a match, the probability there will be a third round is 90 % and if you are in
round 9 of a match, the probability there will be another round is also 90%.

Once a match ends, you will be randomly paired with another participant for a new
match.

In each round you and the other participant you will be matched with (referred to as the
“other”) will be asked to choose a number between 0.0 and 28.0 (in 0.1 steps). The following
table gives information about your earnings for some combinations of your and the other’s
choice. Every participant is given the same table.

You can calculate your and the other’s earnings in more detail (for choices that are not
multiples of 2 for instance) by using the EARNINGS CALCULATOR on your screen. By
filling in a hypothetical value for your own choice and a hypothetical value for the other’s
choice you can calculate your and the other’s earnings for this combination of choices.

Once you have made up your mind, you will enter your decision under DECISION ENTRY
and then clicking the button ENTER. In each round you have about 1 minute to enter your
decision.

Starting with round 2 of a match, you will be given information about the previous round
on your screen. That is, you will be informed about your own and the other participant’s
choice and your own earnings in points in the previous round.

The identity of the other participants you will be matched with will be unknown to you.
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At the end of the experiment you will be paid your earnings in cash and in private. Your
total earnings in points are the sum of your earnings in points over all periods of all matches
of the experiment. Your earnings in points will be converted into EUR according to the

following rate: 300 points = 1 EUR.

Summary

The experiment will consist of a sequence of matches. Each match will consist of a
sequence of periods. The number of periods of each match is determined randomly by the
computer. After each round, with probability 90% the match continues to another round.
You will interact with the same participant for an entire match. After a match is finished,
you will be randomly matched with another participant. In each round of a match, you
and the other participant you are matched with will choose a number between 0.0 and 28.0

simultaneously.

Payoff tables

Figure I: Payoff table handed out to subjects in the Comp treatment.

The Other's Choice —

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0

0.0 | -28.00 -27.96 -27.87 -27.74 2757 -27.35 -27.09 -26.78 -26.43 -26.04 -25.60 -25.12 -24.59 -24.02 -23.41

20| -18.16 -17.46 -16.72 -1593 -15.09 -14.21 -13.29 -12.33 -11.32 -10.26 -9.16 -8.02 -6.84 -5.61 -4.33
40|-1055 -9.19 -7.78 -6.33 -4.84 -3.30 -1.72 -0.09 1.58 3.29 5.05 6.85 8.70 10.59 1252

6.0| -516 -3.14 -1.08 1.03 3.19 5.39 7.63 9.91 1224 1462 17.04 1950 22.00 2455 27.15

8,0 | -2.00 0.68 3.41 6.18 899 1185 1475 17.70 20.69 23.72 26.80 29.92 33.09 36.30 39.55

10.0 | -1.06 2.28 5.67 9.10 1257 16.09 19.65 23.26 26.91 30.60 34.34 38.12 4195 4582 49.73

Your 120 | -2.34 1.66 5.70 9.79 1393 1811 2233 26.59 30.90 3526 39.66 44.10 4858 53.11 57.69
Choice 140 | -585 -1.19 3.52 8.27 13.06 17.90 2278 27.71 32.68 37.69 4275 47.85 53.00 58.19 63.42
| 16.0 | -11.58 -6.26  -0.90 4.51 9.97 1547 2101 26,59 3222 3790 4362 4938 5518 61.03 66.93
18.0 | -19.54 -1356 -7.53 -1.46 465 1081 17.01 23.26 29.55 3588 4226 4868 55.15 61.66 68.21

20.0 | -29.72 -23.08 -16.39 -9.66 -2.89 393 1079 1770 2465 31.64 38.68 4576 5289 60.06 67.27

22.0 | -42.12 -34.82 -27.48 -20.09 -12.65 -5.17 2.35 9.91 1752 2518 32.88 40.62 4840 56.23 64.11

240 | -56.75 -48.79 -40.78 -32.73 -24.64 -1650 -8.32 -0.09 8.18 16.49 2485 3325 4170 50.19 58.72

26.0 | -73.60 -64.98 -56.32 -47.61 -38.85 -30.05 -21.21 -12.33 -3.40 558 1460 2366 3276 4191 5111

28.0 | -92.68 -83.40 -74.07 -64.70 -55.29 -45.83 -36.33 -26.78 -17.90 -7.56 212 1184 2161 3142 41.27
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Figure II: Payoff table handed out to subjects in the Subs treatment.

The Other's Choice —

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0

0.0 | -28.00 -22.88 -17.57 -12.09 -6.42 -0.57 547 1168 18.08 24.66 3142 38.37 4549 5280 60.29
20|-2239 -17.46 -1235 -7.06 -1.58 4.07 9.91 1593 2214 2852 3509 4184 4877 5589 63.19

40| -1743 -12.70 -7.78 -2.69 2.59 8.06 13.70 19.53 25,54 31.73 38.11 44.66 51.40 58.32 6543

6.0 | -13.13 -8.59 -3.87 1.03 6.12 11.39 16.84 2247 28.29 3429 4047 46.83 53.37 60.10 67.01

80| -948 -514 -061 4.10 899 14.07 1932 2476 30.38 36.19 4217 4834 5469 6123 67.94

100| -6.49 -2.34 2.00 6.51 11.21 16.09 21.15 26.40 31.83 37.43 4323 4920 5536 61.70 68.22

Your 120 | -415 -0.19 3.95 8.27 1277 1746 22.33 27.38 32.61 38.03 43.63 4941 5537 6151 67.84
Choice 140 | -2.46 1.30 5.24 9.37 13.68 18.17 2285 27.71 3275 3797 4337 4896 5472 60.67 66.81
| 16.0 | -1.43 2.14 5.89 9.82 1394 1824 2272 2738 3222 3725 4246 4785 5343 59.18 65.12
18.0| -1.06 2.32 5.88 9.62 1354 1764 2193 2640 3105 3588 4090 46.10 51.48 57.04 62.78

20.0| -1.33 1.85 5.21 8.76 1249 16.40 2049 2476 29.22 3386 38.68 43.68 4857 5424 59.79

220 | -2.26 0.72 3.89 7.25 10.78 14.49 1839 2247 26.74 31.18 3581 40.62 4561 50.78 56.14

240 | -385 -1.05 1.92 5.08 8.42 1194 1564 19.53 23.60 27.85 3228 36.90 41.70 46.68 51.84

26.0| -6.09 -349 -0.71 2.26 5.40 8.73 1224 1593 19.81 2386 28.10 3252 37.13 4191 46.88

280 | -898 -657 -399 -1.22 1.73 4.87 8.18 11.68 1536 19.22 23.27 27.50 3191 36.50 41.27

B. Prediction based on the basin of attraction

Based on Blonski, Ockenfels and Spagnolo (2011)), in Section |3| we derived the prediction that
cooperation can be sustained as an equilibrium for a larger set of discount factors in treatment
Subs than in treatment Comp. Here we use the notion of a basin of attraction to derive the
same comparative statics prediction. To understand the idea of the basin of attraction,
assume (again, a strong assumption) that players either play “tit for tat” (a cooperative
strategy) or “always defect” (a defective strategy) and nothing else in the repeated PD game
and that this is common knowledge (see|Dal B6 and Fréchette] [2011)). Then a player needs to
determine which of these two strategies generates the higher expected payoff given the belief
that with probability p the other player plays “tit for tat” and with probability 1 — p plays
“always defect”. The basin of attraction of the cooperative strategy is the set of beliefs p for

which playing this strategy gives a higher expected payoff than the defective strategy. In the
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context of the general game shown in Panel (a) in Table [2[ in the main text, the expected

payoff for the cooperative strategy is equal to

C(a,c,d,8) = plc+dc+*c+..)+ (1 —p)la+dd+6d+..) (5)
= 1/1=9)(a—ad+dd—ap+cp+ apd — dpd),

while the expected payoff for the defecting strategy is equal to

D(a,b,d,8) = pb+dd+6*d+..)+ (1 —p)(d+d+6*d+..) (6)
= 1/(1—=9)(d+ bp —dp — bpd + dpd) .

Equating the two expressions in and @ gives the threshold p* above which playing the
cooperating strategy is the payoff maximizing choice. That is, the lower p* the larger the
basin of attraction of the cooperative strategy and the more likely it is that subjects will
choose to fully cooperate. For the games shown in Panel (b) and (c) in Table 2 we find
Pomp = 0.391 and pg, ¢ = 0.038, so that, again, full cooperation is predicted to emerge for

a larger range of beliefs in Subs than in Comp@

C. Cooperative versus Non-Cooperative Pairs

In this section we look at the experimental data from a different angle by focusing on the
evolution of choices and cooperation at the pair level within matches. To do so, we divide
the pairs into those in which the two players succeed in maximizing joint payoff and those
in which the two players do not succeed in doing so (along the lines of PS). We classify a
pair to be collusive if both subjects choose a number in the interval [25,26] in at least 60%
of the rounds in their individual match. This threshold may look rather low, but if we do
not choose the threshold sufficiently low, given that many pairs only play few rounds, they
would easily be classified as non-JPM pairs@ For example, in order to classify pairs that
only play 3 rounds in total in the indefinitely repeated game as JPM pairs if they maximize

joint payoff in 2 out of 3 rounds, we need to put the threshold below 66.66%. In any case,

281f the 2x2 PD games are generated using the actions mentioned in footnote we find PComp = 0.784
and pg,ps = 0.664, and so again pegg, > PSybs-

29Figure|VII|in the Web Appendix|F|illustrates the distribution of realized match lengths in the experiment.
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Figure I1I: JPM vs Non-JPM Pairs

JPM Pairs Non-JPM Pairs

/S

Average Choice
16 18 20 22 24 26

Average Choice
16 18 20 22 24 26

1 5 10 15 20 1 5 10 15 20
Round Round

’— Subs Comp ‘

Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs
respectively on the right- and left-hand sides. A pair is referred to as JPM if both subjects makes
a choice in the interval [25,26] in at least 60% of the rounds in their individual match.

any of the qualitative conclusions that are made in this section, are robust to changes in this
threshold.

Figure [[T]] illustrates the evolution of average choices over time under strategic comple-
ments and strategic substitutes for JPM and non-JPM pairs respectively on the left- and
right-hand panels. This graph suggests that different choice patterns emerge between JPM
and non-JPM pairs. The left-hand panel of Figure [[TI] shows that in Subs pairs who succeed
in full cooperation in at least 60% of a match, play higher choices than those in Comp. In the
first rounds, the average choice of JPM pairs in Comp is 20, while it is 22 in Subs. As subjects
gain experience over time the difference between the treatments disappears. That is, in both
treatments once subjects reach the fully cooperative level they remain there. After round 5,
the average choice in both treatments is around 25. (Table [lI| summarizes the average choice
for JPM and non-JPM pairs in the first and all rounds of the first match, all matches and
the last 10 matches.)

The right-hand panel of Figure [T]] illustrates the evolution of average choices of non-
JPM pairs over time. Here we observe that the average choice is higher in Comp than in
Subs, p = 0.303, see column (1) in Table . In both treatments the average choice follows a
decreasing trend over time. The estimated effect of round on the average choice is —0.061

with p = 0.004, see column (2) in Table[l). We argue that the difference in the average choice
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Table I: Regression results on average choice of non-JPM pairs

(1) (2) (3)
VARIABLES Choice;; — Choice;; Choice;;

Comp 0.972 0.797 0.183
(0.890) (0.853) (0.665)

Round —0.061%**  —0.051**
(0.015) (0.018)
Comp*Round 0.020 0.027
(0.028) (0.027)
Match 0.098
(0.071)
Comp*Match 0.051
(0.095)

Constant 17.04%** 17 58%** 16.50%**
(0.754) (0639) (0.398)
Observations 26,500 26,500 26,500
R-squared 0.008 0.013 0.031

Notes: This table reports results from linear regression with standard errors (in parentheses) clus-
tered at the session level. *** (**) [*] indicate that the estimated coefficient is significant at the 1%
(5%) [10%] level. A pair is referred to as JPM if both subjects makes a choice in the interval [25, 26]

in at least 60% of the rounds in their individual match.

Table II: Summary statistics at the pair level for JPM and non-JPM pairs

Average choices in JPM pairs

First match All matches Last 10 matches

Comp  Subs Comp  Subs Comp Subs
First round - 16 19.63 21.96 19.33 22.30
All rounds - 23.90 24.64 25.10 24.60 25.18

Average choices in non-JPM pairs

First match All matches Last 10 matches

Comp  Subs Comp  Subs Comp Subs
First round 17.55 18.26 1726 17.83 17.55 18.26
All rounds 16.31 16.67 18.16 17.53 18.99 17.92

Notes: This table summarizes average choices for JPM and non-JPM pairs. A pair is referred to
as a JPM pair if subjects in this pair sustain full cooperation in at least 60 % of the rounds in that
match. We present the averages for the first round and all rounds of the first match, all matches

and the last 10 matches separately.
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of non-JPM pairs between the two treatments is due to the interaction between pairs. Since
these subjects do not succeed in reaching full cooperation in 40% of the time in a match, their
behavior depends on the choice of the matched subject, captured by the estimated coefficient
of round. Again, choosing different thresholds of mutual cooperation (say, from from 65% to

80%), we observe almost the same patterns as the one discussed in this section.

D. Learning across matches

In this section we explore learning across matches. To do so, we study how the behavior of
a subject in the first round of a match is affected by (a) the behavior of the partner in the
previous match, (b) the length of the previous match, and (c) a subject’s own behavior in
the previous match (in the spirit of Dal B6 and Fréchette, 2011). We do this in two ways.
We check how the variables just mentioned affect the average subject’s probability to start
a match fully cooperatively (i.e., by making a choice in the interval [25,26]), and how these
variables affect a subject’s level of choice. We present the results in Table [[TI]

In column (1) and (2) of Table we report, for each treatment separately, the results
from probit regressions where the dependent variable is a dummy which equals 1 if the choice
in the first round of a match is fully cooperative and 0 otherwise. In column (3) and (4)
regression results are reported where the dependent variable is a subject’s choice in the first
round of a match. In all specifications we use the same independent variables: a dummy
indicating whether or not the partner in the previous match made a fully cooperative choice
in the first round of the previous match, the length of the previous match, and a dummy
indicating whether a subject himself made a fully cooperative choice in the very first round
of the experiment.

Consider first columns (1) and (2) of Table[[T], A subject who was matched with someone
who played fully cooperatively in the first round of the previous match is more likely to start
the current match fully cooperatively in both treatments. However, this effect is statistically
significant only in treatment Comp in which cooperation is more risky. Furthermore, in both
treatments there is a positive and significant relationship between the length of the previous
match and subjects’ likelihood of starting a match fully cooperatively. This suggests that
after a longer match, during which mutual cooperation is more likely to develop, subjects

more often take the risk to start the new match fully cooperatively than after a shorter
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Table III: Learning across matches

FullCoop;, Choice;;
1) ) () @
Comp Subs Comp Subs
Partner cooperated in 0.065***  0.038 1.609* 0.633
round 1 of previous match (0.016) (0.036) (0.662) (0.328)
Previous match length 0.001***  0.001** 0.013 0.044**
(0.001)  (0.001) (0.008)  (0.014)
Subject cooperated in 0.053 0.2717%%* —0.293 4.972%%*
round 1 of match 1 (0.059) (0.098) (0.465) (0.911)
Constant 17.319%F*  17.673***
(0.542)  (0.441)
Observations 1,520 1,520 1,520 1,520

Notes: Column (1) and (2) report marginal effects from probit regressions with delta-method stan-
dard errors (in parentheses) clustered at the session level. The dependent variable is a dummy
which is equal to 1 if the choice is fully cooperatively and 0 otherwise. Column (3) and (4) report
results from linear regression with standard errors (in parentheses) clustered at the session level.
The dependent variable is a subject’s choice. *** (**) [*] indicate that the estimated coefficient is
significant at the 1% (5%) [10%] level.

match. Lastly, a subject who fully cooperated in the first round of the first match in the
experiment is more likely to start a new match by full cooperation than someone who did
not start the experiment by full cooperation. However, this result is much more pronounced
and statistically significant in treatment Subs.

Consider next columns (3) and (4) in Table [[II] where we report the estimates from
linear regressions in which the dependent variable is a subject’s choice in the first round of
a match. We find that subjects start a match with a higher choice if the partner in the
previous match fully cooperated in the first round of the previous match, with the effect
being more pronounced in treatment Comp. Also, subjects make higher or more cooperative
choices after a longer previous match, where this effect is significant only in treatment Subs.
Finally, a subject in treatment Subs makes significantly higher choices if he had chosen a fully
cooperative choice himself in the first round of the first match. In treatment Comp, however,
the effect is negative and insignificant.

To sum up, a partner’s full cooperation in the previous match and a longer previous match
increase the choice and the likelihood of full cooperation in the next match. Also, subjects

who fully cooperate in the very first round of the experiment are significantly more likely to

35



cooperate later in the experiment in Subs but not so in treatment Comp. Taken together,
these results suggest that subjects’ behavior is influenced by learning across matches as well

as by the nature of the game being being played (complements or substitutes).

E. Simulation Results

In this section, we first present our experimental data in an alternative way by focusing on
the evolution of choices and cooperation within matches and not across matches as we did
in the main body of the paper Y| This better enables us to compare our experimental results
with those obtained by simulations. Second, we present results from two sets of simulations
to show that the key features of our experimental data can be replicated.

The upper panel of Figure depicts the evolution of average choices within matches.
We observe that average choices are roughly the same in the two treatments, similar to the
observed behavior illustrated in Figure [ The lower left-hand panel in Figure [[V] illustrates
the evolution of full cooperation rates within matches. We observe that subjects make a
fully cooperative choice more often under Subs than under Comp, similar to the left-hand
panel of Figure 8] The lower right-hand panel of Figure [[V] depicts the evolution of average
non-fully cooperative choices within matches. We see that subjects on average play higher
choices under Comp than under Subs, similar to the right-hand panel of Figure [3|

Next, we report the results from two sets of simulations that build on those reported in
PS, featuring cooperative and non-cooperative types of players. Basically, the first version of
our simulation model is the one of PS to which we add a differential propensity of initiating
cooperation depending on the treatment, and the adjustment to an indefinitely repeated
game. The second version is a model that is based on all features of the first version, except
that we use a redefinition of the non-cooperative type.

In both simulations models we assume that there are two types of players: a cooperative
and a non-cooperative player. In the first simulation model, non-cooperative players are
defined as follows. In the first period of a match, non-cooperative types always randomize
over the entire action set, while in each other period of a match they condition their choice
on the previous choice of the partner. They play a myopic best-reply with probability A
and play spitefully with probability 1 — 3. Cooperative players are defined as follows. In

39Tn doing so, we only present the averages for the first 10 rounds, which is the expected length of a match
in our experiment.
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Figure IV: Observed Within-Match Behavior
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Notes: This figure shows the observed evolution of choices and cooperation within matches. In the
upper panel for all choices, in the lower left-hand panel for full cooperation rates, and on the lower
right-hand panel for non-fully cooperative choices (i.e. choices outside the range [25,26]).

the first round, cooperative types play fully cooperatively with probability o and otherwise
randomize over the entire action set. In any later period cooperative types always reciprocate
full mutual cooperation and also try to induce it with a certain probability: if the pair reached
full cooperation in round ¢ — 1, they play fully cooperatively in round ¢, otherwise the play
fully cooperatively with probability «; and non-cooperatively with probability 1—a;. Here we
take oy to be history dependent to add the intuition that the probability of fully cooperative
play depends on the response of the partner to one’s own cooperation. Given one’s own full

cooperation in round ¢ — 2, we assume that «; is the following positive function of the degree
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Figure V: Simulation Results for Within-Match Behavior (Model 1)

Average Choice

AN |
N
o |
N
© 0 |
(G
[s)
5Q
=
o |
1 3 5 7 10
Round
Full Cooperation Rate o Average Non-fully Cooperative Choice
N~ j
. N
e
Sl ©
S+ 8+
L o
57 oy
O \/\_———\___—-—
2 o
N~
o el
1 3 5 7 10 1 3 5 7 10
Round Round
m— Subs Comp

Notes: This figure shows the simulated evolution of choices and cooperation within matches for
model 1. In the upper panel for all choices, in the lower left-hand panel for full cooperation rates,
and on the lower right-hand panel for non-fully cooperative choices (i.e. choices outside the range
[25,26]).

of cooperativeness of the partner in round ¢t — 1: o, = 1/(1 + e *W—1719) (as in PS). In
the first two rounds of play «; is constant, say, equal to a. In our experiment we observe
different levels of full cooperation in the first rounds. For this reason, in our simulations
we employ different values of « for the two treatments: o™ and a°'®®, which are based
on the full cooperation rates observed in the first rounds. The non-cooperative play of a
cooperative type consists of myopic best-reply with probability S(1 — ;) and spiteful play
with probability (1 — 3)(1 — «).

We assume that the share of cooperative players is p and the share of non-cooperative
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players is 1 — p. This implies that in our simulations a share of p? matches consists of pairs
where both players are cooperative types, a share of (1 — p)? of matches consists of pairs
where both players are non-cooperative types, and a share of 2(1 — p)p of matches consists
of pairs with a cooperative player and a non-cooperative player. In our simulations, we set
p? = 0.4 and note that the key features obtained in the simulations we present are robust to
changes in p. Finally, we determine the length of a match on our simulations by using the
same continuation probability as in our experiment (6 = 0.9).

Figure [V] shows the evolution of average choices, full cooperation rates, and average non-
fully cooperative choices across rounds for model 1, each based on 1000 simulations with
kE = 0.5 a®™ = 0.06, a°'** = 0.18, and 8 = 0.95. We see that the simulations replicate
the key features of the experimental data, except for the fact that the averages for non-
fully cooperative choices are higher in our experiment in comparison to those obtained from
the simulation. This might be due to the experience human subjects gain throughout our
experiment. More specifically, towards the end of the experiment, when subjects gain more
experience, it might be that non-cooperative players are also playing cooperatively to some
extend. Indeed we observe in our experimental data that the average level of choices increases
across matches. To add this intuition to our simulations, we modify the definition of non-
cooperative players and run a second simulation modelﬂ.

In this second model, we define non-cooperative players to not only play non-cooperatively,
but to also try to induce cooperation with a certain probability. We do so by assuming that
non-cooperative players randomly choose an action above the Nash equilibrium of the stage
game with a certain probability. More precisely, non-cooperative players play spitefully with
probability (1 — ), play myopic best-reply with probability 3(1 —~), and play the maximum
of a myopic best-reply and random choice above the static Nash equilibrium with probability
Rt

Figure [VI shows the evolution of average choices, full cooperation rates and average non-
fully cooperative choices across rounds for model 2, each based on 1000 simulations with
E = 0.5 a®™ = 0.06, o> = 0.18, B = 0.95, and v = 0.4. One can see that with the

new definition of non-cooperative players, we obtain higher levels for non-fully cooperative

31The only difference between the two simulations we present is the definition of a non-cooperative type

32We take the maximum of the myopic best-reply and the random choice above Nash to avoid the case
where the best-reply is a higher choice than the random choice above static Nash, as such a case would be in
conflict with the intuition that the non-cooperative player is trying to induce cooperation.
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Figure VI: Simulation Results for Within-Match Behavior (Model 2)
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Notes: This figure shows the simulated evolution of choices and cooperation within matches for
model 2. In the upper panel for all choices, in the lower left-hand panel for full cooperation rates,
and on the lower right-hand panel for non-fully cooperative choices (i.e. choices outside the range
[25,26]).

choices, bringing them closer to the levels we observe in our experiment.
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F. Additional Graphs

Figure VII: Equilibrium Range
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Notes: This figure shows the best-reply functions and iso-payoff contours for our experimental

games.

Figure VIII: Distribution of Match Lengths in the Experiment
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Notes: This figure shows the distribution of the randomly determined match lengths.
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G. Additional Tables

Table IV: Regression results on payoffs

0 ®) )
VARIABLES Payoff; Payoft; Payoft;
Comp 0.208 —0.246 —1.306
(1.640) (1.424) (1.256)
Round —0.085 —0.059
(0.051) (0.049)
Comp*Round 0.050 0.059
(0.062) (0.060)
Match 0.255%*
(0.086)
Comp*Match 0.091
(0.116)
Constant 33.68%F*F 34 45%F* 3] 45Kk
(1.370) (1.034) (1.041)
Observations 33,024 33,024 33,024
R-squared 0.001 0.002 0.022

Notes: This table reports results from linear regression with standard errors (in parentheses) clus-
tered at the session level. *** (**) [*] indicate that the estimated coefficient is significant at the 1%

(5%) [10%)] level.
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Table V: Summary statistics at the individual level

Average choices

First match All matches Last 10 matches

Comp  Subs Comp  Subs Comp Subs
First round 17.33 17.55 17.50 18.63 17.90 19.37
All rounds 16.31 17.47 18.70 19.09 19.87 20.12

Full Cooperation Rate

First match All matches Last 10 matches

Comp  Subs Comp  Subs Comp Subs
First round 0.05 0.18 0.05 0.18 0.13 0.25
All rounds 0.06 0.09 0.14 0.27 0.20 0.36

Average non-fully cooperative choices

First match All matches Last 10 matches

Comp  Subs Comp  Subs Comp Subs
First round 16.08 16.69 17.02 17.03 17.51 17.58
All rounds 16.71 16.55 17.59 16.64 18.33 16.85

Notes: This table summarizes average choices (top panel), full cooperation rates (middle panel) and
average non-fully cooperative choices (bottom panel). The results are reported for the first rounds
and all rounds of the first match, all and the last 10 matches.
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