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Abstract: It is shown that the discrete-time version of the neoclassical one-sector optimal

growth model with endogenous labor supply and standard assumptions on technology and

preferences admits periodic solutions of any period as well as chaotic solutions. Solutions with

period 2 are possible for any time-preference factor between 0 and 1, whereas the existence of

periodic solutions with other periods and the existence of chaotic solutions are only demon-

strated by means of a specific example involving strong time-preference. The results are derived

via constructive proofs that use Cobb-Douglas production functions.
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1 Introduction

The neoclassical one-sector growth model with infinitely-lived households and endogenous labor

supply combines two of the most fundamental macroeconomic tradeoffs in a simple dynamic

general equilibrium setting: the division of output between consumption and investment and

the division of time between productive activities and leisure. It is therefore not surprising that

this model forms the non-stochastic backbone of real business cycle theories, which have been

developed to simulate the reaction of output and employment to various types of exogenous

shocks. What is surprising, though, is that the labor-leisure tradeoff is typically disregarded in

deterministic models of economic growth and that rather little is known about the structure of

the solutions of these models when the labor supply is endogenous.1

Nevertheless, there exist a couple of papers that point to interesting properties of the solutions

of the one-sector growth model with endogenous labor supply. Eriksson (1996) shows that

the long-run growth rate in such an environment typically depends on the specification of

the preferences (both when growth is due to exogenous technological progress and when it is

generated endogenously). De Hek (1998) shows by means of a numerical example that there

can be multiple (i.e., finitely many) steady states when consumption and leisure are substitutes.

Kamihigashi (2015) addresses multiplicity of steady states in a more systematic way and proves

that the model can have any finite number of steady states or even a continuum of steady

states. Moreover, multiplicity of steady states can occur for all values of the time-preference

parameter between 0 and 1 and for all production functions satisfying standard assumptions.

All three of the above mentioned papers use a social planner version of the model. Sorger (2000),

on the other hand, studies the model as a decentralized market economy and allows that the

households differ from each other with respect to their initial capital holdings (they are assumed

to be identical in all other respects). He finds that even with the standard parameterizations

used in real business cycle models, there exists a continuum of steady states that differ from

1Eriksson (1996) writes that “The choice between work and leisure has been remarkably neglected in the

theory of economic growth” [Eriksson (1996), p. 533] and even the very comprehensive and more recent survey

of economic growth theory provided by Acemoglu (2009) does not discuss the case of elastic labor supply except

for briefly mentioning real business cycle models in section 17.3.
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each other not only with respect to the distribution of capital among households but also with

respect to the level of aggregate output.

The only paper that we are aware of which discusses the emergence of more complicated dy-

namics is De Hek (1998), who provides an example with an asymptotically stable solution that

is periodic with period 2. He concludes his paper by posing the question of “whether this model

with leisure-dependent utility is able to generate more complex dynamics, in particular, chaos”

[De Hek (1998), p. 270]. In the present paper we provide an affirmative answer to this question.

We first extend the findings by De Hek (1998) by proving that, for any time-preference factor

between 0 and 1, there exist a production function and an instantaneous utility function –

both satisfying standard assumptions – such that the resulting model admits a periodic opti-

mal solution with period 2. Then we construct an economy for which there exists an optimal

solution that has period 3. The existence of a solution with period 3 is known to imply the

existence of periodic solutions of all periods [see Sarkovskii (1964)] and it implies the occurrence

of topological chaos [see Li and Yorke (1975)].

We use the same approach for the two cases with period 2 and period 3, respectively. The

first step is to derive necessary and sufficient conditions on the time-preference factor β and

the production function f for the existence of an instantaneous utility function u such that the

economy defined by f , u, and β admits a given periodic solution. In a second step we show

that this necessary and sufficient condition can be satisfied even if one restricts the technology

to be of Cobb-Douglas type. For the case of period 2, this approach works for any value of

the time-preference parameter β. For the case of period 3, however, the construction works

only for very strong time-preference. This had to be expected because of the results by Mitra

(1996) and Nishimura and Yano (1996), which imply that solutions with period 3 can occur in

a general class of optimal growth models (including the one-sector optimal growth model with

endogenous labor supply studied in the present paper) only if the time-preference factor β is

smaller than (3−
√
5)/2 ≈ 0.38.

The rest of the paper is organized as follows. Section 2 describes the model, section 3 presents

and discusses the main results and their implications, and section 4 contains the proofs.
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2 The model

We consider an infinite-horizon economy in which capital and labor are used to produce a

single output good that can be consumed or invested. A social planner seeks to maximize

welfare, which depends on the allocation of output to consumption and investment and on the

allocation of time to labor and leisure. In the present section we describe the model, state the

assumptions, and define feasible and optimal allocations.

Time evolves in discrete periods t ∈ N0 = {0, 1, 2, . . .}. Let us denote by kt and ℓt the period-t

factor inputs of capital and labor, respectively, and by f(kt, ℓt) the amount of output that is

available in period t. This amount consists of output produced in period t plus non-depreciated

capital from the previous period. The production function f satisfies the following assumption.

Assumption 1 (i) The function f : R+ × [0, 1] 7→ R+ is continuous, concave, homogeneous of

degree 1, and continuously differentiable on R++ × (0, 1].

(ii) For every k > 0 it holds that f(k, ℓ) is strictly increasing and strictly concave with respect

to ℓ.

(iii) For every ℓ ∈ (0, 1] it holds that f(k, ℓ) is strictly increasing and strictly concave with

respect to k.

(iv) There exists k̄ > 0 such that f(k̄, 1) = k̄.

Output can be used for consumption and for investment and we denote by ct the amount that

is consumed in period t. A sequence (kt, ℓt, ct)
+∞
t=0 is called a feasible allocation if the conditions

ct + kt+1 = f(kt, ℓt),

0 ≤ ℓt ≤ 1,

ct ≥ 0,

kt ≥ 0

hold for all t ∈ N0.

Throughout the paper we assume without further mentioning that the initial endowment of the

economy with capital, k0, is such that k0 ∈ [0, k̄]. Together with assumption 1 this implies that
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every feasible allocation satisfies kt ∈ [0, k̄] and ct ∈ [0, k̄] for all t ∈ N0. When we specify the

preferences over allocations, we may therefore restrict the domain of the instantaneous utility

function accordingly.

The economy is endowed with a single unit of time per period such that 1− ℓt denotes the time

that is available for leisure. The preferences of the social planner are described by the welfare

functional
+∞∑
t=0

βtu(ct, 1− ℓt), (1)

where u is an instantaneous utility function depending on consumption and leisure and where

β is a time-preference factor.

Assumption 2 The function u : [0, k̄] × [0, 1] 7→ R is continuous, strictly increasing, and

strictly concave.

Assumption 3 It holds that β ∈ (0, 1).

An economy is a triple (f, u, β). Suppose that an economy (f, u, β) and an initial capital

endowment κ ∈ [0, k̄] are given. A feasible allocation (kt, ℓt, ct)
+∞
t=0 is said to be interior if

(k, ℓt, ct) ∈ (0, k̄)× (0, 1)× (0, k̄) holds for all t ∈ N0, and it is said to be optimal from κ, if it

maximizes the welfare functional (1) over all feasible allocations with the given initial capital

endowment k0 = κ. A feasible allocation (kt, ℓt, ct)
+∞
t=0 is called an optimal allocation of the

economy (f, u, β), if there exists an initial endowment κ ∈ [0, k̄] such that (kt, ℓt, ct)
+∞
t=0 is an

optimal allocation from κ.

3 The results and their implications

In this section we investigate whether there exist economies (f, u, β) that admit optimal alloca-

tions which are periodic of period 2 or 3. Our approach is as follows. We first derive conditions

on the production function f and the time-preference factor β which are necessary and sufficient

for the existence of an instantaneous utility function u such that the economy (f, u, β) satisfies

assumptions 1-3 and such that a given allocation qualifies as a periodic optimal allocation for
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(f, u, β). Then we show that these necessary and sufficient conditions can be satisfied even by

a Cobb-Douglas production function.

We start with the case of period 2. A feasible allocation (kt, ℓt, ct)
+∞
t=0 is said to be periodic of

period 2 if there exist real numbers ka, kb, ℓa, ℓb, ca, and cb such that (ki, ℓi, ci) ∈ [0, k̄]× [0, 1]×

[0, k̄] for i ∈ {a, b}, ka ̸= kb, and

(kt, ℓt, ct) =

 (ka, ℓa, ca) if t ≡ 0 mod 2,

(kb, ℓb, cb) if t ≡ 1 mod 2
(2)

hold. We have the following theorem.2

Theorem 1 Let f and β be given such that assumptions 1 and 3 hold. Suppose furthermore

that there exist real numbers ka, kb, ℓa, and ℓb with ka ̸= kb such that (ki, ℓi) ∈ (0, k̄) × (0, 1)

holds for i ∈ {a, b}. The following two statements are equivalent:

(a) There exists an instantaneous utility function u satisfying assumption 2 and real numbers

ca ∈ (0, k̄) and cb ∈ (0, k̄) such that the allocation defined by (2) is an optimal allocation for

the economy (f, u, β).

(b) It holds that

β2f1(ka, ℓa)f1(kb, ℓb) = 1 (3)

and

[1− βf1(ka, ℓa)][f(kb, ℓb) + kb − ka − f1(ka, ℓa)ka − f2(ka, ℓa)ℓb] > 0. (4)

The proof of the theorem can be found in section 4.1. Note that the conditions stated in part

(b) of the theorem involve only the production function f and the time-preference factor β. We

will now show that these conditions can be satisfied for any feasible value of β ∈ (0, 1) even if

one restricts the technology to be described by a Cobb-Douglas production function.

Example 1 Let α ∈ (0, 1) and β ∈ (0, 1) be arbitrary constants and define A = 1/(αβ). We

consider a Cobb-Douglas production function of the form f(k, ℓ) = Akαℓ1−α. It holds that

2Throughout the paper we denote partial derivatives by subscripts. For example, u1(ca, 1− ℓa) is the partial

derivative of the instantaneous utility function u with respect to its first argument evaluated at the point

(ca, 1 − ℓa). Analogously, f2(ka, ℓa) is the partial derivative of the production function f with respect to its

second argument evaluated at the point (ka, ℓa).
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f1(k, ℓ) = αA(k/ℓ)α−1 and f2(k, ℓ) = (1 − α)A(k/ℓ)α. Suppose furthermore that ka/ℓa = γ,

where γ > 1 is arbitrary. Because of A = 1/(αβ), condition (3) is satisfied if and only

if kb/ℓb = 1/γ < 1. It follows that ka = γℓa and kb = (1/γ)ℓb. Note furthermore that

βf1(ka, ℓa) = (ka/ℓa)
α−1 < 1. This implies that condition (4) is satisfied if and only if the term

in the second bracket is strictly positive. Using the Cobb-Douglas specification and the results

mentioned so far, we can express the positivity of the term in the second bracket of (4) as

T1ℓb > T2ℓa, where

T1 = Aγ−α + γ−1 − (1− α)Aγα and T2 = γ + αAγα.

It is obvious that T2 is positive. As for T1, we see that limγ→1 T1 = 1 + αA > 0 such that

one can always find a value γ > 1 for which T1 becomes strictly positive. But if both T1 and

T2 are positive, then one can find two numbers ℓa ∈ (0, 1) and ℓb ∈ (0, 1) such that the above

inequality T1ℓb > T2ℓa holds: just let ℓb be an arbitrary element from the interval (0, 1) and

choose ℓa from the non-empty interval (0, T1ℓb/T2). Hence, we have demonstrated that, for

every time-preference factor β ∈ (0, 1), there exists a Cobb-Douglas production function f and

numbers ka, kb, ℓa, ℓb with ka ̸= kb such that condition (b) of theorem 1 holds.

Together with theorem 1 the above example gives rise to the following corollary.

Corollary 1 For every β ∈ (0, 1) there exists a Cobb-Douglas production function f and an

instantaneous utility function u satisfying assumption 2 such that the economy (f, u, β) admits

an optimal allocation which is periodic of period 2.

This finding is more general than that of De Hek (1998) in the sense that it guarantees the ex-

istence of optimal allocations of period 2 for all time-preference factors β ∈ (0, 1). On the other

hand, we do not say anything about the stability of these optimal allocations. The stability

properties would depend on the second-order derivatives of both the production function and

the instantaneous utility function. Since these derivatives are not restricted except for being

negative, we believe that optimal allocations of period 2 would exist for all time-preference

factors β ∈ (0, 1) even if we were to impose their stability as an additional requirement.
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Let us now turn to the case of period 3. A feasible allocation (kt, ℓt, ct)
+∞
t=0 is periodic of period

3 if there exist real numbers ka, kb, kc, ℓa, ℓb, ℓc, ca, cb, and cc such that ka, kb, and kc are

mutually different from each other and such that

(kt, ℓt, ct) =


(ka, ℓa, ca) if t ≡ 0 mod 3,

(kb, ℓb, cb) if t ≡ 1 mod 3,

(kc, ℓc, cc) if t ≡ 2 mod 3

(5)

holds. To state our main result regarding optimal allocations of period 3, we need to introduce

some notation. Let us consider an allocation of the form (5) and define

Facb = f(ka, ℓa) + kc − kb − f1(kb, ℓb)kb − f2(kb, ℓb)ℓa,

Fbac = f(kb, ℓb) + ka − kc − f1(kc, ℓc)kc − f2(kc, ℓc)ℓb,

Fcba = f(kc, ℓc) + kb − ka − f1(ka, ℓa)ka − f2(ka, ℓa)ℓc,

Gaab = f(ka, ℓa) + ka − kb − f1(kc, ℓc)kc − f2(kc, ℓc)ℓa,

Gbbc = f(kb, ℓb) + kb − kc − f1(ka, ℓa)ka − f2(ka, ℓa)ℓb,

Gcca = f(kc, ℓc) + kc − ka − f1(kb, ℓb)kb − f2(kb, ℓb)ℓc.

The proof of the following theorem is presented in section 4.2.

Theorem 2 Let f and β be given such that assumptions 1 and 3 hold. Suppose furthermore

that there exist real numbers ka, kb, kc, ℓa, ℓb, and ℓc such that ka ̸= kb, kb ̸= kc, ka ̸= kc, and

(ki, ℓi) ∈ (0, k̄)× (0, 1) hold for all i ∈ {a, b, c}. The following two statements are equivalent:

(a) There exists an instantaneous utility function u satisfying assumption 2 and real numbers

ca ∈ (0, k̄), cb ∈ (0, k̄), and cc ∈ (0, k̄) such that the allocation defined by (5) is an optimal

allocation for the economy (f, u, β).

(b) It holds that

β3f1(ka, ℓa)f1(kb, ℓb)f1(kc, ℓc) = 1, (6)

β2f1(ka, ℓa)f1(kc, ℓc)Facb +Gbbc > 0, (7)

βf1(kc, ℓc)Gcca + Fbac > 0, (8)

βf1(ka, ℓa)Gaab + Fcba > 0, (9)
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β2f1(ka, ℓa)f1(kc, ℓc)Gcca + βf1(ka, ℓa)Gaab +Gbbc > 0, (10)

β2f1(ka, ℓa)f1(kc, ℓc)Facb + βf1(ka, ℓa)Fbac + Fcba > 0. (11)

Having derived the necessary and sufficient conditions on f and β for the existence of an econ-

omy (f, u, β) that admits an optimal allocation of period 3, we now show that these conditions

can be satisfied even if we restrict the technology to be of the Cobb-Douglas variety. This is

the purpose of the following example.3

Example 2 Let us specify the production function by f(k, ℓ) = Akαℓ1−α with α = 1/3 and the

time-preference factor by β = 7/20. Furthermore, we choose the allocation variables ka = 1507,

kb = 2143, kc = 3200, ℓa = 2/5, ℓb = 57/100, and ℓc = 21/25. The productivity parameter A

is determined in such a way that condition (6) holds, which yields a unique value A ≈ 2079.

With these specifications it is straightforward to verify that conditions (7)-(11) hold.4

From theorem 2 and example 2 we obtain the following corollary.

Corollary 2 There exists a Cobb-Douglas production function f , an instantaneous utility func-

tion u satisfying assumption 2, and a time-preference factor β satisfying assumption 3 such that

the economy (f, u, β) admits an optimal allocation which is periodic of period 3.

To explain the implications of the above results let an economy (f, u, β) be given such that

assumptions 1-3 hold. It follows from standard results on dynamic programming5 that, for

every initial capital endowment κ ∈ [0, k̄], there exists a unique optimal allocation from κ.

Moreover, there exists a continuous function h : [0, k̄] 7→ [0, k̄] such that the set of all optimal

allocations of the economy (f, u, β) coincides with the set of all trajectories of the difference

equation

kt+1 = h(kt) for all t ∈ N0 (12)

which start in initial states k0 ∈ [0, k̄]. The function h is called the optimal policy function

for (f, u, β). Equation (12) says that the capital stocks in every optimal allocation form a

3This is just one of several examples that we have found.
4The verification has been executed with the software Mathematicar.
5See, e.g., Stokey and Lucas (1989), Miao (2014), or Sorger (2015).
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trajectory of a continuous dynamical system defined on the one-dimensional compact state

space [0, k̄]. When the economy (f, u, β) admits an optimal allocation of period 3, it follows that

the corresponding difference equation (12) has a periodic trajectory with period 3. Continuous

dynamical systems which are defined on a one-dimensional state space, such as (12), are very

well-studied and it is known that the existence of periodic solutions with period 3 has strong

implications.6 First, according to Sarkovskii (1964) it follows that a difference equation that

admits a periodic solution of period 3 admits periodic solutions of all periods p ∈ N. Second,

according to Li and Yorke (1975), the existence of a periodic solution of period 3 implies

that the dynamical system (12) exhibits topological chaos. This means in particular that

there exists an uncountable set S of initial capital endowments such that the unique optimal

allocation emanating from any κ ∈ S is neither periodic nor asymptotically periodic and that,

for any pair {κ, κ′} ⊆ S, the two optimal allocations starting in κ and κ′, respectively, become

arbitrarily close to each other without converging to each other. Hence, theorem 2 and its

corollary prove that the neoclassical one-sector growth model with endogenous labor supply

can generate very complicated dynamics and that its optimal allocations can display sensitive

dependence on initial conditions.

Whereas we could establish the existence of optimal allocations of period 2 for any feasible

time-preference factor β ∈ (0, 1), this is not possible in the case of optimal allocations of period

3. It is known from Mitra (1996) and Nishimura and Yano (1996) that an optimal allocation

with period 3 can only exist if β < (3 −
√
5)/2 ≈ 0.38. The economy presented in example 2

features β = 0.35. We do not know whether the bound (3 −
√
5)/2 is sharp for the class of

models under consideration.

Both theorems 1 and 2 are established by a constructive proof. The crucial step in this construc-

tion is the specification of the instantaneous utility function u. We define it as the minimum

of two (in the case of theorem 1) or three (in the case of theorem 2) strictly concave quadratic

polynomials in consumption and leisure. The construction is non-trivial because we have to

ensure that the first-order optimality conditions for the economy (f, u, β) are satisfied along

the given periodic allocation. This gives rise to the conditions stated in part (b) of the theorem

6See, e.g., Collet and Eckmann (1980), De Melo and Van Strien (1993), or Sorger (2015).

10



1 or 2, respectively. Due to the boundedness and convexity imposed in assumptions 1-2 and

the strict time-preference resulting from assumption 3, the first-order conditions are sufficient

for optimality.

Finally, the reader may be wondering why we impose smoothness of the production function

f in assumption 1 but do not make an analogous assumption on the instantaneous utility

function u. The reason is that the function u employed in the constructive proofs of theorems 1

and 2, respectively, is the minimum of finitely many smooth polynomials. This function is

not differentiable along the one-dimensional manifolds at which the graphs of the polynomials

intersect. It is possible, however, to replace the function u in these proofs by a smooth function

satisfying assumption 2 without violating any of the first-order conditions. This is the case

because the first order conditions involve the partial derivatives of the function u only at the

(two or three) points along the allocation, and because these points are separated from the

manifolds along which the non-differentiability occurs. Thus, the two theorems would remain

valid if we were to strengthen assumption 2 by imposing smoothness of the instantaneous utility

function.

4 The proofs

4.1 Proof of theorem 1

The following lemma presents necessary and sufficient first-order optimality conditions for an

interior feasible allocation of the form (2).

Lemma 1 Let (f, u, β) be an economy satisfying assumptions 1-3 and suppose that there exist

real numbers ka, kb, ℓa, ℓb, ca, and cb such that ka ̸= kb and (ki, ℓi, ci) ∈ (0, k̄)×(0, 1)×(0, k̄) for

i ∈ {a, b} hold and such that the utility function u is continuously differentiable locally around

both of the two points (ca, 1 − ℓa) and (cb, 1 − ℓb). The sequence (kt, ℓt, ct)
+∞
t=0 defined by (2) is

an optimal allocation for the economy (f, u, β) if and only if the following conditions hold:

ca + kb = f(ka, ℓa), (13)

cb + ka = f(kb, ℓb), (14)
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β2f1(ka, ℓa)f1(kb, ℓb) = 1, (15)

u1(cb, 1− ℓb) = βf1(ka, ℓa)u1(ca, 1− ℓa), (16)

u1(ca, 1− ℓa)f2(ka, ℓa) = u2(ca, 1− ℓa), (17)

u1(cb, 1− ℓb)f2(kb, ℓb) = u2(cb, 1− ℓb). (18)

Proof: Consider the allocation specified by (2). Because of (ki, ℓi, ci) ∈ (0, k̄)× (0, 1)× (0, k̄)

and (13)-(14) this allocation is feasible and interior. It is known that, under assumptions 1-3,

an interior feasible allocation is an optimal allocation if and only if the first-order optimality

conditions

u1(ct, 1− ℓt) = βf1(kt+1, ℓt+1)u1(ct+1, 1− ℓt+1) for all t ∈ N0, (19)

u1(ct, 1− ℓt)f2(kt, ℓt) = u2(ct, 1− ℓt) for all t ∈ N0 (20)

as well as the transversality condition

lim
t→+∞

βtu1(ct, 1− ℓt)kt+1 = 0

are satisfied. These conditions require differentiability of the production function f and the

instantaneous utility function u locally around the allocation, which has been assumed for f in

assumption 1 and for u directly in the lemma. The first-order condition (20) holds along the

given allocation if and only if (17)-(18) are satisfied. The Euler equation (19) holds along the

given allocation if and only if (16) as well as the corresponding equation

u1(ca, 1− ℓa) = βf1(kb, ℓb)u1(cb, 1− ℓb) (21)

are satisfied. Multiplying the left-hand sides and the right-hand sides of (16) and (21) we obtain

(15). Conversely, if (15) holds, then one of the two Euler equations (16) and (21) is redundant.

In other words, equations (16) and (21) together are equivalent to equations (15)-(16). Finally,

the transversality condition holds because of the boundedness of the allocation, the interiority

of (ci, 1− ℓi) for i ∈ {a, b}, and assumption 3. This completes the proof of the lemma. �

Note that conditions (15)-(16) together with ka ̸= kb imply that (ca, ℓa) ̸= (cb, ℓb). Indeed, if

(ca, ℓa) = (cb, ℓb) = (c, ℓ) holds, then it follows from (15)-(16) that f1(ka, ℓ) = f1(kb, ℓ) = 1/β,

which contradicts ka ̸= kb due to the strict concavity of the mapping k 7→ f(k, ℓ).
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Equations (16)-(18) are the only conditions stated in lemma 1 which involve the instantaneous

utility function. Since these equations are homogeneous in the partial derivatives u1(ci, 1− ℓi)

and u2(ci, 1− ℓi) for i ∈ {a, b}, we may normalize these partial derivatives by setting u1(ca, 1−

ℓa) = 1. Solving (16)-(18) under this normalization yields

u1(ca, 1− ℓa) = 1, (22)

u1(cb, 1− ℓb) = βf1(ka, ℓa), (23)

u2(ca, 1− ℓa) = f2(ka, ℓa), (24)

u2(cb, 1− ℓb) = βf1(ka, ℓa)f2(kb, ℓb). (25)

It remains to find out under which conditions there exists an instantaneous utility function

satisfying assumption 2 and conditions (22)-(25). To this end we prove the following auxiliary

lemma.

Lemma 2 Let X and Y be non-empty and compact intervals on the real line and let xa, xb,

ya, and yb be real numbers such that xi ∈ int (X) and yi ∈ int Y hold for all i ∈ {a, b} and

such that (xa, ya) ̸= (xb, yb). Furthermore, let w1a, w1b, w2a, and w2b be positive real numbers.

The following two statements are equivalent:

(a) There exists a function w : X×Y 7→ R which is continuous, strictly increasing, and strictly

concave and which is continuously differentiable locally at the points (xa, ya) and (xb, yb) with

partial derivatives

w1(xi, yi) = w1i and w2(xi, yi) = w2i for i ∈ {a, b}.

(b) The inequality

(w1a − w1b)(xb − xa) + (w2a − w2b)(yb − ya) > 0 (26)

holds.

Proof: We first prove that (a) implies (b). By strict concavity of w and (xa, ya) ̸= (xb, yb) it

follows that

w(xa, ya) < w(xb, yb) + w1b(xa − xb) + w2b(ya − yb)
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and

w(xb, yb) < w(xa, ya) + w1a(xb − xa) + w2a(yb − ya).

Combining these two inequalities, we obtain

w1b(xb − xa) + w2b(yb − ya) < w(xb, yb)− w(xa, ya) < w1a(xb − xa) + w2a(yb − ya).

Obviously, this implies (26).

The proof that (b) implies (a) is divided into three steps.

Step 1: Inequality (26) is equivalent to

w1b(xb − xa) + w2b(yb − ya) < w1a(xb − xa) + w2a(yb − ya).

Hence, there exist real numbers wa and wb such that

w1b(xb − xa) + w2b(yb − ya) < wb − wa < w1a(xb − xa) + w2a(yb − ya). (27)

Step 2: We define for all i ∈ {a, b} and all ε ∈ R+ the quadratic polynomial g(·, · | i, ε) :

X × Y 7→ R by

g(x, y | i, ε) = wi + w1i(x− xi) + w2i(y − yi)− ε
[
(x− xi)

2 + (y − yi)
2
]
.

Since the numbers w1i and w2i are strictly positive for all i ∈ {a, b} it follows that g(x, y | i, 0)

is strictly increasing with respect to (x, y) for all i ∈ {a, b}. Since X × Y is compact, this

property is robust to small perturbations of ε. Hence, g(x, y | i, ε) is strictly increasing for

all sufficiently small positive numbers ε and all i ∈ {a, b}. It is also clear that g(x, y | i, ε) is

strictly concave for any positive ε and all i ∈ {a, b}. The inequalities in (27) can be expressed

as g(xa, ya | a, 0) < g(xa, ya | b, 0) and g(xb, yb | b, 0) < g(xb, yb | a, 0). Due to continuity of g,

these strict inequalities remain true if ε is a sufficiently small positive number instead of 0. It

is therefore possible to find a positive number ε̄ such that g(x, y | i, ε̄) is strictly increasing and

strictly concave with respect to (x, y) for all i ∈ {a, b} and such that

g(xa, ya | a, ε̄) < g(xa, ya | b, ε̄) and g(xb, yb | b, ε̄) < g(xb, yb | a, ε̄) (28)

hold.
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Step 3: Finally, we define the function w : X × Y 7→ R by

w(x, y) = min{g(x, y | i, ε̄) | i ∈ {a, b}}.

As a minimum of continuous, strictly increasing, and strictly concave functions, the function w

itself is also continuous, strictly increasing, and strictly concave. The inequalities stated in (28)

imply furthermore that w is continuously differentiable locally around the points (xa, ya) and

(xb, yb) and that its partial derivatives at these points are given by w1(xi, yi) = g1(xi, yi | i, ε̄) =

w1i and w2(xi, yi) = g2(xi, yi | i, ε̄) = w2i for all i ∈ {a, b}. This completes the proof of the

lemma. �

To conclude the proof of theorem 1 we apply the above lemma with X = [0, k̄], Y = [0, 1],

w(x, y) = u(x, 1 − y), xi = ci, and yi = 1 − ℓi for all i ∈ {a, b}. This shows that there exists

a function u : [0, k̄] × [0, 1] 7→ R such that assumption 2 is satisfied and such that the partial

derivatives of u at the points (ca, 1− ℓa) and (cb, 1− ℓb) exist and are given by (22)-(25) if and

only if the inequality

[1− βf1(ka, ℓa)](cb − ca) + f2(ka, ℓa)[1− βf1(ka, ℓa)](ℓa − ℓb) > 0

holds. We can use (13)-(14) to eliminate ca and cb from this condition, which yields

[1− βf1(ka, ℓa)][f(kb, ℓb)− ka − f(ka, ℓa) + kb + f2(ka, ℓa)ℓa − f2(ka, ℓa)ℓb] > 0.

Linear homogeneity of f implies that f2(ka, ℓa)ℓa − f(ka, ℓa) = −f1(ka, ℓa)ka. Substituting this

into the above formula, we obtain (4). This completes the proof of theorem 1.

4.2 Proof of theorem 2

The general strategy of the proof is the same as in the case of theorem 1. Some of the details,

however, are more complicated. We begin by stating the first-order optimality conditions for

an interior feasible allocation of the form (5). Since the proof of the following lemma 3 is

completely analogous to that of lemma 1 it is omitted.

Lemma 3 Let (f, u, β) be an economy satisfying assumptions 1-3 and suppose that there exist

real numbers ka, kb, kc, ℓa, ℓb, ℓc, ca, cb, and cc such that ka ̸= kb, kb ̸= kc, ka ̸= kc, and
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(ki, ℓi, ci) ∈ (0, k̄)× (0, 1)× (0, c̄) for all i ∈ {a, b, c} hold and such that the utility function u is

continuously differentiable locally around each of the three points (ca, 1 − ℓa), (cb, 1 − ℓb), and

(cc, 1− ℓc). The sequence (kt, ℓt, ct)
+∞
t=0 defined by (5) is an optimal allocation for the economy

(f, u, β) if and only if the following conditions hold:

ca + kb = f(ka, ℓa) , cb + kc = f(kb, ℓb) , cc + ka = f(kc, ℓc), (29)

β3f1(ka, ℓa)f1(kb, ℓb)f1(kc, ℓc) = 1, (30)

u1(cb, 1− ℓb) = βf1(kc, ℓc)u1(cc, 1− ℓc), (31)

u1(cc, 1− ℓc) = βf1(ka, ℓa)u1(ca, 1− ℓa), (32)

u1(ci, 1− ℓi)f2(ki, ℓi) = u2(ci, 1− ℓi) for all i ∈ {a, b, c}. (33)

As in the case of optimal allocations of period 2, one can see that conditions (30)-(32) imply

that not all three points (ca, 1 − ℓa), (cb, 1 − ℓb), and (cc, 1 − ℓc) can coincide. However, we

need the stronger result that these three points are mutually different from each other. The

following lemma establishes this property.

Lemma 4 Let (f, u, β) be an economy satisfying assumptions 1-3 and suppose that there exist

real numbers ka, kb, kc, ℓa, ℓb, ℓc, ca, cb, and cc such that ka ̸= kb, kb ̸= kc, ka ̸= kc, and

(ki, ℓi, ci) ∈ (0, k̄)× (0, 1)× (0, c̄) for all i ∈ {a, b, c} hold and such that the utility function u is

continuously differentiable locally around each of the three points (ca, 1 − ℓa), (cb, 1 − ℓb), and

(cc, 1− ℓc). If the sequence (kt, ℓt, ct)
+∞
t=0 defined by (5) is an optimal allocation for the economy

(f, u, β) then it follows that the three points (ca, 1− ℓa), (cb, 1− ℓb) and (cc, 1− ℓc) are mutually

different from each other.

Proof: Since the economy satisfies assumptions 1-3, standard arguments from dynamic pro-

gramming imply that optimal allocations exist and that the optimal value function V : [0, k̄] 7→

R is bounded, continuous, and strictly concave. Moreover, it holds for all i ∈ {a, b, c} that

(ci, ℓi) = argmax{u(c, 1− ℓ) + βV (f(ki, ℓ)− c) | c ∈ [0, f(ki, ℓ)], ℓ ∈ [0, 1]}.

Since (ki, ℓi, ci) ∈ (0, k̄)× (0, 1)× (0, k̄) holds for all i ∈ {a, b, c} it follows that

0 ∈ {u1(ci, 1− ℓi) + βp | p ∈ ∂V (f(ki, ℓi)− ci)},
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where ∂V (k) denotes the subdifferential of the strictly concave function V at k.7 Now suppose

that (ca, 1− ℓa) = (cb, 1− ℓb) = (c̄, 1− ℓ̄). The above condition implies that

−u1(c̄, 1− ℓ̄)

β
∈ ∂V (kb) ∩ ∂V (kc).

Because V is strictly concave and kb ̸= kc by assumption, the right-hand side of this formula is

the empty set. Hence, we obtain a contradiction to the assumption (ca, 1 − ℓa) = (cb, 1 − ℓb),

which proves the lemma. �

Equations (31)-(33) are the only conditions stated in lemma 3 which involve the instantaneous

utility function. Since the equations are homogeneous in the partial derivatives u1(ci, 1−ℓi) and

u2(ci, 1−ℓi) for i ∈ {a, b, c}, we may normalize these partial derivatives by setting u1(ca, 1−ℓa) =

1. Solving (31)-(33) under this normalization yields

u1(ca, 1− ℓa) = u1a := 1, (34)

u1(cb, 1− ℓb) = u1b := β2f1(ka, ℓa)f1(kc, ℓc), (35)

u1(cc, 1− ℓc) = u1c := βf1(ka, ℓa), (36)

u2(ca, 1− ℓa) = u2a := f2(ka, ℓa), (37)

u2(cb, 1− ℓb) = u2b := β2f1(ka, ℓa)f1(kc, ℓc)f2(kb, ℓb), (38)

u2(cc, 1− ℓc) = u2c := βf1(ka, ℓa)f2(kc, ℓc). (39)

We can now state the analogue of lemma 2 for the case of period 3.

Lemma 5 Let X and Y be non-empty and compact intervals on the real line and let xa, xb, xc,

ya, yb, and yc be real numbers such that xi ∈ int (X) and yi ∈ int Y hold for all i ∈ {a, b, c} and

such that the three points (xa, ya), (xb, yb), and (xc, yc) are mutually different from each other.

Furthermore, let w1a, w1b, w1c, w2a, w2b, and w2c be positive real numbers. The following two

statements are equivalent:

(a) There exists a function w : X × Y 7→ R which is continuous, strictly increasing, and

7In parts of the literature, the terminology ‘subdifferential’ is only used for convex functions, whereas it is

replaced by ‘superdifferential’ in the case of concave functions.

17



strictly concave and which is continuously differentiable locally at the points (xa, ya), (xb, yb),

and (xc, yc) with partial derivatives

w1(xi, yi) = w1i and w2(xi, yi) = w2i for i ∈ {a, b, c}.

(b) It holds that

(w1b − w1a)(xa − xb) + (w2b − w2a)(ya − yb) > 0, (40)

(w1c − w1b)(xb − xc) + (w2c − w2b)(yb − yc) > 0, (41)

(w1c − w1a)(xa − xc) + (w2c − w2a)(ya − yc) > 0, (42)

w1a(xb − xa) + w1b(xc − xb) + w1c(xa − xc)

> w2a(ya − yb) + w2b(yb − yc) + w2c(yc − ya), (43)

w1a(xc − xa) + w1b(xa − xb) + w1c(xb − xc)

> w2a(ya − yc) + w2b(yb − ya) + w2c(yc − yb). (44)

Proof: We first prove that (a) implies (b). Since the three points (xa, ya), (xb, yb), and (xc, yc)

are mutually different, it follows from strict concavity of w that

w(xa, ya) < w(xb, yb) + w1b(xa − xb) + w2b(ya − yb), (45)

w(xa, ya) < w(xc, yc) + w1c(xa − xc) + w2c(ya − yc), (46)

w(xb, yb) < w(xa, ya) + w1a(xb − xa) + w2a(yb − ya), (47)

w(xb, yb) < w(xc, yc) + w1c(xb − xc) + w2c(yb − yc), (48)

w(xc, yc) < w(xa, ya) + w1a(xc − xa) + w2a(yc − ya), (49)

w(xc, yc) < w(xb, yb) + w1b(xc − xb) + w2b(yc − yb). (50)

Combining (45) and (47), one obtains (40). In the same way, one gets (41) from (48) and (50)

and one gets (42) from (46) and (49). Adding (46), (47), and (50) yields (44), and adding (45),

(48), and (49) one obtains (43).

The proof that (b) implies (a) is split up in the same three steps as the proof of the corresponding

lemma 2.

Step 1: We first prove that there exist real numbers wa, wb, and wc such that the inequalities

w1b(xb − xa) + w2b(yb − ya) < wb − wa < w1a(xb − xa) + w2a(yb − ya), (51)
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w1c(xc − xb) + w2c(yc − yb) < wc − wb < w1b(xc − xb) + w2b(yc − yb), (52)

w1c(xc − xa) + w2c(yc − ya) < wc − wa < w1a(xc − xa) + w2a(yc − ya) (53)

hold. To this end, we define the real numbers

Aba = w1b(xb − xa) + w2b(yb − ya) , Bba = w1a(xb − xa) + w2a(yb − ya),

Acb = w1c(xc − xb) + w2c(yc − yb) , Bcb = w1b(xc − xb) + w2b(yc − yb),

Aca = w1c(xc − xa) + w2c(yc − ya) , Bca = w1a(xc − xa) + w2a(yc − ya),

and the open intervals Iba = (Aba, Bba), Icb = (Acb, Bcb), and Ica = (Aca, Bca). It follows from

(40)-(42) that all three of these intervals are non-empty. Furthermore, it follows from (43)-(44)

that Aba + Acb < Bca and Aca < Bba +Bcb. This, in turn, implies that

{δba + δcb | δba ∈ Iba, δcb ∈ Icb} ∩ Ica ̸= ∅.

Consequently, there exist real numbers δba ∈ Iba, δcb ∈ Icb, and δca ∈ Ica such that δca = δba+δcb.

Let wa be an arbitrary real number and define wb = wa+δba and wc = wa+δca. Then it follows

that wb − wa = δba ∈ Iba, wc − wb = δca − δba = δcb ∈ Icb, and wc − wa = δca ∈ Ica. Obviously,

this is equivalent to (51)-(53).

Steps 2 and 3: Since these steps are completely analogous to the corresponding steps in the

proof of lemma 2, we omit many details. One starts by defining for all i ∈ {a, b, c} and all

ε ∈ R+ the quadratic polynomial g(·, · | i, ε) : X × Y 7→ R by

g(x, y | i, ε) = wi + w1i(x− xi) + w2i(y − yi)− ε
[
(x− xi)

2 + (y − yi)
2
]
.

If ε is positive but sufficiently small, g(·, · | i, ε) is strictly increasing and strictly concave for all

i ∈ {a, b, c}. Then, one defines the function w : X × Y 7→ R by

w(x, y) = min{g(x, y | i, ε) | i ∈ {a, b, c}}.

If ε is positive but sufficiently small, then it follows that w is a continuous, strictly increasing,

and strictly concave function. Furthermore, the inequalities in (51)-(53) ensure that w is

continuously differentiable locally around the three points (xa, ya), (xb, yb), and (xc, yc) and

that its partial derivatives at these three points are given by w1(xi, yi) = g1(xi, yi | i, ε) = w1i
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and w2(xi, yi) = g2(xi, yi | i, ε) = w2i for i ∈ {a, b, c}. This completes the proof of the lemma.

�

To conclude the proof of theorem 2 we apply the above lemma with X = [0, k̄], Y = [0, 1],

w(x, y) = u(x, 1− y), xi = ci, and yi = 1− ℓi for all i ∈ {a, b, c}. This shows that there exists

a function u : [0, k̄] × [0, 1] 7→ R such that assumption 2 is satisfied and such that the partial

derivatives of u at the points (ca, 1 − ℓa), (cb, 1 − ℓb), and (cc, 1 − ℓc) exist and are given by

(34)-(39) if and only if the inequalities

(u1b − u1a)(ca − cb) + (u2b − u2a)(ℓb − ℓa) > 0,

(u1c − u1b)(cb − cc) + (u2c − u2b)(ℓc − ℓb) > 0,

(u1c − u1a)(ca − cc) + (u2c − u2a)(ℓc − ℓa) > 0,

u1a(cb − ca) + u1b(cc − cb) + u1c(ca − cc) > u2a(ℓb − ℓa) + u2b(ℓc − ℓb) + u2c(ℓa − ℓc),

u1a(cc − ca) + u1b(ca − cb) + u1c(cb − cc) > u2a(ℓc − ℓa) + u2b(ℓa − ℓb) + u2c(ℓb − ℓc)

hold, where the numbers u1i and u2i for i ∈ {a, b, c} are defined in (34)-(39). We can use (29)

to eliminate ca, cb, and cc from these conditions, and we can use linear homogeneity of the

production function to replace f2(ki, ℓi)ℓi − f(ki, ℓi) by −f1(ki, ℓi)ki for all i ∈ {a, b, c}. This

leads to conditions (6)-(11) and the proof of theorem 2 is complete.
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