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Abstract

In general, linear multivariate rational expectations models do not have a unique solution. This paper reviews
some procedures for determining whether there exists a solution, whether it is unique, and infers on the dimension
of indeterminacy and the number of free parameters in a parametrization thereof. A particular emphasis is given to
stochastic singularity, i.e. the case in which the number of outputs is strictly larger than the number of (stochastic)
inputs. First, it is shown that assuming stochastic singularity of the exogenous driving process has the same effects as
(but is more natural than) assuming that some variables are predetermined, i.e have trivial one-step-ahead prediction
error. Second, the dimension of the solution set is in general different from the one derived in the case where the
number of outputs and inputs coincide. We derive this result in both the framework of [37, 34] (which impose non-
explosiveness conditions) and [9, 11] (which do not impose non-explosiveness conditions). In this context, the results
of [34] and [11] are corrected and extended. Last, we note that the framework of [11] can be adjusted to incorporate
non-explosiveness conditions and lends itself to an identifiability analysis of dynamic stochastic general equilibrium
(DSGE) models.
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1 Introduction

This paper deals with linear multivariate rational expectations models where the number of endogenous variables may
be larger than the number of uncorrelated white noise innovations of the exogenous process driving the economy. After
reviewing some approaches and clarifying their relation to the problem of stochastic singularity, we generalize an approach
by [34] dealing with the influence of so-called sunspot shocks on endogenous variables. Moreover, we describe the set of
all solutions of a linear multivariate rational expectations model following [11], correct an important error in Theorem 4
on page 248 in [11], and derive the dimension of the solution set in the stochastically singular case. Last, the analysis of
[11] is, in addition to permitting for stochastic singularity, extended to allowing for more general parameter restrictions in
order to render the developed theory useful for the analysis of macroeconomic models as, e.g., [38]. This will enable us
to conduct an identifiability analysis of dynamic stochastic general equilibrium (DSGE) models without imposing a (for
structural models very restrictive) minimality assumption as was done in [33].

We heavily draw on the methods developed in [12, 9, 10, 13, 11]. In particular, we consider the rational expectations
model

(
Is Isz · · · Isz

k · · · Isz
K
)


A00 A01 · · · A0h · · · A0H

A10
. . .

...
Ak0 Akh AkH
...

...
AK0 AK1 · · · AKH





yt
Et (yt+1)

...
Et (yt+h)

...
Et (yt+H)


= −ut (1)

where z denotes the backward shift operator, i.e. z (yt)t∈Z = (yt−1)t∈Z, Et (yt+h) denotes the projection2 of yt+h on
closure of the linear3 space spanned by the present and the past of the components of {ut, ut−1, . . .} of the exogenous

process (ut)t∈Z, denoted by Hu(t) = span
{
u

(i)
t−s | s ∈ N, i ∈ {1, . . . , s}

}
. To avoid confusion, we will sometimes write

more explicitly E (yt+h|Hu(t)) for the same object4. Furthermore, we assume that there are no redundant equations, i.e.
the matrix polynomial π(z) defined in equation (61) on page 42 depending on the matrices Akh, k ∈ {0, . . . ,K} and
h ∈ {0, . . . ,H}, and that there exists an h ∈ {0, . . . ,H} such that AKh 6= 0 and a k ∈ {0, . . . ,K} such that AkH 6= 0.
In this way K and H are well defined. The indices k and h in Akh refer to the h-period-ahead forecast of the endogenous
variables, k periods ago, i.e. yt−k is forecast h periods ahead with the information5 available in period t− k.

We assume that the stationary s-dimensional exogenous process (ut)t∈Z has a (finite) covariance matrix E
(
utu

T
t

)
, where

the superscript T denotes transposition, of rank r smaller than or equal to s and a rational spectral density fu (λ) of
rank q ≤ r ≤ s.

A solution in the wide sense6 of the rational expectations model (1) is a stochastic process (yt)t∈Z such that for given
exogenous driving process (ut)t∈Z and given parameters Akh, k ∈ {0, . . . ,K} , h ∈ {0, . . . ,H} , (yt)t∈Z satisfies equation
(1) for all t ∈ Z. Note that (yt)t∈Z is a deterministic function of (ut)t∈Z, i.e. there are no additional error terms involved.

Remark 1. Note that some authors, e.g. [8, 31, 37], study only solutions on the natural numbers N. There are at
least two reasons in favor of examining solutions on Z. First, there is an asymmetry between past and future when
only solutions on N are considered. Second, a solution starting from the infinite past can be interpreted as a solution
approximating unknown initial values in a reasonable sense. In the stationary state, we do not know initial values, hence
a solution starting from the infinite past should be preferred to a solution on N.

Moreover, theorems on spectral representations and spectral decomposition of stationary processes do not always hold
true for stochastic processes with N as index set, compare [19] page 481 and 486. Also, [2] use the term “covariance
factorization” (page 233) for processes with finite initial time and reserve “spectral factorization” for stationary processes

2Compare [19] page 155, where he defines the conditional in the wide sense as the projection on a linear manifold.
3Note that if all random variables in the conditioning set are Gaussian, the conditional expectation coincides with the linear projection

outlined here. For more details on conditional expectations see [3] page 445ff.
4Some authors, e.g. [25] on page 410, condition on a larger set of variables comprising variables which are independent to the exogenous

process. These variables are called “sunspots” by the authors.
5We will refer to the space Hu(t) on which the endogenous variables are projected as “the information at time t”.
6A solution of the rational expectations model (without the addendum “in the wide sense”) is a solution in the wide sense of the rational

expectations model for which additionally firstly yt ∈ Hu(t) (or any other specified linear space generated by components of stochastic
processes) holds and which secondly does not violate a non-explosiveness condition to be specified.
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with index set Z. Moreover, they show on pages 242-243 that their so-called “innovations model” (which is closely related
to the spectral factorization) is not time invariant (but only asymptotically time invariant) for stationary processes with
finite initial time, compare also [28] pages 19-20.
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2 Zeros of a polynomial at infinity

We follow [29] page 370ff and consider the polynomial

p (z, c) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0,

where z is a complex variable and c = (c0, . . . , cn) ∈ Cn+1 a coefficient vector. The set of polynomials we consider is thus
defined by the set of coefficient vectors c ∈ Cn+1. Furthermore, we denote the degree of p(z, c) by deg (p(z, c)) = n(c).
We say that the polynomial p(z, c) has (n− n(c)) zeros at infinity.

The notion of a zero at infinity is motivated by Theorem 4.1.2 on page 371 in [29]. It states that every polynomial
p(z, c) which is “sufficiently close” to a non-constant polynomial p (z, c̃) with degree n (c̃), i.e. ‖c− c̃‖ < ε holds for the
corresponding coefficient vectors c, c̃ ∈ Cn+1, a sufficiently small ε > 0, and an arbitrary norm ‖·‖ on Cn+1, has exactly
n(c) − n (c̃) roots outside the set

{
z ∈ C| |z| > 1

ε

}
. Thus intuitively, if the degree of p(z, c) is higher than the one of

p (z, c̃), the “new roots” are “far away” from zero.

Example 2. As an example consider the polynomial

p(z) = az2 + bz + c, a, b, c ∈ C, b 6= 0, a 6= 0

whose roots are z± = −b±
√
b2−4ac

2a . For a→ 0, z+ = − cb whereas z− diverges.

2.1 Zeros of a square polynomial matrix at infinity

The zeros of a square polynomial matrix A(z) = A(0) +A(1)z + · · ·+A(r)zr are defined as the zeros of its determinant
det (A(z)) = cnz

n + · · · + c1z + c0 where the coefficients (c0, . . . , cn) are (multivariate) polynomials in the elements{
A

(k)
ij |i, j ∈ {1, . . . , s} , k ∈ {0, . . . , r}

}
of A(z).

Example 3. [31] considers a so-called regular linear pencil (compare [20] page 25-28) M(z) = Az−B, z ∈ C, where A
and B are square matrices and det (Az −B) is not identically zero. The elements of A are assumed to be unrestricted
complex numbers, in particular A may be singular. The matrix pencil has a zero at infinity if and only if det (A) = 0.

Example 4. Let the multi-index α = (r1, . . . , rs) prescribe the maximal degrees of the columns
(
A[•,1](z), . . . , A[•,s](z)

)
of the (s× s)-dimensional polynomial matrix A(z) where A(0) = Is and denote the coefficients of A(z) again with a
superscript, i.e. A

(k)
[•,i] is the (s× 1)-dimensional coefficient vector of the i-th column of A(z) pertaining to zk. The

parameter space L ⊆ Rn, where n = s (p1 + · · ·+ ps), describing all matrices of the form above consists of all (free)
parameters in A(z), i.e.

l = vecrow

(
A

(1)
[•,1], . . . , A

(k)
[•,1] . . . , A

(r!)
[•,1]| · · · |A

(1)
[•,i], . . . , A

(k)
[•,i] . . . , A

(ri)
[•,i]| · · · |A

(1)
[•,s], . . . , A

(k)
[•,s] . . . , A

(rs)
[•,s]

)
,

where vecrow denotes row-wise vectorization. If the column-end matrix, i.e. the matrix
(
A

(r1)
[•,1], . . . , A

(rs)
[•,s]

)
consisting of

the coefficient vectors pertaining to the highest degree in the respective column of A(z), is of full rank, the degree of
the determinant is equal to n. The polynomial matrix A(z) has a zero at infinity if and only if the column-end matrix is
not of full rank.

Example 5. Let Aθ(z) = A
(0)
θ + A

(1)
θ z + · · · + A

(p)
θ zr be a polynomial matrix of dimension (s× s) whose parameter

space Lr ⊆ RN , N = [(r1 + · · ·+ rs) + s] s, consists of all

l = vecrow

(
A

(0)
θ,[•,1], . . . , A

(k)
θ,[•,1] . . . , A

(r!)
θ,[•,1]| · · · |A

(0)
θ,[•,i], . . . , A

(k)
θ,[•,i] . . . , A

(ri)
θ,[•,i]| · · · |A

(0)
θ,[•,s], . . . , A

(k)
θ,[•,s] . . . , A

(rs)
θ,[•,s]

)
(2)

such that additionally det (Aθ(z)) 6≡ 0 is satisfied.

Furthermore, let LR ⊆ Lr be the parameter space for which all coefficients of Aθ(z) are multivariate rational functions
of p “deep” parameters θ = (θ1, . . . , θp) ∈ Θ ⊆ Rp, i.e.

A
(k)
θ,ij =

p
(k)
ij (θ1, . . . , θp)

q
(k)
ij (θ1, . . . , θp)
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where p(k)
ij (θ1, . . . , θp) and q

(k)
ij (θ1, . . . , θp) are multivariate polynomials in θ, and q(k)

ij (θ1, . . . , θp) is not identically zero.
Note that the coefficients of det (Aθ(z)) are again multivariate rational functions of θ. Thus, it follows that the degree
ngeneric = maxθ∈Θ [deg {det (Aθ(z))}] is constant almost everywhere in Θ and equivalently that the leading coefficient
cngeneric is almost everywhere not equal to zero. On points θ0 for which deg {det (Aθ0(z))} < ngeneric, Aθ(z) has a
zero at infinity for given parameter space LR.

If we were to consider Lr as the parameter space, then Aθ(z) has generically (r1 + · · ·+ rs)− ngeneric zeros at infinity.
This emphasizes that zeros at infinity are a concept that is closely related to the parameter space describing a set of
polynomials.

Remark 6. It is often the case that a priori restrictions are described through the kernel of a (linear) map, see e.g. [17].
The parameter vector l ∈ RN describing the “linear parameters” (2), i.e. the parameters in Aθ(z), in example 5 may be
restricted by Dl + d = 0 where D ∈ Rp×N and d ∈ Rp are a priori given. In example 5 above, however, the a priori
restrictions are given through the image of a rational function.

Let us assume that the multivariate rational function Λ(·) attaching the “linear” parameters l ∈ Lr (describing the
polynomial matrix in example 5) to the “deep” parameters θ ∈ Θ is affine, i.e.

Λ :

{
Θ → Lr

θ 7→ Cθ + c = l,

where C ∈ RN×p, N > p, and rk (C) = p. Thus all “linear” parameters l ∈ Lr ⊆ RN in the model are described as the
image of Λ(·), i.e. restricted to be contained in the space spanned by the columns of C, translated by c.

The parameters l ∈ Lr satisfying these restrictions can equivalently be described by the kernel of CT . Indeed, note first
that all vectors l ∈ Lr which are contained in im (C) are orthogonal to (im (C))

⊥. Since (im (C))
⊥

= ker
(
CT
)
, the

vectors l ∈ Lr which satisfy CT l = 0 span im(C). Hence, the parameters l ∈ Lr which are given by the image of Λ(·)
satisfy CT (l − c) = 0 and can thus be equivalently described by the kernel of a map.
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3 Literature on linear multivariate rational expectations models

In this section we give an overview of some solution methods for multivariate linear rational expectations models. Rather
than describing all solution methods, we point out how the literature on solution methods developed with respect to
allowing for zeros at infinity, stochastic singularity, and parameter restrictions.

3.1 Blanchard and Kahn, and predetermined and non-predetermined variables

An early influential paper is [8]. They consider the model Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt, t ∈ N (3)

where B ∈ Rn×n, C ∈ Rn×m, Et
(
y

(pre)
t+1

)
= y

(pre)
t+1 , the predetermined variables y(pre)

t have initial value y(pre)
0 , and

(zt)t∈N is an m-dimensional exogenously given stochastic process which is bounded in the sense that

∀t ∈ N : ∃Z̄t ∈ Rm ∧ θt ∈ R such that − (1 + i)
θt Z̄t ≤ Et (zt+i) ≤ (1 + i)

θt Z̄t ∀i ≥ 0. (4)

They ask as to when a stochastic process (yt)t∈N which satisfies equation (3) of the rational expectations model above
for every t ∈ N, which satisfies the non-explosiveness condition

∀t ∈ N : ∃

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∈ Rn(pre)+n(¬pre) ∧ σt ∈ R such that (5)

− (1 + i)
σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
≤ Et

(
y

(pre)
t+i

y
(¬pre)
t+i

)
≤ (1 + i)

σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∀i ≥ 0,

and which is contained in7 Hz(t) exists, and (if it exists) whether it is unique. A process (yt)t∈N with these properties
is called a solution of the rational expectations model (3). Note that the set of all solution is thus restricted in two
ways. First, some processes for which equation (3) holds for every t ∈ N are excluded because they do not satisfy the
non-explosiveness condition; second, some processes are excluded because they are not contained in Hz(t) at time t. The
latter fact excludes in particular processes orthogonal to Hz(t).

Some remarks on the structure of the model are in order.

Remark 7 (Consequences of a larger conditioning set). Following [25] page 411, we consider the model (3) with the
only difference that the solution (yt)t∈N is not required to be contained in Hz(t) but in (with obvious notation) Hz,ζ(t)
where (ζt)t∈N is a p-dimensional stochastic process (satisfying the non-explosiveness condition (4) on exogenous processes
outlined above) orthogonal to (zt)t∈N. Obviously, if the conditional expectation is taken with respect to Hz,ζ(t) a larger
solution set might be obtained. Otherwise, the terms E (yt+1|Hz(t)) and Czt only depend on elements in Hz(t), implying
that also yt is a function of elements in Hz(t).

The following superposition principle holds: If
(
y1
t

)
t∈N is a particular solution of

E
(
y1
t+1|Hz(t)

)
= By1

t + C1zt

in the sense that it solves the equation above for given (zt)t∈N for every time point and
(
y2
t

)
t∈N is a particular solution

of
E
(
y2
t+1|Hζ(t)

)
= By2

t + C2ζt

then (by independence of (zt)t∈N and (ζt)t∈N) we obtain that

E
((
y1
t+1 + y2

t+1

)
|Hz,ζ(t)

)
= B

(
y1
t+1 + y2

t+1

)
+ C1zt + C2ζt.

Thus, if we allow in the Blanchard and Kahn model for a larger conditioning set than Hz(t), the solution set of the
Blanchard and Kahn model is enlarged by the solutions of the homogenous equation

E (yt+1|Hζ(t)) = Byt.
7[8] define the conditioning set differently. For ease and continuity of presentation we deviate from their definition.
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Remark 8 ((Non)-predetermined variables). Blanchard and Kahn distinguish between predetermined variables y(pre)
t

(intended to capture, e.g., the notion of capital in the economy), i.e. Et
(
y

(pre)
t+1

)
= y

(pre)
t+1 holds, and non-predetermined

variables which are sometimes called “jump-variables”. Many authors consider this distinction to be unnatural. E.g. [37]
argues that the parametric structure of the model determines endogenously which linear combinations of endogenous
variables have no expectational error term, compare section 3.3 starting on page 20. Also, one might think that it should
be possible to give an interpretation in terms of backward and forward looking behavior for the solution corresponding
to predetermined and non-predetermined variables respectively. However, both predetermined and non-predetermined
variables depend on expectations at time t of future exogenous variables.

We consider the distinction in predetermined and non-predetermined variables as a clever, although ad hoc, way to obtain
the “right” number of degrees of freedom. This enables Blanchard and Kahn to analyze existence and uniqueness of
solutions with regard to the number of non-predetermined variables without getting very technical.
Remark 9 (Conditional expectations in every equation). Every single equation in the system of equations (3) involves
expectational terms which cannot be canceled out by elementary row operations, i.e. there is an identity matrix on the
left hand side of equation (3) instead of a potentially singular matrix A as in [31] discussed in section 3.2 starting on page
14. This is a serious drawback since, in general, one does not obtain an identity matrix (or even a non-singular matrix)
on the left hand side of the rational expectations model (3) if it is derived from agents’ utility optimizing behavior.
Remark 10 (Non-explosiveness condition). The non-explosiveness condition (5) means that the projections on the linear
space spanned by the components of {zt, zt−1, . . .} may not grow faster than polynomial when the forecasting horizon
increases unboundedly. [31] note on page 1020 in footnote 20 that “the stability condition can be written as the
requirement that if |Et (xt+k)| < x̄ a.s. for some finite x̄ and all t and k, then |Et (yt+k)| < ȳ for some finite ȳ and
all t and k.” There are many similar boundedness conditions (not all of them equivalent) which capture the notion that
“small inputs imply small outputs” and thus the existence of a bounded linear (and hence continuous) mapping between
linear spaces, compare [28] page 11.

[7] discusses the role of this non-explosiveness condition and whether imposing such a condition is justified. He notes,
among other things, that in some cases “the implications of the explosion of an endogenous variable are inconsistent
with some assumption of the model” and refers to [27] “where some prices become negative in finite time” if a solution
not satisfying the non-explosiveness condition is chosen. Also, [6] mentions on page 116 that “in certain models non-
stationarity may violate the assumption of market clearing and of rationality of expectations”. Furthermore, [1] argues on
page 187 that “we are not interested in optimization problems in which households or firms achieve infinite value, [...],
since the essence of economics, trade-offs in the face of scarcity, would be absent in these cases”.

Decoupling of unstable and stable roots. The authors use the Jordan decomposition of B = T−1JT , where the
rows of T are a basis for the left-invariant subspaces of B, to decouple the unstable from the stable part of the system,
i.e. the Jordan blocks are ordered with respect to weakly increasing absolute values of eigenvalues. Eigenvalues with
absolute value smaller than or equal to unity are stable8 and otherwise they are unstable. Left-multiplying equation (3)
with T leads to (

Et (st+1)
Et (ut+1)

)
=

(
Js

Ju

)(
st
ut

)
+ TCzt, t ∈ N (6)

where
(
st
ut

)
= T

(
y

(pre)
t

y
(¬pre)
t

)
, and Js and Ju contain the Jordan blocks corresponding to the stable and unstable

eigenvalues.

Obtaining a solution for the unstable part of the system. The unstable part of the system is solved forward and
thus the solution (ut)t∈N depends on conditional expectations at time t of future values of the (given) exogenous process
(zt)t∈N. The solution

ut = −
∞∑
i=0

J−(i+1)
u Tu•CEt (zt+i)

is obtained by successive forward substitution in the second block of rows in (6), i.e. ut = J−1
u Et (ut+1 ) − Tu,•Czt,

where Tu,• ∈ Rn(pre)×n denotes the rows of T corresponding to unstable Jordan blocks.
8Compare page 1307 line -4 in [8]. [32] note on page 72 below their formula (19) that unit roots are considered stable because they do

not violate the non-explosiveness condition. A root λ is treated as unstable if βλ > 1, where β ∈ (0, 1) is a discount factor.
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Existence and uniqueness of the solution of the stable part of the system: Initialization and induction step.
A solution (st)t∈N of the stable part is obtained in the following way. For t = 0, we have from the first block of rows in
(6) that

y
(pre)
0 =

(
T−1

)
pre,s

s0 +
(
T−1

)
pre,u

u0

⇐⇒
(
T−1

)
pre,s

s0 = y
(pre)
0 −

(
T−1

)
pre,u

u0

where the subscripts in, e.g.,
(
T−1

)
pre,s

denote the row indices corresponding to the predetermined variables and the

column indices corresponding to the variables pertaining to the stable eigenvalues. Note that both y(pre)
0 (as part of the

model formulation) and u0 (as solution at time t = 0 of the unstable part of the system as described above) are known.
Thus, if the given vector

(
y

(pre)
0 −

(
T−1

)
pre,u

u0

)
is contained in the column space of

(
T−1

)
pre,s

, there exists an s0

such that the initial value of the predetermined variables y(pre)
0 does not contradict the initial model specification.

For t 7→ t+ 1, i.e. obtaining st+1 for given st, we proceed as follows. We obtain st+1 by subtracting its expectation at
time t from the first block of rows of the system (6), i.e. we subtract

Et
(
y

(pre)
t+1

)
=
(
T−1

)
pre,s

Et (st+1) +
(
T−1

)
pre,u

Et (ut+1)

from
y

(pre)
t+1 =

(
T−1

)
pre,s

st+1 +
(
T−1

)
pre,u

ut+1

and note that y(pre)
t+1 is predetermined. Thus, we decompose

(
T−1

)
pre,s

(st+1) in its projection9 on the space Hz(t) and
the innovation

(
T−1

)
pre,u

(ut+1 − Et (ut+1)), i.e.

0 = y
(pre)
t+1 − Et

(
y

(pre)
t+1

)
=
(
T−1

)
pre,s

(st+1 − Et (st+1)) +
(
T−1

)
pre,u

(ut+1 − Et (ut+1))

⇐⇒
(
T−1

)
pre,s

(st+1) =
(
T−1

)
pre,s

Et (st+1)−
(
T−1

)
pre,u

(ut+1 − Et (ut+1)) . (7)

Hence, if the right hand side of (7) is contained in the column space of
(
T−1

)
pre,s

, there exists an st+1 for given st
which solves (6), is contained in Hz(t), and satisfies the non-explosiveness condition.

Remark 11. It is important to realize that (st)t∈N, assuming that such a solution exists, has the same innovations as

(ut)t∈N. It follows that neither (ut)t∈N nor (st)t∈N are predetermined and that the process
(
st
ut

)
t∈N

has a singular

innovation covariance matrix. Note that the rank of the innovation covariance matrix is bounded from above by the
number of unstable roots and that there might be multiple solutions (st)t∈N (such that st ∈ Hz(t) and that it satisfies
the non-explosiveness condition) if there are strictly more non-predetermined variables than unstable roots.

Remark 12. Equation (7) is of paramount importance for understanding existence and (non)-uniqueness of a solu-
tion of Blanchard and Kahn’s model. We want to obtain an st+1 such that the predetermined variables y(pre)

t+1 sat-
isfy the initial model specification, i.e. we ask whether there is an st+1 such that its one-step-ahead forecast error(
T−1

)
pre,s

(st+1 − Et (st+1)) offsets the one-step-ahead forecast error
(
T−1

)
pre,u

(ut+1 − Et (ut+1)) of the solution of
the unstable part of the system.

If there is more than one way to do that, i.e.
(
T−1

)
pre,u

(ut+1 − Et (ut+1)) is contained in the column space of
(
T−1

)
pre,s

and the kernel of
(
T−1

)
pre,s

is non-trivial, the solution is not unique. Note that this non-uniqueness affects, in general,
both predetermined and non-predetermined variables after transformation to original variables.

If there is no such st+1 which ensures that y(pre)
t+1 − Et

(
y

(pre)
t+1

)
= 0 holds, there is no solution which satisfies the initial

model specification. In other words, there is no way that the one-step-ahead prediction errors of the solution of the
unstable part of the system get offset by the one-step-ahead prediction errors of the solution of the stable part of the
system. We can still calculate a solution which however contradicts the original specification. Adding an additional
non-predetermined variable amounts to including an additional component in the vector of endogenous forecast errors
ηt in Sims notation, which in turn makes satisfying the existence condition easier. In [37], this situation is described by
the fact that the endogenous forecast error cannot offset the influence of the exogenous variables, and hence there is no
solution in Hz(t) satisfying the non-explosiveness condition.

9Of course, Et (st+1) = Jsst + Ts,•Czt is known at time t in equation (7).
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Blanchard and Kahn’s full rank assumption on
(
T−1

)
pre,s

and their counting rule. [8] state in their Proposition
1, 2, and 3 that under the assumption that

(
T−1

)
pre,s

is of full rank,

• there exists a unique solution (yt)t∈N if n (u) = n(¬pre),

• there does not exist a solution (yt)t∈N if n (u) > n(¬pre), and finally that

• there is an infinity of solutions if n (u) < n(¬pre).

This shaped the (oversimplifying) understanding that rational expectations models have a unique solution if there are as
many “jump-variables”, i.e. non-predetermined variables, as there are unstable roots of B. However, it is obvious from
the derivation above that the following proposition holds.

Proposition 13. A solution (yt)t∈N to the rational expectations model Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt, t ∈ N

satisfying firstly yt ∈ Hz(t), t ∈ N and secondly the non-explosiveness condition

∀t ∈ N : ∃

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∈ Rn(pre)+n(¬pre) ∧ σt ∈ R such that

− (1 + i)
σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
≤ Et

(
y

(pre)
t+i

y
(¬pre)
t+i

)
≤ (1 + i)

σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∀i ≥ 0

for bounded inputs (zt)t∈N satisfying

∀t ∈ N : ∃Z̄t ∈ Rm ∧ θt ∈ R such that

− (1 + i)
θt Z̄t ≤ Et (zt+i) ≤ (1 + i)

θt Z̄t ∀i ≥ 0,

exists if y(pre)
0 −

(
T−1

)
pre,u

u0 (initial value) and
(
T−1

)
pre,u

(ut+1 − Et (ut+1)) (innovations) are contained in the column
space of

(
T−1

)
pre,s

for all t ∈ N.

Furthermore, the solution (if it exists) is unique if the kernel of
(
T−1

)
pre,s

is trivial.

3.1.1 Analysis of Blanchard and Kahn’s model with the martingale difference method

[13] analyze the model of Blanchard and Kahn without restricting the processes satisfying the rational expectations
equation (3) to be non-explosive which they consider potentially unjustified ([13] pages 129-133). However, their analysis
is in error because they do not take into account that some endogenous variables are predetermined. They start by
transforming  Et

(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt, t ∈ N

to (
Et (st+1)
Et (ut+1)

)
=

(
Js

Ju

)(
st
ut

)
+ TCzt, t ∈ N

and subsequently introduce (on page 131 below formula (4.93)) revision processes (compare section 4 starting on page
42)

νt = st − Et−1 (st)

ηt = ut − Et−1 (ut) .

By introducing these revision processes, they suggest that the components of νt and ηt are linearly independent of each
other. However, this is obviously wrong because only n (¬pre) revision processes appear in the model.

10



Writing (
y

(pre)
t+1

y
(¬pre)
t+1 − εt+1

)
= B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt, t ∈ N,

where εt = y
(¬pre)
t − Et−1

(
y

(¬pre)
t

)
, and premultiplying T , we obtain after rearranging((
In(s) − Jsz

)
st(

In(u) − Juz
)
ut

)
= T•,¬preεt +

(
Ts•
Tu•

)
Czt−1. (8)

We proceed to analyze existence and uniqueness of a solution of (8) with the methods put forward in [37] and [11] in
order to develop an understanding as to how these methods are connected. For ease of presentation we assume that the
exogenous process (zt)t∈N is white noise ξt (with zero mean and the identity matrix as covariance matrix).

Analyzing solutions of equation (8) with the method in [37]. For a more detailed derivation we refer to section
3.3.2 and 3.3.3. Since the backward solution does not satisfy the non-explosiveness condition (which in Blanchard and
Kahn’s model applies to all components of the endogenous variables), we focus on the forward solution

ut =

[
−
∞∑
i=0

(Juz)
−i−1

]
(Tu,¬preεt + Tu•Czt−1) (9)

and assume that a solution of the rational expectations model exists, i.e. ut ∈ Hz(t), t ∈ N, and thus Et (ut) = ut
holds. The existence condition derived in Corollary 25 on page 28 in the notation of this example10 is

span
(
J−1
u Tu•C

)
⊆ span (Tu,¬pre) . (10)

Since ut = Et (ut), we obtain that the endogenous forecast errors εt (compare section 3.3 on page 20) can be expressed
as a function of expectations at time t of future exogenous variables. Thus, in a solution (9) for the unstable part of
system (8), we have found a representation of the endogenous forecast errors εt in terms of quantities known at time t.

The solution is unique, if we can express the endogenous forecast error Ts,¬preεt influencing the “stable” part of the
system as a function of the endogenous forecast error Tu,¬preεt affecting the “unstable” part of the system (which in
turn is a function of expectations at time t of future exogenous variables). The condition that the solution be unique is
equivalent to the existence of a matrix Φ of dimension (n(s)× n(u)) such that

Ts,¬pre = ΦTu,¬pre,

compare section 3.3.4 starting on page 29.

Analyzing solutions of equation (8) with the method in [11]. First, note that the endogenous forecast error εt =

y
(¬pre)
t −Et−1

(
y

(¬pre)
t

)
is a linear function of them-dimensional exogenous process ξt, i.e. we may write εt = Kξt, where

K is of dimension (n (¬pre)×m). Furthermore, we assume for expositional convenience that n(u) = n(¬pre) = m.

[11] claim in their Theorem 4 on page 249 and 250 that, under the assumption that the exogenous process admits a
stationary (finite or infinite) moving-average representation, there exists a unique solution to the rational expectations
model if the number of unstable roots equals the number of free parameters. This is incorrect because one may only
cancel as many unstable roots as there are linearly independent martingale difference sequences (as is also the case in
[8] under their full rank assumption). Moreover, in the derivation in [11] it is implicitly assumed that the rank of the
innovation covariance matrix coincides with the number of endogenous variables even though this excludes a great many
state of the art models.

Indeed, they argue that their result holds by claiming that one can cancel an unstable root of a certain polynomial matrix
by fixing one of the free parameters. However, this is in general not correct since the roots to be canceled out have to
lie in the same space, taking account of which requires additional free parameters. The example below shows that in
general (n (¬pre))2 free parameters are needed in order to cancel n (u) unstable roots, we want to find a matrix K in
equation (11) below such that (Tu,¬preK + Tu•Cz) can be factored as

(
In(u) − Juz

)
A(z), where A(z) is a polynomial

matrix of appropriate dimensions.
10Note that the timing convention in Blanchard and Kahn’s model is different to the one Sims is using. For this reason, J−1

u appears in the
existence condition adjusted to the notation in this example.
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Example 14. Consider the “unstable” part of the system (8), i.e.(
In(u) − Juz

)
ut = (Tu,¬preK + Tu•Cz) ξt (11)

=
(
Tu,¬preK + Ju (Ju)

−1
Tu•Cz

)
ξt,

and note that (in accordance to (10)) the matrix polynomial can be factorized in the desired way if span
(
J−1
u Tu•C

)
⊆

span (Tu,¬pre). In order to fix ideas, we assume Tu,¬pre to be invertible, take

K = − (Tu,¬pre)
−1

(Ju)
−1
Tu•C,

obtain (
In(u) − Juz

)
ut =

(
−Tu,¬pre (Tu,¬pre)

−1
(Ju)

−1
Tu•C + Ju (Ju)

−1
Tu•Cz

)
ξt

=
(
In(u) − Juz

) [
−J−1

u Tu•C
]
ξt,

and thus it follows that

ut =

[
adj
(
In(u) − Juz

)] (
In(u) − Juz

)
det
(
In(u) − Juz

) [
−J−1

u Tu•C
]
ξt

=
det
(
In(u) − Juz

)
In(u)

det
(
In(u) − Juz

) [
−J−1

u Tu•C
]
ξt = −J−1

u Tu•Cξt.

[39] proves (starting on his page 91) a similar result (using similar methods as above) to [11] under more restrictive
assumptions11. Whiteman’s result is correct and therefore consistent with the result in [8] (compare Proposition 13) but
not consistent with the one in Theorem 4 on page 249 and 250 in [11] mentioned above.

3.1.2 Stochastic singularity as a different way of obtaining the right number of degrees of freedom.

As already mentioned in remark 8 on page 8, prescribing some variables to be predetermined is considered ad hoc by,
e.g., [37] and [9, 11], and the corresponding solution process does not have a nice economic interpretation. A more
natural way for obtaining a model in which some linear combinations of endogenous variables have trivial one-step-ahead
prediction errors is to require that the stationary exogenous process (zt)t∈Z have a singular innovation covariance matrix.
This insight into the structure of rational expectations model is illustrated by analyzing the Blanchard and Kahn model
(3) with the martingale difference method developed in [9, 11] and by subsequently showing that the distinction in
predetermined and non-predetermined is both unnecessary and restrictive.

Distinction between predetermined and non-predetermined variables. First, note that the endogenous forecast
error εt = y

(¬pre)
t − Et−1

(
y

(¬pre)
t

)
is a linear function of the innovations νt+1 = zt+1 − Et (zt+1) of the exogenous

process, i.e. there is a matrix K of appropriate dimensions such that εt = Kνt. Second, since the covariance matrix
of the innovations νt of the exogenous process is singular with rank q, we may write12 vt = bξt, where the covariance
matrix of ξt is non-singular. Thus, in the model (3), we obtain that

εt = Kbξt

where K ∈ Rn(¬pre)×m and b ∈ Rm×q. Hence, we obtain that Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) =

(
y

(pre)
t+1

y
(¬pre)
t+1 − εt+1

)

=

(
y

(pre)
t+1

y
(¬pre)
t+1

)
−
(

0
I

)
Kbξt+1. (12)

11Whiteman does not allow, e.g., for zeros at infinity.
12Note that b is unique up to orthogonal post-multiplication.
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No distinction between predetermined and non-predetermined variables. Without imposing that some variables
are predetermined, we obtain in the same way as above that

Et (yt+1) = yt+1 − εt+1

= yt+1 −Rbξt+1 (13)

where R ∈ Rn×m and b ∈ Rm×q. It follows that the number of linearly independent linear combinations of endogenous
variables can be gauged by the rank of the innovation covariance matrix of the exogenous process. Also note that
equation (13) is more general than (12). Thus, the distinction between predetermined and non-predetermined variables
is both unnecessary and restrictive.

A more useful rule of thumb than n (¬pre) = n(u) for the uniqueness of a solution of the Blanchard and Kahn model
would thus be that the number of unstable roots has to be equal to the rank of the innovation covariance matrix of the
exogenous process.
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3.2 King and Watson: Allowing for Zeros at Infinity and Zeros at Zero

[31] generalizes the model in [8] to models of the form

A

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ CEt (zt) , t ∈ N (14)

where A ∈ Rn×n, n = n (pre) + n (¬pre), n(pre) and n (¬pre) are the dimensions of the predetermined and non-
predetermined variables respectively, is allowed to be singular, but the determinant det (Az −B) of the matrix pencils
Az −B, z ∈ C, must not be identically zero. All other assumption of Blanchard and Kahn’s model remain the same.

Forward “shift”. King and Watson introduce, following [36] (Chapter XI, Section 21, page 307), the forward shift13

operator F which operates on the time index of the endogenous process but not on the information set, i.e.

FEt (yt) = Et (yt+1) , t ∈ N.

Thus, they write equation (14) above as

(AF −B)

 Et
(
y

(pre)
t

)
Et
(
y

(¬pre)
t

) = CEt (zt) , t ∈ N. (15)

Decoupling. Similar to the approach in [8], King and Watson transform the equations by premultiplying equation

(15) with a non-singular matrix V , and transform the endogenous variables

(
y

(pre)
t+1

y
(¬pre)
t+1

)
by premultiplying them with a

non-singular matrix W , i.e. we obtain

(
V AW−1F − V BW−1

)
W

 Et
(
y

(pre)
t

)
Et
(
y

(¬pre)
t

) = V CEt (zt) , t ∈ N.

⇐⇒ (A∗F −B∗)Et

stut
it

 = C∗Et (zt) , t ∈ N.

where the separation of the canonical variables st, ut, and it is determined by the location of the zeros of the pencil
(A∗z −B∗).

If the matrix A is singular, King and Watson use the theory developed in [20] (Chapter 12, pages 24-28) on regular
matrix pencils Az −B, where z is a complex variable, A and B are square matrices and det (Az −B) is not identically

13Note that this operator does not correspond to an isometric or unitary transformation, in the case of a stationary process (yt)t∈N or
(yt)t∈Z respectively, generating the process, compare [19] page 461 and 462. [31] remark in footnote 4 on page 1017 that Fyt is not defined
because the conditioning set is not specified in this case.
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zero14. They obtain matrices V and W of a more complex15 nature and finally obtain(I
N

)
F −

(Js Ju

)
I

Et

stut
it

 = C∗zt, t ∈ N, (16)

where N is a nilpotent matrix, i.e. there exists a positive integer l such that N l = 0, the matrices Js and Ju contain
Jordan blocks with eigenvalues of absolute value smaller than or equal to unity16 and larger than unity respectively. The
dimensions of the canonical variables (st) and (ut)t∈N correspond to the respective dimensions of Js and Ju.

If the matrix A in (15) is non-singular, the equation is premultiplied by A−1, and subsequently the Jordan decomposition
of A−1B = T−1JT , where T are a basis of the left-invariant subspaces of B∗, is considered. Thus, we obtain for
equation (16) with V = TA−1 and W = T that(TA−1

)︸ ︷︷ ︸
=V

A T−1︸︷︷︸
=W−1

F − TA−1BT−1

T

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = V Czt, t ∈ N.

⇐⇒
(
InF −

(
Js

Ju

))
Et
(
st
ut

)
= C∗zt, t ∈ N.

3.2.1 Obtaining a solution of the model (14).

King and Watson do not state a theorem17 in [31], but only note that they “...show that initial conditions on...” y(¬pre)

“...can be determined and a unique solution obtained if (i) the solution is restricted to be stable and (ii) a certain sub-
matrix of...” W “...has full rank”, on page 1020, line 13 in [31]. Their conditions are slightly stronger than the conditions
given in our Proposition 16 below.

14Note that the rank deficiencies of A and B correspond to zeros at infinity and zeros at zero respectively.
15

(Az −B) = [A (z − α)− (B −Aα)]

=
[
A (B −Aα)−1 (z − α)− I

]
(B −Aα)

= Q−1

[(
µ+

µ0

)
(z − α)− I

]
Q (B −Aα)

= Q−1

[(
µ+

µ0

)
z −

(
I + αµ+

I + αµ0

)]
Q (B −Aα)

= Q−1

(
µ+

I + αµ0

)
︸ ︷︷ ︸

=S−1

{(
µ+

I + αµ0

)−1 [(
µ+

µ0

)
z −

(
I + αµ+

I + αµ0

)]}
Q (B −Aα)

= Q−1

(
µ+

I + αµ0

)
︸ ︷︷ ︸

=S−1

{(
I

(I + αµ0)−1 µ0

)
z −

(
µ−1
+ (I + αµ+)

I

)}
Q (B −Aα)

= Q−1S−1


(
I

(I + αµ0)−1 µ0

)
z −

(
G+

I

)−1
(Js Ju

)
I

(G+

I

)Q (B −Aα)

= Q−1S−1

(
G+

I

)−1

︸ ︷︷ ︸
=G−1


(
I

(I + αµ0)−1 µ0

)
z −

(Js Ju

)
I


(
G+

I

)
︸ ︷︷ ︸

=G

Q (B −Aα)

= [GSQ]−1︸ ︷︷ ︸
=V−1


(
I

(I + αµ0)−1 µ0

)
z −

(Js Ju

)
I

 [GQ (B −Aα)]︸ ︷︷ ︸
=W

16We remind that [32] note on page 72 below their formula (19) that unit roots are considered to be stable because they do not violate the
non-explosiveness condition. A root λ is treated as unstable if βλ > 1, where β ∈ (0, 1) is a discount factor.

17 They only refer to [8].
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Solution for the unstable18 part of the system (16). We start by deriving a solution (Ut)t∈N =

(
ut
it

)
t∈N

for the

unstable (including the zeros at infinity of the determinantal equation det (Az −B)) part using the fact that we restrict
the solution space to non-explosive (in the sense of Proposition 13) solutions19. As solution for the unstable part of the
system, we thus obtain20 as solution pertaining to the subsystem corresponding to finite, unstable roots

ut = (IF − Ju)
−1
C∗u,•Et (zt)

= −J−1
u

(
I − J−1

u F
)−1

C∗u,•Et (zt)

= −J−1
u

∞∑
k=0

(
J−1
u

)k
F kC∗u,•Et (zt)

= −
∞∑
k=0

J−k−1
u C∗u,•Et (zt+k)

and as solution pertaining to the subsystem corresponding to infinite roots

it = (NF − I)
−1
C∗i,•Et (zt)

=
adj (NF − I)

det (NF − I)
C∗i,•Et (zt)

= (−1)n(i)adj (NF − I)C∗i,•Et (zt)

where n(i) denotes the dimension of the square nilpotent matrix N , or (compare [11] page 232 and [4] page 154, formula
(3.57))

it = − (I −NF )
−1
C∗i,•Et (zt)

= −
n(i)−1∑
k=0

NkC∗i,•Et (zt+k) . (17)

Remark 15. In both derivations for the solution (it)t∈N pertaining to the subsystem corresponding to infinite roots
we see that there are only finitely many expectations at time t of future exogenous variables. Moreover, there is no
ambiguity as to whether one should consider the forward or backward solution, i.e. whether one considers the power
series development of [det (NF − I)]

−1 in terms of non-negative or non-positive powers of F , because the determinant
of (NF − I) is either +1 or −1 and hence constant. The reason why the canonical variable it is considered unstable is
that it = −

∑n(i)−1
k=0 NkC∗i,•zt+k is in general not contained in Hz(t). It follows that, regarding the solution method,

there is formally no difference to the case considered by Blanchard and Kahn.

Obtaining a solution for the original variables. In contrast to [8], King and Watson do not first derive a solution
(st)t∈N for the stable part of the decoupled system but obtain

(
y

(pre)
t

)
t∈N

directly by using the first block of rows in the

equation

(
y

(pre)
t

y
(¬pre)
t

)
= W−1

(
st
Ut

)
. In order to obtain (if it exists) a solution

(
y

(¬pre)
t

)
t∈N

for the non-predetermined

variables, they use the second block of rows in the equation
(
st
Ut

)
= W

(
y

(pre)
t

y
(¬pre)
t

)
.

18The word “unstable” refers to the location of the zeros of Az −B, z ∈ C.
19Note that a solution (it)t∈N of the subsystem of (16) pertaining to infinite roots never violates the non-explosiveness condition. However,

it is always considered to be “explosive” because the solution (it)t∈N may involve expectations at time t of future exogenous variables (but no
past exogenous variables) as will become clear below.

20Note that the formula (8) in [31] on page 1020 is not correct. Their J−hu should be J−h−1
u .
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Initialization: Obtaining y(¬pre)
0 for given U0 and y(pre)

0 . Initial conditions for y(pre)
0 are given, for y(¬pre)

0 a solution

is obtained using the variable transformation
(
s0

U0

)
= W

(
y

(pre)
0

y
(¬pre)
0

)
, i.e.

U0 = WU,prey
(pre)
0 +WU,¬prey

(¬pre)
0

⇐⇒ WU,¬prey
(¬pre)
0 = U0 −WU,prey

(pre)
0 .

If U0 −WU,prey
(pre)
0 is contained in the column space of WU,¬pre, we obtain a y(¬pre)

0 satisfying the equation above. If
the kernel of WU,¬pre is trivial, such a y(¬pre)

0 is unique.

Induction step t 7→ t + 1: Obtaining y
(pre)
t+1 and y

(¬pre)
t+1 for given y

(pre)
t , y(¬pre)

t , and Ut. For the predetermined
variables, we first use the inverse of the variable transformation to represent y(pre)

t+1 as a function of the stable and unstable
part, i.e.

y
(pre)
t+1 =

(
W−1

)
pre,s

st+1 +
(
W−1

)
pre,U

Ut+1,

take expectations at time t and use the predeterminedness of y(pre)
t+1 , i.e.

Et
(
y

(pre)
t+1

)
=
(
W−1

)
pre,s

Et (st+1) +
(
W−1

)
pre,U

Et (Ut+1)

= y
(pre)
t+1

and finally replace Et (st+1) and st by known quantities, i.e.

y
(pre)
t+1 =

(
W−1

)
pre,s

Et (st+1) +
(
W−1

)
pre,U

Et (Ut+1)

=
(
W−1

)
pre,s

[Jsst + Vs,•Czt] +
(
W−1

)
pre,U

Et (Ut+1)

=
(
W−1

)
pre,s

[
Js

{
Ws,prey

(pre)
t +Ws,¬prey

(¬pre)
t

}
+ Vs,•Czt

]
+
(
W−1

)
pre,U

Et (Ut+1) . (18)

Regarding the non-predetermined variables, we proceed analogously to the initialization step, i.e. we use the second block

of rows in the variable transformation
(
st+1

Ut+1

)
= W

(
y

(pre)
t+1

y
(¬pre)
t+1

)
and obtain

Ut+1 = WU,prey
(pre)
t+1 +WU,¬prey

(¬pre)
t+1

⇐⇒ WU,¬prey
(¬pre)
t+1 = Ut+1 −WU,prey

(pre)
t+1 . (19)

Thus, if Ut+1−WU,prey
(pre)
t+1 is contained in the column space ofWU,¬pre, there exists a y

(¬pre)
t+1 satisfying all requirements

of a solution.

Blanchard and Kahn result generalized by King and Watson. We may thus generalize Proposition (13) in the
following way.

Proposition 16. A solution (yt)t∈N to the rational expectations model

A

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt, t ∈ N

satisfying firstly yt ∈ Hz(t), t ∈ N and secondly the non-explosiveness condition

∀t ∈ N : ∃

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∈ Rn(pre)+n(¬pre)∧σt ∈ R such that −(1 + i)

σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
≤ Et

(
y

(pre)
t+i

y
(¬pre)
t+i

)
≤ (1 + i)

σt

(
ȳ

(pre)
t

ȳ
(¬pre)
t

)
∀i ≥ 0,

for bounded inputs (zt)t∈N, i.e.

∀t ∈ N : ∃Z̄t ∈ Rm ∧ θt ∈ R such that − (1 + i)
θt Z̄t ≤ Et (zt+i) ≤ (1 + i)

θt Z̄t ∀i ≥ 0,

exists if Ut −WU,prey
(pre)
t is contained in the column space of WU,¬pre for all t ∈ N.

Furthermore, the solution (if it exists) is unique if the kernel of WU,¬pre is trivial.
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Comparison with the method used in Blanchard and Kahn. Assuming that A = I and n(pre) = n(s), note
that the matrix W in the derivation of [31] is identical to the matrix T in the derivation of [8]; both relate the original

variables

(
y

(pre)
t

y
(¬pre)
t

)
to the canonical variables

(
st
ut

)
. While Blanchard and Kahn require that y(pre)

0 −
(
T−1

)
pre,u

u0

and
(
T−1

)
pre,u

{ut+1 − Et (ut+1)} (for all t ∈ N) be contained in the column space spanned by
(
T−1

)
pre,s

, King and

Watson require that Ut −WU,prey
(pre)
t be (for all t ∈ N) contained in the column space spanned by Wu,¬pre. As can

be easily seen21, if one of these matrices is non-singular (assuming it is a square matrix) the same holds for the other
matrix.

In order to interpret the condition that Ut −WU,prey
(pre)
t be (for all t ∈ N) contained in the column space spanned by

Wu,¬pre, we take conditional expectations at time t of equation (19) and subtract it from equation (19), i.e. we obtain

WU,¬pre

[
y

(¬pre)
t+1 − Et

(
y

(¬pre)
t+1

)]
= Ut+1 − Et (Ut+1) .

We ask whether there exist innovations of the non-predetermined variables such that Wu,¬pre times these innovations
coincides with the innovations of the solution of the unstable part of the system. This ensures the existence of a solution of
the rational expectations model satisfying the original model specification, in particular the term

(
y

(pre)
t+1 − Et

(
y

(pre)
t+1

))
is indeed zero. In the Blanchard and Kahn model, the same effect is achieved by finding an st such that the innovations
of the solution (st)t∈N of the stable part of the system offset the innovations of the solution (ut)t∈N of the unstable part
of the system. Note that if the kernel of Wu,¬pre is non-trivial, the possible indeterminacy also affects the predetermined
variables through equation (18).

3.2.2 System reduction

This section shows that zeros at infinity of the pencil Az − B, z ∈ C, are not interesting for describing the dynamics
of the system. In their subsequent paper [32], King and Watson transform system (16) further and link (under suitable
conditions outlined below) the variables pertaining to the zeros at infinity of the pencil Az −B to dynamic identities in
the following way. Starting from equation (16), i.e.(I

N

)
F −

(Js Ju

)
I

Et

stut
it

 = C∗Et (zt) , t ∈ N,

they obtain by first left-multiplying

η(F ) =

(
I

(NF − I)
−1

)
and then left-multiplying22

T (F ) =

Ŵ−1 −Ŵ−1

(
FI −

(
Js

Ju

))(
Wsf

Wuf

)
W−1
if

0 −W−1
if


21Consider the partitioned non-singular matrix T =

(
T11 T12
T21 T22

)
and assume that T11 is non-singular. Left-multiplying

(
I

−T21T−1
11 I

)
on T we see that the determinant of

(
T22 − T21T−1

11 T12
)
is necessarily unequal from zero, i.e.

det

((
I

−T21T−1
11 I

)(
T11 T12
T21 T22

))
= det

(
T11 T12
0 T22 − T21T−1

11 T12

)
= det (T11) det

(
T22 − T21T−1

11 T12
)
.

The inverse of A takes the form

T−1 =

T−1
11 + T−1

11 T12
(
T22 − T21T−1

11 T12
)−1

T21T
−1
11 −T−1

11 T12
(
T22 − T21T−1

11 T12
)−1

−
(
T22 − T21T−1

11 T12
)−1

T21T
−1
11

(
T22 − T21T−1

11 T12
)−1

 ,

compare e.g. [26] pages 417-420. Hence, the element
(
T−1

)
22

=
(
T22 − T21T−1

11 T12
)−1

is non-singular.
22Note that Wif can be chosen to be invertible under the assumptions outlined in [32], i.e. a rank condition which implies a unique solution

of the original system. If follows from the invertibility of Wif that also Ŵ is invertible.
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where Ŵ =

[(
Ws,pre Ws,¬ ˜pre

Ws,pre Wu,¬ ˜pre

)
−
(
Wsf

Wuf

)
W−1
if

(
Wi,pre Wi,¬ ˜pre

)]
in which the subscripts ¬ ˜pre and f refer to the

new vector of non-predetermined variables ỹ(¬pre)
t (a subvector of y(¬pre)

t which gets linked to the canonical variables
ut) and a subvector ft of y

(¬pre)
t which gets linked to the canonical variables it, a system of the form23

((In(pre)

In(¬pre)

)
F − Ŵ−1JŴ

)
0

−W−1
if

(
Wi,pre Wi,¬ ˜pre

)
I

Et

 y
(pre)
t

ỹ
(¬pre)
t

ft

 = T (F )η(F )C∗Et (zt) . (20)

This equation is obviously equivalent to the system

ft = W−1
if

(
Wi,pre Wi,¬ ˜pre

)( y
(pre)
t

ỹ
(¬pre)
t

)
+ T (F )η(F )C∗Et (zt) .

Et

(
y

(pre)
t+1

ỹ
(¬pre)
t+1

)
= Ŵ−1JŴ

(
y

(pre)
t

ỹ
(¬pre)
t

)
+ T (F )η(F )C∗Et (zt) .

The first equation does not involve conditional expectations and the second one involves a pencil without zeros at infinity.
King and Watson prove in their Theorem 1 that under the assumption of a unique solution of the rational expectations
model (14), i.e.

A

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ CEt (zt) , t ∈ N,

the reduction described above, i.e. finding a subvector ft of y
(¬pre)
t such that equation (20) holds, is possible. In their

Theorem 2, they show that if the original system has no redundant equations, i.e. det (Az −B) 6≡ 0, and if a process
that satisfies system (14) exists from all initial conditions y(pre)

0 (which means that the column space of WU,¬pre must
contain the space spanned by the columns of WU,pre and U0), then the solutions of the original and the reduced system
are the same. This is proved in [32] in a constructive way by providing an algorithm.

23 Ŵ−1 −Ŵ−1

(
FI −

(
Js

Ju

))(
Wsf

Wuf

)
W−1
if

0 W−1
if

(I
(NF − I)−1

)
× · · ·

· · · ×

(I
N

)
F −

(Js Ju

)
I

Et

stut
it

 = T (F )η(F )C∗Et (zt)

⇐⇒

Ŵ−1 −Ŵ−1

(
FI −

(
Js

Ju

))(
Wsf

Wuf

)
W−1
if

0 W−1
if

[(In(s) In(u)

)
F −

(
Js

Ju

)]
I

× · · ·
· · · ×

Ws,pre Ws,¬ ˜pre Wsf

Wu,pre Wu,¬ ˜pre Wuf

Wi,pre Wi,¬ ˜pre Wif

Et

 y
(pre)
t

ỹ
(¬pre)
t
ft

 = T (F )η(F )C∗Et (zt)

⇐⇒

Ŵ−1 −Ŵ−1

(
FI −

(
Js

Ju

))(
Wsf

Wuf

)
W−1
if

0 W−1
if

× · · ·
⇐⇒ · · · ×

(IF − J)

(
Ws,pre Ws,¬ ˜pre

Wu,pre Wu,¬ ˜pre

)
(IF − J)

(
Wsf

Wuf

)
(
Wi,pre Wi,¬ ˜pre

)
Wif

Et

 y
(pre)
t

ỹ
(¬pre)
t
ft

 = T (F )η(F )C∗Et (zt)

⇐⇒


Ŵ−1 (IF − J)

[(
Ws,pre Ws,¬ ˜pre

Ws,pre Wu,¬ ˜pre

)
−
(
Wsf

Wuf

)
W−1
if

(
Wi,pre Wi,¬ ˜pre

)]
︸ ︷︷ ︸

=Ŵ

0

−W−1
if

(
Wi,pre Wi,¬ ˜pre

)
I

Et

 y
(pre)
t

ỹ
(¬pre)
t
ft

 = T (F )η(F )C∗Et (zt)

⇐⇒
( (

IF − Ŵ−1JŴ
)

0

−W−1
if

(
Wi,pre Wi,¬ ˜pre

)
I

)
Et

 y
(pre)
t

ỹ
(¬pre)
t
ft

 = T (F )η(F )C∗Et (zt) .
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3.3 Sims: No distinction between predetermined and non-predetermined variables

[37] generalizes [8] and [31] in various ways. First, there is no distinction between predetermined and non-predetermined
variables. The structure of the model, i.e. the parameter matrices (Γ0,Γ1, C,Ψ,Π) below, implies that certain linear
combinations of the endogenous variables are predetermined, i.e. have no endogenous forecast error. Thus, the researcher
does not need to specify in advance which variables are predetermined. Second, the non-explosiveness condition (to be
specified precisely below) does not apply to every component individually, but only to certain linear combinations of the
endogenous variables. Last, “it covers all linear models with expectational error terms” (page 1 in [37]), which means
that after having obtained a system of the form described below one can consider the problem of obtaining “a solution
of the rational expectation model” to be solved.

On a fundamental level, it should be noted that Sims uses a different solution method than [8] and [31]. He uses
the martingale difference method introduced by [9, 11]. However, Sims only shows through an example24 which omits
intricacies shown to be important in [9, 11], how to obtain a system in his canonical form from a rational expectations
model25. The discussion of [9, 11] will also make clear that this should not be considered a trivial task.

Sims’ canonical form. Sims considers the model26

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt, t ∈ {1, . . . , T} (21)

where yt are the n-dimensional endogenous variables, zt are the m-dimensional exogenous variables, ηt are the k-
dimensional so-called endogenous forecast errors satisfying27 Et (ηt+1) = 0, Γ0 and Γ1 are (complex) matrices of dimen-
sion (n× n) which may be singular, C is a vector of constants, Ψ ∈ Rn×m, and Π ∈ Rn×k.

Note that Sims does not put any growth restriction on the exogenous process (zt)t∈N. We assume28 here, that the
exogenous process is (weakly) stationary.

A stochastic processes (yt)t∈N which satisfies (21) at every point in time, which satisfies the non-explosiveness condition

Et
(
ξ−hi φiyt+h

) h→∞−−−−→ 0, ξi > 1, φi ∈ R1×n i ∈ {1, . . . ,m} , (22)

where convergence is understood in mean square sense, and for which yt ∈ Hz(t), t ∈ N, holds is called a solution of
the rational expectations model.

Remark 17 (Homogenous solution). Sims does not consider homogenous solutions of the rational expectations model.
As an example and assuming that the problem is well behaved, we consider the generalized eigenvalue µj with modulus
larger than one and the corresponding right eigenvector zj of the pair (Γ0,Γ1). Substituting the process yt = (µj)

−t
zj

in the difference equation (Γ0 − Γ1z) yt = 0 , i.e.

Γ0 (µj)
−t
zj − Γ1 (µj)

−(t−1)
zj = [(Γ0 − Γ1µj) zj ]︸ ︷︷ ︸

=0

(µj)
−t

= 0

verifies that the deterministic process yt = (µj)
−t
zj is indeed a solution of the rational expectations model.

Regarding stationary solutions of the homogenous difference equation (Γ0 − Γ1z) y
h
t = 0, note that as long as the

solutions of this equation are orthogonal to the particular stationary solution of (Γ0 − Γ1z) y
p
t = 0, the sum

(
ypt + yht

)
t∈N

is stationary as well.

Outline of Sims’ method. Since [37] is not written in a linear way, we want to give an outline of the steps in his
method. For more details we refer to the subsequent sections. The goal of his analysis is obtaining a “system in a
form that can be simulated from arbitrary initial conditions, delivering a solution path that does not violate the stability
conditions”, compare [37] page 7 below formula (19).

24This example contains some errors that are corrected in subsection 3.3.5.
25Instead of writing the conditional expectations as the endogenous variable minus forecast error, Sims defines new variables for conditional

expectations and adds definitional equations for them.
26Note that Sims uses the index set t ∈ {1, . . . , T}. However, he considers “stability of a solution” in the sense that e.g. for a scalar process

(yt), yt+h satisfies Et
(
ξ−hyt+h

) h→∞−−−−→ 0, ξ > 1. Thus, we set T =∞.
27Sims does not specify the information set. We, again, assume that the conditioning set is Hz(t).
28[5], e.g., require on page 879 only that it be adapted to the information set, and that the conditional expectations Et (zt+h) , h ∈ N,

exist.
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1. We apply the QZ transformation to the matrix pair (Γ0,Γ1) such that the generalized eigenvalues are in non-
descending order, i.e. QΓ0Z = Λ, QΓ1Z = Ω, where Q and Z are orthogonal matrices, Λ and Ω are upper
triangular, and the ratios ωii

λii
of the diagonal elements of Ω and Λ are ordered with respect to non-descending

absolute value.

2. We check whether the k-th non-explosiveness condition (ξk, φk) applies to the backward solution of the j-th
canonical variable wj(t). If (wj(t))t∈N is contained in Hz(t) at time t, satisfies equation (23) below but violates
the non-explosiveness condition for a k ∈ {1, . . . ,m}, then it belongs to the “unstable part” of the system. The
canonical variables contained in wUt have a forward solution which does not violate the non-explosiveness condition;
however, this solution is not necessarily contained in Hz(t) at time t.

3. We obtain the existence condition (for a solution (yt)t∈N of the rational expectations model) by using the fact that
for a solution contained in Hz(t), the equation wUt = Et

(
wUt
)
must hold. The vector wUt contains all variables

whose backward solution violates a non-explosiveness condition. It follows that the existence equation holds if and
only if the equation

−QU•Πη(t+ 1) =

∞∑
h=1

ΩUU
(
Ω−1
UUΛUU

)h−1
QU•Ψ {Et+1 (z(t+ h))− Et (z(t+ h))}

which determines ηt+1 as a function of the exogenous process holds. This condition is called the “decision rule
for the various types of agents in the economy”, compare [37] page 10 below his equation (37). The equation is
equivalent to

span

({
ΩUU

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψ

}n(U)−1

i=0

)
⊆ span (QU•Π)

where n(U) is the number of canonical variables whose backward solutions do not satisfy the non-explosiveness
condition. In the case Et (zt+1) = 0, this simplifies to

span (QU•Ψ) ⊆ span (QU•Π) .

The matrix QU•Π is of dimension n(U) × k, which suggests that Sims’ condition for existence is similar to the
one derived in [8]. Indeed, if there are at least as many endogenous forecast errors variables (corresponding to
the number of non-predetermined variables in Blanchard and Kahn) as there are backward solutions of canonical
variables which do not satisfy a non-explosiveness condition (corresponding to the number of unstable roots in
Blanchard and Kahn), i.e. k ≥ n(U), the condition above is “likely” to be satisfied.

4. We obtain the uniqueness condition by ensuring that the endogenous forecast errors which enter the stable part,
i.e. which influence those variables to which the growth restrictions do not apply, of the equation through QS•Π
can be expressed by the endogenous forecast errors which enter the unstable part through QU•Π and thus through
the exogenous variables. A solution of the rational expectations model is thus unique if and only if

rowspan (QS•Π) ⊆ rowspan (QU•Π)

or equivalently if and only if there exists a matrix Φ such that QS•Π = ΦQU•Π.

5. If the existence and uniqueness conditions are satisfied, we obtain a new system in the canonical variables in which
no endogenous forecast errors appear.

6. Using the orthogonal basis transformation Z, we transform the system in canonical variables back to original
variables.

3.3.1 QZ transformation of Sims’ canonical form

Sims applies the QZ transformation (compare [24] page 406, Theorem 7.7.1) to the matrix pair (Γ0,Γ1), i.e. QΓ0Z = Λ,
QΓ1Z = Ω, where Q and Z are orthogonal matrices, Λ and Ω are upper triangular (note that none of the matrices
Q,Z,Λ,Ω are assumed to be real), and the ratios ωii

λii
corresponding to the diagonal elements (λii, ωii) , i ∈ {1, . . . , n} ,

of Λ and Ω are ordered with respect to non-descending absolute value (for λii = 0, we define ωii
λii

=∞).

Remark 18. Note that the QZ decomposition always exists but is in general not unique, i.e. there are many orthogonal
matrices Q, Z and upper diagonal matrices Λ, Ω such that QΓ0Z = Λ, QΓ1Z = Ω.
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Sims states on page 9 in the paragraph below formula (33) that the set of generalized eigenvalues
{
ωii
λii
, i ∈ {1, . . . , n}

}
appearing in the QZ decomposition is unique unless Γ0 and Γ1 have zero eigenvalues corresponding to the same eigen-
vector29. Although Sims does not assume that det (Γ0µ− Γ1) is not identically zero in the complex variable µ, we will
make this assumption here.

Remark 19. The QZ decomposition is a generalization of the QR decomposition and reduces to it if Γ0 = In, see
[35]. The QR decomposition of a non-singular matrix is unique if we require the diagonal elements of R to be positive
(otherwise every matrix Q∗ whose columns are multiplied by a complex number c = eiθ, θ ∈ R, satisfies QTQ = I as
well).

Transformation of Sims’ canonical system. Left-multiplying Q on

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt, t ∈ {1, . . . , T}

and premultiplying yt and yt−1 with ZZT = In leads to

[QΓ0Z] (Z ′yt) = [QΓ1Z] (Z ′yt−1) +QC +QΨzt +QΠηt

⇐⇒ Λwt = Ωwt−1 +QC +QΨzt +QΠηt (23)

where the ratios ωii
λii

corresponding to the diagonal elements (λii, ωii) , i ∈ {1, . . . , n} , of Λ and Ω are ordered with
respect to non-descending absolute value (for λii = 0, we define ωii

λii
=∞).

3.3.2 Non-explosiveness condition and backward solutions.

The question of existence of a solution of the rational expectations model (21) is closely related to the question as to
whether the backward solution (if there is one) of the components of the canonical variable ut described in system (24)
below satisfies the non-explosiveness conditions. The backward solution has an advantage over the forward solution in
the sense that the former is obviously contained in Hz(t) at time t. In case the backward solution of such a canonical
variable does not satisfy a non-explosiveness condition, the condition that the solution coincide with its projection on
Hz(t) at time t has to be imposed on the forward solution. This will eventually lead us to the existence condition for a
solution of the rational expectations model described in section 3.3.3 starting on page 26.

Kronecker canonical form. In order to better understand the issues involved in the process of deciding whether the
backward solution of a component of wt in equation (23) satisfies the non-explosiveness condition, we first consider a
decoupled version of the system, i.e. we start from the Kronecker canonical form the matrix pencil (Γ0µ− Γ1) , µ ∈ C,
(see [20], Chapter 12, page 35) of system (21), as already described in section 3.2 on page 14, i.e.[

V Γ0W
−1
]

(Wyt) =
[
V Γ1W

−1
]

(Wyt−1) + V C + VΨzt + VΠηt

⇐⇒

(In(s)

In(u)

)
N

stut
it

 =

(Js Ju

)
I

st−1

ut−1

it−1

+ V C + VΨzt + VΠηt (24)

where the partitions are again according to whether the roots are inside or on the unit circle, outside the unit circle, or
infinite and n(s) and n(u) denote the dimensions of st and ut respectively.

There are m pairs of growth rates ξi > 1, i ∈ {1, . . . ,m} , and linear combinations φi ∈ R1×n, i ∈ {1, . . . ,m} , of
endogenous variables yt which restrict growth requiring that (22), i.e.

Et
(
ξ−hi φiyt+h

) h→∞−−−−→ 0, ξi > 1, φ ∈ R1×n i ∈ {1, . . . ,m} ,

hold.
29This is equivalent to the fact that the determinant of the linear matrix pencil Γ0µ− Γ1, µ ∈ C, is identically zero because

det (Γ0µ− Γ1) = det [Q (Γ0µ− Γ1)Z] = det (Λµ− Ω) =
n∏
i=1

(λiiµ− ωii) ≡ 0

if λii = ωii = 0 for at least one i ∈ {1, . . . , n}. This corresponds to a redundant equation in (21). Note that [31] assume that the determinant
det (Az −B) of Az −B, z ∈ C, is not identically zero.
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Backward solution. First, consider a generic Jordan block for ut and denote it by

u
(j)
t = Λju

(j)
t−1 + C(j) + Ψ(j)zt + Π(j)ηt. (25)

It is easy to see30 that the backward solution31

u
(j)
t = (I − Λj)

−1
C(j) +

t−1∑
k=0

Λkj

(
Ψ(j)zt−k + Π(j)ηt−k.

)
+ Λtj

(
u

(j)
0 − (I − Λj)

−1
C(j)

)
(27)

does not satisfy the non-explosiveness condition unless

• φi
(
W−1

)
•,j = 0, i.e. the “influence”

(
W−1

)
•,j of u

(j)
t on the endogenous variables yt is orthogonal to the vector

φi specifying the linear combination of endogenous variables yt which is restricted in growth, or

30Indeed, substituting the solution (27) of u(j)t in the stability condition (22), we obtain by writing the conditional expectations term in a

non-explosiveness condition (ξi, φi) as Et
(
ξ−hi φiW

−1Wyt
)
, noting that Wyt =

stut
it

 and that the blocks

u
(j)
t = Λju

(j)
t−1 + C(j) + Ψ(j)zt + Π(j)ηt

are decoupled from each other that

Et

(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j) + Λt+hj

(
u
(j)
0 − (I − Λj)

−1 C(j)
)

+

t+h−1∑
k=0

Λkj

(
Ψ(j)zt+h−k + Π(j)ηt+h−k

)})
=

= Et
(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j) + Λt+hj

(
u
(j)
0 − (I − Λj)

−1 C(j)
)})

+ · · ·

· · ·+ Et

ξ−hi φi
(
W−1

)
•,j


t+h−1∑
k=h

Λkj

(
Ψ(j)zt+h−k + Π(j)ηt+h−k

)
+

h−1∑
k=0

Λkj

(
Ψ(j)zt+h−k + Π(j)ηt+h−k

)
︸ ︷︷ ︸
ηt+h−kcancels out when taking expectations




= Et

(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j) + Λt+hj

(
u
(j)
0 − (I − Λj)

−1 C(j)
)})

+ · · ·

· · ·+ Et

(
ξ−hi φi

(
W−1

)
•,j

{
Λhj

t−1∑
k=0

Λkj

(
Ψ(j)zt−k + Π(j)ηt−k

)
+

h−1∑
k=0

ΛkjΨ(j)zt+h−k

})

= Et
(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j) + Λt+hj

(
u
(j)
0 − (I − Λj)

−1 C(j)
)})

+ · · ·

· · ·+ Et

(
ξ−hi φi

(
W−1

)
•,j

{
Λhj

(
u
(j)
t − (I − Λj)

−1 C(j) − Λtj

(
u
(j)
0 − (I − Λj)

−1 C(j)
))

+

h−1∑
k=0

ΛkjΨ(j)zt+h−k

})

= Et

(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j) + Λhj

(
u
(j)
t − (I − Λj)

−1 C(j)
)

+

h−1∑
k=0

ΛkjΨ(j)zt+h−k

})

= Et
(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1 C(j)
})

︸ ︷︷ ︸
h→∞−−−−→0

+Et
(
φi
(
W−1

)
•,j

{
ξ−hi Λhj

(
u
(j)
t − (I − Λj)

−1 C(j)
)})

+ · · · (26)

· · ·+
[
ξ−hi φi

(
W−1

)
•,j

]
Et

(
h−1∑
k=0

ΛkjΨ(j)zt+h−k

)

31Substitution of the solution (27) in the difference equation (25) gives

(I − Λj)
−1 C(j) +

t−1∑
k=0

Λkj

(
Ψ(j)zt−k + Π(j)ηt−k.

)
+ Λt

(
u
(j)
0 − (I − Λj)

−1 C(j)
)

=

= Λj

(
(I − Λj)

−1 C(j) +

t−2∑
k=0

Λkj

(
Ψ(j)zt−1−k + Π(j)ηt−1−k

)
+ Λt−1

(
u
(j)
0 − (I − Λj)

−1 C(j)
))

+ C(j) + Ψ(j)zt + Π(j)ηt

=
{

Λj (I − Λj)
−1 C(j) + C(j)

}
+

[
Λj

t−2∑
k=0

Λkj

(
Ψ(j)zt−1−k + Π(j)ηt−1−k

)
+ Ψ(j)zt + Π(j)ηt

]
+ Λtj

(
u
(j)
0 − (I − Λj)

−1 C(j)
)

which shows that (27) is indeed a solution.
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• Et (zt+1) = 0 and u(j)
t = (I − Λj)

−1
C(j), which is only a solution of (25) if Ψ(j)zt+Π(j)ηt = 0, compare Corollary

25 on page 28.

It follows that if restriction (ξi, φi) is such that ξi < |λj | and φi
(
W−1

)
•,j 6= 0, i.e. the “influence”

(
W−1

)
•,j of

u
(j)
t on the endogenous variables yt is not orthogonal to restriction φi, the terms

∑t−1
k=0 Λkj

(
Ψ(j)zt−k + Π(j)ηt−k.

)
and

Λtj

(
u

(j)
0 − (I − Λj)

−1
C(j)

)
in the backward solution (27) above have to be zero in order that the non-explosiveness

restriction (ξi, φi) be satisfied. In this sense, the exogenous variables (together with the endogenous forecast errors) and
the initial values are, in general, sources of explosiveness for the backward solution (27). As already mentioned above,
u

(j)
t = (I − Λj)

−1
C(j) is only a solution of (25) if Ψ(j)zt + Π(j)ηt = 0, t ∈ N. Even if this condition holds, u(j)

t =

(I − Λj)
−1
C(j) does not violate the non-explosiveness conditions only if Et (zt+1) = 0 (and, of course, φi

(
W−1

)
•,j 6= 0),

compare Theorem 24 and Corollary 25.32

Remark 20 (Different growth rates). Note that if |λj+1| > |λj | holds for two unstable roots λj and λj+1, then the back-
ward solution pertaining to u(j+1)

t has to satisfy at least as many non-explosiveness conditions (ξi, φi) , i ∈ {1, . . . ,m} ,
as the backward solution for u(j)

t because ξi < |λj | implies ξi < |λj+1|. Then, it has to be checked for all φi pertaining to
a ξi with ξi < |λj | whether it is orthogonal to the “influence”

(
W−1

)
•,j of the canonical variable u

(j)
t on the endogenous

variables yt. If φi is not orthogonal to
(
W−1

)
•,j for one such restriction, the backward solution (27) cannot be part of

the solution of the rational expectations model. As will be shown below, the fact that the forward solution (which in
general is not contained in Hz(t) at time t) of the canonical variable u(j)

t must then be part of the solution of the rational
expectations model, is used to deduce an existence condition for a solution of the rational expectations model (21).

Forward solution. Considering the forward solution

u
(j)
t = (I − Λj)

−1
C(j) −

∞∑
k=1

Λ−kj

(
Ψ(j)zt+k + Π(j)ηt+k

)
of the difference equation (25), i.e.

u
(j)
t = Λju

(j)
t−1 + C(j) + Ψ(j)zt + Π(j)ηt,

we see that the non-explosiveness conditions are satisfied. Indeed, we have

Et

(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1
C(j) +

∞∑
k=1

Λ−kj

(
Ψ(j)zt+h+k + Π(j)ηt+h+k

)})

= Et
(
ξ−hi φi

(
W−1

)
•,j

{
(I − Λj)

−1
C(j)

})
︸ ︷︷ ︸

h→∞−−−−→0

+
[
ξ−hi φi

(
W−1

)
•,j

]
Et

( ∞∑
k=1

Λ−kj Ψ(j)zt+h+k

)

from which follows that the last term33 converges in mean square sense to zero for h→∞.
32Note that under the assumption that (zt) has Wold representation

zt =
∞∑
i=0

kiεt−i,

it follows that the last term Et
(∑h−1

k=0 ΛkjΨ(j)zt+h−k

)
does not converge to zero since the last term Λh−1

j Ψ(j)Et (zt+1) in the sum

Et
(∑h−1

k=0 ΛkjΨ(j)zt+h−k

)
, which dominates the other summands asymptotically, diverges in mean square sense faster than ξh for h→∞.

Indeed, taking k = h− 1, we obtain

ξ−hΛh−1
j Ψ(j)Et (zt+1) = ξ−hΛh−1

j Ψ(j)

( ∞∑
i=1

kiεt+1−i

)
goes to infinity (in mean square sense) for h→∞.

33Note that we assume that (zt)t∈N is (weakly) stationary. Sims does not state any assumption on the exogenous process (zt)t∈N. A
reasonable assumption (which is weaker than ours) on the exogenous process is, e.g., that the conditional expectations Et (zt+h) exist for
h > 0, compare [5] page 879.
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Remark 21 (Canonical variables corresponding to infinite zeros). The solution (it)t∈N of the “infinite” canonical variables
it are a function of finitely many expectations at time t of future values of the exogenous process (compare, e.g., [11]
page 232 or [4] page 154, formula (3.57) and also the derivation (17) in section 3.2.1), i.e.34

Nit = it−1 + V inf (C + Ψzt + Πηt) (28)

⇐⇒ it = Nit+1 − V inf (C + Ψzt+1 + Πηt+1)

⇐⇒ it = N
(
Nit+2 − V inf (C + Ψzt+2 + Πηt+2)

)
− V inf (C + Ψzt+1 + Πηt+1)

= N2it+2 −NV inf (C + Ψzt+2 + Πηt+2)− V inf (C + Ψzt+1 + Πηt+1)

⇐⇒ it = N l︸︷︷︸
=0

it+l −
l−1∑
k=0

NkV inf (C + Ψzt+1+k + Πηt+1+k)

= − (I −N)
−1
V infC −

l−1∑
k=0

NkV inf (Ψzt+1+k + Πηt+1+k) .

It follows that solutions of “infinite” canonical variables always satisfy the non-explosiveness conditions. However, it will
always be part of the system which is solved forward35 and thus creates restrictions on (ηt)t∈N ensuring that the solution
(yt)t∈N is contained in Hz(t) for every t ∈ N, for more details see section 3.3.3.

Remark 22 (Developing components of st forward). Note that there is in general no reason why the forward solutions
(which will be explosive) of the canonical variables st corresponding to stable roots should not be considered. In the
case where the “influence”

(
W−1

)
•,j of the canonical variable s(j)

t pertaining to a Jordan block in Js on the endogenous

variables yt is orthogonal to all φi for which ξi < |λj |−1, there is another solution to the rational expectations model
which is not considered in [37]. By not considering such a solution, one excludes a priori explosive behavior of the
endogenous variables yt along

(
W−1

)
•,j which might be relevant for economic theory, compare [15]. Of course, when

the goal of the analysis is characterizing the dimension of the solution set of rational expectations models, a “minimal”
existence condition, i.e. developing as few variables as possible in terms of non-negative powers of the forward shift
operator

(
z−1
)
is desirable. Be that as it may, including such a solution has the following implications.

First, whenever a forward solution of a variable is considered, the endogenous forecast errors must offset the exogenous
disturbances in order that a solution which is contained in Hz(t) for every t ∈ N exist. Thus, there would be one more
row in the equation system of the existence condition (33) derived below which might imply that such a solution does not
exist. Second, after having obtained existence for this solution, the uniqueness condition described below will be more
easily satisfied. Thus, by developing a component of st forward, we get rid of a source of indeterminacy, given existence.

QZ decomposition. The situation is slightly more complicated if we consider instead of the (decoupled) Kronecker
canonical form of the pencil (Γ0µ− Γ1) , µ ∈ C, the QZ decomposition of the pair (Γ0,Γ1), i.e. as in (23)

[QΓ0Z] (Z ′yt) = [QΓ1Z] (Z ′yt−1) +QC +QΨzt +QΠηt

⇐⇒

Λss Λsu Λsi
Λuu Λui

Λii

wt =

Ωss Ωsu Ωsi
Ωuu Ωui

Ωii

wt−1 +QC +QΨzt +QΠηt,

where the matrices Λ and Ω from equation (23) are partitioned in an obvious way, together with the non-explosiveness
conditions (22)

Et
(
ξ−hi φiZZ

′yt+h
)

= Et
(
ξ−hi φiZwt+h

) h→∞−−−−→ 0, ξi > 1, i ∈ {1, . . . ,m} .

34Note that for a nilpotent matrix N for which N l = 0, where l is a positive integer smaller than or equal to the dimension n(i) of N , the
relation

∑l−1
k=0N

l = (I −N)−1 (I +N l
)

= (I −N)−1 holds.
35Note that the solution is unique in the sense that there is no ambiguity as to whether the determinant in (N − Iz)−1 =

adj(N−Iz)
det(N−Iz) is to

be developed in terms of non-negative powers of z or
(
z−1

)
. The solution (it)t∈N of (28) may only depend on finitely many future values of

the exogenous variables and the endogenous forecast errors. However, the solution never depends on present or past values of these variables.
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Procedure for checking the non-explosiveness conditions. In order to check whether a backward solution
(
w

(j)
t

)
t∈N

corresponding to the finite generalized eigenvalue µj satisfies the non-explosiveness conditions, we proceed as follows.
First, the generalized eigenvalue µj has to be brought into the (1, 1) position36 (e.g. by switching subsequently diagonal
elements of the pencil (Λµ− Ω) , µ ∈ C, ). Second, we consider a solution of the new difference equation where only
the first element w(1)

t (which now corresponds to a candidate root µ̄ for which µ̄ > ξi holds) is allowed to grow in norm
unboundedly for stationary exogenous process (zt)t∈N (compare [16]), i.e. we consider the solution of

wt =
1∏n

j=1 (λjj (z−1)− ωjj)
adj
(
Λ
(
z−1
)
− Ω

)
(QC +QΨzt+1 +QΠηt+1)

for which the denominator is developed in terms of non-negative powers of the backwardshift operator z for all generalized
eigenvalues µj =

ωjj
λjj

with absolute value smaller than one, i.e.

1

(λjj (z−1)− ωjj)
=

1

λjj (z−1)
(

1− ωjj
λjj

z
) =

1

λjj (z−1)

∞∑
i=0

(
ωjj
λjj

)i
zi,

and in terms of non-negative powers of the forwardshift operator
(
z−1
)
for all generalized eigenvalues µj =

ωjj
λjj

with
absolute value larger than one (except the candidate root µ̄), i.e.

1

(λjj (z−1)− ωjj)
=

1

−ωjj
(

1− λjj
ωjj

(z−1)
) = − 1

ωjj

∞∑
i=0

(
λjj
ωjj

)i (
z−1
)i
.

Note that, due to the structure of the matrices, the exploding first component does not influence any other component.
In analogy to the analysis conducted with the Kronecker canonical form above, the backward solution pertaining to a
candidate unstable root µ̄ violates the i-th non-explosiveness condition (ξi, φi) if µ̄ > ξi and φiZ•1 6= 0 (where Z•1
corresponds to the new QZ decomposition) and thus the forward solution has to be considered.
Remark 23. A similar procedure can be used if one is interested in explosive behavior of variables pertaining to stable
roots as described in remark 22 on page 25. The only difference is that the canonical variable under investigation is
solved forward and pertains to a candidate root with absolute value smaller than or equal to unity.

3.3.3 Existence condition

In this section, we derive an existence condition in terms of (QU•,ΩUU ,ΛUU ,Ψ,Π) determining whether there is a solution
(yt)t∈N of the rational expectations model, i.e. a process which satisfies equation (21) for all t ∈ N, which satisfies the
non-explosiveness conditions (as derived in the previous section) and for which yt ∈ Hz(t), t ∈ N. First, the forward
solution37

(
wUt
)
t∈N satisfying the “unstable” part of the decoupled system (29) is obtained. The corresponding backward

solution (in the case of finitely unstable roots) violates the non-explosiveness conditions. The forward solution
(
wUt
)
t∈N,

however, depends in general on values not contained in Hz(t) at time t. Subsequently, we derive an existence condition
involving the exogenous process (zt)t∈N and the endogenous forecast errors (ηt)t∈N which ensures that yt ∈ Hz(t), t ∈ N,
by requiring that for the forward solution

(
wUt
)
t∈N the equation Et

(
wUt
)

= wUt hold. If the latter condition is satisfied,
a solution of the rational expectations model exists. If Et

(
wUt
)

= wUt does not hold, there does not exist a solution
which satisfies the non-explosiveness conditions and is contained in Hz(t) at time t for all t ∈ N.

Forward solution of unstable part. All variables w(j)
t which are solved forward because the backward solutions either

violate the non-explosiveness condition or correspond to zeros at infinity are grouped into wUt . We consider the system

⇐⇒
(

ΛSS ΛSU
ΛUU

)(
wSt
wUt

)
=

(
ΩSS ΩSU

ΩUU

)(
wSt−1

wUt−1

)
+

(
QS•
QU•

)
C +

(
QS•
QU•

)
Ψzt +

(
QS•
QU•

)
Πηt (29)

36The corresponding concept for an invariant subspace of a matrix, is a deflating subspace of a matrix pencil, see [24] (Chapter 7.7.8
Generalized Invariant Subspace Computations, page 414). A k-dimensional subspace S ⊆ Cn is deflating for the pencil (Γ0µ− Γ1) , µ ∈ C,
if the subspace {Γ0x+ Γ1y | x, y ∈ S} has dimension k or less. The QZ decomposition of the pair (Γ0,Γ1) as described in section 3.3.1 on
page 21 implies QT (Λµ− Ω)ZT = Γ0µ− Γ1. It follows that

{Γ0x+ Γ1y | x, y ∈ span (Z•1, . . . , Z•k)} ⊆ span
((
QT
)
•1
, . . . ,

(
QT
)
•k

)
.

Thus, the only component whose solution does not influence any other variable is the solution of the first component of wt.
37It solves the second block of rows in equation (29) for given QU• (Ψzt + Πηt).
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or more particularly its second block of rows38, i.e.

wUt =
(
Ω−1
UUΛUU

)
wUt+1 − Ω−1

UUQU• (C + Ψzt+1 + Πηt+1) .

The solution39 not violating the non-explosiveness conditions is

wUt = −
∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (C + Ψzt+1+i + Πηt+1+i)

= −
(
I −

(
Ω−1
UUΛUU

))−1
Ω−1
UU︸ ︷︷ ︸

=(ΩUU−ΛUU )−1

QU•C −
∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i) . (30)

Deriving the existence condition and some economic intuition. If the solution 30 is contained in Hz(t) at time t
for every t ∈ N, then wUt = Et

(
wUt
)
holds. It follows that the equation

Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

)
=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

⇐⇒ Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i) (31)

is satisfied in this case. In other words, the endogenously determined forecast errors (ηt)t∈N must offset the expectations
of the given exogenous process (zt)t∈N in order that a solution of the rational expectations model exists. We will show
in the proof of Theorem 24 below that equation (31) is equivalent to

−QU•Πηt+1 =

∞∑
i=0

ΩUU
(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψ [Et+1 (zt+1+i)− Et (zt+1+i)] , (32)

i.e. the endogenous forecast errors offset today’s expectations today of future changes in the exogenous process40. This
condition is often interpreted as the decision rule of the agents in the economy.

Theorem 24. A solution (yt)t∈N to (21) satisfying the non-explosiveness condition (22) and for which yt ∈ Hz(t), t ∈ N,
holds exists, if and only if

span

({
ΩUU

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψ

}n(U)−1

i=0

)
⊆ span (QU•Π) . (33)

Proof. If a solution (yt)t∈N to (21) satisfying the non-explosiveness condition (22) and for which yt ∈ Hz(t), t ∈ N holds
exists, it follows that equation (31) holds. On the other hand, if equation (31) is satisfied, then the solution satisfying
the non-explosiveness conditions described above is contained in Hz(t) at time t for all t ∈ N.

It remains to show that

Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

⇐⇒ −QU•Πηt+1 =

∞∑
i=0

ΩUU
(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψ [Et+1 (zt+1+i)− Et (zt+1+i)]

where the last expression is obviously equivalent to span
({

ΩUU
(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψ

}n(U)−1

i=0

)
⊆ span (QU•Π) .

38Note that ΩUU is non-singular due to our assumption that det (Γ0µ− Γ1) 6≡ 0, µ ∈ C, and that the ratios
{
ωjj
λjj
| j ∈ {1, . . . , n}

}
of the

diagonal elements of Λ and Ω in equation (29) are ordered with respect to non-descending modulus.
39Note that (ΩUU − ΛUU ) = ΩUU

(
I −

(
Ω−1
UUΛUU

))
is invertible because all ratios ωjj

λjj
pertaining to variables wUt have modulus strictly

larger than one (and thus
∣∣∣ωjjλjj

∣∣∣ < 1 for all such ratios) .
40Note that if (zt) admits a Wold representation zt =

∑∞
j=0 kjεt−j , then

Et+1 (zt+1+i)− Et (zt+1+i) = ki−1εt+1.
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“⇒”: Apply Et+1 (·). Taking conditional expectations of equation (31) with respect to information set Hz(t+ 1) gives

Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
= Et+1

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

)

= Et+1

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
+ Et+1

(
Ω−1
UUQU•Πηt+1

)
which is equivalent to

−QU•Πηt+1 = ΩUU

{
Et+1

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
− Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)}
.

“⇐”: Sum over ηt+1+i, i ∈ N, and reorder summation. Premultiplying −QU•Πηt+1+i in equation (32) by(
Ω−1
UUΛUU

)i
Ω−1
UU and summing over i ∈ N gives

−
∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Πηt+1+i =

=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UU

{ ∞∑
k=0

ΩUU
(
Ω−1
UUΛUU

)k
Ω−1
UUQU•Ψ [Et+1+i (zt+1+i+k)− Et+i (zt+1+i+k)]

}
.

Reordering the sum on the right hand side of the equation above gives

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UU

{ ∞∑
k=0

ΩUU
(
Ω−1
UUΛUU

)k
Ω−1
UUQU•Ψ [Et+1+i (zt+1+i+k)− Et+i (zt+1+i+k)]

}
=

=

∞∑
r=0

(
Ω−1
UUΛUU

)r
Ω−1
UUQU•Ψ

r∑
i=0

[Et+1+i (zt+1+r)− Et+i (zt+1+r)]

=

∞∑
r=0

(
Ω−1
UUΛUU

)r
Ω−1
UUQU•Ψ {[Et+1+r (zt+1+r)− Et+r (zt+1+r)] + · · ·+ [Et+1 (zt+1+r)− Et (zt+1+r)]}

=

∞∑
r=0

(
Ω−1
UUΛUU

)r
Ω−1
UUQU•Ψ

Et+1+r (zt+1+r)︸ ︷︷ ︸
=zt+1+r

−Et (zt+1+r)

 .

Thus, we obtain

−
∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Πηt+1+i =

∞∑
r=0

(
Ω−1
UUΛUU

)r
Ω−1
UUQU•Ψ {zt+1+r − Et (zt+1+r)} .

Corollary 25. Under the assumptions of Theorem 24 and additionally assuming that Et (zt+1) = 0 holds, it follows that
the existence of a solution of the rational expectations model is equivalent to

span (QU•Ψ) ⊆ span (QU•Π) . (34)

Proof. Since the left hand side of

Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

is zero in this case and Ω−1
UU is non-singular it follows that a solution exists if and only if 0 = QU• (Ψzt+1+i + Πηt+1+i)

for all possible exogenous processes (zt)t∈N.
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Remark 26. The larger the block of variables which have to be solved forward, the harder satisfying the existence condition
becomes. From this point of view, it is beneficial to include as few variables as possible in wUt because for all of them the
exogenous “disturbances” have to be offset by the endogenous forecast errors. Given existence, however, we will see in the
next subsection that it should become easier to satisfy the uniqueness condition described below, the more components
are contained in wUt and the fewer are in wSt . Of course, if the goal of the analysis is obtaining the dimension of the
solution set of a rational expectations model, it is desirable to solve as few variables as possible forward.

Remark 27. Note that solutions pertaining to infinite generalized eigenvalues always satisfy the non-explosiveness con-
ditions (since there are only finitely many terms involved in their solution). However, since the solution for the block
corresponding to infinite roots in (24) on page 22 is unique (compare the remark 21 on page 25) and may involve future
values of exogenous variables, the variables pertaining to infinite generalized eigenvalues are always contained in wUt and
are thus part of the system which has to be solved forward.

Remark 28 (Extended state vector). The condition Et (zt+1) = 0 can be justified if we know the structure of the
exogenous process, e.g. that (zt)t∈N is an ARMA process. The exogenous variables may then be incorporated into an

extended vector of endogenous variables ỹt =

(
yt
zt

)
such that the new vector of exogenous variables consists only of the

one-step-ahead forecast errors of the exogenous process (zt)t∈N.

3.3.4 Uniqueness of solution

In order to obtain a unique solution of (21) satisfying the non-explosiveness condition and being contained inHz(t), t ∈ N,
we need to get rid of the dependence of the solution on the endogenous forecast errors (ηt)t∈N. For a solution

(
wUt
)
t∈N

of the unstable part of the system, this is possible in the way described above, i.e. by substituting for ηt using the
existence condition

Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

)
=

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

in

wUt = − (ΩUU − ΛUU )
−1
QU•C −

∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU• (Ψzt+1+i + Πηt+1+i)

such that we obtain

wUt = − (ΩUU − ΛUU )
−1
QU•C − Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
.

In order to obtain a solution
(
wSt
)
t∈N of the first block of equations in (29) for a given solution

(
wUt
)
t∈N, we need n(S)

linear combinations of the whole system(
ΛSS ΛSU

ΛUU

)(
wSt
wUt

)
=

(
ΩSS ΩSU

ΩUU

)(
wSt−1

wUt−1

)
+

(
QS•
QU•

)
C +

(
QS•
QU•

)
Ψzt +

(
QS•
QU•

)
Πηt

such that the resulting system does not involve any endogenous forecast errors ηt. It is possible to find such linear
combinations if the influence of the endogenous forecast errors on the first part of the system, i.e. QS•Πηt, can be
explained by the influence of the endogenous forecast errors on the second part of the system, i.e. QU•Πηt for which
we already found an expression in terms of known variables through the existence condition. This condition may be
expressed as

rowspan (QS•Π) ⊆ rowspan (QU•Π)

which is equivalent to the fact that there exists a matrix Φ of dimension (n(S)× n(U)) such that

QS•Π = ΦQU•Π (35)

holds.
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Indeed, left-multiplying the system above by
(
In(S) −Φ

)
, we obtain (under the assumption that equation (35) hold)

(
In(S) −Φ

)(ΛSS ΛSU
ΛUU

)(
wSt
wUt

)
=

=
(
In(S) −Φ

)(ΩSS ΩSU
ΩUU

)(
wSt−1

wUt−1

)
+
(
In(S) −Φ

)(QS•
QU•

)
C + · · ·

· · ·+
(
In(S) −Φ

)(QS•
QU•

)
Ψzt +

[(
In(S) −Φ

)(QS•
QU•

)]
︸ ︷︷ ︸

=0

Πηt

⇐⇒
(
ΛSS ΛSU − ΦΛUU

)(wSt
wUt

)
= (36)

=
(
ΩSS ΩSU − ΦΩUU

)(wSt−1

wUt−1

)
+
(
In(S) −Φ

)(QS•
QU•

)
C +

(
In(S) −Φ

)(QS•
QU•

)
Ψzt.

If
(
wUt
)
t∈N is a solution satisfying the non-explosiveness condition and being contained in Hz(t) at time t of the difference

equation

ΛUUw
U
t = ΩUUw

U
t−1 +QU• (C + Ψzt + Πηt) ⇐⇒ wUt =

(
Ω−1
UUΛUU

)
wUt+1 − Ω−1

UUQU• (C + Ψzt+1 + Πηt+1) ,

it is also (in a trivial way) a solution satisfying the non-explosiveness condition and being contained in Hz(t) at time t of
the system

wUt = − (ΩUU − ΛUU )
−1
QU•C − Et

( ∞∑
i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

)
. (37)

We may thus combine the above systems (36) and (37) to eventually obtain(
ΛSS ΛSU − ΦΛUU

In(U)

)(
wSt
wUt

)
=

=

(
ΩSS ΩSU − ΦΩUU

0

)(
wSt−1

wUt−1

)
+

(
In(S) −Φ

(ΩUU − ΛUU )
−1

)(
QS•
QU•

)
C + · · · (38)

· · ·+
(
In(S) −Φ

0

)(
QS•
QU•

)
Ψzt −

(
0

Et
(∑∞

i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

))
. (39)

Transformation to original variables. Left-multiplying system (38) with41

Z

(
ΛSS ΛSU − ΦΛUU

In(U)

)−1

= Z

(
Λ−1
SS −Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)
,

41Note that ΛSS is non-singular due to our assumption that det (Γ0µ− Γ1) 6≡ 0, µ ∈ C, and that the ratios
{
ωjj
λjj
| j ∈ {1, . . . , n}

}
of the

diagonal elements of Λ and Ω in equation (29) are ordered with respect to non-descending modulus.
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we obtain

Zwt = yt =

[
(Z•S , Z•U )

(
Λ−1
SS −Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)(
ΩSS ΩSU − ΦΩUU

0

)
ZT
]
yt−1 + ....

· · ·+ Z

(
Λ−1
SS −Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)(
In(S) −Φ

(ΩUU − ΛUU )
−1

)(
QS•
QU•

)
︸ ︷︷ ︸

=Θc

C + · · ·

...+ Z

(
Λ−1
SS −Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)(
In(S) −Φ

0

)(
QS•
QU•

)
Ψ︸ ︷︷ ︸

=Θz

zt − · · ·

· · · − Z
(

Λ−1
SS −Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)(
0

Et
(∑∞

i=0

(
Ω−1
UUΛUU

)i
Ω−1
UUQU•Ψzt+1+i

))
= Z•S

(
Λ−1
SSΩSS Λ−1

SS (ΛSU − ΦΛUU )
)
ZT︸ ︷︷ ︸

=Θy

yt−1 + ΘcC + Θzzt − · · ·

· · · − Z
(
−Λ−1

SS (ΛSU − ΦΛUU )
In(U)

)
︸ ︷︷ ︸

=Θη1

Et

 ∞∑
i=0

(
Ω−1
UUΛUU

)i︸ ︷︷ ︸
=Θη2

Ω−1
UUQU•Ψ︸ ︷︷ ︸

=Θη3

zt+1+i



= Θyyt−1 + ΘcC + Θzzt −Θη1Et

( ∞∑
i=0

Θi
η2Θη3zt+1+i

)
. (40)

Remark 29 (Consequences of restricting growth unnecessarily). If the solutions of all components of the endogenous
variables yt are restricted to satisfy the non-explosiveness conditions by the modeler, even though the model itself implies
only that certain linear combination are restricted in growth, this could lead to missing sources of indeterminacy. This
can be seen as follows (we restrict ourselves to the case Et (zt+1) = 0 for expositional reasons). Restricting a component
unnecessarily makes the existence condition span (QU•Ψ) ⊆ span (QU•Π) harder to satisfy, since there is one additional
row in QU•Ψ. On the other hand and given existence of a solution, restricting a component unnecessarily makes it easier
to satisfy the uniqueness condition rowspan (QS•Π) ⊆ rowspan (QU•Π) because there is one more row in QU•Π.

It follows that if a certain component is unnecessarily restricted in growth, uniqueness is obtained too easily and sources
of indeterminacy might be missed.

Remark 30 (Initial conditions). Note that Lubik and Schorfheide require for the existence of a solution that the initial
values at time t = 0 of the solution of wUt satisfy a certain condition (compare [34] page 276, line -2, and the associated
footnote). Sims imposes such a condition (compare [37] page 8 line 4) only in his first derivation (compare section 3 in
[37]) of a solution of the rational expectations model which treats the case where Et (zt+1) = 0 and Γ0 = I hold and
where he starts from the backward solution of wUt . In this case, it is indeed necessary to impose such a condition. If we
consider the forward solution, however, it is not required in the derivation to impose such a condition.

3.3.5 Example in Sims’ paper

The example given in [37] contains some typos which are corrected below. Moreover, we want to show (more explicitly
than in Sims’ paper) how to obtain the “endogenous forecast errors”. Equation (2) on page 2 in [37] is here repeated as

w(t) =
1

3
Et (W (t) +W (t+ 1) +W (t+ 2))− α (u(t)− un) + ν(t) (41)

W (t) =
1

3
(w(t) + w(t− 1) + w(t− 2)) (42)

u(t) = θu(t− 1) + γW (t) + µ+ ε(t) (43)

where

Et (ν(t+ 1)) = 0

Et (ε(t+ 1)) = 0.

31



Sims defines the expanded state vector as

y(t) =


w(t)

w(t− 1)
W (t)
u(t)

Et (W (t+ 1))


and writes the vector difference equation as

Γ0y(t) = Γ1y(t− 1) + C + Ψz(t) + Πη(t)

⇐⇒


0 0 1

3 0 1
3

− 1
3 − 1

3 1 0 0
0 0 −γ 1 0
0 1 0 0 0
0 0 1 0 0




w(t)
w(t− 1)
W (t)
u(t)

Et (W (t+ 1))

 =


1 0 − 1

3 α 0
0 1

3 0 0 0
0 0 0 θ 0
1 0 0 0 0
0 0 0 0 1




w(t− 1)
w(t− 2)
W (t− 1)
u(t− 1)

Et−1 (W (t))

+ · · ·

· · ·+


α · un

0
µ
0
0

+


1 0
0 0
0 1
0 0
0 0


(

ε(t)
ν(t− 1)

)

· · ·+


0 1
0 0
0 0
0 0
1 0


(

η1(t)
η2,Sims(t)

)

or

1

3
W (t) +

1

3
Et (W (t+ 1)) = w(t− 1)− 1

3
W (t− 1) + αu(t− 1) + αun + ε(t) + η2,Sims(t) (44)

−1

3
w(t)− 1

3
w(t− 1) +W (t) =

1

3
w(t− 2) (45)

−γW (t) + u(t) = θu(t− 1) + µ+ ν(t− 1) (46)
w(t− 1) = w(t− 1) (47)

W (t) = Et−1 (W (t)) + η1(t) (48)

The following errors on page 3 in [37] are obvious:

• In equation (44) and (46) ε(t) and ν(t− 1) must be exchanged.

• In equation (44), the term η2,Sims(t) needs some clarification (it should be linked to the endogenous prediction
errors), see remarks below.

• The sign for ε(t) (which should be ν(t−1)) is wrong (the sign of αu(t) and ν(t) in equation (41) is not the same).

• The sign in the first element of C , i.e. α · un, is wrong.

• In Γ1 the (3, 4) element should be θ and the (3, 5) element should be 0.

Thus we have to use (without changing notation)

z(t) =

(
ν(t− 1)
ε(t)

)
instead of the z(t) vector above.
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The corrected vector difference equation. We now have (with different/correct z(t))

Γ0y(t) = Γ1y(t− 1) + C + Ψz(t) + Πη(t)

⇐⇒


0 0 1

3 0 1
3

− 1
3 − 1

3 1 0 0
0 0 −γ 1 0
0 1 0 0 0
0 0 1 0 0




w(t)
w(t− 1)
W (t)
u(t)

Et (W (t+ 1))

 =


1 0 − 1

3 α 0
0 1

3 0 0 0
0 0 0 θ 0
1 0 0 0 0
0 0 0 0 1




w(t− 1)
w(t− 2)
W (t− 1)
u(t− 1)

Et−1 (W (t))

+ · · ·

· · ·+


−α · un

0
µ
0
0

+


−1 0
0 0
0 1
0 0
0 0


(
ν(t− 1)
ε(t)

)
+ · · ·

· · ·+


0 1
0 0
0 0
0 0
1 0


(

η1(t)
η2,Sims(t)

)

or
1

3
W (t) +

1

3
Et (W (t+ 1)) = w(t− 1)− 1

3
W (t− 1) + αu(t− 1)− αun − ν(t− 1) + η2,Sims(t) (49)

−1

3
w(t)− 1

3
w(t− 1) +W (t) =

1

3
w(t− 2) (50)

−γW (t) + u(t) = θu(t− 1) + µ+ ε(t) (51)
w(t− 1) = w(t− 1) (52)

W (t) = Et−1 (W (t)) + η1(t) (53)

Remark on equation (53). The random variable η1(t) is the one-step-ahead prediction error of W (t) at time t.

Remark on equation (49). Shifting both the variables and the information set in equation (41) leads to

w(t− 1) =
1

3
W (t− 1) +

1

3
Et−1 (W (t))︸ ︷︷ ︸
=W (t)−η1(t)

+
1

3
Et−1 (W (t+ 1))− α (u(t− 1)− un) + ν(t− 1).

By defining the two-step-ahead prediction error η̃2(t+ 1) of W (t+ 1) at time t− 1 as

η̃2(t+ 1) = W (t+ 1)− Et−1 (W (t+ 1))

and further decomposing it as

η1(t+ 1) + η2(t) = {W (t+ 1)− Et (W (t+ 1))}+ [Et (W (t+ 1))− Et−1 (W (t+ 1))]

we obtain

w(t− 1) =
1

3
W (t− 1) +

1

3
(W (t)− η1(t)) +

1

3
(W (t+ 1)− η1(t+ 1)− η2(t))− α (u(t− 1)− un) + ν(t− 1).

⇐⇒ 1

3
W (t) +

1

3
W (t+ 1) = w(t− 1)− 1

3
W (t− 1) + αu(t− 1)− αun − ν(t− 1) +

1

3
(η1(t) + η1(t+ 1) + η2(t)) .

Applying the conditional expectation operator at time t, i.e. Et (·), on both sides of the equation above gives

1

3
W (t) +

1

3
Et (W (t+ 1)) = w(t− 1)− 1

3
W (t− 1) + αu(t− 1)− αun + ν(t− 1) +

1

3
Et (η1(t) + η1(t+ 1) + η2(t))︸ ︷︷ ︸

=(η1(t)+η2(t))

.

Thus the term η2,Sims(t) in Sims’ equation (49) is three times the two-step-ahead prediction error, i.e.

η2,Sims(t) =
1

3
(η1(t) + η2(t)) =

1

3
{[W (t+ 1)− Et (W (t+ 1))] + [Et (W (t+ 1))− Et−1 (W (t+ 1))]} .
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3.3.6 Comparison of the Blanchard and Kahn/King and Watson model using the methods in [37] and [11].

Approach in [37]. First, note that the predetermined variables y(pre)
t+1 = Et

(
y

(pre)
t+1

)
in

A

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt

have time index t in Sims notation. Sims notes on page 2, line 11 that “..., this paper uses a notation in which time
arguments or subscripts relate consistently to the information structure: variables dated t are always known at t .”
Second, the expectations at time t of the non-predetermined variables at time t + 1 are denote by ξt = Et

(
y

(¬pre)
t+1

)
.

Finally, we obtain

A11y
(pre)
t +A12ξt = B11y

(pre)
t−1 +B12 (ξt−1 + ηt) + C1zt

A21y
(pre)
t +A22ξt = B21y

(pre)
t−1 +B22 (ξt−1 + ηt) + C2zt

y
(¬pre)
t = ξt−1 + ηt

or in matrix notation A
0
0

0 0 I


 y

(pre)
t

ξt

y
(¬pre)
t

 =

 B
0
0

0 0 I


 y

(pre)
t−1

ξt−1

y
(¬pre)
t−1

+

C1

C2

0

 zt +

B12

B22

I

 ηt.

Approach in [11]. As already described in section 3.1.1, the model

A

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) = B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt

can be written, using

 Et
(
y

(pre)
t+1

)
Et
(
y

(¬pre)
t+1

) =

(
y

(pre)
t+1

y
(¬pre)
t+1

)
−
(

0
ηt+1

)
, as

A

(
y

(pre)
t+1

y
(¬pre)
t+1

)
= B

(
y

(pre)
t

y
(¬pre)
t

)
+ Czt +

(
A12

A22

)
ηt+1

where the equation Et (ηt+1) = 0 is also part of the model specification.

Comparison. Note that the timing conventions in the two approaches do not coincide. The model

yt = AEt (yt+1) + zt = A (yt+1 − ηt+1) + zt = Ayt+1 + zt −Aηt+1

⇐⇒ Ayt+1 = yt − zt +Aηt+1

⇐⇒ Ayt = yt−1 − zt−1 +Aηt.

in [11] notation corresponds in Sims notation to

Γ0︸︷︷︸
=A

yt = Γ1︸︷︷︸
=I

yt−1 + Ψ︸︷︷︸
=−I

zt + Π︸︷︷︸
=A

ηt.

In this sense, the set of models considered by Sims is strictly larger than the one considered by [11] since firstly zt = ut−1

and including earlier time points is no problem and secondly the structure of Π is not influenced by the parameters
pertaining to expectational variables. However, it should be noted that Sims does not specify how he obtains the
canonical form (21) and it is not trivial to bring more complex models in the form required by Sims’ method as we will
see in section 4 starting on page 42.
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3.4 Lubik and Schorfheide: Analysis of indeterminate equilibria

[34] elaborates on the analysis given in [37] and investigates the case of non-uniqueness in more, but as we will show not
sufficient, detail. They demonstrate their findings on a simple New Keynesian DSGE model.

Model considered. By imposing stationary structure on the exogenous variables, they consider an extended vector of
endogenous variables as described in Remark 28 on page 29 and thus consider the case Et (zt+1) = 0 in Sims’ notation.
Lubik and Schorfheide consider the model

Γ0yt = Γ1yt−1 + Ψεt + Πηt (54)

where the endogenous variables yt are n-dimensional, the inputs εt are q-dimensional and satisfy Et (εt+1) = 0, ηt is
k-dimensional. They abstract from the constant term C and do not specify an index set which we take as N as before.
Moreover, the non-explosiveness condition (22) applies to all components of the endogenous variables yt, i.e.

Et
(
ξ−hyt+h

) h→∞−−−−→ 0, ξ > 1, (55)

holds.

Conditioning set. The conditioning set at time t is not explicitly specified in [34]. We assume42 it to be Hε,ζ(t),
where (ζt)t∈N is a p-dimensional stationary process of sunspots orthogonal to (εt)t∈N. We remind the reader of the
consequences of a larger conditioning set described in Remark 7 on page 7. When Lubik and Schorfheide introduce
“sunspot shocks” ([34], page 278, line 3) they do not assume that (ζt)t∈N is orthogonal to (εt)t∈N but require only that
Et (ζt+1) = 0 hold; in particular, (ζt)t∈N could be a (linear) function of (εt)t∈N. The proof of their Proposition 1 ([34]
page 278), however, would require (εt)t∈N and (ζt)t∈N to be orthogonal and is thus in error; compare Proposition 31
(and remark 32) for a corrected version.

Analysis of existence condition. First, [34] analyzes for given εt the solutions of the system of equations QU•Πηt =
−QU•Ψεt, where QU•Π and and QU•Ψ are of dimensions (n(U)× k) and (n(U)× q) respectively, pertaining to Sims’
existence condition (34) on page 28. One obtains the set of all solutions η∗t of the equation QU•Πηt = QU•Ψεt as the
sum of one particular solution ηpt and the set of all homogenous solutions, i.e. the kernel of QU•Π. Lubik and Schorfheide
choose as particular solution the one with minimum Euclidean norm, i.e. they use the Moore-Penrose pseudo-inverse of
QU•Π.

Assuming that a solution exists and that QU•Π has rank r ≤ min {n(U), k}, [34] define the dimension of the indetermi-
nacy to be equal to the dimension (k − r) of the right kernel of QU•Π. This is unfortunate because a non-trivial kernel
of QU•Π is necessary but not sufficient in order that there be multiple solutions of the rational expectations model. A
necessary and sufficient condition is Sims’ uniqueness condition (35) on page 29, i.e. there exists a matrix Φ of dimension
(n(S)× n(U)) such that

QS•Π = ΦQU•Π

holds. A more accurate way for describing the dimension of the indeterminacy, and also the dimension of the solution
set of the rational expectations model derived from the dimension of the indeterminacy, will be given in Theorem 36 on
page 39 below.

However, let us first prove the following Proposition from [34] page 278, which constructs the set of all solutions η∗t of
the existence condition

QU•Ψεt +QU•Πηt = 0 (56)

42Sunspots are defined similarly in [25], page 410, where they write the following below their equation (1): ”We are interested in the random
processes y = {yt | t ∈ Z} satisfying the following equation

yt = aEt (yt+1) + zt

where a is a given scalar (a 6= 0); Et is the conditional expectation operator with respect to the current and past values:{
w1
t , w

1
t−1, . . . ;w

2
t , w

2
t−1, . . . ;w

k
t , w

k
t−1, . . .

}
of k given random processes wi =

{
wit | t ∈ Z

}
, i ∈ {1, . . . , k} and z = {zt | t ∈ Z} is a

given random process such that, for any t, Et (zt) = zt. The latter condition Et (zt) = zt means that zt is a function of the current and past
values of the processes w1, . . . , wk. Usually, each variable wit is either a perturbation or an exogenous variable. Some processes wi may be
independent of z; these wi are sometimes called "sunspots".”
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by using the minimum norm solution as the particular solution and subsequently parametrizing the right-kernel of QU•Π
in terms of innovations εt and sunspot ζt.

The proof uses the singular value decomposition (SVD) of the n(U)× k dimensional matrix (QU•Π) is

QU•Π =
[
U•1 U•2

](D11 0
0 0

)[
V1•
V2•

]
(57)

= U•1D11V1•

where D11 is a square (r × r)-dimensional diagonal matrix of full rank. It is well known that (V1•)
T spans the orthogonal

complement (ker (QU•Π))
⊥ of the kernel of QU•Π, that (V2•)

T spans the kernel ker (QU•Π) of QU•Π, that (U•1) spans
the image im (QU•Π) of QU•Π, and that (U•2) spans the orthogonal complement (im (QU•Π))

⊥ of the image of QU•Π,
see figure 1 below.

Figure 1:

Proposition 31. Let (ζt)t∈N be a p-dimensional stochastic process which satisfies Et (ζt+1) = 0 and is orthogonal to
the inputs (εt)t∈N in equation (54). Furthermore, assume that ηt is a linear function of εt and ζt, and that the existence
condition (56) holds.

Then, the set of all solutions η∗t of the existence condition is{
− (V1•)

T
D−1

11 (U•1)
T
QU•Ψεt + (V2•)

T
(M1εt +M2ζt) | M1 ∈ R(k−r)×q, M2 ∈ R(k−r)×p

}
where the first summand is the minimum norm solution, and M1 ∈ R(k−r)×q and M2 ∈ R(k−r)×p parametrize the kernel
of QU•Π. A sufficient (but not necessary43) condition for obtaining a unique solution is thus k = r.

Proof. The proof is divided into several steps.

Step 1: Transform the existence condition and apply SVD to QU•Π Note that since the existence condition
span (QU•Ψ) ⊆ span (QU•Π) holds, there exists a matrix λ of dimension (k × q) such that

QU•Ψ = QU•Πλ.

Thus, the existence condition is equivalent to

0 = QU•Ψεt +QU•Πηt = QU•Πλεt +QU•Πηt

= QU•Π (λεt + ηt) ,

which leads to (using the singular value decomposition of QU•Π)

0 = U•1D11V1• (λεt + ηt)

⇐⇒ 0 = V1• (λεt + ηt) .

43[34] states that “[i]f k = r the second and third term drop out and the solution is unique.”.
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Step 2: Use the functional form ηt = A1εt + A2ζt and plug ηt into the existence condition. Assuming the
functional form above for ηt, we obtain

0 = V1• (λεt + [A1εt +A2ζt])

⇐⇒ 0 = V1• (λ+A1) εt + V1•A2ζt. (58)

Step 3: Conclude from the orthogonality of (εt)t∈N and (ζt)t∈N on the structure of A2. In order that the
existence condition (58) be satisfied for all possible realizations of the sunspot shock ζt, the matrix A2 has to be equal
to (V2•)

T
M2, where M2 is an arbitrary matrix of dimension (r × p). Then, the existence condition is

0 = V1• (λ+A1) εt + V1•A2ζt

⇐⇒ 0 = V1• (λ+A1) εt + V1• (V2•)
T︸ ︷︷ ︸

=0

M2ζt = V1• (λ+A1) εt.

Step 4: Given A2 = (V2•)
T
M2, get an expression A1 by representing it as direct sum A1 = (V1•)

T
V1•A1 +

(V2•)
T
V2•A1 = (V1•)

T
Ã1 + (V2•)

T
M1. Substituting the expression above for A1 in the existence condition gives

0 = V1•

(
λ+

[
(V1•)

T
Ã1 + (V2•)

T
M1

])
εt

= V1•

(
λ+

[
(V1•)

T
Ã1 + (V2•)

T
M1

])
= V1•λ+ Ã1.

It follows that
Ã1 = −V1•λ.

Step 5: Express Ã1 = −V1•λ in terms of the matrices appearing in the SVD by using the existence condition
QU•Ψ = QU•Πλ. Substituting the SVD of (QU•Π) in the existence condition, we obtain

U2•Ψ = U•1D11V1•λ ⇐⇒ −V1•λ = −D−1
11 (U•1)

T
QU•Ψ.

Step 6: Obtain a parametrization of the solutions ηt of the existence condition. Finally, we obtain that

ηt = A1εt +A2ζt

=

(V1•)
T

V1•A1︸ ︷︷ ︸
=Ã1=−V1•λ=−D−1

11 (U•1)TQ2•Ψ

+ (V2•)
T
V2•A1︸ ︷︷ ︸
M1

 εt + (V2•)
T
M2ζt

= − (V1•)
T
D−1

11 (U•1)
T
QU•Ψεt︸ ︷︷ ︸

=Minimum norm solution

+ (V2•)
T

(M1εt +M2ζt)︸ ︷︷ ︸
=parametrization of

kernel of QU•Π

.

which proves the proposition.

To summarize, we first obtain one particular solution of the existence condition −QU•Πηt = QU•Ψεt, i.e. the minimum
norm solution ηpt = − (V1•)

T
D−1

11 (U•1)
T
QU•Ψεt obtained through the Moore-Penrose pseudo-inverse (compare [24]

page 290) of QU•Π. Subsequently, the kernel of QU•Π gets parametrized with M1 and M2 in order to describe how
the endogenous forecast error ηt might depend on the innovations (εt)t∈N of the exogenous process and on the sunspot
shocks (ζt)t∈N .

Remark 32 (Orthogonality assumption). Lubik and Schorfheide write on page 278 line 12 in [34] that “[i]n order to satisfy
[the existence condition] for all ζt it is necessary that A2 is orthogonal to

[
(V1•)

T
]
”. We assume that with “for all ζt”

Lubik and Schorfheide mean “for all realizations of (ζt)t∈N” because the process (ζt)t∈N is part of the model specification
and therefore fixed. If (assuming A2 to be square and non-singular) ζt = −A−1

2 (λ+A1) εt, the existence condition
(58), i.e.

0 = V1• (λ+A1) εt + V1•A2ζt,
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holds for all realizations of (ζt)t∈N. It is, thus, not necessary but sufficient that A2 = (V2•)
T
M2 for reducing the

existence condition (58) to 0 = V1• (λ+A1) εt. Such an assumption, of course, would be ad hoc. Step 3 in the
proof of Proposition 31, however, shows that requiring (εt)t∈N and (ζt)t∈N to be orthogonal is sufficient to ensure that
A2 = (V2•)

T
M2 holds.

Remark 33. Assuming that M2 = 0, ηt is a function of the innovations εt of the exogenous variables only. Even though
the minimum-norm solution suggests itself for solving an equation of this form, it is not necessarily a natural basis for
the column space of QU•Π. In [18], a similar ill-posed inverse problem is solved by choosing the first basis of the row
space of a certain matrix, compare Section 4 starting on page 232 in [18]. This approach was chosen after realizing that
the minimum norm solution in [14] may have some inconvenient properties.
Remark 34. Even though ηt might depend on sunspot shocks ζt, these shocks, of course, do not enter the second block
of rows in (

ΛSS ΛSU
ΛUU

)(
wSt
wUt

)
=

(
ΩSS ΩSU

ΩUU

)(
wSt−1

wUt−1

)
+

(
QS•
QU•

)
Ψzt +

(
QS•
QU•

)
Πηt

because they are in the right-kernel of QU•Π. They may, however, appear in the first block of rows if it is not possible
to express the rows of QS•Π in terms of the rows of QU•Π, i.e. if Sims’ uniqueness condition (35) does not hold.

The uniqueness condition, the degree of indeterminacy, and the dimension of the solution set. The fact that
Sims’ uniqueness condition (35), i.e. there exists a matrix Φ of dimension (n(S)× n(U)) such that QS•Π = ΦQU•Π
holds, may be satisfied even though the kernel of QU•Π is not trivial was not further analyzed in [34]. In the same

way as the singular value decomposition QU•Π =
[
U•1 U•2

](D11 0
0 0

)[
V1•
V2•

]
described in equation (57) on page 36

allows us to formulate the existence condition (56) conveniently44, it provides insights into the non-uniqueness problem
regarding solutions of rational expectations models. While the image of the map QU•Π, and its relation to QU•Ψ, is
used to characterize the existence of a solution of the rational expectations model, the (right) kernel of the map QU•Π
and its relation to the (right) kernel of QS•Π is used to describe the (non)-uniqueness problem of solutions of the rational
expectations model. Indeed, introducing the singular value decomposition of QS•Π as

QS•Π =
[
Ũ•1 Ũ•2

](D̃11 0
0 0

)[
Ṽ1•
Ṽ2•

]
,

Sims’ uniqueness condition (35) is equivalent to rowspan
(
Ṽ1•

)
⊆ rowspan (V1•), i.e. the orthogonal complement

(ker (QS•Π))
⊥

=
(
Ṽ1•

)T
of the kernel of QS•Π is contained in the orthogonal complement (ker (QU•Π))

⊥
= (V1•)

T

of the kernel of QU•Π, and it is also equivalent to rowspan
(
Ṽ2•

)
⊇ rowspan (V2•), i.e. the kernel of QS•Π with basis(

Ṽ2•

)T
is contained in the kernel of QU•Π with basis (V2•)

T .

We define the dimension of the indeterminacy as the rank of the projection of the row space of QS•Π on the orthogonal
complement of the row space of QU•Π, i.e.

rank (QS•Π− Proj (QS•Π |QU•Π)) = rank
(
QS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
= rank

(
Ũ•1D̃11Ṽ1•

{
Ik −

(
(V1•)

T
D−1

11 (U•1)
T
U•1D11V1•

)})
,

= rank
(
Ṽ1•

{
(V2•)

T
V2•

})
where A† denotes the Moore-Penrose pseudo-inverse of a matrix A, compare [24] page 290, and Proj (A|B) the projection
of the row-space of A on the row-space of B. Intuitively, everything which is not contained in the kernel of QS•Π (the

orthogonal complement (ker (QS•Π))
⊥

=
(
Ṽ1•

)T
of the kernel of QS•Π) is projected on the space through which

indeterminacies appear in the model (the kernel of QU•Π ).

Remark 35. Equivalently, the dimension of the indeterminacy could be defined as the rank of
(
V2• − V2•

(
Ṽ2•

)T
Ṽ2•

)
=

V2•

(
Ik −

(
Ṽ2•

)T
Ṽ2•

)
= V2•

((
Ṽ1•

)T
Ṽ1•

)
, i.e. the rank of the projection of the kernel of QU•Π (through which

44QU•Ψεt +QU•Πηt = 0 has a solution η∗t if and only if span (QU•Π) ⊆ span (U•1).
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indeterminacies appear in the model) on the orthogonal complement
(
Ṽ1•

)T
of the kernel of QS•Π (everything that

actually affects the variables wSt ).

For a given conditioning set, we define the dimension of the solution set of the rational expectations model as the
number of free parameters in the parametrization of the indeterminacy η̃t = (QS•Π− Proj (QS•Π |QU•Π)) ηt when
it is expressed as linear function of the components of stochastic processes in the conditioning set. For example, when
the dimension of the indeterminacy is, say, d, i.e. when there are d linearly independent components in η̃t, and the
conditioning set is Hε(t) where (εt)t∈N is the q-dimensional white noise input process (the innovations of the exogenous
process), then the dimension of the solution set is d · q.

We will state this as

Theorem 36. The degree of indeterminacy of the rational expectations model (54) is equal to rank
(
Ṽ1•

{
(V2•)

T
V2•

})
,

where
(
Ṽ1•

)⊥
is an orthonormal basis of the orthogonal complement of the kernel of QS•Π and (V2•)

T is an orthonormal
basis of the kernel of QU•Π. Furthermore, for given conditioning set, the dimension of the solution set of the rational
expectations model (54) is equal to

[
rank

(
Ṽ1•

{
(V2•)

T
V2•

})]
· q, where q is the rank of the innovation covariance

matrix of the stochastic processes contained in the conditioning set.

Analysis of transfer function. We define the reduced sunspot shocks45 ζ∗t = M2ζt and proceed to analyze the
derivatives of the transfer function relating the innovations εt of the exogenous variables and the reduced sunspot shocks
ζ∗t to the endogenous variables. This derivation differs from the one in [34] in two ways. First, Lubik and Schorfheide
do not consider derivatives of the endogenous variables with respect to the innovations and the reduced sunspot shocks
but rather “derivatives of the system”46, compare their equation (18) and (19) on page 279 in [34]. Second, Lubik and
Schorfheide do not analyze the directions in which the endogenous variables yt (or rather Γ0yt) change.

We proceed analogously to section 3.3.4 on page 29. First, we obtain a solution for
(
wUt
)
t∈N which satisfies the

non-explosiveness condition (55) and is contained in Hε,ζ(t) at time t. In the case treated in [34], i.e. C = 0 and
Et (εt+1) = 0, we obtain wUt = 0. Second, in order to obtain a solution

(
wSt
)
t∈N for a given solution

(
wUt
)
t∈N, we need

n(S) linear combinations of the whole system(
ΛSS ΛSU

ΛUU

)(
wSt
wUt

)
=

(
ΩSS ΩSU

ΩUU

)(
wSt−1

wUt−1

)
+

(
QS•
QU•

)
Ψεt +

(
QS•
QU•

)
Πηt

such that the degree of indeterminacy is minimal. This is achieved by premultiplying the system above with(
In(S) −QS•Π (QU•Π)

†
)
,

as described in Theorem 36. Thus, we obtain(
ΛSS ΛSU −QS•Π (QU•Π)

†
ΛUU

)(wSt
wUt

)
=
(

ΩSS ΩSU −QS•Π (QU•Π)
†

ΩUU

)(wSt−1

wUt−1

)
+ · · ·

· · ·+
(
In(S) −QS•Π (QU•Π)

†
)(QS•

QU•

)
Ψεt + · · ·

· · ·+
(
QS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
ηt.

Finally, and in analogy to equation (38) on page 30, we obtain by premultiplying Z

(
ΛSS ΛSU − ΦΛUU

In(U)

)−1

=

(Z•S , Z•U )

(
Λ−1
SS −Λ−1

SS

(
ΛSU −QS•Π (QU•Π)

†
ΛUU

)
In(U)

)
the following:

45Remember that M2 ∈ Rk−r×p.
46Note that, in general, the mapping from the structural form to the final form of a difference equation is not unique.
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yt =

[
(Z•S , Z•U )

(
Λ−1
SS −Λ−1

SS

(
ΛSU −QS•Π (QU•Π)

†
ΛUU

)
In(U)

)(
ΩSS

(
ΩSU −QS•Π (QU•Π)

†
ΩUU

)
0

)
ZT

]
yt−1 + · · ·

· · ·+ Z

(
Λ−1
SS −Λ−1

SS

(
ΛSU −QS•Π (QU•Π)

†
ΛUU

)
In(U)

)(
In(S) −QS•Π (QU•Π)

†

0

)(
QS•
QU•

)
Ψεt + · · ·

· · ·+ Z

(
Λ−1
SS −Λ−1

SS

(
ΛSU −QS•Π (QU•Π)

†
ΛUU

)
In(U)

)(
QS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)}
0

)
ηt

= Z•S

[(
Λ−1
SSΩSS Λ−1

SS

(
ΩSU −QS•Π (QU•Π)

†
ΩUU

))
ZT
]

︸ ︷︷ ︸
=Θy

yt−1 + · · ·

· · ·+ Z•S

(
Λ−1
SS −Λ−1

SSQS•Π (QU•Π)
†
)(

QS•
QU•

)
Ψ︸ ︷︷ ︸

=Θε

εt + · · ·

· · ·+ Z•S

(
Λ−1
SSQS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
︸ ︷︷ ︸

=Θη

ηt.

Using Proposition 31 to substitute for ηt = − (V1•)
T
D−1

11 (U•1)
T
QU•Ψεt+(V2•)

T
(M1εt + ζ∗t ), we obtain for the effects

of the white noise inputs εt and the reduced sunspots ζ∗t

∂yt
∂ζ∗t

= Z•S

(
Λ−1
SSQS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
(V2•)

T

and

∂yt
∂εt

= Z•S

(
Λ−1
SS −Λ−1

SSQS•Π (QU•Π)
†
)(

QS•
QU•

)
Ψ− · · ·

· · · − Z•S
(

Λ−1
SSQS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
(V1•)

T
D−1

11 (U•1)
T
QU•Ψ + · · ·

· · ·+ Z•S

(
Λ−1
SSQS•Π

{
Ik −

(
(QU•Π)

†
(QU•Π)

)})
(V2•)

T
M1.

Lubik and Schorfheide plug ηt = − (V1•)
T
D−1

11 (U•1)
T
QU•Ψεt + (V2•)

T
(M1εt + ζ∗t ) into the system

Γ0yt = Γ1yt−1 + Ψεt + Πηt

= Γ1yt−1 + Ψεt −Π (V1•)
T
D−1

11 (U•1)
T
QU•Ψεt + Π (V2•)

T
(M1εt + ζ∗t )

= Γ1yt−1 +
(
I −Π (V1•)

T
D−1

11 (U•1)
T
QU•

)
Ψεt + Π (V2•)

T
M1εt + Π (V2•)

T
ζ∗t (59)

and obtain thus

∂Γ0yt
∂ζ∗t

= Π (V2•)
T and

∂Γ0yt
∂εt

=
(

Ψ−Π (V1•)
T
D−1

11 (U•1)
T
QU•Ψ

)
+ Π (V2•)

T
M1

without taking into account that theses equations could be further specialized to

∂Γ0yt
∂ζ∗t

= (QS•)
T
QSΠ (V2•)

T (60)

and

∂Γ0yt
∂εt

=
(

Ψ−Π (V1•)
T
D−1

11 (U•1)
T
QU•Ψ

)
+ Π (V2•)

T
M1

=

(
Ψ−Π

(
(V1•)

T
(V2•)

T
)(

D−1
11 (U•1)

T
QU•Ψ

−M1

))
.
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Remark 37. If Sims’ uniqueness condition QS•Π = ΦQU•Π holds, it follows in equation (60) that ∂Γ0yt
∂ζ∗t

= 0 because

∂Γ0yt
∂ζ∗t

= (QS•)
T

ΦQU•Π (V2•)
T︸ ︷︷ ︸

=0

= 0.

Under this condition, thus, the sunspots do not appear in system (59).
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4 A (constrained) system equivalent to an RE model (BGS)

Here, we start with deriving (in analogy to [11]) from the rational expectations model (1) a recursive equation in terms of
the components of leads and lags of the endogenous process by writing the conditional expectation Et−k (yt+h) as sum
of the endogenous variable yt+h and its (h+ k)-step-ahead prediction error vt+h,h+k = yt+h − Et−k (yt+h). Secondly,
constraints implied by the rational expectations model on the revision processes εjt−j = Et−j (yt) − Et−j+1 (yt) are
derived in section 4.2. Subsequently, we show in section 4.3 that a process (yt)t∈Z for which the recursive equation holds
and whose revision processes εjt−j = Et−j (yt)− Et−j+1 (yt) satisfy the constraints implied by the rational expectations
model (1) also solves the rational expectations model (in the sense that equation (1) holds for all points in time). Thus,
the problem of finding processes (yt)t∈Z solving the rational expectations model (1) is reduced to the problem of finding
processes (yt)t∈Z (which are restricted by the fact that its revision processes εjt−j = Et−j (yt) − Et−j+1 (yt) have to
satisfy certain constraints) solving a vector difference equation (for given exogenous process).

In section 4.4, we generalize47 Property 5 on page 245 in [11] with respect to the number of “arbitrary martingale
differences” to the case in which the exogenous process has a singular spectral density and correct their count of “auxiliary
parameters”, i.e. the dimension of the solution set, on page 247 below their formula (4.1) which is only correct if the
exogenous process has a spectral density of full rank.

Up to this point, there is no assumption as to whether a process for which the rational expectations equation (1) holds
for every t ∈ Z also has to be contained in Hu(t) at time t or as to whether it has to satisfy a non-explosiveness
condition. Imposing more general non-explosiveness conditions as in [34] (and as general as in [37]) and imposing that
yt ∈ Hu(t), t ∈ Z, for a process (yt)t∈Z for which the rational expectations equation (1) holds for every t ∈ Z is
straightforward after having obtained the recursive equation together with the constraints on the revision processes.
The latter fact and its suitability for identifiability analysis are the major advantages of model (1) relative to the other
approaches described in this paper (which do not take different timing into account).

4.1 Recursive equation

We obtain from the rational expectations model (1) (by substituting for conditional expectations the variables themselves
and the associated prediction errors) that

zJ1

(
J1∑
i=J0

A∗i z
−i

)
︸ ︷︷ ︸

=π(z)

yt = π(z)
(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
+ ζt−J1 − ut−J1 (61)

where

A∗i =
∑

k:(k,i)∈J

Ak,k+i,

J = {(k, h− k) |k ∈ {0, . . . ,K} , h ∈ {0, . . . ,H}} ,
J0 = argmini {i | A∗i 6= 0} , J1 = argmaxi {i | A∗i 6= 0} ,

and

ζt =

K∑
k=0

H−1∑
j=0

j∑
h=0

Akhz
k+(j−h)εjt and ε

j
t = Et (yt+j)− Et−1 (yt+j)

as follows.
47Note, however, that we impose (wide sense) stationarity on the exogenous process, whereas [11] do not impose any assumption on the

exogenous process. As soon as they do impose “stationary (finite or infinite) moving average structure” (compare [11] page 246 line 27) on
the exogenous process, however, they require that the inputs be independent while we only assume that they are uncorrelated (compare [19]
page 92 for more detail on the relation between uncorrelated processes, martingale difference sequences, and independent processes).
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First, note that

vt+h−k,h = yt+h−k − Et−k (yt+h−k)

=
(
yt+h−k − Et+(h−k)−1 (yt+h−k)

)
+
(
Et+(h−k)−1 (yt+h−k)− Et+(h−k)−2 (yt+h−k)

)
+ · · ·

· · ·+
(
Et−(h−k)−(h−1) (yt+h−k)− Et+(h−k)−h (yt+h−k)

)
= ε0

t+h−k + ε1
t+h−k−1 + · · ·+ εh−1

t−k+1

and thus equation (1) is transformed to

−A00yt =

K∑
k=0

H∑
h=1

AkhEt−k (yt+h−k) +

K∑
k=1

Ak0yt−k + ut

=

K∑
k=0

H∑
h=1

Akh

yt+h−k − h−1∑
j=0

εjt+h−k−j

+

K∑
k=1

Ak0yt−k + ut (62)

which is equivalent to

zJ1

(
H∑

i=−K
A∗i z

−i

)
yt = zJ1

 K∑
k=0

H∑
h=1

Akh

h−1∑
j=0

εjt+h−k−j − ut

 . (63)

where the parameter matrices A∗i feature the forecasting horizon i more prominently, i.e. the matrices A∗i , i ∈
{−K, . . . , 0, . . . ,H} , are obtained by summing over the diagonals of the big matrix in (1) containing the matrices
Akh, k ∈ {0, . . . ,K} , h ∈ {0, . . . ,H} , as elements. Reordering the sum zJ1

∑K
k=0

∑H
h=1

∑h−1
j=0 Akhz

k−(h−j) appearing
on the right hand side of equation (63) leads to

zJ1
K∑
k=0

H∑
h=1

Akh

h−1∑
j=0

εjt+h−k−j = zJ1
K∑
k=0

H−1∑
j=0

H∑
h=j+1

Akhε
j
t+h−k−j

= zJ1
K∑
k=0

H−1∑
j=0

(
H∑
h=0

Akhε
j
t+h−k−j −

j∑
h=0

Akhε
j
t+h−k−j

)

= zJ1
K∑
k=0

H−1∑
j=0

H∑
h=0

Akhε
j
t+h−k−j − z

J1

K∑
k=0

H−1∑
j=0

j∑
h=0

Akhε
j
t+h−k−j︸ ︷︷ ︸

=ζt

=

(
zJ1

K∑
k=0

H∑
h=0

Akhz
k−h

)
︸ ︷︷ ︸

=π(z)

H−1∑
j=0

εjt−j − ζt−J1

Remark 38 (Perfect foresight solution). For arbitrary processes
(
εjt

)
t∈Z

, the solutions (yt)t∈Z of (61) are not necessarily

solutions in the wide sense of the rational expectations model (1). In particular, the perfect foresight solution for which
(εt)t∈Z is assumed to be identically zero, may not be a solution in the wide sense of the rational expectations model (1),
compare [9] page 350.

Remark 39 (Zeros at infinity). Note that [11] does not use the notion of zeros at infinity because equation (61) is
transformed in a way that no leads, i.e. negative powers of the backshift operator z, appear. King and Watson write this
equation in terms of the forward shift F . Their zeros at infinity of the matrix pencil AF −B correspond to the zeros at
zero of π(z).

Remark 40 (No redundant equations). The condition det (AF −B) 6≡ 0 in [31] corresponds to (modulo stacking the
conditional expectations in (1)) det (π(z)) 6≡ 0. Note that the assumption A00 = −Is, imposed in [11], does not
necessarily imply that det (π(z)) 6≡ 0 holds48 and thus does not exclude inconsistent equation systems.

48Consider, e.g., A00 = −Is = −AKH .
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Example 41. As an easy example consider the univariate model with K = H = 2, i.e.

yt = a01Et (yt+1) +a02Et (yt+2)
+a10yt−1 +a11Et−1 (yt) +a12Et−1 (yt+1)
+a20yt−2 +a21Et−2 (yt−1) +a22Et−2 (yt) + ut.

Replacing the conditional expectations by the variables themselves and the associated endogenous forecast errors leads
to

−ut = −yt +a01

(
yt+1 − ε0

t+1

)
+a02

(
yt+2 − ε0

t+2 − ε1
t+1

)
+a10yt−1 +a11

(
yt − ε0

t

)
+a12

(
yt+1 − ε0

t+1 − ε1
t

)
+a20yt−2 +a21

(
yt−1 − ε0

t−1

)
+a22

(
yt − ε0

t − ε1
t−1

)
,

which eventually leads to the recursive equation

a∗2︸︷︷︸
=a02

yt+2 + a∗1︸︷︷︸
=a12+a01

yt+1 + a∗0︸︷︷︸
=−1+a11+a22

yt + a∗−1︸︷︷︸
=a10+a21

yt−1 + a∗−2︸︷︷︸
=a20

yt−2 =

= a01ε
0
t+1 + a02

(
ε0
t+2 + ε1

t+1

)
+ a11ε

0
t + a12

(
ε0
t+2 + ε1

t+1

)
+ a21ε

0
t−1 + a22

(
ε0
t + ε1

t−1

)
+ ut.

4.2 Constraints on the revision process

In this subsection, the constraints for the revision processes εjt = Et (yt+j)−Et−1 (yt+j) are derived by taking conditional
expectations of the recursive equation (61) with respect to different information sets, and taking subsequently differences.

We follow [11], page 244ff. We start from equation (61), i.e.

zJ1

(
J1∑
i=J0

A∗i z
−i

)
︸ ︷︷ ︸

=π(z)

yt = π(z)
(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
+ ζt−J1 − ut−J1

where J0 = argmini {i |A∗i 6= 0} , Ji = argmaxi {i |A∗i 6= 0} , ζt =
∑K
k=0

∑H−1
j=0

∑j
h=0Akhz

k+(j−h)εjt , and εjt =
Et (yt+j)− Et−1 (yt+j) and write the Smith canonical form of π(z) as

π(z) = P (z)α(z)Φ(z)Q(z),

where P (z) and Q(z) are unimodular49 matrices of dimension (s× s), and α(z) =

α1(z)
. . .

αs(z)

 and Φ(z) =

φ1(z)
. . .

φs(z)

 are diagonal polynomial matrices whose i-th diagonal element divides the (i + 1)-th diagonal

element50. Moreover, the entries of α(z) have only zeros at zero. Thus, we will work with the equation

P (z)α(z)Φ(z)Q(z)yt = P (z)α(z)Φ(z)Q(z)
(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
+ ζt−J1 − ut−J1 (64)

Theorem 42. Assume that (yt)t∈Z is a solution in the wide sense of the rational expectations model (1). Then, H
revision processes of dimension s satisfy the conditions

Et−i
(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
= Et−(i+1)

(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
, i ∈ {0, . . . ,H − 1}

or equivalently

Et−i
(
α(z)−1P (z)−1ζt−J1

)
− Et−(i+1)

(
α(z)−1P (z)−1ζt−J1

)
= (65)

= −
[
Et−i

(
α(z)−1P (z)−1ut−J1

)
− Et−(i+1)

(
α(z)−1P (z)−1ut−J1

)]
, i ∈ {0, . . . ,H − 1} .

Proof. The proof is divided into several steps.
49A unimodular matrix is a matrix whose elements are polynomials but its determinant is a non-zero constant. For further background on

polynomial and rational matrices see [21] Chapter VI, [30] Chapter 6, [22, 23], and [28] Chapter 2.
50Let φi(z) and φi+1(z) denote the i-th and (i+ 1)-th diagonal element. If φi(z) divides φi+1(z), there exists a polynomial p(z) such that

φi+1(z) = p(z)φi(z).
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Step 1: Apply (P (z)α(z))
−1 to the recursive equation (64) (which was derived from (1)). The equation we will

work with is

Φ(z)Q(z)︸ ︷︷ ︸
=Ω(z)

yt = Φ(z)Q(z)︸ ︷︷ ︸
=Ω(z)

(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
+ α(z)−1P (z)−1 (ζt−J1 − ut−J1) . (66)

Step 2: Take conditional expectations of Ω(z)yt with respect to the information at time (t− i) , i ∈ {0, . . . ,H} ,
and subtract equation (i+ 1) from equation i for i ∈ {0, . . . ,H − 1} . Note that lags of yt appearing in Ω(z)yt =
ω0yt+ω1yt−1 + · · ·+ωiyt−i+ωi+1yt−(i+1) + · · ·+ωdeg(Ω(z))yt−deg(Ω(z)) that are larger than i, have the same conditional
expectation with respect to information sets up to time (t− i) and up to time (t− (i+ 1)). Thus, we obtain for the left
hand side of equation (66)

Et−i (Ω(z)yt)− Et−(i+1) (Ω(z)yt) =

= Et−i (ω0yt + ω1yt−1 + · · ·+ ωiyt−i)− Et−(i+1) (ω0yt + ω1yt−1 + · · ·+ ωiyt−i) (67)

= ω0

[
Et−i (yt)− Et−(i+1) (yt)

]
+ · · ·+ ωi

[
Et−i (yt−i)− Et−(i+1) (yt−i)

]
= ω0ε

i
t−i + ω1ε

i−1
t−i + · · ·+ ωiε

0
t−i. (68)

Step 3: Take the conditional expectation of Ω(z)
(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
with respect to the information at

time (t− i) , i ∈ {0, . . . ,H} , and subtract equation (i+ 1) from equation i for i ∈ {0, . . . ,H − 1} . Considering
the term Ω(z)εjt−j , we note that lags larger than (i− j) are contained in both information sets51 which contain information
up to time (t− i) and up to time (t− (i+ 1)). Thus, we obtain for i ≤ j

Et−i
(

Ω(z)εjt−j

)
− Et−(i+1)

(
Ω(z)εjt−j

)
=

= Et−i
(
ω0ε

j
t−j + ω1ε

j
t−j−1 + · · ·+ ωi−j−1ε

j
t−j−(i−j−1) + ωi−jε

j
t−j−(i−j)

)
− · · ·

· · · − Et−(i+1)

(
ω0ε

j
t−j + ω1ε

j
t−j−1 + · · ·+ ωi−j−1ε

j
t−j−(i−j−1) + ωi−jε

j
t−j−(i−j)

)
= Et−i

(
ω0ε

j
t−j + ω1ε

j
t−j−1 + · · ·+ ωi−j−1ε

j
t−i−1) + ωi−jε

j
t−i

)
− · · ·

· · · − Et−(i+1)

(
ω0ε

j
t−j + ω1ε

j
t−j−1 + · · ·+ ωi−j−1ε

j
t−i−1) + ωi−jε

j
t−i

)
= ωi−jε

j
t−i

such that

Et−i
(
Ω(z)

(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

))
− Et−(i+1)

(
Ω(z)

(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

))
=

= ωiε
0
t−i + ωi−1ε

1
t−i + · · ·+ ω1ε

i−1
t−i + ω0ε

i
t−i

which is equal to (68), i.e. Et−i (Ω(z)yt) − Et−(i+1) (Ω(z)yt), from above. On the right hand side of equation (66)
remains thus

Et−i
(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
= Et−(i+1)

(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
from which the theorem follows.

4.3 Constrained solutions of the recursive equation

In this subsection, we characterize the solutions in the wide sense of rational expectations model (1). They comprise all
solutions of the recursive equation (61) where the uncorrelated processes

(
εjt

)
t∈Z

satisfy the constraints (65). We follow

[11] page 244ff. and prove

51(t− j)− (i− j) = t− i
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Theorem 43. Assume that the process (yt)t∈Z satisfies the equation

π(z)︸︷︷︸
=P (z)α(z)Φ(z)Q(z)

yt = π(z)
(
ε0
t + ε1

t−1 + · · ·+ εH−1
t−H+1

)
+ ζt−J1 − ut−J1 ,

where H (arbitrary) martingale difference processes
(
εjt

)
t∈Z

, j ∈ {0, . . . ,H − 1} , of dimension s satisfy the conditions

Et−i
(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
= Et−(i+1)

(
α(z)−1P (z)−1 [ζt−J1 − ut−J1 ]

)
, i ∈ {0, . . . ,H − 1}

or equivalently

Et−i
(
α(z)−1P (z)−1ζt−J1

)
− Et−(i+1)

(
α(z)−1P (z)−1ζt−J1

)
=

= −
[
Et−i

(
α(z)−1P (z)−1ut−J1

)
− Et−(i+1)

(
α(z)−1P (z)−1ut−J1

)]
, i ∈ {0, . . . ,H − 1} .

It follows that the process (yt)t∈Z is also a solution in the wide sense of the rational expectations model (1), i.e.

(
1 z · · · zk · · · zK

)


A00 A01 · · · A0h · · · A0H

A10
. . .

...
Ak0 Akh AkH
...

...
AK0 AK1 · · · AKH





Et (yt)
Et (yt+1)

...
Et (yt+h)

...
Et (yt+H)


= −ut.
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Remark 44. Note the similar structure of the proof of Theorem 42. While we assumed in Theorem 42 that the martingale
difference processes are derived from the solutions in the wide sense of the rational expectations model, we prove here that
for martingale difference sequences satisfying the constraints, the solutions of the recursive equations are also solutions
in the wide sense of the rational expectations model.
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4.4 Dimension of the solution set with general restrictions

In this section, we generalize Property 5 on page 245 in [11] with respect to the number of “arbitrary martingale differences”
to the case in which the exogenous process has a singular spectral density.

Moving average structure of exogenous process. We consider first the case where the exogenous process has an
infinite moving average representation, i.e.

ut =

∞∑
i=0

wiεt−i = w(z)εt

where w0 = Is,
∑∞
i=0 wiw

′
i < ∞ (component wise), and E (εtεs) = δtsΣ > 0 and search for solutions yt =∑∞

j=−∞ kjεt−j such that
∑∞
j=−∞ kjk

′
j <∞ (component wise)53.

Note that the revision process εjt satisfies

εjt−j = Et−j (yt)− Et−(j+1) (yt) = kjεt−j , j ≥ 0.,

where kj ∈ Rs×q.

Assumptions on the parameter space. We assume that there exists an h ∈ {0, . . . ,H} such that AKh 6= 0 and a
k ∈ {0, . . . ,K} such that AkH 6= 0, and that

π(z) = zJ1

(
J1∑
i=J0

A∗i z
−i

)
= A∗J0z

J1−J0 +A∗J0+1z
(J1−J0)−1 + · · ·+A∗0z

J1 + · · ·+A∗J1−1z +A∗J1

has determinant not identically zero54. We will consider two different kinds of parameter restrictions, namely zero
restrictions, i.e. the entries of the matrices Akh, k ∈ {0, . . . ,K} and h ∈ {0, . . . ,H}, may only be constrained to be

zero, and rational restrictions, i.e. we require that their entries are of the form Aijkh =
pijkh(θ1,...,θp)

qijkh(θ1,...,θp)
where pijkh and qijkh

are polynomials in (θ1, . . . , θp) and qijkh is not identically zero. Both of these restrictions guarantee that J1 and G1 (the
number of zeros at zero of π(z)) are well defined on the parameter space in the sense that both are constant on the
complement of a subset (of the parameter space) of lower dimension. Furthermore, we assume that there is a point in
the parameter space such that the matrix (72) on page 58 has full row rank55.

Remember that
π(z) = P (z)α(z)Φ(z)Q(z)

where P (z) and Q(z) are unimodular matrices of dimension (s× s), and α(z) =

α1(z)
. . .

αs(z)

 and Φ(z) =

φ1(z)
. . .

φs(z)

 are diagonal polynomial matrices whose i-th diagonal element divides the (i + 1)-th diagonal

element. Moreover, the entries of α(z) have only zeros at zero.

53As soon as “stationary (finite or infinite) moving average structure” (compare [11] page 246 line 27) is imposed on the exogenous process
in [11], however, it is required that the inputs be independent while we only assume that they are uncorrelated (compare [19] page 92 for
more detail on the relation between uncorrelated processes, martingale difference sequences, and independent processes). Moreover, while [9]
imposes a summability condition on the the coefficients in ut =

∑∞
i=0 wiεt−i (

∑∞
j=0 |wj | < ∞, [9] page 351, which is stronger than our∑∞

j=0 w
2
j <∞) [11] do not make such an assumption.

54Note that the non-singularity of A00 does not imply that det (π(z)) 6≡ 0, compare remark 40 on page 43.
55In [11] it is assumed that A00 = −Is and (implicitly by only allowing for zero restrictions) that the point for which all (unrestricted)

matrices are zero is contained in the parameter space. If we allow for rational restrictions this has to be assumed explicitly.
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Theorem 45. We consider the rational expectations model (1), i.e.

(
Is Isz · · · Isz

k · · · Isz
K
)


A00 A01 · · · A0h · · · A0H

A10
. . .

...
Ak0 Akh AkH
...

...
AK0 AK1 · · · AKH





yt
Et (yt+1)

...
Et (yt+h)

...
Et (yt+H)


= −ut

and assume that (together with the assumptions on the parameter space above)

• the entries of the parameter matrices above are of the form Aijkh =
pijkh(θ1,...,θp)

qijkh(θ1,...,θp)
where pijkh and qijkh are polynomials

in (θ1, . . . , θp) and qijkh is not identically zero, and that

• rk (fu(λ)) = q ≤ s holds.

The rational expectations model has a reduced form involving generically (J1s−G1) q free parameters, where

• s is the number of equations of the model,

• J1 is such that t+ J1 is the largest time index of expected endogenous variables appearing in the model, and

• G1 is the number of zero roots of det (π(z)).
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Corollary 46. Under the assumptions in Theorem 45, except that there are only zero restrictions on the entries of
the parameter matrices and that A00 = −Is holds, it follows that the rational expectations model has a reduced form
involving generically (J1s−G1) q free parameters, where

• s is the number of equations of the model,

• J1 is such that t+ J1 is the largest time index of expected endogenous variables appearing in the model, and

• G1 is the number of zero roots of det (π(z)).

Corollary 47. Assume that in the rational expectations model (1) only zero restrictions are imposed and that additionally
A00 = −Is and rk (fu(λ)) = s holds, i.e.

(
Is Isz · · · Isz

k · · · Isz
K
)


−Is A01 · · · A0h · · · A0H

A10
. . .

...
Ak0 Akh AkH
...

...
AK0 AK1 · · · AKH





Et (yt)
Et (yt+1)

...
Et (yt+h)

...
Et (yt+H)


= −ut.

It has a reduced form involving generically (J1s−G1) arbitrary martingale differences, where

• s is the number of equations of the model,

• J1 is such that t+ J1 is the largest time index of expected endogenous variables appearing in the model, and

• G1 is the number of zero roots of det (π(z)).

Thus, the solution set has dimension (J1s−G1) s.
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4.5 Causal and non-explosive solutions

Up to this point, there is no assumption as to whether a process for which the rational expectations equation (1) holds
for every t ∈ Z also has to be contained in Hu(t) at time t or as to whether it has to satisfy a non-explosiveness
condition. Imposing more general non-explosiveness conditions as in [34] (and as general as in [37]) and imposing that
yt ∈ Hu(t), t ∈ Z, for a process (yt)t∈Z for which the rational expectations equation (1) holds for every t ∈ Z is
straightforward in this framework. In the same way, it is obvious how causality can be imposed.

First, we impose causality on the solutions of the recursive equation (61) (in which redundant martingale difference
sequences have been replaced) by only considering solutions for which the determinant of π(z) is developed in terms of
non-negative powers of the backward shift, i.e.

yt = det (π(z))
−1
adj(π(z))g(ε),

where g(ε) denotes a polynomial matrix depending on present and past values of the innovations of the exogenous process.
Second, the non-explosiveness conditions, which are given in the form of an (r × s)-dimensional, r ≤ s, matrix G of full
(row) rank, are taken into account by requiring that Gyt does not explode faster than a given rate of growth ξ > 1. If
it is possible to cancel roots λ of det (π(z)) (by adjusting free parameters) for which |λ|−1

> ξ a causal, non-explosive
solution exists. This solution is unique if there are no remaining free parameters.
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