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Abstract

In general, linear multivariate rational expectations models do not have a unique solution. This paper reviews
some procedures for determining whether there exists a solution, whether it is unique, and infers on the dimension
of indeterminacy and the number of free parameters in a parametrization thereof. A particular emphasis is given to
stochastic singularity, i.e. the case in which the number of outputs is strictly larger than the number of (stochastic)
inputs. First, it is shown that assuming stochastic singularity of the exogenous driving process has the same effects as
(but is more natural than) assuming that some variables are predetermined, i.e have trivial one-step-ahead prediction
error. Second, the dimension of the solution set is in general different from the one derived in the case where the
number of outputs and inputs coincide. We derive this result in both the framework of [37, [34] (which impose non-
explosiveness conditions) and [9, [II] (which do not impose non-explosiveness conditions). In this context, the results
of [34] and [11] are corrected and extended. Last, we note that the framework of [II] can be adjusted to incorporate
non-explosiveness conditions and lends itself to an identifiability analysis of dynamic stochastic general equilibrium
(DSGE) models.
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1 Introduction

This paper deals with linear multivariate rational expectations models where the number of endogenous variables may
be larger than the number of uncorrelated white noise innovations of the exogenous process driving the economy. After
reviewing some approaches and clarifying their relation to the problem of stochastic singularity, we generalize an approach
by [34] dealing with the influence of so-called sunspot shocks on endogenous variables. Moreover, we describe the set of
all solutions of a linear multivariate rational expectations model following [11], correct an important error in Theorem 4
on page 248 in [11], and derive the dimension of the solution set in the stochastically singular case. Last, the analysis of
[11] is, in addition to permitting for stochastic singularity, extended to allowing for more general parameter restrictions in
order to render the developed theory useful for the analysis of macroeconomic models as, e.g., [38]. This will enable us
to conduct an identifiability analysis of dynamic stochastic general equilibrium (DSGE) models without imposing a (for
structural models very restrictive) minimality assumption as was done in [33].

We heavily draw on the methods developed in [12] [9] [10} [13] [1I]. In particular, we consider the rational expectations
model

Ao Aor -+ Ao -+ Aom

Yt
A Bt (ye41)
I, I,z 1,2k I,2K : ) = —u (1)
( ) Ao Ay A | | Bt (yesn) !
Ao Ax1 - Agp) \Et (Ye+1)

where z denotes the backward shift operator, i.e. 2 (y:),cs, = (Yt—1),cz, Et (Yi1n) denotes the projectiorﬂ of yiyp on
closure of the Iinear{ﬂ space spanned by the present and the past of the components of {us, u;_1,...} of the exogenous

process (u¢),y, denoted by H,(t) = span {ugfs |seN, ie{l,..., s}} To avoid confusion, we will sometimes write

more explicitly E (y+1,|H,(t)) for the same object] Furthermore, we assume that there are no redundant equations, i.e.
the matrix polynomial 7(z) defined in equation on page depending on the matrices Agp, k € {0,..., K} and
h €{0,...,H}, and that there exists an h € {0,..., H} such that Axp #0and a k € {0,..., K} such that Aygy # 0.
In this way K and H are well defined. The indices k and h in Ay, refer to the h-period-ahead forecast of the endogenous
variables, k periods ago, i.e. y;_j is forecast h periods ahead with the informatiorﬂ available in period t — k.

We assume that the stationary s-dimensional exogenous process (u;), . has a (finite) covariance matrix E (usuf ), where
the superscript T' denotes transposition, of rank r smaller than or equal to s and a rational spectral density f, (\) of
rank ¢ <r <s.

A solution in the wide sensg®| of the rational expectations model is a stochastic process (y:),., such that for given
exogenous driving process (u;),., and given parameters Ay, k€ {0,..., K}, h € {0,..., H}, (y;),y satisfies equation

for all £ € Z. Note that (y;),., is a deterministic function of (u;),.,, i.e. there are no additional error terms involved.

Remark 1. Note that some authors, e.g. [8| 31} [37], study only solutions on the natural numbers N. There are at
least two reasons in favor of examining solutions on Z. First, there is an asymmetry between past and future when
only solutions on N are considered. Second, a solution starting from the infinite past can be interpreted as a solution
approximating unknown initial values in a reasonable sense. In the stationary state, we do not know initial values, hence
a solution starting from the infinite past should be preferred to a solution on N.

Moreover, theorems on spectral representations and spectral decomposition of stationary processes do not always hold
true for stochastic processes with N as index set, compare [19] page 481 and 486. Also, [2] use the term “covariance
factorization” (page 233) for processes with finite initial time and reserve “spectral factorization” for stationary processes

2Compare [19] page 155, where he defines the conditional in the wide sense as the projection on a linear manifold.

3Note that if all random variables in the conditioning set are Gaussian, the conditional expectation coincides with the linear projection
outlined here. For more details on conditional expectations see [3] page 445ff.

4Some authors, e.g. [25] on page 410, condition on a larger set of variables comprising variables which are independent to the exogenous
process. These variables are called “sunspots” by the authors.

5We will refer to the space H,,(t) on which the endogenous variables are projected as “the information at time ¢".

SA solution of the rational expectations model (without the addendum “in the wide sense”) is a solution in the wide sense of the rational
expectations model for which additionally firstly y: € H,(¢) (or any other specified linear space generated by components of stochastic
processes) holds and which secondly does not violate a non-explosiveness condition to be specified.



with index set Z. Moreover, they show on pages 242-243 that their so-called “innovations model” (which is closely related
to the spectral factorization) is not time invariant (but only asymptotically time invariant) for stationary processes with
finite initial time, compare also [28] pages 19-20.



2 Zeros of a polynomial at infinity

We follow [29] page 370ff and consider the polynomial
p(2,6) = cp2" + cn_12" V4 F 1z + oo,

where z is a complex variable and ¢ = (cy, ..., c,) € C"*! a coefficient vector. The set of polynomials we consider is thus
defined by the set of coefficient vectors ¢ € C" 1. Furthermore, we denote the degree of p(z, c) by deg (p(z,¢)) = n(c).
We say that the polynomial p(z,c) has (n — n(c)) zeros at infinity.

The notion of a zero at infinity is motivated by Theorem 4.1.2 on page 371 in [29]. It states that every polynomial
p(z, ¢) which is “sufficiently close” to a non-constant polynomial p (z,¢) with degree n (¢), i.e. ||c — ¢|| < € holds for the
corresponding coefficient vectors ¢,¢ € C™*!, a sufficiently small € > 0, and an arbitrary norm |[|-|| on C**!, has exactly
n(c) — n (¢) roots outside the set {z € C||z| > 1}. Thus intuitively, if the degree of p(z,c) is higher than the one of
p(z,¢), the “new roots” are “far away” from zero.

Example 2. As an example consider the polynomial
p(z)=az’> +bz+c, abceC,b#0,a#0

— /b2 — .
whose roots are z4 = %. For a — 0, 24 = —§ whereas z_ diverges.

2.1 Zeros of a square polynomial matrix at infinity

The zeros of a square polynomial matrix A(z) = A©) + AWz ... + A" are defined as the zeros of its determinant
det (A(2)) = enz™ + -+ + c12 + co where the coefficients (co, ..., c,) are (multivariate) polynomials in the elements

{Ag?)u,j €{l,....s}, ke {O,...,r}} of A(2).

Example 3. [31] considers a so-called regular linear pencil (compare [20] page 25-28) M(z) = Az— B, z € C, where A
and B are square matrices and det (Az — B) is not identically zero. The elements of A are assumed to be unrestricted
complex numbers, in particular A may be singular. The matrix pencil has a zero at infinity if and only if det (A) = 0.

Example 4. Let the multi-index o = (ry,...,7,) prescribe the maximal degrees of the columns (Ape 1](2), . . ., Ao 5(2))
of the (s x s)-dimensional polynomial matrix A(z) where A(0) = I, and denote the coefficients of A(z) again with a
superscript, i.e. Aff)i] is the (s x 1)-dimensional coefficient vector of the i-th column of A(z) pertaining to z*. The
parameter space L g R"™, where n = s(p1 + -+ + ps), describing all matrices of the form above consists of all (free)

parameters in A(z), i.e.

| = vecrow (A(l)

(k) CONERPYEY () (ri)
D AR A AL A AT

(1) k) (rs)
A AR ...7,4[,,5]) 7

rs)
®,s]

where vec,.,,, denotes row-wise vectorization. If the column-end matrix, i.e. the matrix (Affll)], e AE ) consisting of

the coefficient vectors pertaining to the highest degree in the respective column of A(z), is of full rank, the degree of
the determinant is equal to n. The polynomial matrix A(z) has a zero at infinity if and only if the column-end matrix is
not of full rank.

Example 5. Let Ay(z) = A(go) + Aél)z + -+ A((f)z" be a polynomial matrix of dimension (s x s) whose parameter
space L, CRN, N = [(ry +---+ 1) + 5] s, consists of all

l = vecrow (A(O)

(k) (r1)
9,[-,1]""7A0 LA

e ) ) 140 (k) (ra)
o Ap el 1 Ag e Ag ey Ap el Mg e Ag e - ’Ae,[-,so
(2)

such that additionally det (Ag(2)) # O is satisfied.

Furthermore, let Lr C L, be the parameter space for which all coefficients of Ap(z) are multivariate rational functions
of p "deep” parameters § = (01,...,6,) € © CR?, ie.

k

0,45 —
T 01,..,0y)



where p( ) (01,...,6,) and qff) (01, ...,0,) are multivariate polynomials in 6, and q( ) (01,...,60p) is not identically zero.
Note that the coefficients of det (Ap(z)) are again multivariate rational functions of 6. Thus, it follows that the degree
Ngeneric = Maxgeo [deg {det (Ag(2))}] is constant almost everywhere in © and equivalently that the leading coefficient
Crigenerse 15 almost everywhere not equal to zero. On points 69 for which deg{det (Ago(2))} < ngeneric, Ag(z) has a
zero at infinity for given parameter space Lg.

If we were to consider L, as the parameter space, then Agy(2) has generically (11 + -+ 4+ 75) — Ngeneric Zeros at infinity.
This emphasizes that zeros at infinity are a concept that is closely related to the parameter space describing a set of
polynomials.

Remark 6. It is often the case that a priori restrictions are described through the kernel of a (linear) map, see e.g. [17].
The parameter vector [ € RY describing the “linear parameters” , i.e. the parameters in Ay(z), in example may be
restricted by DI + d = 0 where D € RP*Y and d € RP are a priori given. In example |5 above, however, the a priori
restrictions are given through the image of a rational function.

Let us assume that the multivariate rational function A(-) attaching the “linear” parameters [ € L, (describing the
polynomial matrix in example to the “deep” parameters 6 € O is affine, i.e.

A e — L,
10 —»CO+ec=1,

where C € RN*P N > p, and rk (C) = p. Thus all "linear” parameters l € L, C RY in the model are described as the
image of A(-), i.e. restricted to be contained in the space spanned by the columns of C, translated by c.

The parameters [ € L, satisfying these restrictions can equivalently be described b}f the kernel of CT Indeed, note first
that all vectors | € L, which are contained in im (C) are orthogonal to (im (C))™. Since (im (C))" = ker (CT), the
vectors | € L, which satisfy CTl = 0 span im(C). Hence, the parameters [ € L, Whlch are given by the image of A()
satisfy CT (I — ¢) = 0 and can thus be equivalently described by the kernel of a map.



3 Literature on linear multivariate rational expectations models

In this section we give an overview of some solution methods for multivariate linear rational expectations models. Rather
than describing all solution methods, we point out how the literature on solution methods developed with respect to
allowing for zeros at infinity, stochastic singularity, and parameter restrictions.

3.1 Blanchard and Kahn, and predetermined and non-predetermined variables

An early influential paper is [8]. They consider the model

(pre) "
Et (ytJrl ) — B yt(p g + Oz teN (3)
g (e | =B e t
t \ Yit1 Yt

where B € R™*", C' € R"*™, E, (yt(fle)) = yg’;‘f), the predetermined variables 3" have initial value y{""®, and

(2t);en is an m-dimensional exogenously given stochastic process which is bounded in the sense that
Vt € N:3Z, e R™ A6, € R such that — (1+4)% Z, <Ky (204) < (1+9)" Z, Vi>o0. (4)

They ask as to when a stochastic process (y;),.y which satisfies equation of the rational expectations model above
for every t € N, which satisfies the non-explosiveness condition

_(pre)
VteN:3 (y(z pre)> € RMPre)+n(-pre) \ 5, e R such that (5)
Yy
y(me) y(phe) g(pre)
- (1 + i)at ,(tﬂpre) S Et (t—\zlre) S (1 + i)gt ,(t—\p'r‘e) Vi Z 07
Yt Yit+i Yt

and which is contained irﬂ H_(t) exists, and (if it exists) whether it is unique. A process (y;),.y with these properties
is called a solution of the rational expectations model . Note that the set of all solution is thus restricted in two
ways. First, some processes for which equation holds for every t € N are excluded because they do not satisfy the
non-explosiveness condition; second, some processes are excluded because they are not contained in H,(t) at time ¢. The
latter fact excludes in particular processes orthogonal to H.(t).

Some remarks on the structure of the model are in order.

Remark 7 (Consequences of a larger conditioning set). Following [25] page 411, we consider the model with the
only difference that the solution (y;),. is not required to be contained in H(t) but in (with obvious notation) H. ¢(t)
where ((t),cy is @ p-dimensional stochastic process (satisfying the non-explosiveness condition ON ex0genous processes
outlined above) orthogonal to (2¢),.y. Obviously, if the conditional expectation is taken with respect to H. () a larger
solution set might be obtained. Otherwise, the terms E (y;41|H(t)) and Cz; only depend on elements in H(t), implying
that also y; is a function of elements in H,(¢).

The following superposition principle holds: If (ytl)teN is a particular solution of
E (yp41|H-(t)) = By; + Ciz

in the sense that it solves the equation above for given (z;),. for every time point and (yf) is a particular solution

of

teN
E (yi1|He(t)) = By; + CaG
then (by independence of (2¢),c and ((t),cn) we obtain that
E (41 + Uie1) [Hz () = B (yi41 + Y1) + Crze + O

Thus, if we allow in the Blanchard and Kahn model for a larger conditioning set than H_(¢), the solution set of the
Blanchard and Kahn model is enlarged by the solutions of the homogenous equation

]E(yt+1|H<(t)) = By:.

"[8] define the conditioning set differently. For ease and continuity of presentation we deviate from their definition.




Remark 8 ((Non)-predetermined variables). Blanchard and Kahn distinguish between predetermined variables 3"

(intended to capture, e.g., the notion of capital in the economy), i.e. E, (ZJ&T)) — yt(Tle) holds, and non-predetermined

variables which are sometimes called “jump-variables’. Many authors consider this distinction to be unnatural. E.g. [37]
argues that the parametric structure of the model determines endogenously which linear combinations of endogenous
variables have no expectational error term, compare section [3.3]starting on page[20] Also, one might think that it should
be possible to give an interpretation in terms of backward and forward looking behavior for the solution corresponding
to predetermined and non-predetermined variables respectively. However, both predetermined and non-predetermined
variables depend on expectations at time ¢ of future exogenous variables.

We consider the distinction in predetermined and non-predetermined variables as a clever, although ad hoc, way to obtain
the “right” number of degrees of freedom. This enables Blanchard and Kahn to analyze existence and uniqueness of
solutions with regard to the number of non-predetermined variables without getting very technical.

Remark 9 (Conditional expectations in every equation). Every single equation in the system of equations involves
expectational terms which cannot be canceled out by elementary row operations, i.e. there is an identity matrix on the
left hand side of equation instead of a potentially singular matrix A as in [3I] discussed in section starting on page
This is a serious drawback since, in general, one does not obtain an identity matrix (or even a non-singular matrix)
on the left hand side of the rational expectations model if it is derived from agents’ utility optimizing behavior.

Remark 10 (Non-explosiveness condition). The non-explosiveness condition means that the projections on the linear
space spanned by the components of {z;,z¢_1,...} may not grow faster than polynomial when the forecasting horizon
increases unboundedly. [3I] note on page 1020 in footnote 20 that “the stability condition can be written as the
requirement that if |E; (z:4x)| < Z a.s. for some finite Z and all ¢ and k, then |E; (y:41)| < ¥ for some finite § and
all t and k." There are many similar boundedness conditions (not all of them equivalent) which capture the notion that
“small inputs imply small outputs” and thus the existence of a bounded linear (and hence continuous) mapping between
linear spaces, compare [28] page 11.

[7] discusses the role of this non-explosiveness condition and whether imposing such a condition is justified. He notes,
among other things, that in some cases “the implications of the explosion of an endogenous variable are inconsistent
with some assumption of the model” and refers to [27] “where some prices become negative in finite time” if a solution
not satisfying the non-explosiveness condition is chosen. Also, [6] mentions on page 116 that “in certain models non-
stationarity may violate the assumption of market clearing and of rationality of expectations”. Furthermore, [I] argues on
page 187 that “we are not interested in optimization problems in which households or firms achieve infinite value, [..],
since the essence of economics, trade-offs in the face of scarcity, would be absent in these cases”.

Decoupling of unstable and stable roots.  The authors use the Jordan decomposition of B = T~'.JT, where the
rows of T are a basis for the left-invariant subspaces of B, to decouple the unstable from the stable part of the system,
i.e. the Jordan blocks are ordered with respect to weakly increasing absolute values of eigenvalues. Eigenvalues with
absolute value smaller than or equal to unity are stablﬂ and otherwise they are unstable. Left-multiplying equation (3

with 7' leads to
E, (St+1) (Js St
= TC teN 6
<Et (wet1) Ju ) \uy Tz, € (6)

(pre)
where (Zt) =T <y(ip,e)> and Js and J, contain the Jordan blocks corresponding to the stable and unstable
t Y

eigenvalues.

Obtaining a solution for the unstable part of the system. The unstable part of the system is solved forward and
thus the solution (), depends on conditional expectations at time ¢ of future values of the (given) exogenous process
(2t);en- The solution

Uy = — Z J;(i+1)Tu.CEt (Zt+i)
=0

is obtained by successive forward substitution in the second block of rows in @ e up = J By (upg1 ) — Ty eCrt,
where T}, o € R™Pre)xn denotes the rows of T' corresponding to unstable Jordan blocks.

8Compare page 1307 line -4 in [8]. [32] note on page 72 below their formula (19) that unit roots are considered stable because they do
not violate the non-explosiveness condition. A root \ is treated as unstable if S\ > 1, where 8 € (0,1) is a discount factor.



Existence and uniqueness of the solution of the stable part of the system: Initialization and induction step.
A solution (s¢),. of the stable part is obtained in the following way. For ¢ = 0, we have from the first block of rows in

(o) that

W = (T, 0+ (T, w0

pre,u

_ ,pre) _ (-1
pre,s S0 = Yo (T )pre7u Uo

— (T
where the subscripts in, e.g., (T‘l)pmS denote the row indices corresponding to the predetermined variables and the

column indices corresponding to the variables pertaining to the stable eigenvalues. Note that both y(()pw) (as part of the

model formulation) and ug (as solution at time ¢ = 0 of the unstable part of the system as described above) are known.

Thus, if the given vector (y(()pm) - (T’l)pmu uo) is contained in the column space of (T’l)me,s, there exists an sg

such that the initial value of the predetermined variables yépm) does not contradict the initial model specification.

For t — t+ 1, i.e. obtaining s;41 for given s;, we proceed as follows. We obtain s;11 by subtracting its expectation at
time t from the first block of rows of the system @ i.e. we subtract

]Et (ylgiq@) = (T_l)pre,s Et (st+1) + (T_l)p,,«e,u ]Et (ut+1)

from

yn = (T7) U1

i+1 St41 + (Tﬁl)

pre,s pre,u

and note that yt(iqe) is predetermined. Thus, we decompose (T’l)pre . (se41) inits projectiorﬂ on the space H,(t) and

the innovation (T’l) (g1 — Ei (ugs1)), iee.

pre,u

0=y ~E, (ygfff)) = (T7Y) ey (st41 = Bt (se10)) + (T71) o (wers — By (ueg))
< (1—‘71)1)’,‘675 (St+1) = (Til)p,,‘(%s Et (St+1) — (Til)pre,u (Ut+1 — Et (ut—‘rl)) . (7)

Hence, if the right hand side of H is contained in the column space of (T‘l)pres, there exists an sy for given s
which solves @ is contained in H.(t), and satisfies the non-explosiveness condition.

Remark 11. It is important to realize that (st)teN, assuming that such a solution exists, has the same innovations as

. . s .
(ut)en- It follows that neither (ug) o nor (s¢),cy are predetermined and that the process ( t) has a singular
t/ teN
innovation covariance matrix. Note that the rank of the innovation covariance matrix is bounded from above by the

number of unstable roots and that there might be multiple solutions (s;),.y (such that s; € H.(t) and that it satisfies

the non-explosiveness condition) if there are strictly more non-predetermined variables than unstable roots.

Remark 12. Equation is of paramount importance for understanding existence and (non)-uniqueness of a solu-

tion of Blanchard and Kahn's model. We want to obtain an s;y; such that the predetermined variables yt(f_rle) sat-

isfy the initial model specification, i.e. we ask whether there is an s;11 such that its one-step-ahead forecast error
-1 _ cten. -1 _ ;

(T )pms (st41 — B¢ (se41)) offsets the one-step-ahead forecast error (771) w1 — By (ugy1)) of the solution of

the unstable part of the system.

pre,u (

If there is more than one way to do that, i.e. (T‘l)pm’u (w41 — B¢ (ug41)) is contained in the column space of (T71)

and the kernel of (T1)
pre,s

both predetermined and non-predetermined variables after transformation to original variables.

pre,s
is non-trivial, the solution is not unique. Note that this non-uniqueness affects, in general,

If there is no such s;41 which ensures that ygrf) —E, (y§ﬁ7ie)> = 0 holds, there is no solution which satisfies the initial

model specification. In other words, there is no way that the one-step-ahead prediction errors of the solution of the
unstable part of the system get offset by the one-step-ahead prediction errors of the solution of the stable part of the
system. We can still calculate a solution which however contradicts the original specification. Adding an additional
non-predetermined variable amounts to including an additional component in the vector of endogenous forecast errors
n: in Sims notation, which in turn makes satisfying the existence condition easier. In [37], this situation is described by
the fact that the endogenous forecast error cannot offset the influence of the exogenous variables, and hence there is no
solution in H,(t) satisfying the non-explosiveness condition.

90f course, E; (st4+1) = Jsst + Ts,eCzt is known at time ¢ in equation .



Blanchard and Kahn'’s full rank assumption on (Tfl)me . and their counting rule. [8] state in their Proposition
1, 2, and 3 that under the assumption that (T‘l)pre , is of full rank,

e there exists a unique solution (y;),cy if n (u) = n(-pre),
e there does not exist a solution (y;),cy if 7 (u) > n(—pre), and finally that

e there is an infinity of solutions if n (u) < n(-pre).

This shaped the (oversimplifying) understanding that rational expectations models have a unique solution if there are as
many “jump-variables”, i.e. non-predetermined variables, as there are unstable roots of B. However, it is obvious from
the derivation above that the following proposition holds.

Proposition 13. A solution (y;),.y to the rational expectations model

E; (yt(?fle)) (pre)

_ Y.

E ( (—'pre)) =B (tﬁpre) + CZt, teN
t \ Y41 Yt

satisfying firstly y. € H.(t), t € N and secondly the non-explosiveness condition

_(pre)
VteN:3 ( Y )> e RPre)tn(-rre) A 5 € R such that

_(—pre
t

o g(pre) y(pr_e) . zj(m“e) _
Yt Y Yt

for bounded inputs (2),y satisfying

VYt e N:3Z, € R™ A0, € R such that
—(1+)"Z, <Ey(zs) <A+ 0)* Z, Vi>o0,

exists if y{™) — (T‘l)pmu ug (initial value) and (T 1) (ut+1 — E¢ (ugy1)) (innovations) are contained in the column

space of (T’l)pre , forallt e N.

pre,u

Furthermore, the solution (if it exists) is unique if the kernel of (T‘l)pw  Is trivial.

e, &

3.1.1 Analysis of Blanchard and Kahn's model with the martingale difference method

[I3] analyze the model of Blanchard and Kahn without restricting the processes satisfying the rational expectations
equation to be non-explosive which they consider potentially unjustified (J13] pages 129-133). However, their analysis
is in error because they do not take into account that some endogenous variables are predetermined. They start by

transforming
(pre)

) (o) v e
E, <yt+1 ) Yt

()= (% ) (3 +rom v

and subsequently introduce (on page 131 below formula (4.93)) revision processes (compare section [4] starting on page

42)

to

v =8¢ — Ky (St)

e =uy — K¢ (Ut) .

By introducing these revision processes, they suggest that the components of v; and 7, are linearly independent of each
other. However, this is obviously wrong because only n (—pre) revision processes appear in the model.

10



Writing

y(p”‘e) y(pre)
(ﬂpré)—"_l =B (t—\pre) +Cz, teN,
Yey1 ~ — &t Yy

where ¢; = yt(ﬂpre) —E; 4 (yt(ﬁme)), and premultiplying T, we obtain after rearranging

(In(s) - JSZ) St - Tso
((I’n(u) — JuZ) Ut - T',_‘PTegt + Tu. Cthl, (8)

We proceed to analyze existence and uniqueness of a solution of (8]) with the methods put forward in [37] and [1I] in
order to develop an understanding as to how these methods are connected. For ease of presentation we assume that the
exogenous process (2¢),y is white noise {; (with zero mean and the identity matrix as covariance matrix).

Analyzing solutions of equation with the method in [37]. For a more detailed derivation we refer to section
and Since the backward solution does not satisfy the non-explosiveness condition (which in Blanchard and
Kahn's model applies to all components of the endogenous variables), we focus on the forward solution

Uy = l— Z (Juz) !

i=0

(Tu,ﬁpTeat + Tuoczt—l) (9)

and assume that a solution of the rational expectations model exists, i.e. u; € H,(t), ¢t € N, and thus E; (u) = us
holds. The existence condition derived in Corollary 25| on page 28] in the notation of this exampld!]is

span (Ju_lTu.C) C span (Ty,—pre) - (10)

Since u; = E; (u¢), we obtain that the endogenous forecast errors €; (compare section on page can be expressed
as a function of expectations at time ¢ of future exogenous variables. Thus, in a solution @ for the unstable part of
system , we have found a representation of the endogenous forecast errors ¢; in terms of quantities known at time ¢.

The solution is unique, if we can express the endogenous forecast error Ts €+ influencing the “stable” part of the
system as a function of the endogenous forecast error T, —,rc€; affecting the “unstable” part of the system (which in
turn is a function of expectations at time ¢ of future exogenous variables). The condition that the solution be unique is
equivalent to the existence of a matrix ® of dimension (n(s) x n(u)) such that

Ts,ﬂpre = CI)Tu,—\prea
compare section starting on page [29]

Analyzing solutions of equation with the method in [11].  First, note that the endogenous forecast error ¢; =

yﬁﬂpr@)—Et_l (yfprd is a linear function of the m-dimensional exogenous process &, i.e. we may write ¢, = K¢, where

K is of dimension (n (—pre) x m). Furthermore, we assume for expositional convenience that n(u) = n(—pre) = m.

[IT] claim in their Theorem 4 on page 249 and 250 that, under the assumption that the exogenous process admits a
stationary (finite or infinite) moving-average representation, there exists a unique solution to the rational expectations
model if the number of unstable roots equals the number of free parameters. This is incorrect because one may only
cancel as many unstable roots as there are linearly independent martingale difference sequences (as is also the case in
[8] under their full rank assumption). Moreover, in the derivation in [1I] it is implicitly assumed that the rank of the
innovation covariance matrix coincides with the number of endogenous variables even though this excludes a great many
state of the art models.

Indeed, they argue that their result holds by claiming that one can cancel an unstable root of a certain polynomial matrix
by fixing one of the free parameters. However, this is in general not correct since the roots to be canceled out have to
lie in the same space, taking account of which requires additional free parameters. The example below shows that in
general (n (—pre))? free parameters are needed in order to cancel n (u) unstable roots, we want to find a matrix K in
equation below such that (T, —pre K + TyeCz) can be factored as (I,,(,) — Juz) A(2), where A(2) is a polynomial
matrix of appropriate dimensions.

10Note that the timing convention in Blanchard and Kahn's model is different to the one Sims is using. For this reason, Jit appears in the
existence condition adjusted to the notation in this example.
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Example 14. Consider the “unstable” part of the system , i.e.
(In(u) - Juz) Ut = (Tu,ﬁpreK + Tu.CZ) &t (11)
= (Tu,—\preK + Ju (Ju)_l Tu.CZ) €t7

and note that (in accordance to 1i the matrix polynomial can be factorized in the desired way if span (Ju_lTu.C) C
span (Ty,—pre). In order to fix ideas, we assume T}, e to be invertible, take

K=- (Tu,ﬁpre)_l (Ju)_1 Tuoca
obtain

(In(u) - Juz) Uy = (*Tu,ﬁpre (Tu,ﬁpre)71 (Ju)il Tuoc + Ju (Ju)71 Tu.CZ) St
= (Inqu) = Juz) [ 1 TusCl &,
and thus it follows that
[adj (I = Juz)] (Ing) = Ju?)
det (In(u) — Juz)
B det (In(u) — JuZ) In(u)

_ g1 _ _g-1

[_Ju_lTuoC] gt

Uy =

[39] proves (starting on his page 91) a similar result (using similar methods as above) to [II] under more restrictive
assumptiong’?] Whiteman'’s result is correct and therefore consistent with the result in [8] (compare Proposition but
not consistent with the one in Theorem 4 on page 249 and 250 in [1I] mentioned above.

3.1.2 Stochastic singularity as a different way of obtaining the right number of degrees of freedom.

As already mentioned in remark [8] on page [8 prescribing some variables to be predetermined is considered ad hoc by,
e.g., [37] and [9, 1], and the corresponding solution process does not have a nice economic interpretation. A more
natural way for obtaining a model in which some linear combinations of endogenous variables have trivial one-step-ahead
prediction errors is to require that the stationary exogenous process (zt),., have a singular innovation covariance matrix.
This insight into the structure of rational expectations model is illustrated by analyzing the Blanchard and Kahn model
with the martingale difference method developed in [, [II] and by subsequently showing that the distinction in
predetermined and non-predetermined is both unnecessary and restrictive.

Distinction between predetermined and non-predetermined variables. First, note that the endogenous forecast

(Cere) g, <yt<ﬁpre>

error ¢ = Y, ) is a linear function of the innovations 1411 = 2141 — B¢ (2:41) of the exogenous

process, i.e. there is a matrix K of appropriate dimensions such that ¢, = Kv;. Second, since the covariance matrix
of the innovations v; of the exogenous process is singular with rank ¢, we may Writh_Z] vy = b€;, where the covariance
matrix of & is non-singular. Thus, in the model , we obtain that

et = Kb&;

where K € R*(opre)xm 5nd p € R™*4. Hence, we obtain that

E, (") B yi
E, (yt(;,{re)) yﬁl’{”) — Et41

o) 0
= (1) - (7) mosean (12)
Yer1
\Whiteman does not allow, e.g., for zeros at infinity.

12Note that b is unique up to orthogonal post-multiplication.
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No distinction between predetermined and non-predetermined variables. Without imposing that some variables
are predetermined, we obtain in the same way as above that

E, (yt+1) = Yt+1 — Et41
= Y41 — RbEr 1 (13)

where R € R™*™ and b € R™*4. It follows that the number of linearly independent linear combinations of endogenous
variables can be gauged by the rank of the innovation covariance matrix of the exogenous process. Also note that
equation is more general than (12). Thus, the distinction between predetermined and non-predetermined variables
is both unnecessary and restrictive.

A more useful rule of thumb than n (—pre) = n(u) for the uniqueness of a solution of the Blanchard and Kahn model
would thus be that the number of unstable roots has to be equal to the rank of the innovation covariance matrix of the
€X0geNnous process.

13



3.2 King and Watson: Allowing for Zeros at Infinity and Zeros at Zero

[31] generalizes the model in [8] to models of the form

S () (e
(—pre) =B y(t—|p're) + CEt (Zt) , te€ N (14)
]Et (yt+1 ) yt

where A € R"*", n = n(pre) + n(—pre), n(pre) and n(—pre) are the dimensions of the predetermined and non-
predetermined variables respectively, is allowed to be singular, but the determinant det (Az — B) of the matrix pencils
Az — B, z € C, must not be identically zero. All other assumption of Blanchard and Kahn's model remain the same.

Forward “shift”. King and Watson introduce, following [36] (Chapter XI, Section 21, page 307), the forward shiﬁf}]
operator F' which operates on the time index of the endogenous process but not on the information set, i.e.

FE; (y¢) = E¢ (y11), t € N

Thus, they write equation above as

(pre)
(AF — B) it&f ,,))> = CE;(2), teN. (15)

Decoupling. Similar to the approach in [8], King and Watson transform the equations by premultiplying equation
(pre)

(15) with a non-singular matrix V, and transform the endogenous variables (Z/(ZJ;LFJ by premultiplying them with a
t+1

non-singular matrix W, i.e. we obtain

B (4
& (o)

St
g (A*F—B*)Et Ut :C*]Et (Zt), teN.

1t

(VAW'F —VBW H W =VCE;(2), teN.

where the separation of the canonical variables s;, u;, and i; is determined by the location of the zeros of the pencil
(A*z — B*).

If the matrix A is singular, King and Watson use the theory developed in [20] (Chapter 12, pages 24-28) on regular
matrix pencils Az — B, where z is a complex variable, A and B are square matrices and det (Az — B) is not identically

13Note that this operator does not correspond to an isometric or unitary transformation, in the case of a stationary process (Yt)ren OF
(Yt)scy respectively, generating the process, compare [19] page 461 and 462. [31] remark in footnote 4 on page 1017 that F'y; is not defined
because the conditioning set is not specified in this case.
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zerd™ They obtain matrices V and W of a more complex™| nature and finally obtain

7 Js St
F— Ju ]Et Ut = C*Zt, te N, (16)
N I 1t

where N is a nilpotent matrix, i.e. there exists a positive integer [ such that N! = 0, the matrices .J, and .J, contain
Jordan blocks with eigenvalues of absolute value smaller than or equal to unityE] and larger than unity respectively. The
dimensions of the canonical variables (s;) and (u),y correspond to the respective dimensions of J; and J,.

If the matrix A in is non-singular, the equation is premultiplied by A~!, and subsequently the Jordan decomposition
of A7'B = T—1JT, where T are a basis of the left-invariant subspaces of B*, is considered. Thus, we obtain for
equation with V. =TA™! and W =T that

B (y)
(TA™)A T2 F—TA-'BT | T ]Ef< (’f;l)> =VCa, teNl.
— t

:‘V =W t+1

Js *
= (InF < Ju>) E, <Zi> =C*z%, teN

3.2.1 Obtaining a solution of the model ((14)).

1

King and Watson do not state a theore in [31], but only note that they “...show that initial conditions on..." y(~Pre)
“...can be determined and a unique solution obtained if (i) the solution is restricted to be stable and (ii) a certain sub-
matrix of...” W "...has full rank”, on page 1020, line 13 in [3I]. Their conditions are slightly stronger than the conditions
given in our Proposition [16| below.

14Note that the rank deficiencies of A and B correspond to zeros at infinity and zeros at zero respectively.
15

(Az—B)=[A(z — a) — (B — Aa)]

[A (B—Aa) Y (z—a) - I] (B — Aa)

(") e-a-1|am-aa

() (7 e

i Qlu{(M I+°"‘0>_1 [ o Mo) o (I+ h I+ auo)} } @ (B = 4a)
—g-1

) Q_lu{ (I (I 4 oo)™? Ho) = (/Ql W ons) 1) } Q (B — Aa)
—5-1

5 ) () () )0 ) fewan
@152 (O ) wrarna () )} Yoo

=G-1 T
s {(1 (Iwo)luo)z((k ) I)}W,WA_H
=v-1 )

16\We remind that [32] note on page 72 below their formula (19) that unit roots are considered to be stable because they do not violate the
non-explosiveness condition. A root A is treated as unstable if A > 1, where 8 € (0,1) is a discount factor.
17 They only refer to [8].

15



Solution for the unstabl€d!®| part of the system ([16)). We start by deriving a solution Ut)yen = (?t> for the
t/ teN

unstable (including the zeros at infinity of the determinantal equation det (Az — B)) part using the fact that we restrict
the solution space to non-explosive (in the sense of Proposition solutionsEg]. As solution for the unstable part of the
system, we thus obtair@ as solution pertaining to the subsystem corresponding to finite, unstable roots

ue = (IF — J,) "' O} JE¢ (2)
— I (I =T, F) 7 Cr LR (21)

= IS (1) FRC B (=)
k=0

==Y T FC B (1)
k=0

and as solution pertaining to the subsystem corresponding to infinite roots

iv = (NF —1)"" Cf JE; (%)
adj (NF — I)
det (NF 1) Cinee (1)

where n(i) denotes the dimension of the square nilpotent matrix N, or (compare [1I] page 232 and [4] page 154, formula
(3.57))

it =— (I — NF)"' Cf JE; (2)
n(i)—1

== Z NkC;:.Et (zt4k) - (17)
k=

[}

Remark 15. In both derivations for the solution (i;),.y pertaining to the subsystem corresponding to infinite roots
we see that there are only finitely many expectations at time t of future exogenous variables. Moreover, there is no
ambiguity as to whether one should consider the forward or backward solution, i.e. whether one considers the power
series development of [det (NF — I)] ™" in terms of non-negative or non-positive powers of F', because the determinant
of (NF —1I) is either +1 or —1 and hence constant. The reason why the canonical variable i; is considered unstable is
that iy = —ZZ(:Z()fl N’“C;.zt+k is in general not contained in H,(t). It follows that, regarding the solution method,
there is formally no difference to the case considered by Blanchard and Kahn.

Obtaining a solution for the original variables. In contrast to 8], King and Watson do not first derive a solution

(8t);cn for the stable part of the decoupled system but obtain (yt(pre)) directly by using the first block of rows in the
teN

(pre)
equation <yy(ipre)> =w-! (;Z) In order to obtain (if it exists) a solution (yt(ﬂpre))teN for the non-predetermined
Yi

(pre)
variables, they use the second block of rows in the equation ([sj> =W (y(‘;pre)>.
t Yt

18The word “unstable” refers to the location of the zeros of Az — B, z € C.

19Note that a solution (it)¢en of the subsystem of pertaining to infinite roots never violates the non-explosiveness condition. However,
it is always considered to be “explosive” because the solution (it),c may involve expectations at time ¢ of future exogenous variables (but no
past exogenous variables) as will become clear below.

20Note that the formula (8) in [31] on page 1020 is not correct. Their J " should be Jz "1

16



Initialization: Obtaining yéﬁpm) for given U, and y(()pm). Initial conditions for y(()pm) are given, for yéﬁpm) a solution
(pre)
is obtained using the variable transformation (50) =W y(‘lpre) e
Uo Yo
Uy =Wy prey(p re) + Wy, —\prey(()ﬁpre)
— WU —\prey[()ﬁpre) UO - WU prey[)prp)

If Uy — WUpwyépre) is contained in the column space of Wy ¢, we obtain a yéﬁpre) satisfying the equation above. If
the kernel of Wy . is trivial, such a y( P¢) is unique.

Induction step ¢ — t + 1: Obtaining yt(fle) and yﬁ’{re) for given yt(pre), yt(ﬁm), and U;. For the predetermined

variables, we first use the inverse of the variable transformation to represent yt(f:le) as a function of the stable and unstable

part, i.e.

yi? = (W) s+ (W)

pre)

Ut+17

pre,s pre,U

take expectations at time ¢ and use the predeterminedness of ¥,/ ", i.e.

Et (ygf"rle)) = (W_l)pre,s ]Et (St+1) + (W_l)pqu ]Et (Ut+1)

=y

and finally replace E; (s;1+1) and s; by known quantities, i.e.

)
uly = (W),
)

pr Et Sf+1 + (Wil)pre,U Et (Ut+1)
= (W pres 155t + Ve oCz] + (Wﬁl)me E; (Up41)
= (W_l)pre,s |:Js {W preyffpre) + Ws,—'preygﬂpra} + Vvs,oczt:| + (W_l)pre,U Et (Ut+1) . (18)

Regarding the non-predetermined variables, we proceed analogously to the initialization step, i.e. we use the second block

(pre)
of rows in the variable transformation (St+1> =W <yt+1 > and obtain

Us1 ymre
Ut+1 = WU,preyEirle) + WU —\;m“eyt(:flwe)
= Woprehigt = Ui = Wopretsy. (19)

Thus, if Ui —WUwpreyt(Tf) is contained in the column space of Wi —c, there exists a yt(?l’m) satisfying all requirements

of a solution.

Blanchard and Kahn result generalized by King and Watson. We may thus generalize Proposition in the
following way.

Proposition 16. A solution (y;),cy to the rational expectations model
E, (y(pre)) (pre)
(:—;16) =B y(ﬁpre) +Cz, teN
E, (yt+1 )

satisfying firstly y. € H.(t), t € N and secondly the non-explosiveness condition

—(pre)

7t g(pm) y(pvze) ,g(pTe)
VteN:3| 7L e RUPre)tnorre) ng, e R such that —(1+14)7" | 7, <E | 7] <@+ Vi >0,
FPre) FPre) L (Pre) )

t t t+1

for bounded inputs (2¢),cy., i.e.

Vt € N:3Z, € R™ A6, € R such that — (14 )% Z, <Ey (z045) < (1+49)" Z, Vi>0,

o)

exists if Uy — WUWeyt(p " is contained in the column space of Wy _ for all t € N.

Furthermore, the solution (if it exists) is unique if the kernel of Wy e is trivial.
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Comparison with the method used in Blanchard and Kahn.  Assuming that A = I and n(pre) = n(s), note
that the matrix W in the derivation of [31] is identical to the matrix T" in the derivation of [8]; both relate the original

(pre)

variables

to the canonical variables <St> While Blanchard and Kahn require that y[()pre) —(T71) U
Uy pre,u

(t )
ytﬁpm
and (Tfl)pre o1 — By (ugq1)} (for all ¢ € N) be contained in the column space spanned by (Tﬁl)pre .+ King and

Watson require that U; — WU,pmy,gpre) be (for all ¢ € N) contained in the column space spanned by W, —pre. As can
be easily seerE], if one of these matrices is non-singular (assuming it is a square matrix) the same holds for the other
matrix.

In order to interpret the condition that U; — WU,p,.eyt(pre) be (for all t € N) contained in the column space spanned by

W, —pre, We take conditional expectations at time ¢ of equation (19) and subtract it from equation ([19)), i.e. we obtain

Wu,—pre [yt(?fre) —E; (yt(:lljre))} = Upp1 — B¢ (Ups1) -

We ask whether there exist innovations of the non-predetermined variables such that W, .. times these innovations
coincides with the innovations of the solution of the unstable part of the system. This ensures the existence of a solution of

the rational expectations model satisfying the original model specification, in particular the term (yt(f:f) —E, (ygﬁqe)))

is indeed zero. In the Blanchard and Kahn model, the same effect is achieved by finding an s; such that the innovations
of the solution (s¢),cy of the stable part of the system offset the innovations of the solution (u;),.y of the unstable part
of the system. Note that if the kernel of W, _r¢ is non-trivial, the possible indeterminacy also affects the predetermined
variables through equation (18]).

3.2.2 System reduction
This section shows that zeros at infinity of the pencil Az — B, z € C, are not interesting for describing the dynamics
of the system. In their subsequent paper [32], King and Watson transform system further and link (under suitable

conditions outlined below) the variables pertaining to the zeros at infinity of the pencil Az — B to dynamic identities in
the following way. Starting from equation ([16)), i.e.

I JS St
< )F Ju Et Ut :C*Et (Zt), tGN,
N I .

1t

they obtain by first left-multiplying

and then left-multiplying™]

. 5 J, 7% _

-1 /-1 _ s sf 1

=" W (F ! ( %))(W) Wi
0 —Wl.;l

Ty T
To1  The

on T we see that the determinant of (T22 — T21TﬂlT12) is necessarily unequal from zero, i.e.

I T T2\ _ Th1 T12 _ _1
det((_TmTﬂl I> (Tm 7)) =%t (o' 1 mrim = det (T11) det (Too — Tor Ty Tz ) -

The inverse of A takes the form

. . N I
) and assume that 771 is non-singular. Left-multiplying (—T21T71 I)
11

21Consider the partitioned non-singular matrix T = (

-1 -1
1 Tl_ll + Tﬁle (T22 - T21T1_11T12> T21T1_11 —TﬁlTu (T22 - T21T1_11T12)
= —1 —1 )
- (TZQ - T21Tﬁ1T12> Tngﬁl (Tzz - T21Tﬂ1T12>

-1
compare e.g. [26] pages 417-420. Hence, the element (T*l)22 = <T22 — TngilTlg) is non-singular.
22Note that Wi can be chosen to be invertible under the assumptions outlined in [32], i.e. a rank condition which implies a unique solution

of the original system. If follows from the invertibility of W that also W is invertible.
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- Were Ws —pi W _ . . . .
where W = [(W‘x: WZ;}:) - (Wuf) I/Vif1 (Wi pre W,-ﬁp;«e)} in which the subscripts —pire and f refer to the
(—pre)

new vector of non-predetermined variables g, (a subvector of yt(ﬂpre) which gets linked to the canonical variables

-pre

ut) and a subvector f; of yt( ) which gets linked to the canonical variables i;, a system of the for

((In(pre) ) P W—1JW> 0 yre
Ingopre) B, (g7 | = T(F)n(F)C7E (=) (20)
Wit (Wipre Wipie) I £,

This equation is obviously equivalent to the system

(pre)

fe= Wi}l (Wim'r'e Wi,ﬁp%) <gy(tﬁpre)> + T(F)n(F)C Eq (2) -
t

y(prle) s y(pre) i
]Et ~t(?:;€re) = W JW gt(:pre) + T(F)T](F)C Et (Zt) .

The first equation does not involve conditional expectations and the second one involves a pencil without zeros at infinity.
King and Watson prove in their Theorem 1 that under the assumption of a unique solution of the rational expectations

model (14)), i.e.
B )\ (i
ey | =B ey | 4 CBe(z), teEN,
IEt (yt+1 ) yt

the reduction described above, i.e. finding a subvector f; of yt(ﬁpre) such that equation holds, is possible. In their
Theorem 2, they show that if the original system has no redundant equations, i.e. det(Az — B) # 0, and if a process
that satisfies system exists from all initial conditions 5" (which means that the column space of Wy e must
contain the space spanned by the columns of Wy .. and Up), then the solutions of the original and the reduced system

are the same. This is proved in [32] in a constructive way by providing an algorithm.

o DI

0 if

- x {(I N)F- ((J ) Iﬂ E. (J) = T(F)n(F)C"Ex (=)

it

< (Wl e (- JJ)GVVZ’})W#) ([(Inw L) ()] I)

V[’/Y,sg)r'e LVs,ﬁpi‘e V[st yEPTE)
- X M”ru,mTu I’/Vu,ﬁp?c VVuf Et giﬁp're) = T(F)W(F)C*Et (Zt)

23

W; ,pre Vvi.ﬁp?'e Wi f f/,
- A Js w. —
w1 —w-1(Fr—("s sPyw !
= (= (")) )i
—1
0 W,
. , (pre)
A "‘/.szpl‘fi 1’1/5,ﬁp7'6: ni I/lsj’ Yt
< - X (IF J) (VVU-,PT‘E W’ru.ﬁpi‘ﬁ) (IF J) (H’fu,f E¢ ggﬁpre) = T(F)W(F)C*Et (Zt)
(W’Ii.,pre I’Vi.ﬁ pre ”/'L f ft
N Ws pr %% 7 %% —
—1 _ s,pre s,mpre | _ sf 1 : . _
W=H(IF - J) |:(Ws,p7‘e Wu,—*p?e) (Wuf) Wif (Wz,pre Wz,ﬂpre)] 0 yt(PTE) )
Aand ~ Et gg””“e) =T(F)n(F)C*E¢ (2¢t)
*Wz‘}l (Wi,pre Wzﬁp;e) I i
R R (pre)
IF —W=1JW 0 Yt
- < ( ) ) B | 5o | = TR o)
7Wif (Wi,pre Wi,ﬁp%e) I ’ fe
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3.3 Sims: No distinction between predetermined and non-predetermined variables

[37] generalizes [8] and [31] in various ways. First, there is no distinction between predetermined and non-predetermined
variables. The structure of the model, i.e. the parameter matrices (I'g,I'1, C, ¥, II) below, implies that certain linear
combinations of the endogenous variables are predetermined, i.e. have no endogenous forecast error. Thus, the researcher
does not need to specify in advance which variables are predetermined. Second, the non-explosiveness condition (to be
specified precisely below) does not apply to every component individually, but only to certain linear combinations of the
endogenous variables. Last, “it covers all linear models with expectational error terms” (page 1 in [37]), which means
that after having obtained a system of the form described below one can consider the problem of obtaining “a solution
of the rational expectation model” to be solved.

On a fundamental level, it should be noted that Sims uses a different solution method than [8] and [31I]. He uses
the martingale difference method introduced by [9, 11I]. However, Sims only shows through an examplﬂ which omits
intricacies shown to be important in [9] [II], how to obtain a system in his canonical form from a rational expectations
modef®] The discussion of [9] 1] will also make clear that this should not be considered a trivial task.

Sims’ canonical form. Sims considers the model®9
Foyt :Flyt71+c+wzt+nntv te {L?T} (21)

where 1, are the m-dimensional endogenous variables, z; are the m-dimensional exogenous variables, 7, are the k-
dimensional so-called endogenous forecast errors satisfyin E: (n:41) =0, Tg and T'; are (complex) matrices of dimen-
sion (n x n) which may be singular, C' is a vector of constants, ¥ € R"*™, and II € Rnxk,

Note that Sims does not put any growth restriction on the exogenous process (2¢),.y. We assumtf_gl here, that the
exogenous process is (weakly) stationary.

A stochastic processes (y;),. Which satisfies (21]) at every point in time, which satisfies the non-explosiveness condition

B (67" biyern) 22250, & > 1,¢; e R i€ {1,...,m}, (22)

where convergence is understood in mean square sense, and for which y; € H,(t), t € N, holds is called a solution of
the rational expectations model.

Remark 17 (Homogenous solution). Sims does not consider homogenous solutions of the rational expectations model.
As an example and assuming that the problem is well behaved, we consider the generalized eigenvalue y; with modulus

larger than one and the corresponding right eigenvector z; of the pair (I'p,I'1). Substituting the process y, = (uj)*)5 2
in the difference equation (I'p —I'1z)y: =0, i.e.

t—

To (1)~ 27 =1 (1) 25 = [(To = Tupy) 2] () ™" =0
~————

=0
verifies that the deterministic process y; = (11;) " z; is indeed a solution of the rational expectations model.

Regarding stationary solutions of the homogenous difference equation (I'p —I';2)y? = 0, note that as long as the
solutions of this equation are orthogonal to the particular stationary solution of (g — I'12) y¥ = 0, the sum (yf + yf)
is stationary as well.

teN

Outline of Sims’ method. Since [37] is not written in a linear way, we want to give an outline of the steps in his
method. For more details we refer to the subsequent sections. The goal of his analysis is obtaining a “system in a
form that can be simulated from arbitrary initial conditions, delivering a solution path that does not violate the stability
conditions”, compare [37] page 7 below formula (19).

24This example contains some errors that are corrected in subsection

25|nstead of writing the conditional expectations as the endogenous variable minus forecast error, Sims defines new variables for conditional
expectations and adds definitional equations for them.

26Note that Sims uses the index set ¢ € {1,...,T}. However, he considers “stability of a solution” in the sense that e.g. for a scalar process
(Yt), Yi+n satisfies By (€ ysrp) hzeo, &> 1. Thus, we set T = co.

27Sims does not specify the information set. We, again, assume that the conditioning set is H(t).

28[5], e.g., require on page 879 only that it be adapted to the information set, and that the conditional expectations E¢ (z;41), h € N,
exist.
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1. We apply the QZ transformation to the matrix pair (I'p,I';) such that the generalized eigenvalues are in non-
descending order, i.e. QI'oZ = A, QT'1Z = Q, where Q and Z are orthogonal matrices, A and Q are upper

triangular, and the ratios § of the diagonal elements of {2 and A are ordered with respect to non-descending
absolute value.

2. We check whether the k-th non-explosiveness condition (&x, ®y) applies to the backward solution of the j-th
canonical variable w;(t). If (w;(t)),cy is contained in H_(t) at time ¢, satisfies equation below but violates
the non-explosiveness condition for a k € {1,...,m}, then it belongs to the “unstable part” of the system. The
canonical variables contained in ng have a forward solution which does not violate the non-explosiveness condition;
however, this solution is not necessarily contained in H,(t) at time ¢.

3. We obtain the existence condition (for a solution (y;),.y of the rational expectations model) by using the fact that
for a solution contained in H.(t), the equation w{ = E, (w{) must hold. The vector w{ contains all variables
whose backward solution violates a non-explosiveness condition. It follows that the existence equation holds if and

only if the equation

—Qualln(t+ 1) = > Qv (b Ave)" ™ Que¥ {Eesr (2(t + 1)) — Eq (2(t + 1))}
h=1

which determines 741 as a function of the exogenous process holds. This condition is called the “decision rule
for the various types of agents in the economy”, compare [37] page 10 below his equation (37). The equation is

equivalent to
n(U)—1

1=

span ({QUU (QE:[L]AUU)Z QE%;QU.‘I/} ) C span (QuIT)
where n(U) is the number of canonical variables whose backward solutions do not satisfy the non-explosiveness
condition. In the case E; (z:41) = 0, this simplifies to

span (Que¥) C span (Quell) .

The matrix Quell is of dimension n(U) x k, which suggests that Sims' condition for existence is similar to the
one derived in [8]. Indeed, if there are at least as many endogenous forecast errors variables (corresponding to
the number of non-predetermined variables in Blanchard and Kahn) as there are backward solutions of canonical
variables which do not satisfy a non-explosiveness condition (corresponding to the number of unstable roots in
Blanchard and Kahn), i.e. k& > n(U), the condition above is “likely” to be satisfied.

4. We obtain the uniqueness condition by ensuring that the endogenous forecast errors which enter the stable part,
i.e. which influence those variables to which the growth restrictions do not apply, of the equation through Qgell
can be expressed by the endogenous forecast errors which enter the unstable part through Qu4Il and thus through
the exogenous variables. A solution of the rational expectations model is thus unique if and only if

rowspan (Qgell) C rowspan (Quell)
or equivalently if and only if there exists a matrix ® such that QgeIl = PQy,.Il.

5. If the existence and uniqueness conditions are satisfied, we obtain a new system in the canonical variables in which
no endogenous forecast errors appear.

6. Using the orthogonal basis transformation Z, we transform the system in canonical variables back to original
variables.

3.3.1 QZ transformation of Sims’ canonical form

Sims applies the QZ transformation (compare [24] page 406, Theorem 7.7.1) to the matrix pair (g, T'1), i.e. QT'oZ = A,
QT1Z = Q, where Q and Z are orthogonal matrices, A and Q) are upper triangular (note that none of the matrices
Q,Z, A, Q are assumed to be real), and the ratios % corresponding to the diagonal elements (Nigswig), 1 €4{1,...,n},
of A and (2 are ordered with respect to non-descending absolute value (for A;; = 0, we define $* = o0).

Remark 18. Note that the QZ decomposition always exists but is in general not unique, i.e. there are many orthogonal
matrices ), Z and upper diagonal matrices A, Q such that QI'vZ = A, QI'1 Z = Q.
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Sims states on page 9 in the paragraph below formula (33) that the set of generalized eigenvalues {‘;—“,z e{1,... ,n}}

appearing in the QZ decomposition is unique unless Iy and I'; have zero eigenvalues corresponding to the same eigen-
vecto@ Although Sims does not assume that det (o — I'1) is not identically zero in the complex variable p, we will
make this assumption here.

Remark 19. The QZ decomposition is a generalization of the QR decomposition and reduces to it if 'y = I,,, see
[35]. The QR decomposition of a non-singular matrix is unique if we require the diagonal elements of R to be positive
(otherwise every matrix Q* whose columns are multiplied by a complex number ¢ = €¥, 6 € R, satisfies QTQ = I as
well).

Transformation of Sims’ canonical system. Left-multiplying @ on
Foyt:I‘lyt_1+C+\Pzt+Hnt, te{l,,T}
and premultiplying y; and ;1 with ZZ7 = I,, leads to

QT Z) (Z'y:) = [QT1Z) (Z'yi—1) + QC + QW 2z + QIIny
<— Aw; = Quwi_1+QC + Q¥ z + QI (23)

Wi

where the ratios i corresponding to the diagonal elements (Xj;,wi;), @ € {1,...,n}, of A and € are ordered with
respect to non-descending absolute value (for A;; = 0, we define § = o).

3.3.2 Non-explosiveness condition and backward solutions.

The question of existence of a solution of the rational expectations model is closely related to the question as to
whether the backward solution (if there is one) of the components of the canonical variable u; described in system
below satisfies the non-explosiveness conditions. The backward solution has an advantage over the forward solution in
the sense that the former is obviously contained in H,(t) at time ¢. In case the backward solution of such a canonical
variable does not satisfy a non-explosiveness condition, the condition that the solution coincide with its projection on
H,(t) at time t has to be imposed on the forward solution. This will eventually lead us to the existence condition for a
solution of the rational expectations model described in section [3.3.3] starting on page

Kronecker canonical form. In order to better understand the issues involved in the process of deciding whether the
backward solution of a component of w; in equation satisfies the non-explosiveness condition, we first consider a
decoupled version of the system, i.e. we start from the Kronecker canonical form the matrix pencil (Top —T'1), u € C,
(see [20], Chapter 12, page 35) of system (1)), as already described in section [3.2]on page[14] i.e.

[VIoW ™ (Wy,) = [VILIW ™ (Wy—1) + VC + VU2 + VI,

In(s) St Js St—1
— Ly Uy Ju u_1 | + VO +V¥z + VI, (24)
N

1t 1 T4—1
where the partitions are again according to whether the roots are inside or on the unit circle, outside the unit circle, or
infinite and n(s) and n(u) denote the dimensions of s; and w; respectively.
There are m pairs of growth rates & > 1, i € {1,...,m}, and linear combinations ¢; € R**" i € {1,...,m}, of
endogenous variables y; which restrict growth requiring that (22)), i.e.
—h h— .
Et (gz quiyt-‘rh) —OO> Oa gi > 17¢ € Rlxn (S {17 s 7m}7

hold.

29This is equivalent to the fact that the determinant of the linear matrix pencil 'op — I'1, p € C, is identically zero because

det (Fop — ') = det [Q (Top — I'1) Z] = det (Ap — Q) = [ [ (Miipp — wis) =0
i=1

if X\ii = w;; = 0 for at least one ¢ € {1,...,n}. This corresponds to a redundant equation in (21)). Note that [31I] assume that the determinant
det (Az — B) of Az — B, z € C, is not identically zero.
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Backward solution.  First, consider a generic Jordan block for u; and denote it by
V= Aul? 09 w0z, 4 IOy, (25)
It is easy to sed®| that the backward solution’]]
W = (- AT oW 4 YAk (q;(])ztik + H(”npk.) + A (ugﬁ (- Ayt C(])) (27)
k=0
does not satisfy the non-explosiveness condition unless

o ( - ) i =0, i.e. the “influence” (Wﬁl). y of u; () on the endogenous variables y; is orthogonal to the vector

¢; specifying the linear combination of endogenous varlables y; which is restricted in growth, or

30|ndeed, substituting the solution of ugj) in the stability condition , we obtain by writing the conditional expectations term in a
St
non-explosiveness condition (&;, ¢;) as E¢ <§;h¢iW*1Wyt), noting that Wy = [ u:¢ | and that the blocks
it
ugj) — Ajugﬂ;)l +CW) 4 0@y 4TIy,

are decoupled from each other that

‘ A t+h—1 _ _
Eq <fih¢i (Wﬁl).yj {(I — Ayt eW +A§-+h (U(()J) —(I=A)~"! C(J)) + > Ak (‘II(J)ZHh—k +H<])77t+h—k> }> =

k=0
=B (670 ), {0 - A7 O0 A () - (- AT ) )

t+h—1

B | & (Wﬁl),ﬂ- Z Ak (‘11(7 Zern—k + T Dn, k) + ZAk (‘szt-m o+ Ty, k)
k=0

Nt+h—kcancels out when taking expectations

B0 ), {2 €O (- n )}

t—1 h—1
Ky <§ih¢z‘ (Wﬁl)w- {A? > oAk (‘I’(j)zt—k + Hmmw) +> A?‘lj<j)zt+hk}>
k=0 k=0

=B (70 (W), {T = A) T OO+ AT (uf — (1= )Tt )

h—1
E, <§i—h¢i (Wfl)w_ {A? <uig) (ATl - (ufJ) (I— A~ Cm)) + ZA;?\IJ(J)ZH_}L_IC})

k=0

h—1
E¢ <§i"¢i W, {(I —A)TLOW 4 Al (u,@ —(I=A)7! c<f>) +> A?\p(j>zt+hk})

k=0
=& (670 (W), {020 OO }) e (6 () {7 () (-2 T OO) ) (26)
RS
h—1
+ [g;h@ (W‘l)w} Eq (Z A?\p(j)zt+hk>
k=0

31Substitution of the solution (27)) in the difference equation (25| gives

(A~ C(J)+ZA’“< D g+ Ty g )+ A8 (uf) = (1 45)7 W) =

— A <(1 _A)TteW 4 Z A% (\l,mztflfk + H(j>77t717k) LAt (u(()j) (I -Ap Cm)) 100§ w@ 4y,

t—2
A Z A? (q;(J')Ztilik + H(j)ﬁtflfk) + 0@z + Ty,
k=0

= {8 -7 W 4o} 4

+ AL (uf) = (1 - a7 o)

which shows that is indeed a solution.
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e E;(2441) =0and ugj) =(- Aj)il C), which is only a solution of if W02, 411y, = 0, compare Corollary
[25] on page [28

It follows that if restriction (&;,¢;) is such that & < |A;| and ¢; (W‘l).j £ 0, i.e. the “influence” (W‘l).j of
uij) on the endogenous variables ¥, is not orthogonal to restriction ¢;, the terms ZZ;B Af (\I/(j)zt_k. + H(j)nt_k..) and
Al (ugj) - (I - Aj)71 C(j)) in the backward solution (27)) above have to be zero in order that the non-explosiveness
restriction (&;, ¢;) be satisfied. In this sense, the exogenous variables (together with the endogenous forecast errors) and
the initial values are, in general, sources of explosiveness for the backward solution . As already mentioned above,
ul? = (I —A;)7 CU) is only a solution of if W0z, + Wy, = 0, ¢ € N. Even if this condition holds, u\’) =
(I - Aj)_1 C'U) does not violate the non-explosiveness conditions only if E; (z,41) = 0 (and, of course, ¢; (Wﬁl).j #0),

compare Theorem 24| and Corollary

Remark 20 (Different growth rates). Note that if |\; 41| > |A;| holds for two unstable roots A; and A;41, then the back-
ward solution pertaining to u§j+1) has to satisfy at least as many non-explosiveness conditions (&, ¢;), i € {1,...,m},
as the backward solution for u,gj) because &; < |A;| implies & < |Xj41|. Then, it has to be checked for all ¢; pertaining to
a & with & < |\;| whether it is orthogonal to the “influence” (Wﬁl).,j of the canonical variable ugj) on the endogenous
variables y;. If ¢; is not orthogonal to (W‘l).yj for one such restriction, the backward solution 1) cannot be part of
the solution of the rational expectations model. As will be shown below, the fact that the forward solution (which in

general is not contained in H,(t) at time t) of the canonical variable u%j) must then be part of the solution of the rational

expectations model, is used to deduce an existence condition for a solution of the rational expectations model (21).

Forward solution.  Considering the forward solution
uf) = (1- a5 V) - > oAk (‘I’(j)ZtJrk + H<j)77t+k)
k=1

of the difference equation ([25)), i.e.
uf = Al + 09 4 90z 4 Wy,

we see that the non-explosiveness conditions are satisfied. Indeed, we have

E, (fi_h@' W, {(I — AT Y T AGH (\I’(j)zt+h+k + H(j)m+h+k) })
k=1

=E, (ffh@ (W_l).,j {(I - Aj)71 CU)}) + {ffh@ (W_l),,]} E; (i Ajk\I’(j)Zt+h+k>

k=1

h— oo

—0

from which follows that the last tern’E’] converges in mean square sense to zero for h — oo.

32Note that under the assumption that (z;) has Wold representation
oo

2= kieri,
i=0

it follows that the last term E (Zz;é A?\I!(j)z,prh,k) does not converge to zero since the last term A?illll(j)Et (2t+1) in the sum

Et (Zz;é A;?\Il(j)zprh,k), which dominates the other summands asymptotically, diverges in mean square sense faster than £" for h — oo.
Indeed, taking k = h — 1, we obtain
oo
g_hA;rl\I,(J)[[gt (ze41) = é—hA;wl\I,(J) (Z ki€t+1i>
i=1
goes to infinity (in mean square sense) for h — oo.
33Note that we assume that (2t);en is (weakly) stationary. Sims does not state any assumption on the exogenous process (2t),cy- A

reasonable assumption (which is weaker than ours) on the exogenous process is, e.g., that the conditional expectations E; (z;4.5) exist for
h > 0, compare [5] page 879.
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Remark 21 (Canonical variables corresponding to infinite zeros). The solution (i;),. of the “infinite” canonical variables
iy are a function of finitely many expectations at time ¢ of future values of the exogenous process (compare, e.g., [11]

page 232 or [4] page 154, formula (3.57) and also the derivation in section [3.2.1)), i.e[¥|

Niy =iy + V™ (C + Wz + Iy, (28)
<~ it = Nit+1 — Vlnf (C + \I}Zt+1 + H’I]t+1)
= iy = N (Nigya — V" (C + Uzpp0 + Tipyp0)) — VI (C + Wzpyy + IIneyr)

= N2iyp0 — NV (C 4 Uzyyo + Mnyyo) — VO (C+ Wzppq + Tnygy)
-1
= iy = NDig =Y NV (C+ Wz + Tnegaer)
=0 k=0
-1
=~ (I =N) VIO =Y NPV (Wappr + W)
k=0

It follows that solutions of “infinite” canonical variables always satisfy the non-explosiveness conditions. However, it will
always be part of the system which is solved forwarch and thus creates restrictions on (1), ensuring that the solution
(Yt);en is contained in H(t) for every t € N, for more details see section m

Remark 22 (Developing components of s; forward). Note that there is in general no reason why the forward solutions
(which will be explosive) of the canonical variables s; corresponding to stable roots should not be considered. In the
case where the “influence” (Wﬁl).’j of the canonical variable s,(fj) pertaining to a Jordan block in J, on the endogenous
variables ¥, is orthogonal to all ¢; for which & < |)\j|_1, there is another solution to the rational expectations model
which is not considered in [37]. By not considering such a solution, one excludes a priori explosive behavior of the
endogenous variables y; along (Wfl).j which might be relevant for economic theory, compare [I5]. Of course, when
the goal of the analysis is characteriziné the dimension of the solution set of rational expectations models, a “minimal”
existence condition, i.e. developing as few variables as possible in terms of non-negative powers of the forward shift
operator (zfl) is desirable. Be that as it may, including such a solution has the following implications.

First, whenever a forward solution of a variable is considered, the endogenous forecast errors must offset the exogenous
disturbances in order that a solution which is contained in H,(t) for every t € N exist. Thus, there would be one more
row in the equation system of the existence condition derived below which might imply that such a solution does not
exist. Second, after having obtained existence for this solution, the uniqueness condition described below will be more
easily satisfied. Thus, by developing a component of s; forward, we get rid of a source of indeterminacy, given existence.

QZ decomposition. The situation is slightly more complicated if we consider instead of the (decoupled) Kronecker
canonical form of the pencil (Top —T'y), u € C, the QZ decomposition of the pair (I'g,T'1), i.e. as in

QT0Z] (Z'y) = [QT1 Z) (Z'yi—1) + QC + QW z + QI

Ass Asu Asi st qu Qsi
— Auu Auz wy = Quu Quz W—1 + QO + Q\I’Zt + QHnta
Aii Qi

where the matrices A and 2 from equation (23)) are partitioned in an obvious way, together with the non-explosiveness

conditions

h—o0

B (&"0iZ 2 yrin) = By (§ " i Zwisn) —— 0, & > 1, i € {1,...,m}.

34Note that for a nilpotent matrix N for which N* = 0, where [ is a positive integer smaller than or equal to the dimension n(i) of N, the

relation Zi_:lo Nl=I—-N)! (I+NY)=(@1- N)~! holds.

35Note that the solution is unique in the sense that there is no ambiguity as to whether the determinant in (N — Iz)71 = Tet(N=T2)

be developed in terms of non-negative powers of z or (z_l). The solution (i¢),cy of l) may only depend on finitely many future values of
the exogenous variables and the endogenous forecast errors. However, the solution never depends on present or past values of these variables.

adj(N—1z) is to
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Procedure for checking the non-explosiveness conditions. In order to check whether a backward solution (wﬁj))t .
corresponding to the finite generalized eigenvalue p; satisfies the non-explosiveness conditions, we proceed as follov$s.
First, the generalized eigenvalue p; has to be brought into the (1,1) positiorﬁ] (e.g. by switching subsequently diagonal
elements of the pencil (Ap— ), p € C, ). Second, we consider a solution of the new difference equation where only
the first element wgl) (which now corresponds to a candidate root fi for which i > §&; holds) is allowed to grow in norm
unboundedly for stationary exogenous process (z;),.y (compare [16]), i.e. we consider the solution of

1
[Tj= (Vs (271) —wyj)

for which the denominator is developed in terms of non-negative powers of the backwardshift operator z for all generalized
eigenvalues i; = 522 with absolute value smaller than one, i.e.
73

wy = adj (A (z7") = Q) (QC + Q241 + QUney)

1 1 1 = (wjj>7 i
= = —_— A )
Nig 71 —wis) A, (21 (1 - :\%z) Ajj (271 =\ g

and in terms of non-negative powers of the forwardshift operator (z’l) for all generalized eigenvalues p1; = % with
73

absolute value larger than one (except the candidate root 1), i.e.

1 1 1 — </\”>‘( -1y
= =—— - (z .
Njj (271 —wji) (1 — 24 (z—l)) Wi =5 \Wij
Note that, due to the structure of the matrices, the exploding first component does not influence any other component.
In analogy to the analysis conducted with the Kronecker canonical form above, the backward solution pertaining to a
candidate unstable root [ violates the i-th non-explosiveness condition (&;,¢;) if @ > & and ¢;Ze1 # 0 (where Zqy

corresponds to the new QZ decomposition) and thus the forward solution has to be considered.
Remark 23. A similar procedure can be used if one is interested in explosive behavior of variables pertaining to stable

roots as described in remark on page The only difference is that the canonical variable under investigation is
solved forward and pertains to a candidate root with absolute value smaller than or equal to unity.

3.3.3 Existence condition

In this section, we derive an existence condition in terms of (Que, Quu, Avu, ¥, II) determining whether there is a solution
(Yt),en of the rational expectations model, i.e. a process which satisfies equation for all ¢ € N, which satisfies the
non-explosiveness conditions (as derived in the previous section) and for which v € H,(t), t € N. First, the forward
solutio (w,{])teN satisfying the “unstable” part of the decoupled system is obtained. The corresponding backward
solution (in the case of finitely unstable roots) violates the non-explosiveness conditions. The forward solution (w?)tGN,
however, depends in general on values not contained in H.,(t) at time ¢. Subsequently, we derive an existence condition
involving the exogenous process (2;),.y and the endogenous forecast errors (1), which ensures that y; € H.(t), t € N,
by requiring that for the forward solution (w{’),_, the equation E; (wi) = w;’ hold. If the latter condition is satisfied,
a solution of the rational expectations model exists. If E; (wf') = w! does not hold, there does not exist a solution
which satisfies the non-explosiveness conditions and is contained in H,(t) at time ¢ for all ¢ € N.

Forward solution of unstable part. All variables w,gj) which are solved forward because the backward solutions either

violate the non-explosiveness condition or correspond to zeros at infinity are grouped into w!. We consider the system

Ass Asv (wd\ _ [(Qss Qsv) (wi Qse Qse Ose
= < AUU) <w€]) N < QUU) <wyi> + (QU.> ¢+ (QU.) Uz + (QU.) IIn, (29)

36The corresponding concept for an invariant subspace of a matrix, is a deflating subspace of a matrix pencil, see [24] (Chapter 7.7.8
Generalized Invariant Subspace Computations, page 414). A k-dimensional subspace S C C™ is deflating for the pencil (I'op —I'1), p € C,
if the subspace {I'ox + I'1y | =,y € S} has dimension k or less. The QZ decomposition of the pair (I'g,I'1) as described in section on
page implies QT (A — Q) ZT = Tou — T'1. It follows that

{Tox+ Ty | =,y € span (Ze1,--.,Zer)} C span ((QT>.1 e (QT>.k> .

Thus, the only component whose solution does not influence any other variable is the solution of the first component of w;.
37)t solves the second block of rows in equation 1j for given Que (P2t + IIn).

26



or more particularly its second block of rowd™} i.e.
w{ = (QpAvv) wiyy — QpQue (C+ Uzeg + ngyq).
The solutioﬂ not violating the non-explosiveness conditions is
oo .
— 2 —
wl == " (QpAvw) Uy Que (C+ Varpr i + Mnyrgs)
i=0

o0 .
=—(I- (QE%;AUU)Y1 Qup QueC — Z (Q[;[IJAUU),L Qo Que (Pzip14i + Mney11i) - (30)
i=0

=(Quu—Avv)~!

Deriving the existence condition and some economic intuition. If the solution [30|is contained in H,(t) at time ¢
for every t € N, then w{ =E, (w{’) holds. It follows that the equation

(irAvu) pQue (Variiyi +niigs)

M8

s <Z (Qt?lUAUU)z Qi Que (Parg14i + H77t+1+i)> =

=0 0

o
I

(i AvY) Qi Que (Wziati + i vs) (31)

o

I
o

=0 %

o0
—1 N1
= E (Z (QpAvo) QUUQU-‘I’ZHHZ') =
is satisfied in this case. In other words, the endogenously determined forecast errors (), must offset the expectations
of the given exogenous process (z;),.y in order that a solution of the rational expectations model exists. We will show

in the proof of Theorem [24] below that equation is equivalent to

— Quellny1 = Z Quu (Q[}l]/\UU)z Q 0Que¥ [Evi1 (2e4144) — Bt (ze4144)] s (32)
i=0

i.e. the endogenous forecast errors offset today’s expectations today of future changes in the exogenous procesﬂ This
condition is often interpreted as the decision rule of the agents in the economy.

Theorem 24. A solution (y;),cy to satisfying the non-explosiveness condition and for whichy, € H,(t), t € N,
holds exists, if and only if
n(U)—1

span ({QUU (Q{][l]AUU)i QEIIJQUO‘IJ} ) C span (Qull) . (33)

Proof. If a solution (y;),.y to (21]) satisfying the non-explosiveness condition (22)) and for which y; € H.(t), ¢ € N holds
exists, it follows that equation (31)) holds. On the other hand, if equation ([31)) is satisfied, then the solution satisfying

the non-explosiveness conditions described above is contained in H,(¢) at time ¢ for all ¢t € N.

It remains to show that

E, (Z (QE[IJAUU)i QUlleUo\I’Zt+1+i> = Z (QﬁlyAUU)i Qo Que (Wzit14i + negrys)
i=0 i=0

— —Quellniy1 = Z Quu (Q(_nlJAUU)z Q0 Que¥ [Erv1 (ze41+41) — Bt (24144)]
i=0

n(U)—1

) C span (QuaTl).

where the last expression is obviously equivalent to span ({QUU (Q,}%]AUU)i Q{](lJQU.\IJ}

7=

38Note that Qi is non-singular due to our assumption that det (Top — I'1) Z 0, p € C, and that the ratios {‘;ﬂ l7e{1,..., n}} of the
23
diagonal elements of A and Q in equation (29) are ordered with respect to non-descending modulus.

39Note that (Quy — Ayv) = Quu (I — QE%]AUU)) is invertible because all ratios w# pertaining to variables w? have modulus strictly

Aji

larger than one (and thus ‘m < 1 for all such ratios) .

X,
73
4ONote that if (z¢) admits a Wold representation z; = Z;‘io kjei—;, then

Eiy1 (2e4144) — Bt (2e4144) = ki—16t41-
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="1 Apply E;1;1 (-). Taking conditional expectations of equation ([31]) with respect to information set H,(t+ 1) gives

=0 0

(2

=Ei11 (

—Quelln 1 = Quy {Et+1 (Z (QrAve)’ Qa%]QUo\IJZt+1+i> —E; <Z (QppAvo)’ Q[_jlleUo\Ith—i-l—i-i) } .

=0 =0

E; (Z (Q[}l]/\UU)z QU}]QUO\IIZt+1+i> =i (Z (Q(;%]AUU)l Qi Que (Vzegr4i + H77t+1+i)>

NE

(Q(_jlleUU)i Q[}%]QU-‘I/ZH-LH) +Ei1 (g Quellnit)

Il
=)

which is equivalent to

<" Sum over 7,11, @ € N, and reorder summation. Premultiplying —QueITr;114; in equation by
(QE}JAUU)Z QE%] and summing over i € N gives

(QE%JAUU)Z QE_JllJQU'Hnt+1+i =

'F|18

I
=

K3

o0
=> (pAov) er {Z Quu (QUUAUU) Qi Que¥ [Eiriti (zes1titr) — Begi (Zt+1+i+k)]} :
1=0 k=0

Reordering the sum on the right hand side of the equation above gives
(oo} [e.e] &
> Qbov) O {ZQUU (UpAvY) QU QueY [Eeriti (2e414i4k) — Eegi (Zt+1+z‘+k)]} =
i=0 k=0

(QpAvr) WrQUeY > [Eerii (2e414r) — Erpi (2eg140)]
1=0

p"qg

ﬁ
Il
=)

M

(uAve) Wi QueY {[Eeritr (2e414r) — Brgr (Zeprr)] + -+ + [Best (Zeg14r) — Ee (2e4140)]}

\3
Il
=]

M

(Q[;[IJAUU>T. Q;Hl]QUo\I’ Eit14r (Zeg14r) —Ei (Zeg140)
—_————

r=0 =Zt414r
Thus, we obtain
Z QUUAUU ElUQUoHntJrlJri = Z (Qz;lUAUU)T Q[}%}QU.\I} {zt414r — E¢ (2e4140)} -
=0 r=0

O

Corollary 25. Under the assumptions of Theorem[24 and additionally assuming that E; (z,41) = 0 holds, it follows that
the existence of a solution of the rational expectations model is equivalent to

span (Que¥) C span (Quell). (34)

Proof. Since the left hand side of

E; (Z (QE}]AUU)’L QU%]QUo\I/Zt+1+i> Z QUUAUU Q0 Que (Vzpp14s + ney14:)
i=0 =0

is zero in this case and QE%J is non-singular it follows that a solution exists if and only if 0 = Que (Vzi414¢ + Ne144)
for all possible exogenous processes (2;),cy- O
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Remark 26. The larger the block of variables which have to be solved forward, the harder satisfying the existence condition
becomes. From this point of view, it is beneficial to include as few variables as possible in w! because for all of them the
exogenous “disturbances” have to be offset by the endogenous forecast errors. Given existence, however, we will see in the
next subsection that it should become easier to satisfy the uniqueness condition described below, the more components
are contained in wY and the fewer are in w;. Of course, if the goal of the analysis is obtaining the dimension of the
solution set of a rational expectations model, it is desirable to solve as few variables as possible forward.

Remark 27. Note that solutions pertaining to infinite generalized eigenvalues always satisfy the non-explosiveness con-
ditions (since there are only finitely many terms involved in their solution). However, since the solution for the block
corresponding to infinite roots in on page is unique (compare the remarkon page and may involve future
values of exogenous variables, the variables pertaining to infinite generalized eigenvalues are always contained in w! and
are thus part of the system which has to be solved forward.

Remark 28 (Extended state vector). The condition E; (z:41) = 0 can be justified if we know the structure of the
exogenous process, e.g. that (z;),.y is an ARMA process. The exogenous variables may then be incorporated into an
Yt
2t
one-step-ahead forecast errors of the exogenous process (zt),cy-

extended vector of endogenous variables 7, = > such that the new vector of exogenous variables consists only of the

3.3.4 Uniqueness of solution

In order to obtain a unique solution of (21)) satisfying the non-explosiveness condition and being contained in H,(t), t € N,
we need to get rid of the dependence of the solution on the endogenous forecast errors (1;),y. For a solution (th)teN
of the unstable part of the system, this is possible in the way described above, i.e. by substituting for 7; using the

existence condition

Eq (Z (QE}]AUU)I Qi Que (Pzrgri + g4 ) Z QUUAUU Qi Que (Va1 + Mpp14:)
i=0 i=0

wf == (Quu = Avw) " QueC = (U Avw) Qi Que (W21 yi + g1 yi)

i=0
such that we obtain
w! = — (Quv — Avr) ™ QueC — E (Z (QpAve) QU(leUo\IIZtJrlJri) :
i=0

In order to obtain a solution (wf)teN of the first block of equations in 1) for a given solution (w{)

linear combinations of the whole system

Ass Asu) (wP) _ (Qss Qsv) (wi Qse Qse Qse
(o A ) ) = (% ) Cim) = (@) e (@) e (85 o

such that the resulting system does not involve any endogenous forecast errors 7;. It is possible to find such linear
combinations if the influence of the endogenous forecast errors on the first part of the system, i.e. Qgell7, can be
explained by the influence of the endogenous forecast errors on the second part of the system, i.e. Quelln; for which
we already found an expression in terms of known variables through the existence condition. This condition may be
expressed as

reny We need n(S)

rowspan (QseIl) C rowspan (QuelIl)

which is equivalent to the fact that there exists a matrix ® of dimension (n(S) x n(U)) such that

QS.H = (PQUOH (35)

holds.
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Indeed, left-multiplying the system above by (In(s) —<I>), we obtain (under the assumption that equation l’ hold)

A Asy 3
(In(S) —<I>)( 58 A_S ) (:Z?) =
Q Qsy s Qse
= (In(S) (I)) ( 59 s ) (w177%f_1> (In(S) (I)> <Q(i.> CH+---

Quu t—1

(s ) (G50) et (e —2) (30| o

=0

wy
<~ (ASS ASU — (I)AUU) wg]

S
— (Qss Qs — ¥Qu0) (ga—l) + (Ings) —®) (g(i:) C+ (Ins) —®) (g§:> Wz,

(36)

t—1

If (w?)teN is a solution satisfying the non-explosiveness condition and being contained in H,(¢) at time ¢ of the difference

equation
U _ U U _ (-1 U —1
Avvwy = Quuwi_y + Que (C+ Uz + 1) <= wi = (pAvv) wiy — QpQue (C+ Wiy +1ngyq)

it is also (in a trivial way) a solution satisfying the non-explosiveness condition and being contained in H,(t) at time ¢ of
the system

w’ = — Qv — Avo) " QueC — E; (Z (QE%]AUU)Z QE}JQU.‘I/ZtHH) . (37)
i=0

We may thus combine the above systems and to eventually obtain
(Ass Asu — ‘I’AUU> <wf) _
Iy wy
Qss Qsvu ‘I)QUU) (wf_1> (In(S) - ) (QS.)
= + . Ot 38
( 0 wi’y (Quu — Avw) ™) \Que (38)

(Tusy P\ (Qse B 0
* ( 0 ) (Qm) e (Et (Zfio (QvAvy) Q(}(IJQUQ\I/ZH-I-H')) ' (39)

Transformation to original variables. Left-multiplying system witl‘F'E]

7 <ASS Asy — (EAUU>_1 _y <AS;‘ —Agé (ASU — @AUU))
Iy Iy

4INote that Agg is non-singular due to our assumption that det (T'opt — I'1) #Z 0, 1 € C, and that the ratios {L;\)ﬂ |7 €{1,... ,n}} of the
73
diagonal elements of A and Q in equation 1) are ordered with respect to non-descending modulus.
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we obtain

Al —ASL(Agy — DA 0 Qs — DN
Zwy =y = [(Z.sz.U) < Ss ss ( ISI(JU) UU)) < SS SU 0 UU) ZT:| Yot o

. (Agé ~Ags (Asu @AUU)> (Lw ( - ) (Qs.) o

Iy Quu — AUU)_1 Que
=0O.
—1 —1 _
iz (ASS —Ags (Asu - @AUU)) <In<s> <I>> (Qs-) Uop e
In(U) 0 QU.
=0,

g (Asé —Ass (Asu - ‘I’AUU)> o

Inw) By (Zi:O (Qohov) QIJUQU°‘I’Zt+1J”'>

= Zas (AgsQss Age(Asu — ®Auw)) Z7 41+ ©.C 4+ 0.2 — - -

=0,

~Ags (Asy — @A — i
-7 ( SS( SU UU)) E, (QU[IJAUU) QUlleU'\IJ Zet 14

Iy P
—6,, =0y, =0
= G)yyt_l +0.C+06,z — 97]1]Et <Z @;72 ®nszt+1+i> . (40)
1=0

Remark 29 (Consequences of restricting growth unnecessarily). If the solutions of all components of the endogenous
variables y, are restricted to satisfy the non-explosiveness conditions by the modeler, even though the model itself implies
only that certain linear combination are restricted in growth, this could lead to missing sources of indeterminacy. This
can be seen as follows (we restrict ourselves to the case E; (z;41) = 0 for expositional reasons). Restricting a component
unnecessarily makes the existence condition span (Que¥) C span (Quell) harder to satisfy, since there is one additional
row in QueV¥. On the other hand and given existence of a solution, restricting a component unnecessarily makes it easier
to satisfy the uniqueness condition rowspan (QgseIl) C rowspan (QueIl) because there is one more row in Qu,eIlL.

It follows that if a certain component is unnecessarily restricted in growth, uniqueness is obtained too easily and sources
of indeterminacy might be missed.

Remark 30 (Initial conditions). Note that Lubik and Schorfheide require for the existence of a solution that the initial
values at time ¢ = 0 of the solution of w! satisfy a certain condition (compare [34] page 276, line -2, and the associated
footnote). Sims imposes such a condition (compare [37] page 8 line 4) only in his first derivation (compare section 3 in
[37]) of a solution of the rational expectations model which treats the case where E; (2;11) = 0 and T'g = I hold and
where he starts from the backward solution of wY. In this case, it is indeed necessary to impose such a condition. If we
consider the forward solution, however, it is not required in the derivation to impose such a condition.

3.3.5 Example in Sims’ paper

The example given in [37] contains some typos which are corrected below. Moreover, we want to show (more explicitly
than in Sims' paper) how to obtain the “endogenous forecast errors”. Equation (2) on page 2 in [37] is here repeated as

1

w(t) = g]Et W) +W(E+1)+W(t+2) —a(ult) —u,) +v(t) (41)
W) = 5 (w(t) + w(t 1)+ w(t ~2)) (42)
u(t) =0u(t — 1) +yW(t) + n+e(t) (43)

where

E; (v(t+1)) =0
E; (e(t + 1)) = 0.
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Sims defines the expanded state vector as
w(t)
w(t—1)

u(t)
E, (W(t+1))

and writes the vector difference equation as

Toy(t) =T1y(t — 1) + C + z(t) + IIn(¢)
o 0 4§ 0 % w(t) 1 0 -4 a0 w(t—1)
-+ -+ 1 00 w(t—1) 0+ 0 0 O)(w(t2)
— [0 0 — 10 W (t) =100 0 6 0 wit-1) |+
0 1 0 00 u(t) 10 0 00 u(t — 1)
0 0 1 0 0/ \E,(W(t+1)) 00 0 0 1) \E_(W()
Q- Uy 1 0
0 0 0
e(t)
+ +lo 1
0 0 0 (”(t_1)>
0 0 0
0 1
0 0
m(t)
+ 8 8 (772,S1lms(t)>
10
or
éW(t) + %Et (W(t+1) = w(t —1) - %W(t ~ 1) 4 au(t — 1) + atn + £() + 72,50 (8)
—%w(t) _ %w(t )+ W) = éw(t 9
—AW(#t) +u(t) =0u(t — 1)+ p+v(t—1)
wit—1)=w(t—-1)
W(t) =Ei—1 (W(t)) +m(t)

The following errors on page 3 in [37] are obvious:

o In equation and e(t) and v(t — 1) must be exchanged.

e In equation (44), the term 72 gims(t) needs some clarification (it should be linked to the endogenous prediction

errors), see remarks below.

e The sign for £(¢) (which should be v(t — 1)) is wrong (the sign of cu(t) and v(t) in equation is not the same).

e The sign in the first element of C , i.e. a - u,, is wrong.

o In I'; the (3,4) element should be € and the (3,5) element should be 0.

Thus we have to use (without changing notation)

0= (")

instead of the z(t) vector above.
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The corrected vector difference equation. We now have (with different/correct z(t))

Toy(t) =Tyt — 1)+ C + Vz(t) + IIn(t)

0 0 1 0 % w(t) 1 0 -3 a 0 w(t —1)
-3 —3x 1 00 w(t —1) 0§ 0 00 w(t —2)
— |0 0 -y 10 W(t) =10 0 0 6 0 W(t—1) | +--
0 1 0 0 0 u(t) 10 0 00 u(t —1)
0 0 1 0 0/ \E,(W(t+1)) 00 0 0 1) \E—1(W(t)
—Q - Uy, -1 0
0 0 0
t—1
AR I I (V(e(t) ))+
0 0 0
0 0 0
0 1
00
#1090 ()
0 0 712,Sims
10

or

éW(t) + %Et Wit+1)=wlit-1)— %W(t —1)+au(t—1) — aup, — v(t — 1) 4+ n2,5ims(t) (49)

—%w(t) - %w(t )W) = 7w(t _9) (50)
— YW (t) + u(t) = fult — 1) + p+(t) (51)

wt—1) =w(t—1) (52)

W(t) =Ei—1 (W(t)) +m(t) (53)

Remark on equation (53). The random variable 7, (¢) is the one-step-ahead prediction error of W (¢) at time ¢.

Remark on equation (49)). Shifting both the variables and the information set in equation leads to

Wit —1) = SW(t— 1) + S Eey (W(E) + 2By (W(t+ 1)) — @ (ult — 1) — ) + vt — 1),

3 3ot )T
=W (t)—m(t)
By defining the two-step-ahead prediction error 7j3(t + 1) of W(t 4 1) at time ¢ — 1 as
ne(t+1)=W(Et+1) —Eiqg (W(E+1))
and further decomposing it as

m(t+1) +mo(t) = {W(t+1) —E (Wt + 1)} + [ (W(t+1)) = Ery (W(E+1))]

we obtain

w(t—l):éW(t—l)—&-%(

1 1 1 1
= §W(t)+§W(t+1):w(t—l)—§W(t—1)+au(t—1)—aun—u(t—1)+§(

1
W(t) =m@®) + 3 Wt +1) —mt+1) —m)) —ault - 1) —u) +v(t - 1).
m(t) +m(t+1)+m(t)).
Applying the conditional expectation operator at time ¢, i.e. E; (), on both sides of the equation above gives

%W(t) + %Et (W(t+1)) = w(t—1) — %W(t )+ ault— 1) — aun + v(t—1) + %Et (m(6) +m(E+ 1) +172(0))

=(m (t)+n2(t))

Thus the term 72 gims(t) in Sims’ equation (49)) is three times the two-step-ahead prediction error, i.e.

Mo sims () = 5 (m(8) + 12(6)) = 5 (W -+ 1) = B (W (6 + 1)) + [Bc (W(t + 1)) — By (WGt 4+ 1))}

3
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3.3.6 Comparison of the Blanchard and Kahn/King and Watson model using the methods in [37] and [11].

Approach in [37]. First, note that the predetermined variables yt(fle) =E, (yt(ﬁ’“le)) in

E, (yt(i"le)) (pre)

_ Ye

E (—preS =B Cpre) | T+ Cz
t \ Y1 Yt

have time index ¢ in Sims notation. Sims notes on page 2, line 11 that “..., this paper uses a notation in which time
arguments or subscripts relate consistently to the information structure: variables dated ¢ are always known at ¢ ."

Second, the expectations at time ¢ of the non-predetermined variables at time ¢ + 1 are denote by & = E, (yﬁ?{re)).
Finally, we obtain

Auyt(pre) + A12é = B11y,55)r16) + Bi2 (§e—1+m) + Crze
Azlyt(me) + Ay = leyiz_wle) + Bao (&—1 +m¢) + Cozy
il/t(ﬂpre) =& 1+

or in matrix notation

A 0 yt(pm) B 0 yﬁ’lﬁe) Cy Bia
0 &t = 0 §t—1 + |1 Co | ze+ | Baa | me.
0 0 I (mpre) 0 0 I (—pre) 0 I
Y Y1

Approach in [11]. As already described in section the model

E: (yﬁi’f))) . ( o ) o

t
E, (yt(l’{”) y e

¢ (y(pre)) (pre)
can be written, using (tjplw) - y(t:;m) _ ( 0 ) i
E, ( t+1 ) Yit1 Ne+1

(pre) (pre)
Y1 | _ Y Aqz
A jre =B —pre +Czt+< >nt+1
(5] = () s
where the equation E; (7:4.1) = 0 is also part of the model specification.

Comparison. Note that the timing conventions in the two approaches do not coincide. The model

yr = AE¢ (yey1) + 26 = A (Yeg1 — Mer1) + 20 = Ayepr + 20 — Anea
— Ay =y — 2 + A
< Ayt = Yt—1 — Zt—1 + A?]t

in [1I] notation corresponds in Sims notation to

I =T _ )\ II .
0 Yt 1 Yt—1+ 2zt + Nt
=A =TI =1 :A

In this sense, the set of models considered by Sims is strictly larger than the one considered by [11] since firstly z; = uz—1
and including earlier time points is no problem and secondly the structure of II is not influenced by the parameters
pertaining to expectational variables. However, it should be noted that Sims does not specify how he obtains the
canonical form and it is not trivial to bring more complex models in the form required by Sims’ method as we will
see in section [4] starting on page
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3.4 Lubik and Schorfheide: Analysis of indeterminate equilibria

[34] elaborates on the analysis given in [37] and investigates the case of non-uniqueness in more, but as we will show not
sufficient, detail. They demonstrate their findings on a simple New Keynesian DSGE model.

Model considered. By imposing stationary structure on the exogenous variables, they consider an extended vector of
endogenous variables as described in Remarkon page and thus consider the case E; (z¢11) = 0 in Sims’ notation.
Lubik and Schorfheide consider the model

Loys = Tiys—1 + Vey + Il (54)

where the endogenous variables y; are n-dimensional, the inputs €; are g-dimensional and satisfy E; (e;41) = 0, n; is
k-dimensional. They abstract from the constant term C' and do not specify an index set which we take as N as before.
Moreover, the non-explosiveness condition (22) applies to all components of the endogenous variables y;, i.e.

_ h— 00
Ei (7 yiin) =0, €> 1, (55)

holds.

Conditioning set. The conditioning set at time ¢ is not explicitly specified in [34]. We assume[zzl it to be H. (1),
where ((¢),cy is a p-dimensional stationary process of sunspots orthogonal to (g¢),.y. We remind the reader of the
consequences of a larger conditioning set described in Remark [7] on page When Lubik and Schorfheide introduce
“sunspot shocks” ([34], page 278, line 3) they do not assume that ((;),cy is orthogonal to (&), but require only that
E; (¢t+1) = 0 hold; in particular, ((;),cy could be a (linear) function of (¢;),cy. The proof of their Proposition 1 ([34]
page 278), however, would require (g¢),oy and (¢¢),cy to be orthogonal and is thus in error; compare Proposition
(and remark [32)) for a corrected version.

Analysis of existence condition. First, [34] analyzes for given &, the solutions of the system of equations Que¢Iln; =
—Que Ve, where Quoll and and Que ¥ are of dimensions (n(U) x k) and (n(U) x q) respectively, pertaining to Sims'’
existence condition on page One obtains the set of all solutions 1} of the equation QueIln: = QueVe; as the
sum of one particular solution 72 and the set of all homogenous solutions, i.e. the kernel of QuoII. Lubik and Schorfheide
choose as particular solution the one with minimum Euclidean norm, i.e. they use the Moore-Penrose pseudo-inverse of

QU.H-

Assuming that a solution exists and that Qpell has rank » < min {n(U), k}, [34] define the dimension of the indetermi-
nacy to be equal to the dimension (k — r) of the right kernel of QueII. This is unfortunate because a non-trivial kernel
of Quell is necessary but not sufficient in order that there be multiple solutions of the rational expectations model. A
necessary and sufficient condition is Sims’ uniqueness condition ([35]) on page i.e. there exists a matrix ® of dimension
(n(S) x n(U)) such that

Qsell = 2Qull

holds. A more accurate way for describing the dimension of the indeterminacy, and also the dimension of the solution
set of the rational expectations model derived from the dimension of the indeterminacy, will be given in Theorem [36] on

page [39] below.

However, let us first prove the following Proposition from [34] page 278, which constructs the set of all solutions n; of
the existence condition
QU.‘IJEt + QUOHT/t =0 (56)

42Sunspots are defined similarly in [25], page 410, where they write the following below their equation (1): "We are interested in the random
processes y = {y; | t € Z} satisfying the following equation

yt = aB¢ (ye41) + 2¢

where a is a given scalar (a # 0); E; is the conditional expectation operator with respect to the current and past values:
{wi,wi_q,. swZw? .. ;wk wk |, ...} of k given random processes w? = {wi |t €Z}, i € {1,...,k} and 2 = {2 |t €Z} is a
given random process such that, for any ¢, E; (2¢) = 2. The latter condition E¢ (2:) = z¢ means that z; is a function of the current and past
values of the processes w!,...,w*. Usually, each variable wj is either a perturbation or an exogenous variable. Some processes w* may be

'Rl

independent of z; these w’ are sometimes called "sunspots".

35



by using the minimum norm solution as the particular solution and subsequently parametrizing the right-kernel of Q411
in terms of innovations &; and sunspot (;.

The proof uses the singular value decomposition (SVD) of the n(U) x k dimensional matrix (QueIl) is

Quell = [Usr Ul (DO“ 8) [gﬂ (57)
= Us1D11V14

where Dy is a square (r x r)-dimensional diagonal matrix of full rank. It is well known that (Vi,)” spans the orthogonal
complement (ker (QU.H))L of the kernel of Qr4I1, that (Vg.)T spans the kernel ker (QuoII) of Quell, that (Us1) spans
the image im (QueIl) of Quell, and that (Usz) spans the orthogonal complement (im (QU.H))L of the image of Qu.ll,
see figure [1] below.

ker (Quoll) = span ((V_?o)T) (im (QUc”))i =span (Usp)
dim ker (Qurall) = K — 7 dim ((im QuatD)*) =n(t) =1
| Quall
(ker (QurI1))~ = span ([“].\].) I (V) x im (QU.H) = span (U.l)
dim ((ker(()(',ll))‘) =r dim ('m (QI.H)) =T
Figure 1:

Proposition 31. Let (), be a p-dimensional stochastic process which satisfies E; (¢;+1) = 0 and is orthogonal to
the inputs (e¢),cy in equation @) Furthermore, assume that n; is a linear function of ¢, and (;, and that the existence
condition @ holds.

Then, the set of all solutions 1} of the existence condition is
{= 1) DI Ua)" QuaWe, + (Vo) (Mrey + MaG) | My € RETDX9, My € R0

where the first summand is the minimum norm solution, and M; € R(=7)%4 and M, € RF=")%P parametrize the kernel
of Quell. A sufficient (but not necessar@ condition for obtaining a unique solution is thus k = r.

Proof. The proof is divided into several steps.

Step 1: Transform the existence condition and apply SVD to Qu.II Note that since the existence condition
span (Que¥) C span (Quell) holds, there exists a matrix A of dimension (k x ¢) such that

Que¥ = QuollX.

Thus, the existence condition is equivalent to

0= Que¥e; + Quelln = Quollde; + Queolln;
= QUOH ()\51& + 77t) 5

which leads to (using the singular value decomposition of QpeII)

0=Ue1D11V1e (Aet +m1)
< 0="Vie(Aer +m1).

43[34) states that “[i]f k = r the second and third term drop out and the solution is unique.".
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Step 2: Use the functional form 7, = Aje; + As(; and plug 7, into the existence condition. Assuming the
functional form above for 7;, we obtain

0 = Vie (At + [Ares + A2(])
— 0=V}, ()\ + Al) et + VieAo(s. (58)

Step 3: Conclude from the orthogonality of (c;),.y and ((;),.y on the structure of A;. In order that the
existence condition be satisfied for all possible realizations of the sunspot shock (;, the matrix A has to be equal

to (VQ.)T My, where Ms is an arbitrary matrix of dimension (r x p). Then, the existence condition is

0= Vl. ()\ + Al) gt + Vl-AQCt
= 0=Vie(A+ A1) e + Vie (Vau)T MG = Vie (A + Ay) &
N—

=0

Step 4: Given A; = (VQ.)T M,, get an expression A; by representing it as direct sum A; = (Vl.)T VieA1 +
(Vg.)T VoeAl = (Vl.)T Ay + (Vg.)T M. Substituting the expression above for A; in the existence condition gives

0=Vie (A+ [0 A1+ (V20)" 2] ) &
=Vie (A [(Via)" Ay + (V20)" 2] ) = Vied+ Av.

It follows that

Al = —Vie A
Step 5: Express A; = —Vi,\ in terms of the matrices appearing in the SVD by using the existence condition
Que¥ = QuoIIA. Substituting the SVD of (QueIl) in the existence condition, we obtain

UzeU = Usy D11 Vieh <= —Visd = —D7;' (Ua1)" QuaV.

Step 6: Obtain a parametrization of the solutions 7; of the existence condition.  Finally, we obtain that

N = A1 + Aa

- (Vlo)T VloAl + (%.)T Vé.Al gt + (‘/2.)T MQCt
S—— ~—
=A1=-VieA=—D' (Ue1)T Q24 ¥ M,
= (Vh)T D;ll (Uol)T QueVe; + (V20)T (Mlﬁt + M2Ct) .

=Minimum norm solution =parametrization of
kernel of Quell

which proves the proposition. O

To summarize, we first obtain one particular solution of the existence condition —Que¢Iln; = Que Ve, i.e. the minimum
norm solution 7’ = — (Vi,)" D (U, 1) QueTe, obtained through the Moore-Penrose pseudo-inverse (compare [24]

page 290) of QuelIl. Subsequently, the kernel of QuelIl gets parametrized with M; and My in order to describe how
the endogenous forecast error 77; might depend on the innovations (g;),.y of the exogenous process and on the sunspot

shocks (Ct) e -

Remark 32 (Orthogonality assumption). Lubik and Schorfheide write on page 278 line 12 in [34] that “[i]n order to satisfy
[the existence condition] for all ¢; it is necessary that A, is orthogonal to |(Vi,)" |”. We assume that with “for all ¢,
Lubik and Schorfheide mean “for all realizations of ((;),cy" because the process ((;),cy is part of the model specification
and therefore fixed. If (assuming Ay to be square and non-singular) ¢; = —A;* (A + A;) &y, the existence condition

, i.e.
0= Vlo ()\ + Al) €t + VIOAZCta
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holds for all realizations of ((;),cy. It is, thus, not necessary but sufficient that Ay = (Vae)™ M for reducing the
existence condition (58)) to 0 = Vie (A4 A1) Such an assumption, of course, would be ad hoc. Step 3 in the
proof of Proposition however, shows that requiring (g¢),.y and ((¢),cy to be orthogonal is sufficient to ensure that
Ay = (Vae)" M holds.

Remark 33. Assuming that My = 0, n; is a function of the innovations ¢; of the exogenous variables only. Even though
the minimum-norm solution suggests itself for solving an equation of this form, it is not necessarily a natural basis for
the column space of QueIl. In [18], a similar ill-posed inverse problem is solved by choosing the first basis of the row
space of a certain matrix, compare Section 4 starting on page 232 in [18]. This approach was chosen after realizing that
the minimum norm solution in [14] may have some inconvenient properties.

Remark 34. Even though 7, might depend on sunspot shocks (;, these shocks, of course, do not enter the second block

of rows in A A p N N 0 0
SS SU Wy _ SS SU Wi_q Se U Se o
(M o) ) = (o) (i) + () were (802 o

because they are in the right-kernel of QueII. They may, however, appear in the first block of rows if it is not possible
to express the rows of Qgell in terms of the rows of Qu,lII, i.e. if Sims’ uniqueness condition does not hold.

The uniqueness condition, the degree of indeterminacy, and the dimension of the solution set. The fact that
Sims’ uniqueness condition , i.e. there exists a matrix ® of dimension (n(S) x n(U)) such that QgeIl = PQulIl

holds, may be satisfied even though the kernel of QueIl is not trivial was not further analyzed in [3 In the same

way as the singular value decomposition Qp eIl = [U.l U.g] D011 0) Eﬁl'} described in equation 1 7)) on pagea
2e

allows us to formulate the existence condition conveniently{**} it provides insights into the non-uniqueness problem

regarding solutions of rational expectations models. While the image of the map Qu.ll, and its relation to Qu.Y, is
used to characterize the existence of a solution of the rational expectations model, the (right) kernel of the map Quell
and its relation to the (right) kernel of Qg4Il is used to describe the (non)-uniqueness problem of solutions of the rational
expectations model. Indeed, introducing the singular value decomposition of Qg.II as

asn=10n 0a) (O OV [V].

Sims’ uniqueness condition 1' is equivalent to rowspan (ffl.) C rowspan (Vi,), i.e. the orthogonal complement

. \T
(ker(QS.H))L = (Vl.) of the kernel of QgeII is contained in the orthogonal complement (ker (Quell)) ™ = (V)"

of the kernel of Qu6Il, and it is also equivalent to rowspan (%.) D rowspan (Va,), i.e. the kernel of QgeII with basis

N\T
(V2.> is contained in the kernel of Qp¢II with basis (Vg.)T

We define the dimension of the indeterminacy as the rank of the projection of the row space of QgeII on the orthogonal
complement of the row space of Qlll, i.e.

rank (Qsall = Proj (Qsall| Quall)) = rank (QsaI1{ I = ((QuaI)' (QuaID) })
= rank (U.anVlo {Ik - ((Vlo)T Dﬂl (Uo1)T Uo1D11V1-) }) )
= rank (‘71. {(Vz.)T V2.}>

where AT denotes the Moore-Penrose pseudo-inverse of a matrix A, compare [24] page 290, and Proj (A|B) the projection

of the row-space of A on the row-space of B. Intuitively, everything which is not contained in the kernel of QgeII (the
o N\T

orthogonal complement (ker(QS.H))L = (V1.> of the kernel of QgeII) is projected on the space through which

indeterminacies appear in the model (the kernel of QulII ).

~ T .
Remark 35. Equivalently, the dimension of the indeterminacy could be defined as the rank of <V2. — Ve (Vg.) Vg.) =

~\T . N\T .
Vo (Ik — (VQ,> V2,> = Vae ((Vl.) V1.> , i.e. the rank of the projection of the kernel of QueIl (through which

“Que¥er + Quelln, = 0 has a solution 0} if and only if span (QueIl) C span (Use1).
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- \T
indeterminacies appear in the model) on the orthogonal complement <V1.) of the kernel of QgeII (everything that

actually affects the variables w;).

For a given conditioning set, we define the dimension of the solution set of the rational expectations model as the
number of free parameters in the parametrization of the indeterminacy 7; = (Qgsell — Proj (Qsell| Quell)) n: when
it is expressed as linear function of the components of stochastic processes in the conditioning set. For example, when
the dimension of the indeterminacy is, say, d, i.e. when there are d linearly independent components in 7;, and the
conditioning set is H.(t) where (g¢),cy is the g-dimensional white noise input process (the innovations of the exogenous
process), then the dimension of the solution set is d - g.

We will state this as

Theorem 36. The degree of indeterminacy of the rational expectations model is equal to rank (‘71. {(VQ.)T Voo })

where (‘71.) - is an orthonormal basis of the orthogonal complement of the kernel of Q g4Il and (Vg.)T is an orthonormal
basis of the kernel of QueIl. Furthermore, for given conditioning set, the dimension of the solution set of the rational
expectations model is equal to [mnk (Vl. {(VQ,)T V‘Q,}ﬂ - q, where q is the rank of the innovation covariance
matrix of the stochastic processes contained in the conditioning set.

Analysis of transfer function. We define the reduced sunspot shocks{f] ¢ = May(; and proceed to analyze the
derivatives of the transfer function relating the innovations ¢; of the exogenous variables and the reduced sunspot shocks
¢; to the endogenous variables. This derivation differs from the one in [34] in two ways. First, Lubik and Schorfheide
do not consider derivatives of the endogenous variables with respect to the innovations and the reduced sunspot shocks
but rather “derivatives of the system'{"®| compare their equation (18) and (19) on page 279 in [34]. Second, Lubik and
Schorfheide do not analyze the directions in which the endogenous variables y; (or rather T'gy;) change.

We proceed analogously to section [3.3.4] on page @ First, we obtain a solution for (w?)teN which satisfies the

non-explosiveness condition (B5)) and is contained in H. ((t) at time t. In the case treated in [34], i.e. C' = 0 and
E; (¢41) = 0, we obtain th = 0. Second, in order to obtain a solution (wts for a given solution (w?)teN, we need

n(S) linear combinations of the whole system

Ass Asy wf)_(gss QSU> (wts_1> (Qs-) <QS.>
( AUU) (th N Quu ) \w{, * Que e+ Que e

such that the degree of indeterminacy is minimal. This is achieved by premultiplying the system above with

)ien

(In(S) _QSOH (QUOH)T> )
as described in Theorem Thus, we obtain

S s
(ASS Asv = QseIT (QueTD)' AUU) <Zj§]> = (QSS Qsv — QseIl (QuaTl)' QUU) <Z§J1> + -

t—1
i (In(S) —Qslll (QUOH)T> (85:

4 (Qsett {7 = ((Quatn) (Qualn)) }) e

—1
Finally, and in analogy to equation on page we obtain by premultiplying Z (ASS ASU_(I)AUU) =

In(U)
) Ags —Ags (ASU — QsoI1(QuoIN)’ AUU)
I

(Zes, Zeu the following:

45Remember that My € RF—7xP,
46Note that, in general, the mapping from the structural form to the final form of a difference equation is not unique.
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o (5 5 v ) (s (st} o,
n(U)
— (Asé —Ags (ASU - QS-H(QUOH)TAUU)> <In(S) _QSoH<QU0H)T> (Qs-) Te, + o
I’n.(U) 0 QU.
e+ Z <A§é —Ags (ASU — QseII(QuaII) AUU)) (QS.H {Ik - ((QU-H)T (QU-H)) }) m
NG 0
= Zas [(AgéQSS Ags (QSU — Qs I (QuoID) QUU)) ZT] Y1+
:@y
ot Zas (Agh ~ASEQsTT(QuaD)) <8§:) Vept oo
—e.
ot Zas (A5hQsalt {1 = (@Qual) (QuaD)) })
=0,

Using Propositionto substitute for g, = — (Vie)” D73' (Ua1)” QueWey+(Vae)" (Mig; + (), we obtain for the effects
of the white noise inputs €; and the reduced sunspots ¢;

gé/ti = Zes (AgéQS.H {Ik — ((QU.H)T (QU.H))}) (VQ.)T

and

5} .
a% = Zog (Agg —AggQS.H(QU.H)T) (gi) U —

o= Zas (055QsaT{ I = ((QuaD)' (QuaD)) }) (Vi0) D! (Ua))" Qua® + -+

<o+ Zas (AEEQS.H {Ik - ((QU-H)T (QU-H)> }) (Vao)" M.

Lubik and Schorfheide plug 1 = — (Via)” D' (Ua1)” QueWer + (Vao)' (Mie; + (}) into the system
Poys = Tiys—1 + Vey + Il
=T1y1 + Ve, — T (Vie)" DI (Ua)" QueWey + 11 (Vao)" (Migy +¢;)
=iy + (1 =TT DR Ua)" Qua) Wz + T (Vae) Migy +T1(Val) ¢ (59)
and obtain thus

Il oyt T Oloy:
=11 °
o (Vae)”" and Be,

= (v -1 DI (Ua))" Quaw) +T1(Vae)" My

without taking into account that theses equations could be further specialized to

Ol oy:
a¢;

= (Qse)" QsTI(Vaa)" (60)

and

oyt
86,5

(¥~ 1L(Vie)" Dy (Ua)” Quaw) 411 (Vau)" M,
= (w-m(ma” ) (P W @ty).
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Remark 37. If Sims’ uniqueness condition Qgell = ®Qy 41l holds, it follows in equation that agé’ﬁ" = 0 because

Ol oyq
a¢

= (Qse)" ®QuaTl (Vaa)" = 0.
N———

=0

Under this condition, thus, the sunspots do not appear in system ([59).

41



4 A (constrained) system equivalent to an RE model (BGS)

Here, we start with deriving (in analogy to [II]) from the rational expectations model (1)) a recursive equation in terms of
the components of leads and lags of the endogenous process by writing the conditional expectation E;_ (y445) as sum
of the endogenous variable y;), and its (h + k)-step-ahead prediction error viip hit = Yi+n — Ei—k (Y2+n). Secondly,
constraints implied by the rational expectations model on the revision processes sg_j =Ei—j () — Evjya (ye) are
derived in section Subsequently, we show in section that a process (Yt ), for which the recursive equation holds

and whose revision processes z—:i_j =E;_; (y¢+) — E¢—j41 (y¢) satisfy the constraints implied by the rational expectations
model also solves the rational expectations model (in the sense that equation holds for all points in time). Thus,
the problem of finding processes (y;),,, solving the rational expectations model is reduced to the problem of finding
processes (y:),c; (which are restricted by the fact that its revision processes 5§7j = E;—; (yt) — Et—j11 (y:) have to
satisfy certain constraints) solving a vector difference equation (for given exogenous process).

In section we generaliz@ Property 5 on page 245 in [1I] with respect to the number of “arbitrary martingale
differences” to the case in which the exogenous process has a singular spectral density and correct their count of “auxiliary
parameters”’, i.e. the dimension of the solution set, on page 247 below their formula (4.1) which is only correct if the
exogenous process has a spectral density of full rank.

Up to this point, there is no assumption as to whether a process for which the rational expectations equation holds
for every t € Z also has to be contained in H,(t) at time ¢ or as to whether it has to satisfy a non-explosiveness
condition. Imposing more general non-explosiveness conditions as in [34] (and as general as in [37]) and imposing that
Y € Hy(t),t € Z, for a process (y;),; for which the rational expectations equation holds for every t € Z is
straightforward after having obtained the recursive equation together with the constraints on the revision processes.
The latter fact and its suitability for identifiability analysis are the major advantages of model relative to the other
approaches described in this paper (which do not take different timing into account).

4.1 Recursive equation

We obtain from the rational expectations model (by substituting for conditional expectations the variables themselves
and the associated prediction errors) that

J1
o (3 Y e e ) i (1)
i=Jo
=r(z)
where
Ar= > Appss
k:(k,i)ed
T ={(k,h—k)|ke{0,....K},he{0,... H}},
Jo = argmin; {i | A} #0}, J; = argmaz; {i | A} # 0},
and
K H-1 J . . .
G=Y2 Y AU el and e =By (yr45) — Beot (yiry)
k=0 j=0 h=0
as follows.

4"Note, however, that we impose (wide sense) stationarity on the exogenous process, whereas [1I] do not impose any assumption on the
exogenous process. As soon as they do impose “stationary (finite or infinite) moving average structure” (compare [1I] page 246 line 27) on
the exogenous process, however, they require that the inputs be independent while we only assume that they are uncorrelated (compare [19]
page 92 for more detail on the relation between uncorrelated processes, martingale difference sequences, and independent processes).
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First, note that

Vith—kh = Yerh—k — Btk (Yerh—r)
= (yt+h—k - Et+(h—k)—1 (yt+h—k)) + (Et+(h—k)—1 (Yesn—k) — Et+(h—k)—2 (yt+h—k)) +oe
+ (Et—(h—k)—(h—l) Yerh—k) — Bt (h—ry—n Yesn—r))

_ 0 1 h—1
= €iph—k T Etqgh—k—1 T " T E g1

and thus equation is transformed to

—Aooyt = ZZAkhEt k (Yt+h—k) +2Ak0yt kg

k=0 h=1
h—1 K

—ZZAkh Ytth— k—ZQHL k—j +2Ak0yt—k+ut (62)
k=0 h=1 k=1

which is equivalent to

H
21 ( Z Afz1> Yt = 27 ZZAMLZEt+h f—j —ut | - (63)

i=—K k=0 h=1

where the parameter matrices A} feature the forecasting horizon i more prominently, i.e. the matrices A}, i €
{-K,...,0,...,H}, are obtained by summing over the diagonals of the big matrix in containing the matrices

Apn, k€ {0,...,K}, he{0,...,H}, as elements. Reordering the sum z/1 S0 S > 71 App, 2"~ (=3) appearing
on the right hand side of equatlon (63) leads to

K
JIZZAkhZEtJrh k—j = % le

k=0 h=1 7=0 k=0 j=0
1

H
§ : Akh5t+h k—j
h=j+1

SEE(

0

H K
Apne’ —
khCt4h—k—j

k=0 j=0 h=0 k=0 j

J
J
Ap h5t+h k—j E :Akh'5t+h—k—j>

J
J
E :Akh5t+h—k—j
h=0

T

-1

I
=]

=Ct

K H H-1
J k—h ;
=|z" > " Agnz > el =G
=0

k=0 h=0

=7(z)

Remark 38 (Perfect foresight solution). For arbitrary processes (at) , the solutions (y;),.,, of l) are not necessarily

tez
solutions in the wide sense of the rational expectations model (| . In particular, the perfect foresight solution for which
(€t)4cz is assumed to be identically zero, may not be a solution in the wide sense of the rational expectations model (| .
compare [9] page 350.

Remark 39 (Zeros at infinity). Note that [II] does not use the notion of zeros at infinity because equation is
transformed in a way that no leads, i.e. negative powers of the backshift operator z, appear. King and Watson write this
equation in terms of the forward shift F'. Their zeros at infinity of the matrix pencil AF — B correspond to the zeros at
zero of 7(z).

Remark 40 (No redundant equations). The condition det (AF — B) # 0 in [3I] corresponds to (modulo stacking the

conditional expectations in (1)) det (7(z)) # 0. Note that the assumption Aoy = —I5, imposed in [II], does not
necessarily imply that det (7(z)) #Z 0 holdﬂ and thus does not exclude inconsistent equation systems.

48Consider, e.g., Agp = —Is = —Agp.
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Example 41. As an easy example consider the univariate model with K = H = 2, i.e.

Yt = ao1E¢ (Y1) +ap2E: (yi42)
+aroyi—1  +anEeq (ye) +a12Bi—1 (Ye41)
+agoyi—2  +aaEi_o (yi—1) FageEi_s (yi) + u.

Replacing the conditional expectations by the variables themselves and the associated endogenous forecast errors leads
to
—Ut = —Yt +ao1 (yt+1 - Eg+1) +ao2 (yt+2 — &g — E%H)
+a10yt—1 +an (yt - 8?) +aiz (yt+1 —ely — €
+a20yt—2  +a2 (yt71 - 629_1) +az2 (yt —ef — €%_1) )

which eventually leads to the recursive equation
* * * * * _
Ay Y2+ a1 Y1 T Qg Y+ a1 Yr—1+a_oY2=
~—~ ~—~ ~—~ ~— ~—
=ao2 =ai12+ao1 =—1+4a11+az2 =ai0+a21 =a20

0 0 1 0 0 1 0 0, .1
= ap1€4yq + Qo2 (€t+2 + €t+1) +an1e; +ane (€t+2 + 5t+1) +a21€;q + az2 (Et + 5t—1) + .

4.2 Constraints on the revision process

In this subsection, the constraints for the revision processes e/ = E; (y;+;) —E;_1 (y¢+) are derived by taking conditional
expectations of the recursive equation ([61)) with respect to different information sets, and taking subsequently differences.

We follow [11], page 244ff. We start from equation (61)), i.e.

J1
- (Z Ajzl) yo=m(2) () +ei+ el i) +Com —wg,
i=Jo

=7(z)

where Jo = argmin; {i| At # 0}, J; = argmaz; {i| AF #0}, & = S r, Zf:_ol 7 o Apn 2Pl and & =
E: (Yt+;) — Ei—1 (Yi4,) and write the Smith canonical form of 7(z) as

m(z) = P(2)a(2)®(2)Q(2),

a1(z)
where P(z) and Q(z) are unimodulaf*®| matrices of dimension (s x s), and a(z) = and ®(z) =
as(2)
¢1(2)
are diagonal polynomial matrices whose i-th diagonal element divides the (i + 1)-th diagonal
¢s(2)
elemenﬂ Moreover, the entries of «a(z) have only zeros at zero. Thus, we will work with the equation
P(2)a(2)®(2)Q(2)y: = P(2)a(2)®(2)Q(z) (8? + stl_l 4+ .+ ef_}}ﬂ) + Cimgy — Uty (64)

Theorem 42. Assume that (y;),., is a solution in the wide sense of the rational expectations model . Then, H
revision processes of dimension s satisfy the conditions

Eii (a(z) ' P(2) " [Goay — wie]) = Be—(igr) (a(2) ' P(2) " [Gemsy —wey]), i€{0,...,H—1}
or equivalently

Eii (a(2)"P(2) ' mn) — Eom(ign) ((z) 7 P(2) M Gmy) = (65)
== [Ermi (a(2) ' P(2) e y) — By (igry ((z) ' P(2) tuy—y,)], i€{0,...,H —1}.

Proof. The proof is divided into several steps.

49A unimodular matrix is a matrix whose elements are polynomials but its determinant is a non-zero constant. For further background on
polynomial and rational matrices see [21] Chapter VI, [30] Chapter 6, [22] 23], and [28] Chapter 2.

50Let ¢;(2) and ¢;+1(2) denote the i-th and (i + 1)-th diagonal element. If ¢;(2) divides ¢;+1(z), there exists a polynomial p(z) such that
bit1(2) = p(2)9i(2).
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Step 1: Apply (P(z)a(z))”" to the recursive equation (which was derived from ) The equation we will
work with is

(2)Q(2) ye = ®(2)Q(2) (e + ety 4+ +el ) +az) ' P(2) T (G, — g (66)
—Q(2) —Q(2)

Step 2: Take conditional expectations of {2(z)y; with respect to the information at time (¢t —4), i € {0,...,H},
and subtract equation (i + 1) from equation ¢ for i € {0,...,H — 1} . Note that lags of y; appearing in Q(2)y; =
Wolt FW1Ys—1+ F Wil —i Wit 1Yi—(i41) T T Wdeg((2)) Yi—deg((z)) that are larger than 4, have the same conditional
expectation with respect to information sets up to time (¢t — i) and up to time (¢ — (i + 1)). Thus, we obtain for the left

hand side of equation

Ei—i (2)ye) — IEt—(i+1) (Q(2)ye) =

=B (woys +wiys—1 + -+ wiye—i) — By i1y (woys +wiys—1 + -+ wilye—i) (67)
= wo [Eemi (y) = Ee—ivny We)] + -+ + wi [Beei (ye—i) — B (it1) (ye—i)]
=woei_; twiet Tl wed . (68)

Step 3: Take the conditional expectation of Q(z) (0 +¢}_, + -+ ¢/ ;] ,;) with respect to the information at
time (t —i), i € {0,...,H}, and subtract equation (i + 1) from equation i for i € {0,...,H —1}. Considering
the term Q(z)e]_;, we note that lags larger than (i — j) are contained in both information set which contain information
up to time (¢ —4) and up to time (¢t — (i + 1)). Thus, we obtain for i < j

B¢ (Q(Z)E{—j) — Ky (Q(z)s{_j) =
=Ei, (wos{_j twiel g+ Fwigae_ g+ wi_jgffjf(ifj)) ..
= By i) (wosﬁj + wlei,j,l +ot w'i—j—1€g_j_(i_j_1) + w,-_je{_j_(i_j))
=Ei; (woag_j + wls-tj_j_l 4ot wifjflfz,i,l) + Wifj@tj_i) .
s =By (i) (woe{_j twigl g+t wi*j*lg{fifl) + wiﬁjé—{_a

_ J
= Wi—j&

such that
Bei (U2) (6 +eioa 4o +elmi)) = B (2) (8 + e+ +60010)) =
= wigy_; +wi—1g_; + -+ wiey; +woet_;

which is equal to , ie. Eii (U2)ye) — Ee—(i41) (2(2)y:), from above. On the right hand side of equation
remains thus

Eii ((2) 7 P(2) " [Gmg — i) = Begigny (@(2) 7 P(2) 7 [Gogy — ue—,])

from which the theorem follows. ]

4.3 Constrained solutions of the recursive equation

In this subsection, we characterize the solutions in the wide sense of rational expectations model (). They comprise all

solutions of the recursive equation 1} where the uncorrelated processes (6{) satisfy the constraints 1} We follow
tez

[11] page 244ff. and prove

SL(t—j)— (i—g) =t —i
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Theorem 43. Assume that the process (y;),., satisfies the equation

m(2) ye =m(2) (e + ety + - el pn) + Gma — U,
N~
=P(z)a(z)2(2)Q(2)

where H (arbitrary) martingale difference processes (52 ) , 7€{0,...,H — 1}, of dimension s satisfy the conditions
tez

Ei; ((2) ' P(2) " [Gmy — - ]) = Ei_(iy1) (oz(z)_lP(z)_1 [Ce—y —w—yy]), i€{0,...,H—1}

or equivalently

Ei_i (a(z) " P(2) " Gmsy) = Ere(iyn) ((2) 7 P(2) " Gmy) =
= — [Ermi (a(2) " P(2) e gy) = Be—(igr) ((z) 7' P(2) tuy—yy)], i€{0,...,H —1}.

It follows that the process (y;),.4 Is also a solution in the wide sense of the rational expectations model , i.e.

Ao Aor - Aon - Aom E, (y;)
Ay B¢ (y1+1)
1 =z 2k 2K ) = —Uy.
( ) Aro Agn Arm E¢ (yen) '
Ao Agi - Ary) \Bt (Wevn)
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Remark 44. Note the similar structure of the proof of Theorem [42] While we assumed in Theorem [42] that the martingale
difference processes are derived from the solutions in the wide sense of the rational expectations model, we prove here that
for martingale difference sequences satisfying the constraints, the solutions of the recursive equations are also solutions

in the wide sense of the rational expectations model.
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4.4 Dimension of the solution set with general restrictions

In this section, we generalize Property 5 on page 245 in [11] with respect to the number of “arbitrary martingale differences”
to the case in which the exogenous process has a singular spectral density.

Moving average structure of exogenous process. We consider first the case where the exogenous process has an
infinite moving average representation, i.e.

o0
up = Zwist,i = w(z)es
i=0

where wg = I, Z?io w;w, < oo (component wise), and E (e;65) = 652 > 0 and search for solutions y, =
> e oo kjet—j such that 372 | kjk < oo (component wiseﬁ

Note that the revision process e/ satisfies
g1 =By (ye) = Eim(jr) (0) = kjer—y, 320,

where k; € R%*4.

Assumptions on the parameter space. We assume that there exists an h € {0,..., H} such that Axy # 0 and a
k €{0,..., K} such that Ay # 0, and that

J1
(= (35407 ) = A5 A5 Ay e A
i=Jo

has determinant not identically zerﬂ We will consider two different kinds of parameter restrictions, namely zero
restrictions, i.e. the entries of the matrices Agp, k € {0,...,K} and h € {0,..., H}, may only be constrained to be
P (01,--,60,)
- q;Jh(el,...,e,,)
are polynomials in (61, ...,6,) and ¢}, is not identically zero. Both of these restrictions guarantee that J; and G; (the
number of zeros at zero of 7(z)) are well defined on the parameter space in the sense that both are constant on the
complement of a subset (of the parameter space) of lower dimension. Furthermore, we assume that there is a point in
the parameter space such that the matrix on page [58| has full row rank{ﬂ

zero, and rational restrictions, i.e. we require that their entries are of the form A}/, = where py, and ¢,

Remember that

a1(2)

where P(z) and Q(z) are unimodular matrices of dimension (s x s), and «a(z) = and ®(z) =

¢1(2)

are diagonal polynomial matrices whose i-th diagonal element divides the (i 4+ 1)-th diagonal

¢s(2)

element. Moreover, the entries of «(z) have only zeros at zero.

53As soon as “stationary (finite or infinite) moving average structure” (compare [I1] page 246 line 27) is imposed on the exogenous process
in [11], however, it is required that the inputs be independent while we only assume that they are uncorrelated (compare [19] page 92 for
more detail on the relation between uncorrelated processes, martingale difference sequences, and independent processes). Moreover, while [9]
imposes a summability condition on the the coefficients in u¢ = >°72 g wier—; (372 [w;| < oo, [9] page 351, which is stronger than our
ZC'X;() w? < 00) [11] do not make such an assumption.

C Note that the non-singularity of Ago does not imply that det (7(z)) # 0, compare remark on page

55In [11] it is assumed that Agp = —Is and (implicitly by only allowing for zero restrictions) that the point for which all (unrestricted)
matrices are zero is contained in the parameter space. If we allow for rational restrictions this has to be assumed explicitly.
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Theorem 45. We consider the rational expectations model , i.e.

I, I, --- I,2F
(

ISZK)

A Aor - Ao
A1

Aro Agn
Arko Ari

Ao

A

ArH

and assume that (together with the assumptions on the parameter space above)

e the entries of the parameter matrices above are of the form A, =

in (64,...,6,) and q% is not identically zero, and that

o 7k (fu(N)) =q < s holds.

P}?:;L(elwu, p)
o

0
0p)

Yt
Es (yi11)

E(yern) |~

B¢ (Y1)

where p, and ¢’ are polynomials

The rational expectations model has a reduced form involving generically (J1s — G1) q free parameters, where

e s is the number of equations of the model,

e Jy is such that t + Jy is the largest time index of expected endogenous variables appearing in the model, and

e (G is the number of zero roots of det (7(2)).
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Corollary 46. Under the assumptions in Theorem except that there are only zero restrictions on the entries of
the parameter matrices and that Aoy = —1I, holds, it follows that the rational expectations model has a reduced form
involving generically (J1s — G1) q free parameters, where

e s s the number of equations of the model,

e Jy is such that t + Jy is the largest time index of expected endogenous variables appearing in the model, and

e (i1 is the number of zero roots of det (7(z)).

Corollary 47. Assume that in the rational expectations model (1) only zero restrictions are imposed and that additionally
Ago = =I5 and rk (fu(X)) = s holds, i.e.

I, Apr -+ Ao -+ Aom E; (yt)
Ao E, (Zl/t+1)
I, Iz I.zF Iz" : . o
( ) Apo Ak Axm Ee (ern) t
Avo Agi - Ary) \Et (esn)

It has a reduced form involving generically (J1s — G1) arbitrary martingale differences, where

e s is the number of equations of the model,
e Jy is such that t 4+ Jy is the largest time index of expected endogenous variables appearing in the model, and

o (1 is the number of zero roots of det (7(z)).

Thus, the solution set has dimension (J1s — G1) s.
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4.5 Causal and non-explosive solutions

Up to this point, there is no assumption as to whether a process for which the rational expectations equation holds
for every t € Z also has to be contained in H,(t) at time ¢ or as to whether it has to satisfy a non-explosiveness
condition. Imposing more general non-explosiveness conditions as in [34] (and as general as in [37]) and imposing that
ys € Hy(t),t € Z, for a process (y;),., for which the rational expectations equation holds for every t € Z is
straightforward in this framework. In the same way, it is obvious how causality can be imposed.

First, we impose causality on the solutions of the recursive equation (61)) (in which redundant martingale difference
sequences have been replaced) by only considering solutions for which the determinant of 7(2) is developed in terms of
non-negative powers of the backward shift, i.e.

yr = det (n(2)) " adj(w(2))g(e),

where g(g) denotes a polynomial matrix depending on present and past values of the innovations of the exogenous process.
Second, the non-explosiveness conditions, which are given in the form of an (r x s)-dimensional, r < s, matrix G of full
(row) rank, are taken into account by requiring that Gy; does not explode faster than a given rate of growth £ > 1. If
it is possible to cancel roots A of det (w(z)) (by adjusting free parameters) for which [A|~' > ¢ a causal, non-explosive
solution exists. This solution is unique if there are no remaining free parameters.
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