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1 Introduction

Imagine a monopolist mining company that extracts some rare precious metal. The �rm chooses

a price and sells its good to two downstream producers, which in turn use the metal as main

input for manufacturing a high-tech electronic product. One of the downstream �rms assembles

a fast or highly reliable version that requires a large amount of the input per unit produced,

whereas the other �rm assembles a lower quality substitute by using less of the input. In the

�nal goods market for the electronic product, consumers make their purchase decision based on

their individual valuations for quality and the prices set by the downstream �rms.1

This article shows that in a variety of related situations, the upstream supplier might have an

incentive to raise its input price beyond the point where the high-quality, high-input-requirement

downstream �rm is forced to exit, and that this behavior is detrimental to social welfare. Put

di�erently, I establish that entry of an input-e�cient, low-quality downstream competitor into a

formerly monopolistic downstream segment might decrease the economic surplus of each active

consumer and both incumbent �rms.

The reason why the upstream �rm might charge an excessive input price is as follows. Clearly,

a very input-e�cient downstream producer will tend to obtain a large market share in the �nal

goods market due to its lower cost. Hence, the supplier may want to charge a very high price that

compensates for the e�cient �rm's low input demand, but drives out the high-quality producer.

This may be optimal despite the fact that competition in the downstream market is bene�cial for

the upstream supplier, as it reduces the well-known double-marginalization externality it faces.2

At this point, it is crucial to note that the problem may only arise if the supplier is forced

to charge a linear price. As is shown in this article, excessive supplier pricing will not emerge if

the supplier can charge a �xed fee or may engage in third-degree price discrimination. Following

Villas-Boas (1998) and the references therein, linear prices are plausible to assume if the supplier

and the downstream �rms are in an ongoing business relationship with frequently changing

1Two metals that might qualify for this motivating example are iridium and ruthenium. Both are among
the rarest elements found in the Earth's crust, giving signi�cant market power to the few worldwide upstream
producers. According to the 2010 Minerals Yearbook on platinum-group metals published by the U.S. Geological
Survey, ruthenium was mainly used in the hard disk industry, while �[i]ridium crucibles are used in the electronics
industry to grow high-purity single crystals for use in various applications.�
See http://minerals.usgs.gov/minerals/pubs/commodity/platinum/ for details.

2The double-marginalization problem, as �rst formalized by Spengler (1950), describes the situation where in
successive stages of manufacturing and distribution, independently operating �rms with market power in their
respective level of the supply chain add a mark-up over the competitive price level. This accumulation of margins
leads to a loss of welfare, as �nal prices turn out to be higher than what a vertically integrated operation would
charge. This is because when making their price choice, each �rm does not take into account the negative
externality imposed on all other �rms' pro�ts. For a thorough discussion of double marginalization and many
contractual setups that may or may not reduce the problem, see Rey and Vergé (2008).
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market parameters (e.g. costs and demand). In such scenarios, any contracts which are more

complex than specifying a linear transaction price might be too costly to administer.

Keeping this restriction in mind, there are many examples other than processing of raw

materials in which an upstream �rm might rationally choose an excessive price and drive out

a high-quality downstream �rm. Namely, the logic extends to all situations where inputs can

be utilized more e�ciently by a low-quality operation, compared to a high-quality one. Most

importantly, this includes many types of sharing and renting enterprises. Such �rms do not need

to purchase one unit of input to serve one �nal consumer (as their products may be shared among

their consumers), but tend to o�er a lower quality than their retail counterparts.

An increasingly successful example is given by carsharing, where consumers can borrow a

vehicle out of some shared pool whenever they are in need. Typically, �rms that o�er such a

service charge a hourly usage fee (sometimes combined with a monthly or yearly membership

payment) that is more cost-e�ective to light users than owning a private car. Moreover, as

several consumers can utilize one car, serving one �nal consumer requires less physical input for

carsharing �rms than for regular car dealers. In a study conducted with several North American

carsharing companies, Martin et al. (2010) �nd that each car in a sharing �rm's repertoire

decreases the need for nine to thirteen privately owned cars. On the other hand, engaging in

carsharing arguably provides consumers a lower gross utility than owning a car privately (e.g.,

because it is easier to access one's own car; there is no need to return it; etc.). Hence, if carsharing

would attract a su�ciently large market share, the mechanism portrayed in this article might

apply: dominant upstream manufactures would want to correct for the sharing �rms' higher

e�ciency by charging an excessively high input price, driving out standard car retailers and

reducing welfare.

Other potentially a�ected markets include the markets for information goods like movies,

music, and books. For example, if entry of a legal (online) movie sharing service was so suc-

cessful that standard DVD or Blu-ray sellers would lose a signi�cant part of their market share,

upstream copyright holders might react by considerably increasing their content prices, inducing

the standard sellers to exit the market altogether. Then, as long as the shared movies' quality

(gross utility) was perceived to be lower than their retail counterparts' quality (e.g., because the

shared movies lack nice packaging or extra features), social welfare would be reduced.

Finally, the logic also applies to certain types of essential facilities (e.g., airport slots or harbors

that, by cost-saving logistics, need to be employed less often by a low-quality operation), and

even the availability of recycling opportunities (e.g., a �rm might need less input for production
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than a competitor because part of its input can be generated from recycling returned �nal goods,

resulting in a lower quality �nal product).3

Formalizing these examples, I introduce a stylized model of vertical interaction between a

monopolist upstream supplier (U) of some essential input and a downstream, vertically di�er-

entiated goods duopoly engaging in price competition. In the downstream market, a traditional

�nal good producer (P) and a more input e�cient, lower quality alternative competitor (A)

process U's intermediary good and strategically set prices. The key parameters of the model are

thus the relative quality and relative input requirement of A, compared to P.

As a �rst result, I �nd that, depending on A's e�ciency, U will choose from a number of

di�erent pricing strategies in equilibrium. These include charging the standard double marginal-

ization monopoly price and only serving P (if A is highly ine�cient), choosing an intermediate

price to maintain competition in the downstream market (if P and A are comparably e�cient),

inducing limit pricing by either P or A (if either �rm is moderately more e�cient than its rival)

or setting an excessive price where only A can pro�tably operate, foreclosing the high-quality

producer P (if A is highly e�cient).

The reason for U's rich strategic behavior is a combination of two countervailing e�ects.

First, if A is active, it poses a threat to U's pro�t because it steals some market share from

P. In turn, as A is able to serve its customers at a lower input requirement than P, U's total

demand decreases. This is a negative direct e�ect on U's pro�t. However, as a second e�ect,

the downstream competition that is caused by A is also bene�cial to U, as lower prices in the

downstream segment imply a higher demand by �nal consumers and thus more demand generated

by both intermediaries. This is a positive indirect e�ect on U's pro�t. The relative magnitude

of these e�ects ultimately a�ects which pricing strategy U employs. In particular, if A is very

input-e�cient, U's pro�t when choosing a moderate price that either keeps P in the market, or

induces A to engage in limit pricing, is lower than when charging an excessive price. Such a

price fully compensates for A's low input requirement, but also gives A monopoly power in the

downstream market. This leads to a more severe form of the double-marginalization problem.

As emphasized above, the main contribution of this paper is not only to show that excessive

supplier pricing might happen in equilibrium, but also, that such a conduct is harmful to social

welfare, even compared to the ine�cient standard double marginalization case. Intuitively, when

the supplier charges an excessive price that optimally compensates for A's low input requirement,

the consumers cannot bene�t from low downstream prices, as A has to pass on its high production

3Many other potential applications are provided in Botsman and Rogers (2010).
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cost. On the other hand, an excessive supplier price drives P out of the market, which essentially

replaces the high-quality incumbent with a low-quality �rm. It is not di�cult to see that this

must be detrimental to social welfare.

Another important result is that, despite A's lower input requirement, entry of A tends to

increase U's equilibrium pro�t. This is because the increased demand caused by downstream

competition typically more than o�sets any losses in demand resulting from A's lower input

requirement. In other words, A's indirect positive e�ect on U's demand usually dominates its

direct negative e�ect. However, for very e�cient A's, the direct e�ect may still dominate, leading

to decreased upstream pro�ts. Moreover, in situations where U �nds it optimal to charge an

excessive price, its pro�t is always lower than if A did not exist.

An interesting feature of the model is that allowing U to engage in third degree price discrim-

ination can be welfare increasing. This is because, by charging an adequately higher input price

for the more e�cient �rm, U can e�ectively maximize competition in the downstream market.

This is better from a welfare point of view, compared to the situation where price discrimination

is not feasible, if either U would otherwise decide to foreclose A or P by charging a high price

(the standard double-marginalization case, or excessive supplier pricing), or if A is slightly more

e�cient than P. In all other cases, the aggregate deadweight loss that arises in the market is

lower if price discrimination is not feasible, as su�cient incentives are provided for all (active)

�rms to charge relatively low prices.4

Finally, I show, partly using numerical methods, that the model's main qualitative insight is

robust to two extensions. The �nding that welfare-decreasing excessive supplier pricing might

occur in equilibrium is not overturned by oligopolistic (Cournot) competition in the upstream

market and a positive supplier production cost. In the case of upstream Cournot-competition,

the range of A's technology parameters where excessive supplier-pricing is an equilibrium out-

come merely becomes smaller. If the supplier has a positive production cost, not all parameter

combinations where an excessive supplier price is chosen are harmful to society, as the aggregate

production cost is reduced by A's e�cient production technology. However, for any positive cost

level, there still exists a parameter-region where excessive pricing is optimal, but total social-

welfare is reduced.

There are two main strands of literature that are relevant to this article. Most closely related is

4Katz (1987), DeGraba (1990), and Yoshida (2000) all study third degree price discrimination in the context
of vertical market structures. As the present model, these papers generally give ambiguous predictions regarding
the welfare e�ects of price discrimination. Moreover, the usual necessary condition that output in the �nal goods
market must increase in order for social welfare to rise (see Varian (1985)) may be violated.
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the literature on vertical foreclosure, which, according to Rey and Tirole (2007)'s comprehensive

survey, �refers to a dominant [upstream] �rm's denial of proper access to an essential good it

produces, with the intent of extending monopoly power from that segment of the market (the

bottleneck segment) to an adjacent [downstream] segment (the potentially competitive segment).�

Examples of vertical foreclosure that are often discussed in the literature include refusal to deal

(see e.g., Bernheim and Whinston (1998)), vertical integration (see e.g. Salinger (1988), Hart

et al. (1990)), and price squeezes or raising rivals' costs (see e.g., Salop and Sche�man (1983),

Crocioni and Veljanovski (2003)).5

While the literature on vertical foreclosure is vast, I am only aware of a single paper that

discusses the incentives of a non-integrated supplier to foreclosure a downstream �rm by choosing

a uniform price (rather than by exercising price discrimination, or engaging in a price squeeze).

To this end, Spiegel and Yehezkel (2003) consider a setup, similar to the one presented in this

paper, where an upstream monopolist U serves two quality di�erentiated downstream �rms

(say, P and A). While the authors' main focus lies on the e�ect of forced market segmentation

by U, they also analyze the case where U may only charge a uniform price. However, there

are two crucial di�erences to this article. First, Spiegel and Yehezkel do not account for the

possibility that A might be more input-e�cient than P. Thus, they ignore U's (potential) tradeo�

between maintaining downstream competition and reducing double marginalization, or charging

an excessive price and compensating for A's low input requirement. Second, they only consider

the case where A is less cost e�cient than P.6 Due to these assumptions, Spiegel and Yehezkel

�nd that U will always charge a price that forecloses the low quality �rm.

Yehezkel (2008) considers the case of a downstream retailer that can either purchase a high-

quality input from an upstream monopolist, or obtain a low-quality substitute, resulting in a

lower quality �nal product, from an alternative source. He shows that under full information (as

in the present model), the retailer o�ers both varieties if and only if it would also do so under

vertical integration. Interesting frictions only arise if there is asymmetric information about the

consumers' willingness to pay for quality. In contrast, an important contribution of this paper

is to show that very problematic outcomes may also occur under full information, provided that

the downstream �rms' product quality is linked to their input requirement.

A somewhat di�erent perspective is given by Villas-Boas (1998), who considers the choice of

5A price squeeze refers to the situation in which a vertically integrated supplier charges an input price that
is above the selling price of its downstream operation, squeezing non-integrated downstream rivals out of the
market.

6Clearly, in reality, the highest quality product is not always the most cost-e�cient one.

5



product line (product qualities) and pricing of an upstream monopolist, given that a downstream

retailer has to decide about the products it carries and which consumer segments (high or low

valuation) to target. In some sense, the article endogenizes the quality levels that are being

introduced to the market. However, di�erent input-requirements in the transformation process

are not considered and the focus lies on a downstream monopoly, rather than entry of an e�cient

low-quality �rm.

The second most closely related literature deals with the economics of sharing, renting and

copying of information goods. Typically, the main concern of papers in this area is whether the

possibility of sharing and copying of information goods (e.g., photocopying of journals, copying

of videos, sharing music over the Internet, etc.) harms the pro�ts of respective copyright holders.

There are two similarities to this article. First, consumers may also self-select into purchasing

a high-quality �original� or low-quality �copy� (where the former is higher priced), depending

on their valuation for quality. Second, if the copying technology is e�cient, an (upstream)

content producer may charge a higher price than without the existence of copying technologies,

as it realizes that (downstream) �buying clubs� have a higher willingness to pay than individual

consumers. Important contributions in this area have been made by Liebowitz (1985), Besen

(1986), Bakos et al. (1999), Varian (2000), and Varian (2005).

Lastly, worth mentioning is also the literature on damaged goods, pioneered by Deneckere

and McAfee (1996). The authors show that a monopolist manufacturer may want to arti�cially

degrade (damage) parts of its products and sell them at a lower price in order to bene�t from

price-discriminating consumers. In the present model, A's good can be interpreted as damaged

version of P's, but very di�erent pricing incentives arise because of the vertical market structure.

The remaining article is structured as follows. The next section brie�y describes the model

setup. Section 3 examines consumers' demand and solves for the equilibrium of the downstream

price game. In the core of this paper, Section 4, the supplier's optimal pricing decision is derived.

In Section 5, I discuss third degree price discrimination by U. Section 6 contains the two above

mentioned extensions, and Section 7 concludes. All proofs can be found in Appendix A, while

tables for every relevant equilibrium expression can be found in Appendix B.

2 Model Setup

Consider a market where a monopolist upstream supplier (U) interacts with a standard down-

stream producer (P) of a high quality �nal good and an �alternative� downstream producer (A)
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that can provide a lower quality substitute at a lower input requirement. The relative quality

q ∈ (0, 1) and the relative input requirement r ∈ (0, 1) at which A can produce, compared to P,

are �xed exogenously and common knowledge. Without loss of generality, I normalize both the

quality and input requirement of P to one, which means that the standard downstream producer

can transform one unit of input obtained from the upstream supplier into one unit of the stan-

dard �nal good, whose quality is given by one. For simplicity, U can produce any amount at no

cost.

The sequence of events is the following. In stage one, U sets the price c it charges for each

unit of its input. In stage two, the downstream producers simultaneously compete in prices p (P)

and a (A), given c, q, and r. Importantly, P and A face positive and di�erent unit costs of c (P)

and d = r ∗ c < c (A), respectively. Note that A faces a lower unit cost than P because it only

needs to obtain r ∈ (0, 1) units of input from U to produce one unit of its substitute �nal good.

The downstream �rms do not incur any additional expenses other than the costs that arise from

purchasing U's input.

Finally, in stage three, a unit mass of consumers, each having unit demand, decides at which

�rm (if any) to buy. Following Mussa and Rosen (1978), I specify that the utility of a consumer

of type θ, who consumes a good of quality q at price p, is given by

Uθ = θq − p, (1)

where θ is uniformly distributed on the interval [0, 1]. Note that by including zero to the range

of consumers' valuation for quality, I ensure that the downstream market is uncovered.

In what follows, I solve for the (unique) subgame perfect Nash equilibrium for each parameter

combination (q, r).

3 Consumer's Demand and Downstream Price Competition

Given the above setup, the type of consumer who is indi�erent between purchasing at A and P

is given by

θh =
p− a
1− q

. (2a)

Clearly, if θh < 0 (p < a), everybody prefers buying from P, whereas if θh > 1 (p > a + 1 − q),

everybody prefers buying from A.
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The type of consumer who is indi�erent between buying at A and no consumption is given

by

θl =
a

q
> 0. (2b)

If θl ≥ 1 (a ≥ q), no consumer would �nd it optimal to buy A's product even if P was not active.

Finally, the consumer θm who is indi�erent between buying from P and not consuming at all

is given by

θm = p > 0. (2c)

Thus, in the case of p ≥ 1, P would not be able to attract consumers even if A was absent from

the market.

Combining these observations and taking into account the uniform distribution of consumers'

types θ, I arrive at the following lemma.7

Lemma 1. The downstream �rms' demand from �nal consumers, given prices p ∈ (0, 1) by P,

a ∈ (0, q) by A, and q ∈ (0, 1),8 is given by

DP (p, a, q) =


1− p if p ≤ a

q

1− p−a
1−q if p ∈ (aq , a+ 1− q)

0 if p ≥ a+ 1− q

(3a)

DA(a, p, q) =


1− a

q if a ≤ p+ q − 1

p−a
1−q −

a
q if a ∈ (p+ q − 1, pq)

0 if a ≥ pq.

(3b)

Using the above demand functions for calculating the �rms' best-response correspondences,

one can show

Proposition 1. The unique equilibrium of the downstream subgame, given c, d, and q, is char-

acterized by �ve di�erent cases (in increasing order of A's e�ciency): monopoly pricing by P

(I), limit pricing by P (II), duopoly competition between P and A (III), limit pricing by A (IV),

and monopoly pricing by A (V).

7Graphical intuition to a similar scenario can be found in Spiegel and Yehezkel (2003).
8For p ≥ 1, P's demand is always zero and A's demand is equal to max{1− θl, 0} = max{1− a

q
, 0}. For a ≥ q,

A's demand is always zero and P's demand is equal to max{1− θh, 0} = max{1− p, 0}. If both p ≥ 1 and a ≥ q,
DP (p, a, q) = DA(a, p, q) = 0.
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More precisely,

(I) p∗∗m =
1 + c

2
and a∗∗00 = {a | a ≥ d} if c ≤ c and d > d̂

(II) p∗∗lim =
d

q
and a∗∗0 = d if c ≤ c and d ∈ (d, d̂]

(III) p∗∗acc =
2− 2q + d+ 2c

4− q
and a∗∗acc =

q − q2 + cq + 2d

4− q
if c ≤ c and d ≤ d

(IV ) p∗∗0 = c and a∗∗lim = c+ q − 1 if c ∈ (c, ĉ] and d ≤ d

(V ) p∗∗00 = {p | p ≥ c} and a∗∗m =
q + d

2
if c > ĉ and d ≤ d,

where

c =
2− q − (q − d)

2− q
∈ (0, 1), ĉ =

2− q + d

2
< 1,

d =
q(1− q + c)

2− q
∈ (0, q), d̂ =

q(1 + c)

2
< q.

For the following intuition to Proposition 1 and the analysis of the supplier's optimal pricing

decision in Section 4, it is convenient to draw the unit cost parameter space with the di�erent

downstream equilibrium regions in a plane. Doing so, I exploit the fact that for given q, the region

boundaries c and ĉ (d and d̂) are linear functions of d (c).9 The resulting graph is depicted in

Figure 1.

Proposition 1 can be explained as follows. If A is very ine�cient compared to P, it has an

overall high demand for the input and hence high cost. This implies that even if P charges the

monopoly price, A cannot pro�tably operate in the market. This is case (I). As A becomes

more e�cient, P cannot charge the monopoly price anymore and keep A from entering. For a

su�ciently e�cient A, P reduces its price below the monopoly price in such a way that A cannot

pro�tably operate (i.e., at best make losses of ε) when entering. In this equilibrium, labeled (II)

above, P charges some p < pm and A prices at marginal cost, making zero sales. But if A is even

more e�cient compared to P, P �nds it too costly to keep A out of the market. In such equilibria

(III), the downstream �rms engage in duopoly competition. For A's that are even more e�cient,

A either optimally engages in limit pricing (IV), or charges its monopoly price (V), and P exits.

Inserting the Nash-equilibrium expressions for p and a (as derived in Proposition 1) into the

demand functions given in Lemma 1, I �nd the following corollary.

9Note that for both c ≥ 1 and d ≥ q, none of the �rms will be active in equilibrium and the market is not
served.
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d

q

1 c

III

c∗ c∗∗cbca

45◦

I

II

IV

V

slope : r2

slope : r1

Figure 1: Equilibrium regions of the downstream subgame drawn in (c, d) space for a given

q. The boundaries between regions (I,II), (II,III), (III,IV) and (IV,V) are given by d̂(c), d(c),
c(d) and ĉ(d), respectively. For the analysis in Section 4, the dashed line indicates the case of
a relatively input e�cient A (r1 < q), whereas the dashed-dotted line indicates the case of a
relatively input ine�cient one (r2 > q). Points above the 45◦ line are not attainable, since r < 1
by assumption.
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Corollary 1. The equilibrium demand functions of the downstream subgame are given by

D∗P (c, d, q) =



1−c
2 if c ≤ c and d > d̂ (I)

q−d
q if c ≤ c and d ∈ (d, d̂] (II)

2+d−2c+cq−2q
(4−q)(1−q) if c ≤ c and d ≤ d (III)

0 if c > c and d ≤ d (IV ) + (V )

(4a)

and

D∗A(c, d, q) =



0 if d > d and c ≤ c (I) + (II)

d(q−2)+(1+c−q)q
(4−q)(1−q)q if d ≤ d and c ≤ c (III)

1−c
q if d ≤ d and c ∈ (c, ĉ] (IV )

q−d
2q if d ≤ d and c > ĉ. (V )

(4b)

In the subsequent section, I will use these equilibrium demand schedules to solve for U's

optimal pricing decision. The equilibrium pro�ts, consumer surplus and total social welfare of

the downstream subgame are found in Appendix B.

4 Optimal Supplier Pricing

Before starting the analysis, the following de�nition will turn out to be useful.

De�nition 1 (Relative Input E�ciency). A is called relatively input e�cient (relatively input

ine�cient) if it has a lower (higher) input requirement per unit of quality than P, i.e., if r < q

(r > q).

In this section, I assume that the supplier cannot price-discriminate between P and A. Hence,

given c, A's e�ective input price (per unit of �nal consumers' demand served) is d = r ∗ c. That

is, for given r, the supplier may only choose a point on the line through the origin with slope r

in the cost parameter space depicted in Figure 1 (cf. Section 3). For the purpose of analyzing

U's optimal price choice, one has to distinguish two cases:

(i) (dashed-dotted line in Figure 1) If A is relatively input ine�cient, P is always active if A

is, since the unit cost pair (c, rc) must lie in regions I, II or III.10 Moreover, as A is relatively

10There is also a direct argument for this: Suppose A is active (d = rc < q) and relatively input ine�cient
(r < q). For P not to be active in equilibrium, it must hold that p > a+1− q. Now, for the lowest possible price
a = d �rm A can choose in equilibrium, this inequality becomes p > 1− q+ rc. As 1− q+ rc > c if A is relatively
input ine�cient, it must hold that p > 1 − q + rc > c for P not to be active in equilibrium. But this cannot be
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input ine�cient, it can be driven out of the market if U chooses a su�ciently high input price.

Denoting the solutions to rc = d(c) and rc = d̂(c) by ca and cb, respectively, one �nds that the

upstream �rm has three options: (a) price at c ∈ [0, ca) and face demand by both downstream

�rms (b) price at c ∈ [ca, cb), keep A out of the market and induce limit pricing by P or (c) price

at c ∈ [cb, 1) and induce monopoly pricing by P.

Using Corollary 1, the supplier's demand can thus be written as

D
(1)
U (c, q, r) =



xU (c, q, r) if c < ca, with ca := q(1−q)
2r−rq−q ∈ (0, 1) (III)

q−cr
q if c ∈ [ca, cb), with cb := q

2r−q ∈ (ca, 1) (II)

1−c
2 if c ∈ [cb, 1) (I)

0 if c ≥ 1,

(5a)

with

xU (c, q, r) :=
r + 2

4− q
− c(2r2 − qr2 − 2rq + 2q − q2)

(4− q)(1− q)q
.11

The �rst line of equation (5a) is given by D∗P (c, d, q) + rD∗A(c, d, q) for c ≤ c and d = rc ≤ d, the

second line is given by D∗P (c, d, q) for c ≤ c and d = rc ∈ (d, d̂], and the third line is given by

D∗P (c, d, q) for c ≤ c and d = rc > d̂. Note that the lower input requirement of A is taken into

account in the �rst line, as �rm A only needs to purchase r < 1 units of input from U for any

�nal consumer it serves.

(ii) (dashed line in Figure 1) If A is relatively input e�cient, it must always be active in the

market if P is, since the unit cost pair (c, rc) lies in regions III, IV or V.12 Denoting the solutions

to c = c(d) and c = ĉ(d) by c∗ and c∗∗, respectively, one �nds that the upstream �rm has again

three options: (a) price at c ∈ [0, c∗) and face demand by both P and A (b) price at c ∈ [c∗, c∗∗),

keep P out of the market and induce limit pricing by A or (c) price at c ∈ [c∗∗, qr ), which induces

monopoly pricing by A.

part of an equilibrium strategy combination, because P could price at some intermediate p̃ ∈ (c, 1 − q + rc), get
positive demand and make a positive pro�t.

11Note that the nominator of the second term is positive. This is because 2r2 − qr2 − 2rq + 2q − q2 =
q(1− r)2 + (1− q)(q + 2r2), which is certainly positive for q ∈ (0, 1).

12Again, a direct argument for this runs as follows: Suppose that P is active (thus, c < 1) and A is relatively
input e�cient (r > q). In order for P to price A out of the market, it must hold that p < a

q
. But for a given cost

level c, the standard producer cannot price below it in equilibrium. Thus, suppose P chooses its lowest possible
price: p = c. Then, A would not be active if p = c < a

q
. Now, because d = rc, this inequality becomes a > dq

r
.

For a relatively input e�cient alternative producer, r > q and hence a > dq
r
> d must hold for A not to be active

in equilibrium. But this cannot be part of an equilibrium strategy combination, because A could price at some
intermediate ã ∈ (d, dq

r
), get positive demand and make a positive pro�t.
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Using once again Corollary 1, it follows that the supplier's demand can be written as

D
(2)
U (c, q, r) =



xU (c, q, r) if c < c∗, with c∗ := 2(1−q)
2−q−r ∈ (0, 1) (III)

r(1−c)
q if c ∈ [c∗, c∗∗), with c∗∗ := 2−q

2−r ∈ (c∗, 1) (IV )

r(q−cr)
2q if c ∈ [c∗∗, qr ) (V )

0 if c ≥ q
r ,

(5b)

where the �rst line is given by D∗P (c, d, q) + rD∗A(c, d, q) for d = rc ≤ d and c ≤ c, the second

line is given by rD∗A(c, d, q) for d = rc ≤ d and c ∈ (c, ĉ], and the third line is given by rD∗A(c, d, q)

for d = rc ≤ d and c > ĉ. For all of these cases, the lower input requirement of A is taken into

account by multiplying A's demand from �nal consumers by r, which gives its e�ective input

requirement from U. Clearly, the supplier cannot even sell to the more e�cient producer A if it

chooses an input price c ≥ q
r , as this implies d ≥ q.

As U has to incur zero cost by assumption, the �rm's pro�t is given by

ΠU (c, q, r) =

c D
(1)
U (c, q, r) if r > q (I) + (II) + (III),

c D
(2)
U (c, q, r) if r ≤ q (III) + (IV ) + (V ).

(6)

Comparing U's maximum pro�ts in the di�erent downstream equilibrium regions, I obtain

Proposition 2. The unique subgame perfect Nash equilibrium of the full game is characterized

by �ve di�erent supplier pricing strategies. In increasing order of A's e�ciency, U sets c such

to induce (I) monopoly pricing by P, (II) limit pricing by P, (III) duopoly competition, (IV)

limit pricing by A, and (V) monopoly pricing by A. In region (V), U's optimal input price is

�excessive�, i.e., higher than the standard double marginalization monopoly price.

The intuition for Proposition 2 is as follows. Clearly, by choosing a su�ciently low c, the

supplier can always induce both downstream �rms to be active in equilibrium. The competition

that ensues reduces prices in the �nal goods market and hence eliminates part of the double-

marginalization externality imposed on U. However, for a very ine�cient alternative producer

A, U does not bene�t from inducing competition in the downstream market, as it would have to

reduce its price to a very low level in order for A to be active. Hence, it is best for U to choose

the standard double marginalization upstream price and ignore the ine�cient A, which cannot

even compete if P charges the downstream monopoly price.

13



If A is slightly more e�cient, U can do better by choosing an input price that is somewhat

lower than the standard monopoly price, as it can create an arti�cial competitive threat for P.

At such an input price, if P would continue to charge the corresponding monopoly price in the

downstream market, A could pro�tably operate and would steal a fraction of P's consumers.

Hence, P prefers to engage in limit pricing. For some technology parameters (q, r), the resulting

increased demand for U's input more than o�sets U for the reduction of its margin.

If P and A are comparably e�cient, U �nds it optimal to charge a moderate input price that

induces duopoly competition in the downstream market. At such an input price, both P and A

are active downstream.

Next, if A is su�ciently more input e�cient than P, the limit-pricing situation reverts. By

moderately increasing its input price from the level that maximizes U's pro�ts for downstream

duopoly competition, U can induce A to engage in limit pricing and drive P out of the market.

U also bene�ts from this, as the demand from �nal consumers stays relatively high, causing a

high input demand from A.

Finally, U can �nd it optimal to charge an input price above the standard double marginaliza-

tion monopoly price in which case A monopolizes the downstream market. The supplier prefers

this situation if A is much more e�cient than P, as in that case, compensating for A's low input

requirement by su�ciently increasing the price for its input gives U higher pro�ts than main-

taining competition in the downstream market or inducing A to engage in limit pricing. Put

di�erently, for very input-e�cient A's, U prefers a large margin for each unit it sells to A, even

though A's demand is low.

In the proof of Proposition 2, the exact technology parameters in which either of these �ve

di�erent pricing conducts are optimal are derived. Figure 2 depicts these �ndings graphically. In

particular, it can be observed that U �nds it optimal to charge an excessive price if A is highly

e�cient, that is, if it has low r and su�ciently high q.

Some further graphical insight can be obtained when plotting the �rms' equilibrium prices

for changing technology parameters. Figure 3 depicts the �rms' equilibrium price paths for three

di�erent levels of A's relative input requirement r, as a function of A's relative quality q. It is easy

to see that for su�ciently input-e�cient A's (middle and bottom panel), the supplier charges

an excessive price in equilibrium, given that A's relative quality exceeds a certain threshold.

Note moreover that only in the middle panel, all �ve di�erent pricing strategies can be observed

(compare with Figure 2).

Using Proposition 2 combined with equations (5a), (5b), (6), Proposition 1, Corollary 1 and

the �rst part of Appendix B, one can now solve for the equilibrium prices, demand levels, pro�ts,

14
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Figure 2: Characterization of the supplier's optimal pricing decision across the technology pa-
rameter space. The horizontal axis measures A's relative quality, while the vertical axis measures
its relative input requirement. In region I, the supplier charges the standard double marginal-
ization monopoly price. In region II, it induces limit pricing by P. In region III, downstream
duopoly competition is enabled. In region IV , U induces limit pricing by A. Finally, in region
V , U charges an excessive price, permitting A to charge its monopoly price downstream.
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Figure 3: Equilibrium prices for r = 2/3 (top), r = 4/9 (center) and r = 1/3 (bottom) as
a function of q. The solid (dashed) [dotted] line depicts the supplier's (standard producer's)
[alternative producer's] equilibrium price, respectively.
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consumer surplus, producer surplus and total social welfare in each of the �ve di�erent optimal

pricing regions. For the two main qualitative �ndings of this paper, the expressions for total

social welfare W and supplier pro�t ΠU in each of the regions are needed. These are provided

in the following table, while all other equilibrium expressions can be found in Appendix B.

Region c∗ W ∗ Π∗U

I 1
2

7
32

1
8

II q(1−q)
2r−rq−q

(r−q)(3r−2rq−q)
2(2r−rq−q)2

q(1−q)(r−q)
(2r−rq−q)2

III (r+2)(1−q)q
2(2r2−qr2−2rq+2q−q2) WIII

(r+2)2(1−q)q
4(4−q)(2r2−qr2−2rq+2q−q2)

IV 1
2

1
2 −

1
8q

r
4q

V q
2r

7
32q

q
8

Where WIII = S + T , with

S =
192r4 + (304r2 − 432r3 − 212r4)q + (112− 368r − 24r2 + 340r3 + 47r4)q2

8(4− q)2(2r2 − qr2 − 2rq + 2q − q2)2
,

T =
(−36 + 236r − 117r2 − 46r3 + 13r4)q3 + (−84 + 65r2 − 6r3 − 4r4)q4 + (52− 12r − 12r2)q5 − 8q6

8(4− q)2(2r2 − qr2 − 2rq + 2q − q2)2
.

Using the above table and keeping in mind that in equilibrium, all �ve pricing strategies may

be chosen by the supplier (see Proposition 2), it is possible to state the two main propositions

of this article.

Proposition 3. For q > ql ≈ 0.635, there exists r(q) ∈ (0, 1) such that for all r < r(q), the

total social welfare in the market is reduced, compared to the standard double-marginalization

case.13 This is true if the supplier charges an excessive price in equilibrium (region V), and the

associated welfare loss is given by 7
32 (1− q). For all other technology pairs (q, r), the total social

welfare is (weakly) higher than in the standard double-marginalization case.

An excessive supplier price implies that only the more input e�cient �rm A can pro�tably

operate, and that it may charge its monopoly price in the downstream market without losing

sales to the standard producer. What essentially happens in region V, compared to the stan-

dard double marginalization case of region I, is that the high quality downstream monopolist is

replaced by a low quality one, although the higher input e�ciency of A does not bene�t �nal

consumers (i.e., does not reduce deadweight loss). This is because the supplier corrects for the

lower input requirement of A by increasing its price in inverse proportion. That is, as A only

13Formally, r(q) = q3−6q2+16q−8

4−q2+
√

(4−q)2(4−6q+3q2−q3)
for q ∈ (ql, qh2] ≈ (0.635, 0.8603] and r(q) = q2

2
for q > qh2.
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needs r units of input to serve one �nal consumer, the supplier simply increases its price by the

factor 1
r . Considering the e�ective prices that are paid in the market, everything becomes as if

there was a standard producer in the downstream market, with full input requirement, that can

only provide less than full quality of q < 1. It is easy to check that this implies a lower surplus

for every agent in the market.

On the other hand, as long as the supplier does not �nd it optimal to charge an excessive price,

existence of A is (weakly) welfare-increasing. In particular, whenever A is su�ciently e�cient

such that P has to change its pricing behavior, compared to the standard double marginalization

case, the decreased downstream prices due to competition (or potential competition under limit

pricing) in the downstream market lead to a reallocation of goods that is socially desirable. This

is always true, although for some parameter combinations, there are two countervailing e�ects at

work. Namely, competition in the downstream market allows some new consumers to participate

in the market (which generates additional surplus), but if A o�ers a very appealing price, some

high valuation consumers are led to switch to the low-quality �rm, which generates less net

surplus in these transactions. The proof of Proposition 3 shows that the former e�ect always

dominates.

The next main question is whether the supplier may bene�t from the existence of an alter-

native, lower input downstream �rm. This is answered in

Proposition 4. Existence of A decreases the supplier's pro�t, compared to the standard double

marginalization case, if and only if A is highly e�cient, that is, if and only if q < qh3 =

4
3

(
−2 +

√
7
)
≈ 0.861 and r < re := q(2+q)

8−5q+
√

3(4−q)2(1−q)
< q

2 , or q ≥ qh3 and r < q
2 . Whenever

U charges an excessive price, its pro�t is lower than in the standard double marginalization case.

The intuition behind Proposition 4 is that the e�ect of increased demand because of (a)

decreased downstream prices and (b) a new segment of low valuation consumers that can be

served by the low quality producer (if A is active), typically more than o�set the losses in

demand due to the decreased input requirement that characterizes the alternative production

technology. However, if this technology is very e�cient, the second e�ect may still dominate,

leading to lower supplier pro�ts than in the case where no alternative technology exists. In

particular, a necessary condition for this is that A needs at most half of P's input per unit of

quality provided. In region V (where an extremely input e�cient technology is available), U's

pro�t is always lower than if A did not exist, but the �rm can minimize its losses by charging an

excessive input price.

Another interesting �nding is given by the following.
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Remark. Total social welfare is maximized if U induces competition in the downstream market,

but is actually indi�erent between doing so, inducing limit pricing by A, or charging an excessive

input price. The unique parameter point where this is true is given by q = qh2 ≈ 0.8603 and

r = (qh2)2

2 ≈ 0.37. There, the total social welfare is equal to Wmax ≈ 0.4284.

Corollary 2. There exists a non-degenerate parameter region where total social welfare exceeds

the social surplus that would be obtained in the case where the monopolist supplier serves a

competitive (Bertrand) downstream market with identical full quality producers.

Thus, in the model, alternative downstream production technologies are best for society if

they are so e�cient that the supplier induces competition in the downstream market, but is

(almost) indi�erent between doing so and inducing limit pricing or even monopoly pricing by

A. In other words, the alternative technology is most bene�cial to welfare if the supplier has

no strong preference over A's standing in the downstream market (as long as A is active), but

opts for preserving competition between A and P.14 Surprisingly, there is a range of technology

parameters where it is better for society to have asymmetric downstream �rms with some market

power, as in the present model, than perfect competition in the downstream market. Intuitively,

this is the case because, if A is signi�cantly more e�cient than P, the supplier maximizes its pro�t

by charging an input price that is lower than if there was Bertrand competition downstream, as

it wants to maintain competition in the downstream market. This reduction in the supplier's

price can more than o�set the e�ciency loss that stems from double marginalization externalities

that are present if the downstream �rms have market power.

5 (Third Degree) Price Discrimination

In contrast to Section 4, suppose now that the institutional framework is such that the supplier

is able to price discriminate between P and A. In principle, several di�erent forms of price

discrimination are possible: individual tari�s (e.g., depending on the �rms' product qualities and

input requirements), two-part tari�s, other forms of non-linear pricing like quantity discounts and

rebates, etc. Moreover, the supplier could be vertically integrated with the incumbent P, implying

that even if price discrimination is not legally feasible, the �rm might charge a prohibitively high

input price and subsidize its high quality downstream branch. However, it is easy to see that

14Whether this feature is robust to changes in the distribution of consumers' valuation for quality could be an
interesting topic for future research.
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U's problem is uninteresting if it can charge two-part tari�s (second degree price discrimination)

or is vertically integrated with P. In both cases, the supplier can extract all of the downstream

surplus and earn the full monopoly pro�t.

To see this, note �rst that pro�ts are certainly highest for both downstream producers if they

are monopolists in their market. Then, using Proposition 1 combined with Corollary 1 (or using

Appendix B directly), one can observe that Π∗P (c, d) = (1−c)2
4 and Π∗A(c, d) = (q−d)2

4q .15 Now, in

the two-part-tari� case, suppose that U charges a zero per-unit cost, i.e., c = d = 0. Maximal

downstream pro�ts are then given by 1
4 and q

4 <
1
4 for P and A, respectively. Thus, by charging

F = 1
4 , the supplier can certainly drive out A of the market, allowing P to make a pro�t of

exactly ΠP = 1
4 , which is fully extracted by U.

On the other hand, suppose that U is vertically integrated with P. Then, it can drive out the

non-integrated �rm A by charging an appropriately high unit cost (engaging in a price squeeze)

and subsidizing P. As the latter has to pay a de facto unit cost of zero, the monopoly pro�t can

again be achieved.

Hence, in the following, I will concentrate on the more interesting case where the supplier

is not able to charge two-part tari�s and is not vertically integrated with P. For simplicity, I

will analyze a situation of maximum freedom in price discrimination, namely the polar case to

Section 4: unrestricted third degree price discrimination by U.

As it turns out, the consequences of third degree price discrimination on the equilibrium

outcome are more straightforward to analyze than the baseline model. The following proposition

summarizes the main �ndings.

Proposition 5. If U can engage in third degree price discrimination, it will choose prices such

as to equalize the relative e�ciency (cost per unit of quality provided) of P and A. In particular,

it will set c1 = 1
2 for P and c2 = q

2r for A.

Corollary 3. Under third degree price discrimination by U, both downstream �rms are always

active, irrespective of q and r. Equilibrium prices, demands, pro�ts, consumer surplus, producer

surplus and total social welfare are summarized in the following two tables.

Firm Price Demand Pro�t

U c1 = 1
2 , c2 = q

2r
2+r

2(4−q)
2+q

4(4−q)

P 6−3q
2(4−q)

1
4−q

1−q
(4−q)2

A q(5−2q)
2(4−q)

1
2(4−q)

q(1−q)
4(4−q)2

PS CS W

12−q−2q2

4(4−q)2
4+5q

8(4−q)2
28+3q−4q2

8(4−q)2

15Recall that d denotes A's unit cost.
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Intuitively, the supplier always prefers to induce competition in the downstream market

because it reduces the double marginalization externality caused by P's and A's market power

in the downstream segment. In particular, it is optimal for U to maximize competition in

the downstream market, which is achieved by equalizing the downstream �rms' relative cost

e�ciencies.16

Having determined the supplier's optimal price tuple, it follows

Proposition 6. Enabling the upstream supplier to engage in third degree price discrimination

increases total social welfare if and only if (a) q and r are such that an undiscriminating supplier

would induce monopoly pricing by P or A (regions I and V) or (b) A is slightly more input

e�cient than P.

The above proposition is true because of two reasons. First, compared to the case of a

downstream monopoly by either P or A, the total output in the market greatly expands once

the supplier maximizes competition in the downstream segment. Hence, less deadweight loss is

created and social welfare increases.

Second, if the technology is such that without discrimination, the supplier would optimally

induce limit pricing (by either of the downstream �rms) or downstream competition, total social

welfare (typically) declines if price discrimination is enabled. In some sense, such technology

parameters anyway provide su�cient incentives for low prices, as both U and the downstream

�rm(s) charge prices that are well below the monopoly price in order to maximize pro�ts. But

interestingly, in the case that A is just slightly more input e�cient than P, it is still welfare

enhancing to allow the supplier to price discriminate. This is because in such situations, P's

drop in pro�t, compared to the case of equal cost-e�ciency of P and A, is larger than A's

increase in pro�t and the consumers' gain. At the same time, U is (almost) indi�erent, as its

loss, compared to the optimum of equal cost-e�ciency, is only of second order. Hence, price

discrimination by the supplier can correct for P's abundant loss in pro�ts.17

16An interesting consequence is that a supplier might want to support a hopelessly ine�cient low or high quality
producer by adjusting the downstream �rms' input costs adequately. Hence, if third degree price discrimination
is possible, �rms might be active in the downstream market that could never pro�tably operate in markets where
price discrimination is not feasible. For example, downstream �rms that provide a much lower quality at a
marginally lower input requirement than some standard producer, or �rms that can produce a marginally higher
quality at a much higher input requirement, might both be active in equilibrium.

17In fact, in the second case, the usual necessary condition that output must increase in order for third-degree
price discrimination to improve social welfare (see e.g. Varian (1985)) is not ful�lled, as the supplier's total output
remains unchanged. Clearly, this stems from the speci�c modeling framework employed in this article.
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6 Extensions

The baseline model as presented in Sections 2 to 4 can be extended in numerous dimensions. In

this section, I will analyze the robustness of the model's main qualitative insight, namely that

suppliers might charge an excessive price in equilibrium, foreclosing high-quality downstream

�rms and reducing social welfare, to changes in the model setup. To this end, I will consider an

alternative market structure (oligopolistic competition in the upstream market) and an alterna-

tive supplier technology (positive unit cost of production). It will be seen that in both cases,

welfare reducing excessive pricing might still occur in equilibrium.18

Oligopolistic Competition in the Upstream Market

So far, I have analyzed the case of a monopolist upstream �rm supplying the downstream market.

One may now wonder whether (welfare reducing) excessive pricing and high quality foreclosure

can also happen if there is competition in the upstream market. However, note that if there

is perfect (Bertrand) competition upstream, this cannot be the case, as every upstream �rm

must price at marginal cost (ci = 0 for all upstream �rms), which implies that existence of an

alternative downstream producer will always increase social welfare by introducing competition

in the downstream market and reducing deadweight loss.

In order to make things interesting, I will thus consider the simple case where two upstream

�rms 1, 2 compete in Cournot, setting quantities S1, S2. Given the resulting aggregate output

S, a Walrasian mechanism selects the price c̃ that leads to market clearing behavior in the

downstream market, given the demand functions speci�ed in equations (5a) and (5b).

Inverting this demand system for the case of a relatively input e�cient �rm A (r < q), it

is found that the market clearing price, for some aggregate output S, is given by the following

schedule:

c̃ =



rq−2qS
r2 if S < r(q−r)

q(2−r)

1− qS
r if r(q−r)

q(2−r) ≤ S <
r(q−r)
q(2−q−r)

(1−q)q(2+r−(4−q)S)
2r2−qr2−2rq+2q−q2 if r(q−r)

q(2−q−r) ≤ S <
r+2
4−q

0 if S ≥ r+2
4−q .

(7)

18Moreover, it is easy to see that the model is robust to the introduction of a small �xed cost of production, or
an initial entry decision coupled with a small entry cost, for either downstream �rm. In both cases, the supplier's
equilibrium decision is modi�ed in such a way that regions II and IV of the downstream price game are integrated
to regions I and V, respectively. This is because if either A or P make zero operational pro�ts in the equilibrium
of the downstream game, they will not enter (or shut down) if they face entry costs (�xed costs of production).
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Figure 4: Region of technology parameters (gray) where the upstream duopolists may restrict
their output in equilibrium.

Using this schedule, it is straightforward to observe that if there exists a symmetric equilib-

rium in which both �rms restrict their output in such a way that the resulting input price for the

downstream market will be �excessive� (S∗ < r(q−r)
q(2−r) ), it must be characterized by S∗1 = S∗2 = r

6 ,

with associated �rm pro�ts of Π∗i = q
18 , i = 1, 2. However, at such low supply levels, the �rms

might have an incentive to expand their outputs in order to accrue larger pro�ts. Only if there

exists a parameter range where this is not the case, an excessive upstream price might be observed

in equilibrium.

As comparing the �rms' restricted-supply pro�t to all potentially pro�t-increasing deviations

is rather cumbersome, I will resort to a numerical simulation in order to determine the range

of technology parameters where excessive pricing might occur in equilibrium. I do so by �xing

Sj = r
6 and checking whether Si = r

6 is optimal, given (q, r), for all possible combinations of

these parameters that may support excessive pricing (i.e., where r < q). The resulting graph is

depicted in Figure 4.

It can be seen that there exists a non-degenerate parameter region in which an excessive

supplier price might be found in equilibrium. However, contrasting Figure 4 with Figure 2, it is

immediate that this region is smaller than in the case of a monopolist upstream �rm. Thus, the
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downstream technologies have to be more asymmetric, in the sense of higher relative quality and

lower relative input requirement of A, in order for excessive pricing and high-quality foreclosure to

take place in equilibrium. Note moreover that excessive-pricing equilibria will never be unique,

as if both �rms choose a large output that leads to competition in the downstream market,

unilateral deviation to a lower output level never pays.

The question which remains open is whether excessive-pricing equilibria under upstream

duopoly competition are inferior, from a welfare point of view, to upstream duopoly equilibria

where just P is active downstream. A straightforward comparison shows that this is indeed the

case. These observations are summarized in

Proposition 7. If there is duopoly Cournot-competition in the upstream market, a range of

technology parameters exists such that in equilibrium, an excessive input price for the downstream

�rms might result. Whenever this is the case, welfare is reduced, compared to the case where only

P is active downstream.

Positive Supplier Production Cost

For simplicity and in order to obtain closed-form solutions for all optimal-pricing-region bound-

aries, the main model only dealt with the case of a zero unit-cost supplier. But this assumption

implies that A can only have an indirect welfare increasing role by introducing competition in

the downstream market. The e�cient outcome would completely ignore A, as production of its

input is costless anyway, but the �rm's �nal good has lower quality than P's.

However, this observation no longer holds if there is a positive cost of producing the down-

stream �rms' input. In that case, if A is active in equilibrium, it will also have a direct welfare-

increasing role by reducing aggregate production costs. If A is highly input e�cient, less of the

costly input needs to be manufactured.

The purpose of this subsection is not to give a full solution to the supplier's problem for

positive production costs, but rather to show whether and to what extent excessive supplier

pricing might still harm social welfare, despite the lower production costs. For this, note that

if the supplier chooses an excessive price in equilibrium, A will behave like a monopolist in the

downstream market, creating an upstream demand of DU (c) = r(q−cr)
2q (as c ∈ [c∗∗, qr ]). Denoting

the supplier's unit cost by e > 0, its pro�t can be written as

Π̃U (c; e) = (c− e)r(q − cr)
2q

, c ∈ [c∗∗,
q

r
].
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An interior maximizer of this expression, if it exists, is given by c̃∗(e) := q
2r + e

2 ,
19 leading to

an upstream pro�t of Π̃∗U = (q−re)2
8q . Given c̃∗(e) as input price, A will charge a �nal price of

ã∗ = q+rc̃
2 = 3q+re

4 , resulting in a downstream pro�t of Π̃∗A = (ã∗ − rc̃∗)(1 − ã∗

q ) = (q−re)2
16q .

Adding these pro�ts to the market's consumer surplus of C̃S =
∫ 1

ã∗
q

(θq − ã∗)dθ = (q−re)2
32q , the

resulting total social welfare is W̃ = 7(q−re)2
32q .

In the standard double marginalization case, U's pro�t can be written as

Π̄U (c; e) = (c− e)1− c
2

,

with unique maximizer c̄∗ = 1+e
2 and an associated pro�t of Π̄∗U = (1−e)2

8 . Given c̄∗(e) as

input price, P will charge a �nal price of p̄∗ = 1+c̄∗

2 = 3+e
4 , implying a downstream pro�t of

Π̄∗P = (p̄∗ − c̄∗)(1 − c̄∗) = (1−e)2
16 . Adding the upstream and downstream pro�t to the �nal

consumers' surplus of C̄S =
∫ 1

p̄∗
(θ− p̄∗)dθ = (1−e)2

32 , a total social welfare of W̄ = 7(1−e)2
32 can be

computed. Solving W̄ > W̃ , it easily follows

Proposition 8. If the supplier has a positive unit cost of e > 0, existence of A reduces social

welfare, compared to the standard double marginalization case, if (i) q and r are such that the

supplier charges an excessive price in equilibrium, and (ii) A is not su�ciently e�cient, i.e.,

r >
q−√q(1−e)

e .

Note that r >
q−√q(1−e)

e is de�nitely the case whenever q ≤ (1− e)2, as r is strictly positive.

Moreover, it can be shown that for values of r that are close to zero, any supplier marginal cost

of e < 1 does in fact give rise to some non-empty interval of q's where the supplier charges an

excessive price in equilibrium and total social welfare is reduced.20 Hence, even if the supplier

faces a high marginal cost, as long as r is su�ciently low, there always exists a region in (q, r)-

space such that the �rm optimally forecloses the high-input producer P by charging an excessive

price, but total social welfare is reduced. Put di�erently, the direct e�ciency gain of an extremely

e�cient alternative producer (that reduces the aggregate production cost to almost zero) cannot

always o�set the welfare loss that is associated with an (optimal) excessive supplier price.

A numerical simulation of the supplier's optimal pricing regions for e = 0.1 can be found in

Figure 5.

19For every e ≥ 0, the boundary value c∗∗ cannot be a maximizer of U's overall pro�t function (see equation

(6) for e ≥ 0), as limc↑c∗∗
∂ΠU (c;e)

∂c
> 0 and limc↓c∗∗

∂ΠU (c;e)
∂c

< 0 cannot hold at the same time. This is because

limc↑c∗∗
∂ΠU (c;e)

∂c
> 0 implies r − 2r(2−q)

2−r
+ re > 0, whereas limc↓c∗∗

∂ΠU (c;e)
∂c

< 0 implies q − 2r(2−q)
2−r

+ re < 0,
which cannot both be the case for r < q.

20A somewhat tedious proof can be obtained from the author upon request.
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Figure 5: The supplier's optimal pricing decision for e = 0.1. In region I, the supplier charges
the standard double marginalization monopoly price. In regions IIa and IIb, it induces limit
pricing by P. In region III, downstream duopoly competition is enabled. In region IV , U induces
limit pricing by A. Finally, in region V , U charges an excessive price, permitting A to charge its
monopoly price downstream. For values of q that are to the right (left) of the dashed line, total
social welfare under an excessive supplier price is higher (lower) than in the standard double
marginalization case.
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Two things are noticeable. First, the dashed lined de�ned by r =
q−√q(1−e)

e separates region

V, where U chooses an excessive price in equilibrium, into two subregions. Depending on whether

q is to the right or left of the dashed line (regions V + and V −, respectively), total social welfare

is higher (lower) than in the standard double marginalization case. Second, the supplier's pricing

behavior becomes even richer with positive production cost, as the limit pricing region II is split

up into two subregions. This is because both boundary limit pricing (by choosing c = ca) and

interior limit pricing (by choosing some c ∈ (ca, cb)) can be optimal for the supplier.21

7 Conclusion

In many industries, an essential intermediary good can be processed to �nal goods of di�erent

qualities. In particular, a large quantity of some intermediary good might be transformed to a

high-quality �nal product, whereas a smaller quantity of that good might be transformed to a

lower quality substitute. Examples include the transformation of raw materials to durables (e.g.,

precious metals that are processed to electronics), various types of renting and sharing (e.g., cars

that are sold directly to individual �nal consumers, versus cars that are shared among a group

of consumers, organized by a carsharing enterprise), essential facilities like harbors or airport

slots (where a low quality company might use less of that resource for providing its service � e.g.,

because fewer, but more crowded cruises are o�ered), and �nal goods markets where imperfect

recycling is possible (allowing recycling �rms to o�er a lower-quality, lower-input-requirement

�nal good).

As the upstream segment of such markets is often characterized by signi�cant economies of

scale, or large sunk costs that make entry of new �rms di�cult, it is important to understand

how upstream �rms with market power would behave in such a context. This article establishes

that a monopolist upstream supplier might price-foreclose a high-quality, high-input-requirement

�nal good producer if a single lower-quality, lower-input-requirement competitor is active in

the downstream segment. Intuitively, the supplier does so if correcting for the e�cient �rm's

low input requirement by charging a very high price dominates reducing double-marginalization

externalities by maintaining downstream competition. This reduces total social welfare even

compared to the highly ine�cient double-marginalization case.

Besides this main �nding, the considered model has several other interesting properties.

First, varying the relative input-requirement and relative quality of the low-quality producer, it

21If e is su�ciently large, the same is true for the other limit pricing region IV.
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is found that a monopolist upstream supplier might choose from a number of di�erent pricing

strategies. These include charging the standard double marginalization price and only serving

the high-quality producer, inducing limit pricing by either downstream �rm, enabling duopoly

competition in the downstream market, or charging an excessive price where only the low-quality

�rm can pro�tably operate.

Another result is that the existence of a low-input-requirement, low-quality downstream pro-

ducer typically increases the upstream �rm's pro�t, despite the low-input threat that arises. In

the model, the monopolist's pro�t may only decrease if the alternative producer is at least twice

as input e�cient as the standard producer. Intuitively, this is the case because the intermedi-

aries' increased input demand caused by competition (or potential competition) and lower prices

in the downstream market typically more than o�sets any losses in the upstream �rm's demand

caused by the low-quality producer's low input requirement. Only if the latter is very e�cient,

this may be reversed.

Moreover, I �nd that if the upstream supplier is allowed to engage in third-degree price-

discrimination, the total social welfare in the market may increase. This is because a price-

discriminating monopolist will always try to equalize the cost-e�ciency of the downstream �rms,

maximizing competition in the downstream market. This is bene�cial to social welfare if the

downstream �rms are either very asymmetric in their input-e�ciencies (such that the downstream

segment would be monopolized in the equilibrium without price discrimination), or very similar

(with the low-quality �rm being slightly more e�cient than the high-quality one).

Finally, I show that the model is robust to two extensions. Both (Cournot-) competition in

the upstream market, and a positive production cost of the supplier, do not turn over the result

that welfare-decreasing excessive-supplier-pricing might occur in equilibrium. However, in both

cases, the region of problematic technology-parameters becomes smaller.

As this article's main intent is to show that excessive supplier-pricing might happen in equi-

librium, there are numerous things left open for future research. One interesting point would

be to allow for multiple quality and input-di�erentiated downstream �rms, analyzing how the

upstream supplier's optimal pricing strategies would be a�ected. Moreover, for technical sim-

plicity, the present model only considered a uniform distribution of the consumers' valuation for

quality. However, in many markets, these valuations may have totally di�erent shapes. Hence,

it could be an interesting undertaking to match the model to various consumer distributions and

examine whether qualitative changes would arise.

However, the most important task is an empirical one. This paper gives a key testable
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prediction: as alternative downstream production technologies emerge and become more input-

e�cient or provide higher quality, the optimal pricing conduct of an upstream monopolist should

vary considerably. In particular, once an alternative, lower input-requirement producer becomes

so e�cient that maintaining downstream competition is not pro�table anymore to an upstream

monopolist, the latter should choose an excessive price. This price must be higher than the input

price that was charged before the alternative technology became available, and should drive out

all traditional, high-quality �nal goods producers. If it can be established that such a conduct

does in fact take place in real markets, counter-measures need to be considered by antitrust

authorities.
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Appendix A: Technical Proofs

Proof of Lemma 1. Consider �rm P �rst. If θh ≥ 1, which implies p ≥ a+ 1− q, every consumer

prefers buying at A over buying at P and P's demand is zero. This explains the last part of P's

demand. If θh < 1, P's demand is given by 1−max{θh, θm}, where the maximum operator re�ects

the fact that P's marginal consumer can either be indi�erent between going to A or not buying

at all. Hence, if θm ≥ θh, which implies p ≤ a
q , P's demand can be written as 1 − θm = 1 − p.

This explains the �rst part of P's demand. On the other hand, if θh > θm (p > a
q ), P's demand

is 1− θh = 1− p−a
1−q . This explains the second part of P's demand.

Next, consider �rm A. If θh ≥ 1, which implies a ≤ p+ q− 1, every consumer prefers buying

at A over buying at P and A's demand is 1 − θl = 1 − a
q . This explains the �rst part of A's

demand. If θh < 1, there are two cases. First, if θh > θl, which implies a < pq, A's demand is

given by θh − θl = p−a
1−q −

a
q . This explains the second part of A's demand. Second, if θh ≤ θl

(a ≥ pq), A's demand is zero, as every consumer that gets positive utility from buying at A

prefers purchasing at P.

Proof of Proposition 1. I start by deriving the �rms' best response functions p∗(a; q) and a∗(p; q).

In the following, this will be sketched exemplary for p∗(a; q); the derivation for a∗(p; q) is analo-

gous.

Given P's demand function speci�ed in equation (3a), the �rm has two possibilities for max-

imizing its pro�t. First, by pricing in the range [0, aq ], it can prevent A from getting positive

demand, implying a demand of 1 − p. Thus, for such low prices, the �rm maximizes its pro�t

either at

pm := arg max
p

(p− c)(1− p) =
1 + c

2
,

or, if pm > a
q (a < a := q(1+c)

2 ), at the boundary plim := a
q .

If, on the other hand, P prices in the range (aq ,∞), it enables A to be active. In that case, P

should either price at

pacc := arg max
p

(p− c)(1− p− a
1− q

) =
a+ 1− q + c

2
,

or, if this value is lower or equal to the �rm's unit cost c (a ≤ a := c+ q − 1), it should price at

any p ≥ 1− q + a in order to get a demand of zero. However, since pricing below marginal cost

is a weakly dominated strategy in the subgame de�ned by the price competition stage, and is

not robust to minor perturbations in consumers' demand function, I restrict the �rms' strategy
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space to prices which are at or above marginal cost. Thus, in the case of a ≤ a, P can choose

any price p ∈ [c,∞) and make zero pro�t.

Now, it is apparent that if a ≥ a (pm ≤ a
q ; P can choose its monopoly price without inducing

A to be active) it must be optimal for P to pick its monopoly price. If the inequality does

not hold, one has to compare P's pro�t when choosing the limit price plim with its pro�t when

allowing for positive demand of A, i.e., when choosing the accommodation price pacc. Again using

the demand schedule summarized in equation (3a) for the corresponding pro�t expressions, one

can see that

ΠP (plim) > ΠP (pacc)⇐⇒ (q − a)(a− c)
q2

>
(1− q + a− c)2

4(1− q)
.

After some calculation, this simpli�es to

ΠP (plim) > ΠP (pacc)⇐⇒ a > ã :=
q(1 + c− q)

2− q
.

Given the assumption of c < 1, it is easy to show that a < ã < a holds. All in all, the argument

thus implies the following best reply correspondence for P.22 For a ≤ a, price at any p ≥ c. For

a ∈ (a, ã), price at pacc. For a ∈ [ã, a), price at plim. And �nally, for a ≥ a, price at pm.

The above best response function and its equivalent for A is summarized in the following

equations. Namely, for c < 1, d < q, p ≥ c and a ≥ d, P's and A's best reply correspondences

are given by

p∗(a; q) =



{p | p ≥ c} a ≤ a = c+ q − 1

pacc := 1−q+a+c
2 a ∈ (a, ã), where ã := q(1+c−q)

2−q > a

plim := a
q a ∈ [ã, a), where a := q(1+c)

2 > ã

pm := 1+c
2 a ≥ a

and

a∗(p; q) =



{a | a ≥ d} p ≤ p := d
q

aacc := pq+d
2 p ∈ (p, p̃), where p̃ := 2−q−(q−d)

2−q > p

alim := p+ q − 1 p ∈ [p̃, p), where p := 2−q+d
2 > p̃

am := q+d
2 p ≥ p,

respectively.

22Since pacc(ã) = plim(ã) and plim(a) = pm, it does not matter how to specify these borderline cases.
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Case by case, I will now show that each of the �ve parameter regions outlined in the propo-

sition consists of a unique type of equilibrium. Moreover, each of these �ve equilibria will be

characterized.

Before doing so, note that if c ≥ 1 and d < q, P can never get a positive demand for any

p ≥ c it chooses. Hence, the unique type of equilibrium is such that P prices at or above its cost

and A chooses its monopoly price am = q+d
2 (region V). Conversely, if c < 1 and d ≥ q, A can

never get a positive demand for any a ≥ d it chooses. Hence, the unique type of equilibrium is

such that A prices at or above its cost and P chooses its monopoly price pm = 1+c
2 (region I).

If both c ≥ 1 and d ≥ q, it is obvious that both P and A will be inactive in equilibrium. In the

following, the remaining case were c < 1 and d < q is considered.

Region I : d > d̂ := q(1+c)
2 .

Since A has to price at or above marginal cost by assumption, it must hold that a ≥ d > q(1+c)
2

in equilibrium. Hence, a > a is always satis�ed, which, according to P's best-reply schedule,

implies that P �nds it optimal to price at pm for every a ≥ d. On the other hand, pm < p = d
q ,

as easily follows from d > d̂. That is, by the above best-reply schedule, A's best reply to pm is

in fact given by any price that satis�es a ≥ d. Thus, in region I, every pair of prices (p, a) such

that p = pm and a ≥ d forms an equilibrium.

Region II : d ∈ (d, d̂], where d := q(1−q+c)
2−q .

Suppose �rst that some a′ > d could be chosen by A in equilibrium. Hence, a′ > q(1+c−q)
2−q = ã

must hold. According to P's best reply schedule, it must thus follow that either (a) plim(a′) = a′

q

(if a′ < a), or (b) pm = 1+c
2 (if a′ ≥ a) should be chosen by P.

For case (a), plim(a′) = a′

q > d
q = p, where the inequality follows from a′ > d, as assumed.

On the other hand, it must be true that plim(a′) < p. To see this, note that as a′ < a for case

(a), it is su�cient to show that a
q < p. This easily implies d > c + q − 1. Since d > d, it is

straightforward to show that this is in fact true for c < 1. Overall, since plim(a′) ∈ (p, p), A's

best reply to this price must either be given by (a1) aacc(plim(a′)) or (a2) alim(plim(a′)). For

subcase (a1), A's best reply is given by aacc(plim(a′)) = plim(a′)q+d
2 = a′+d

2 . However, as d < a′

by assumption, a
′+d
2 < a′. This shows that a′ > d cannot be part of an equilibrium in subcase

(a1). For subcase (a2), A's best reply is given by alim(plim(a′)) = plim(a′) + q − 1 = a′

q + q − 1.

This expression can only be equal to a′ if a′ = q. However, this contradicts a′ < a, as was

assumed for case (a). This establishes that a′ > d cannot be part of an equilibrium in subcase
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(a2).

For case (b), note that pm > pmust as well be the case, since this relation implies d < q(1+c)
2 =

d̂, which is true by assumption. Moreover, pm < p reduces to d > c + q − 1, which has already

been proven in case (a). Overall, since pm ∈ (p, p), A's best reply to this price must either be

given by (b1) aacc(pm) or (b2) alim(pm). For subcase (b1), it holds that aacc(pm) = qpm+d
2 . But

as a′ ≥ a = qpm in case (b), which implies pm ≤ a′

q , it follows that a
acc(pm) < a′+d

2 . And since

d < a′ by assumption, one �nds that aacc(pm) < a′. Again, this establishes that a′ > d cannot be

part of an equilibrium price pair. For subcase (b2), A's best response is alim(pm) = pm + q − 1.

It is then easy to show that alim(pm) < a, contrary to the assumption of case (b). It is thus

proven that A may never price above its marginal cost d in equilibria of region II.

One can subsequently focus on the case a = d ∈ ( q(1−q+c)2−q , q(1+c)
2 ] = (ã, a]. According to the

above best-reply schedule, P's best response to this is given by plim(d) = d
q . Clearly, p

lim ≥ d
q =

p. On the other hand, plim = d
q ≤ p̃, as easily follows from d ≤ d̂. Thus, according to A's best

reply schedule, the �rm should choose aacc(plim(a)). Now aacc(plim(a)) = plim(a)q+d
2 = a+d

2 = a,

as a = d by assumption. This implies that the price pair (plim(d), d) = (dq , d) must constitute

the unique equilibrium of the downstream subgame for d ∈ (d, d̂].

Region III : d ≤ d and c ≤ c, where c = 2−q−(q−d)
2−q .

First, it is convenient to establish that neither a ≥ a nor p ≥ p can be part of an equilibrium

for d ≤ d and c ≤ c. This ensures that each �rm's best reply function is essentially a weakly

increasing and weakly convex function with respect to the other �rm's price.

To see this, suppose �rst that some a′ ≥ a might be chosen by A in equilibrium. P's best reply

is then given by pm = 1+c
2 . However, the condition d ≤ d directly implies c ≥ d(2−q)

q − 1 + q.

Hence, pm ≥ 2d−dq+q2
2q must hold. It is now straightforward to see that 2d−dq+q2

2q > p, as

follows from d > q. In turn, A's best response to pm should either be given by (a) aacc(pm) (if

pm ∈ (p, p̃)), (b) alim(pm) (if pm ∈ [p̃, p)), or (c) am (if pm ≥ p), depending on how large pm

is. For case (a), it is easy to establish that aacc(pm) < a, as follows from d < d̂. For case (b),

alim(pm) < a is also ful�lled, as this inequality implies c < 1. For case (c), note that am can only

be a best response to pm if pm ≥ p, that is, 1+c
2 ≥ 2−q+d

2 . Rearranging this conditions yields

d ≤ c− 1 + q. Hence, am = q+d
2 ≤ q+(c−1+q)

2 . But q+(c−1+q)
2 is strictly smaller than a = q(1+c)

2 ,

as easily follows from c < 1. In all three cases, it thus holds that a∗(p∗(a′)) = a∗(pm) < a′. This

con�rms that a′ ≥ a cannot be an equilibrium price in the �rst place.

Next, suppose that some p′ ≥ p might be chosen by P in equilibrium. A's best reply is
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then given by am = q+d
2 . However, the condition c ≤ c directly implies d ≥ c(2 − q) − 2 + 2q.

Hence, am ≥ 2c−cq−2+3q
2 must hold. It is now straightforward to see that 2c−cq−2+3q

2 > a, as

follows from c < 1. In turn, P's best response to am should either be given by (a) pacc(am) (if

am ∈ (a, ã)), (b) plim(am) (if am ∈ [ã, a)), or (c) pm (if am ≥ a), depending on how large am

is. For case (a), it is easy to establish that pacc(am) < p, as follows from c < ĉ. For case (b),

plim(am) < p is also ful�lled, as this inequality implies d < q. For case (c), note that pm can only

be a best response to am if am ≥ a, that is, q+d
2 ≥ q(1+c)

2 . Rearranging this conditions yields

c ≤ d
q . Hence, p

m = 1+c
2 ≤ 1+ d

q

2 . But
1+ d

q

2 is strictly smaller than p = 2−q+d
2 , as easily follows

from d < q. In all three cases, it thus holds that p∗(a∗(p′)) = p∗(am) < p′. This con�rms that

p′ ≥ p cannot be an equilibrium price in the �rst place.

Having established that a ≥ a or p ≥ p can never be chosen in equilibrium in region III,

the next step is to reexamine the �rms' best response functions. To simplify things, suppose

for the moment that for a ≤ a (p ≤ p), P's (A's) best response is simply given by pricing at

their respective marginal cost, rather than at any arbitrary price not lower than that. Moreover,

suppose that even for a ≥ a (p ≥ p), P (A) continues pricing at its respective limit price. It

is then easy to see that each �rm's (modi�ed) best response is a weakly increasing and weakly

convex function in the other �rm's price. Drawn in a single diagram with a on the horizontal

and p on the vertical axis, this implies that p∗(a) must be weakly increasing and weakly convex

in a, whereas the inverse of a∗(p), (a∗)−1(a), must be strictly increasing and weakly concave in

a. Now, if a weakly convex and weakly concave function intersect in two single points (rather

than sharing the same value for some non-empty interval), these points must constitute the only

intersections of the two functions.

Solving plim(a) = (alim)−1(a), or a
q = a+ 1− q, yields a∗ = q and p∗ = 1 as a possible point

of intersection. As a∗ > ã (which follows from c < 1), and p∗ > p̃ (which follows from d < q), the

�rms' modi�ed best replies are in fact given by plim and alim in this point. Hence, one proper

intersection of the �rms' modi�ed best replies is found in the point (p∗, a∗) = (1, q). However,

note that p∗ > p and a∗ > a holds, as is again implied from c < 1 and d < q. Because such

equilibria have been ruled out above, this proper intersection of the �rms' best reply functions

is meaningless.

Finally, solving pacc(a) = (aacc)−1(a), or 1−q+a+c
2 = 2a−d

q , yields a∗∗ = q−q2+cq+2d
4−q and

p∗∗ = 2−2q+d+2c
4−q . It remains to show that p∗∗ ∈ [p, p̃] and a∗∗ ∈ [a, ã], such that it is ensured

that the �rms' modi�ed best replies are appropriately chosen. This is true because p∗∗ ∈ [p, p̃]

implies d ≤ d and c ≤ c, whereas a∗∗ ∈ [a, ã] implies c ≤ c and d ≤ d, as is the case in region III.
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As the other intersection of the best reply schedules is not valid, this ensures that (p∗∗, a∗∗) forms

the unique intersection of the two modi�ed best-reply functions. Moreover, since there are two

proper intersections of the �rms' modi�ed best replies, it is geometrically clear that the �rst in-

tersection between the weakly concave function and the weakly convex function must occur from

below (that is, (a∗)−1(a) cuts p∗(a) from below at a∗∗). This shows that the set-valued best-reply

portions can never overlap, rendering the price pair (p∗∗, a∗∗) the unique equilibrium of region III.

The uniqueness proof for regions IV and V is completely analogous to the proof for regions

II and I, respectively, and will not be reported here. It can be obtained from the author upon

request.

Proof of Proposition 2. The following can be shown:

(A) If A is relatively input ine�cient (r > q), U's optimal price is given by

copt =


(I) cm,P = 1

2 if r ≥ rh

(II) ca = q(1−q)
2r−qr−q if r ∈ [rl, rh]

(III) cacc = (r+2)(1−q)q
2(2r2−qr2−2rq+2q−q2) if r ≤ rl,

(8)

where rh = q(9−8q)

6−5q−
√

8q(1−q)2
and rl = 4q(3−q)

4+q+
√

16−40q+41q2−8q3
.

(B) If A is relatively input e�cient (r ≤ q), U's optimal price is given by

copt =



(III) cacc if q ≤ ql or q ∈ (ql, qh] and r ≥ r1 or

q ∈ [qh, qh2] and r ∈ [r1, r2] ∪ [r3, 1] or q ≥ qh2 and r ≥ r3

(IV ) clim,A = 1
2 if q ∈ [qh, qh2] and r ∈ [r2, r3] or q ≥ qh2 and r ∈

[
q2

2 , r3

]
(V ) cm,A = q

2r if q ∈ (ql, qh2] and r ≤ r1 or q ≥ qh2 and r ≤ q2

2 ,

(9)

where r1 = q3−6q2+16q−8

4−q2+
√

(4−q)2(4−6q+3q2−q3)
, r2 = 8(1−q)

2+q+
√

q3−12q2+84q−64
q

, r3 = 8(1−q)
2+q−

√
q3−12q2+84q−64

q

,

ql ≈ 0.635 is given by the real root to q3 − 6q2 + 16q − 8 = 0, qh ≈ 0.86 is given by the real root

to q3 − 12q2 + 84q − 64 = 0 and qh2 ≈ 0.8603 is given by the (positive) root to q2

2 = r2.
23

In particular, as q > r for a relatively input e�cient A, cm,A must be larger than cm,P = 1
2 ,

23It can be shown that q2

2
, r1 and r2 all intersect in qh2. Thus, qh2 alternatively solves q2

2
= r1 and r1 = r2.
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which is the standard double marginalization monopoly price (the equilibrium price that U would

charge if only P was active downstream). This implies that in region V, an excessive supplier

price is chosen in equilibrium.

In what follows, cases (A) and (B) will be proven successively.

Case (A): r > q.

Because for r > q, ΠU (c) is a piecewise quadratic function, with ΠU (0) = 0 and ΠU (c) = 0

for c ≥ 1, it has at most �ve potential maximizers: the three local maxima cacc, clim,P and cm,P ,

as well as the two regime boundaries ca and cb. As a �rst step, it will be shown that clim,P and

cb cannot be global maximizers of ΠU (c).

For the former, note that clim,P can only be a (local) maximum of ΠU (c) if clim,P ≥ ca

(otherwise, the �rst part of U's demand schedule has to be used, and clim,P is no longer a local

maximum in that demand portion). Inserting clim,P and ca, this implies that q
2r ≥

q(1−q)
r(2−q)−q must

hold for clim,P to constitute a local maximum of U's pro�t function. But this inequality implies

r ≥ 1, which is outside the relevant parameter range. Hence, clim,P can never be a maximizer of

ΠU (c).

Next, consider cb. Clearly, this value can only be a maximizer of ΠU (c) if (a) limc↑cb
∂ΠU (c)
∂c >

0 and (b) limc↓cb
∂ΠU (c)
∂c < 0 hold at the same time. But using U's demand function given in

equation (5a), it is easy to see that (a) requires − q
2r−q > 0, which can never be the case for

r > q. This also rules out cb as maximizer to ΠU (c).

Thus, only three possible maximizers to ΠU (c) for the case that r > q remain:

cacc = arg max
c
c xU (c, q, r) =

(r + 2)(1− q)q
2(2r2 − qr2 − 2rq + 2q − q2)

,

ca =
q(1− q)

2r − qr − q
, or

cm,P = arg max
c
c

(
1− c

2

)
=

1

2
.
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One can now show that the following implications hold:24

caccxU (cacc, q, r) ≥ ca
(
q − rca

q

)
⇐⇒ always true, since cacc = arg max

c
c xU (c, q, r).

caccxU (cacc, q, r) ≥ cm,P
(

1− cm,P

2

)
⇐⇒ Πacc

U :=
(r + 2)2(1− q)q

4(4− q)(2r2 − qr2 − 2rq + 2q − q2)
≥ 1

8
⇐⇒ r ∈ [rd, re]

ca
(
q − rca

q

)
≥ cm,P

(
1− cm,P

2

)
⇐⇒ q(1− q)(r − q)

(2r − rq − q)2
≥ 1

8
⇐⇒ r ∈ [rg, rh]

where rd = q(2+q)

8−5q+
√

3(4−q)2(1−q)
, re = q(2+q)

8−5q−
√

3(4−q)2(1−q)
, rg = q(9−8q)

6−5q+
√

8q(1−q)2
, rh = q(9−8q)

6−5q−
√

8q(1−q)2
.

Note that the lower boundary rd for c
acc to yield a higher pro�t than cm,P is irrelevant, since

it is easy to show that rd < q ∀q ∈ (0, 1), but r > q by assumption in the considered case (A).

As cacc always generates a higher pro�t than ca for cacc ≤ ca, it thus follows that cacc might

be optimal if r ≤ re. However, this only follows if it holds that cacc ≤ ca. The latter implies

r ∈
[

q
2−q , rl

]
or r ≥ rk, where rl = 4q(3−q)

4+q+
√

16−40q+41q2−8q3
and rk = 4q(3−q)

4+q−
√

16−40q+41q2−8q3
. As

it can be shown that rk > 2 ∀q ∈ (0, 1), r ≥ rk cannot be satis�ed; hence one can focus on the

�rst range. Now r ≥ q
2−q is certainly true, since q

2−q < q and r > q by assumption. But because

rl < re, a more stringent bound for cacc to be optimal is found. Namely, this is the case if r ≤ rl.

If r > rl, either c
a or cm,P must be optimal. As derived above, ca is better if r ∈ [rg, rh].

But since it can be shown that rg is smaller than rl, the lower boundary is meaningless and ca

is optimal if and only if r ∈ [rl, rh]. In the remaining parameter space where r ≥ rh, c
m,P is

optimal. However, note that since rh > 1 for q ∈ ( 1
2 , 1), this can only be the case for q ≤ 1

2 .

Combining these results, three optimal pricing regions for U are found:

(I) For r ≥ rh and q ≤ 1
2 , c

m,P is optimal.

(II) For r ∈ [rl, rh], ca is optimal.

(III) Finally, for r ≤ rl, cacc is optimal.

However, the above is only true if (i) for the region where cm,P is optimal, it holds that

cm,P ≥ cb, (ii) for the region where ca is optimal, it holds that ca ∈ [ca, cb) (which is obviously

true), (iii) for the region where cacc is optimal, it holds that cacc ≤ ca (the condition for this has

already been derived and used above).

Thus, the �rst statement remains to be proven. cm,P ≥ cb implies q ≤ 2r
3 , which has to

be ful�lled whenever cm,P is optimal. Now in the region where this is the case, it holds that

r ≥ rh and q ≤ 1
2 . Thus, for the lowest possible r (where the condition is hardest to ful�ll),

q ≤ 2rh
3 = 2q(9−8q)

3(6−5q−
√

8q(1−q)2)
has to be ful�lled. This is equivalent to 72q2−145q+72 ≥ 0, which

24Here, I ignore the possibility that cacc > ca or cm,P < cb could be true. This is ruled out later in the proof.
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is true for every q ≤ 8
9 , in particular q ≤ 1

2 . Hence, the proof of case (A) is complete.

Case (B): r ≤ q.

Since also for r ≤ q, ΠU (c) is a piecewise quadratic function, with ΠU (0) = 0 and ΠU (c) = 0

for c ≥ q
r , it has at most �ve potential maximizers: the three local maxima cacc, clim,A and cm,A,

as well as the two regime boundaries c∗ and c∗∗. The �rst step is to prove that c∗ and c∗∗ cannot

be global maximizers of ΠU (c).

Begin with c∗. A necessary condition for this value to be a maximizer of ΠU (c) is that (a)

limc↑c∗
∂ΠU (c)
∂c > 0 and (b) limc↓c∗

∂ΠU (c)
∂c < 0. Using U's demand function given in equation

(5b), it is straightforward to show that this implies

(a) f(q, r) := q2(2− r) + q(3r2 + 8r − 4)− 8r2 > 0, and

(b) 3q − r − 2 < 0.

It is easy to see that f(q, r) is strictly convex in q over the relevant parameter range, and that

f(0, r) < 0. Hence there exists some unique q̃ such that f(q, r) < 0 for q < q̃ and f(q, r) > 0 for

q > q̃. After some calculation, one �nds that f(q, r) is equal to 8
9 (1− r)2(r− 2) < 0 for q = r+2

3 .

However, due to inequality (b), it cannot hold that q ≥ r+2
3 . It follows that both inequalities

cannot be ful�lled at the same time, which shows that c∗ can never be a maximizer of ΠU (c).

Next, consider c∗∗. Similar to before, a necessary condition for this value to be a maximizer

of ΠU (c) is that (a) limc↑c∗∗
∂ΠU (c)
∂c > 0 and (b) limc↓c∗∗

∂ΠU (c)
∂c < 0. Using once again U's

demand function given in equation (5b), (a) can only be true if −2(1− q)− r > 0. Clearly, this

is impossible, which proves that c∗∗ cannot be a maximizer of ΠU (c).

Hence, also for case (B) where r ≤ q, only three possible maximizers to ΠU (c) remain:

cacc = arg max
c
c xU (c, q, r) =

(r + 2)(1− q)q
2(2r2 − qr2 − 2rq + 2q − q2)

,

clim,A = arg max
c
c

(
r(1− c)

q

)
=

1

2
, or

cm,A = arg max
c
c

(
r(q − cr)

2q

)
=

q

2r
.
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Again, it is a fairly straightforward task to show that the following implications hold:25

clim,A
(
r(1− clim,A)

q

)
≥ caccxU (cacc, q, r)⇐⇒ r

4q
≥ Πacc

U ⇐⇒ r ≥ q

2− q
or q > qh and r ∈ [r2, r3]

clim,A
(
r(1− clim,A)

q

)
≥ cm,A

(
r(q − cm,Ar)

2q

)
⇐⇒ r

4q
≥ q

8
⇐⇒ r ≥ q2

2

cm,A
(
r(q − cm,Ar)

2q

)
≥ caccxU (cacc, q, r)⇐⇒ q

8
≥ Πacc

U ⇐⇒ q > ql and r ≤ r1,

where r1 = q3−6q2+16q−8

4−q2+
√

(4−q)2(4−6q+3q2−q3)
, r2 = 8(1−q)

2+q+
√

q3−12q2+84q−64
q

, r3 = 8(1−q)
2+q−

√
q3−12q2+84q−64

q

,

ql ≈ 0.635 is given by the (single) real root to q3 − 6q2 + 16q − 8 = 0 and qh ≈ 0.86 is given by

the (single) real root to q3 − 12q2 + 84q − 64 = 0.

Note that the condition r ≥ q
2−q for clim,A to be optimal can never be ful�lled, as this would

imply values of r that are greater than q, which are not considered in case (B). Hence, if clim,A

is optimal, it must be the case that q > qh and r ∈ [r2, r3].

Using this observation and combining it with the above results, again three optimal pricing

regimes are found: (I) For q > qh and r ∈
[
max

{
r2,

q2

2

}
, r3

]
, clim,A is optimal.

(II) For q > ql and r ≤ min
{
r1,

q2

2

}
, cm,A is optimal.

(III) For all other combinations of (q, r) where r ≤ q, cacc is optimal.

Examining the conditions r2(q) > q2

2 and r1(q) < q2

2 , the former is equivalent to

16(1− q)(2 + q)(8− 12q + 4q2 − q3) > 0, whereas the latter is equivalent to

(2 + q)
(
2− 2q + q2

) (
−8 + 16q − 6q2 + q3

) (
8− 12q + 4q2 − q3

)
> 0. Since q > ql (which must

be true in the considered case) implies −8 + 16q − 6q2 + q3 > 0, both inequalities boil down to

8−12q+4q2−q3 > 0, which has the solution q < qh2 ≈ 0.8603. Hence the above optimal pricing

regimes can be rewritten as

(Ia) For q ∈ [qh, qh2] and r ∈ [r2, r3], clim,A is optimal.

(Ib) For q ≥ qh2 and r ∈
[
q2

2 , r3

]
, clim,A is optimal.

(IIa) For q ∈ (ql, qh2] and r ≤ r1, c
m,A is optimal.

(IIb) For q ≥ qh2 and r ≤ q2

2 , c
m,A is optimal.

(III) For all other combinations of (q, r) where r ≤ q, cacc is optimal.

This is identical to the optimal pricing schedule that was claimed above.

However, this is only correct if (i) for the region where clim,A is optimal, it holds that clim,A ∈

[c∗, c∗∗], (ii) for the region where cm,A is optimal, it holds that cm,A ≥ c∗∗, (iii) for the region

25Similar to above, I �rst ignore the possibility that cacc > c∗, clim,A /∈ [c∗, c∗∗], or cm,A < c∗∗ could hold.
This is ruled out later in the proof.
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where cacc is optimal, it holds that cacc ≤ c∗. This is veri�ed in the following.

(i) It is trivial to see that clim,A ≤ c∗∗ is always ful�lled, whereas clim,A ≥ c∗ implies r ≤ 3q−2,

which can only be ful�lled for q > 2
3 . Clearly, where clim,A is (potentially) optimal, q does in

fact exceed 2
3 , since q must be larger than qh ≈ 0.86 by the above �ndings. Moreover, r ≤ 3q− 2

is ful�lled, as optimality of clim,A implies r ≤ r3, and r3 can easily be shown to be smaller than

3q − 2 for every candidate q > qh.

(ii) cm,A ≥ c∗∗ implies r ≤ 2q
4−q . For cm,A to be optimal, it must hold that q > ql and

r ≤ max
{
r1,

q2

2

}
. Now, for q > ql, this maximum is given by r1 for q < qh and by q2

2 for r ≥ qh.

Thus, for q < qh,
q2

2 is a more stringent bound than the other, as it is lower: if one can show

that r ≤ q2

2 implies r ≤ 2q
4−q for any q > ql, then any candidate cm,A in region (II) is in fact

optimal. This is straightforward to establish.

(iii) cacc ≤ c∗ implies q ≤ qhh or q > qhh and r /∈ (r4, r5), where r4 = 8−4q

8−q+
√

q3−40q2+176q−128
q

,

r5 = 8−4q

8−q−
√

q3−40q2+176q−128
q

, and qhh = 2
(
9−
√

73
)
≈ 0.912 is the (lowest) root to q3 − 40q2 +

176q − 128 = 0. Thus, one needs to show that no optimum candidate cacc exists where q > qhh

and r lies in the inappropriate range speci�ed above.

As r ≥ r3 must hold for cacc to be optimal whenever q > qh2 (in particular, when q > qhh),

and r4 < r5, it is su�cient to show that r3 ≥ r5 for all q > qhh. After a lengthy calculation, one

can �nd that this is indeed the case. This completes the proof of case (B).

Proof of Proposition 3. The �rst part of the statement can easily be seen, since the total social

welfare in region V is given by 7
32q, which is strictly less than the total social welfare in the

standard double marginalization case of 7
32 , as found in region I (the boundary of region V, r(q),

has already been determined in the proof of Proposition 2). For the second part, one has to show

that the total social welfare is at least as high as 7
32 for the remaining parameter regions I, II,

III and IV. Clearly, this is true for region I, as nothing changes compared to the standard double

marginalization case. It remains to be shown that the total social welfare in regions II, III and IV

exceeds the total social welfare of W = 7
32 that emerges in the standard double marginalization

case (region I).

Consider an arbitrary triple of prices (c, p, a). If a type θ consumer purchases at P, her surplus

is given by θ − p, P's pro�t for that unit is given by p − c, and U's pro�t for that unit is given

by c. In sum, a total surplus of θ is created. In contrast, if a type θ consumer purchases at A,

her surplus is given by θq − a (as A can only o�er a quality of q < 1), A's pro�t for that unit is

given by a − rc (as A only needs r units of input for every �nal consumer that is served), and
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U's pro�t for that unit is given by rc. Hence, a total surplus of θq is created. Overall, it follows

that depending on whether only P, both downstream �rms, or only A are active in equilibrium,

the total social welfare in the market can be written as
∫ 1

p∗
θdθ,

∫ 1
p∗−a∗
1−q

θdθ +
∫ p∗−a∗

1−q

a∗
q

θqdθ, and∫ 1
a∗
q
θqdθ, respectively.

In both regions I and II, only P is active downstream. Hence, in either case the total social

welfare in the market is equal to
∫ 1

p∗
θdθ, where p∗ denotes the respective equilibrium price of

P. It is then apparent that the total social welfare in region II strictly exceeds the total social

welfare in region I if and only if p∗II < p∗I for all (q, r) in region II. This condition is equivalent to

r(1−q)
2r−qr−q <

3
4 . Noting that 2r − qr − q > 0 as r > q must hold in region II, the condition can be

simpli�ed to r(2 + q)− 3q > 0, which is strictly increasing in r. It follows that the condition is

ful�lled for all (q, r) in region II if and only if it does hold for the lowest possible r in region II,

r = rl, for every q ∈ (0, 1). Now rl(2+q)−3q > 0 is equivalent to −3+ 4(3−q)(2+q)

4+q+
√

16−40q+41q2−8q3
> 0.

After some calculation, this simpli�es to f(q) := q3 + 4q2 − 29q + 24 > 0. It is easy to see that

f(q) is strictly decreasing in q, reaching its minimum for q = 1. As f(1) = 0, the condition does

in fact hold for every (q, r) in region II. Thus, the social welfare in region II strictly exceeds the

total social welfare in the standard double marginalization case (region I).

For region III, it is clearly su�cient to show that WIII(q, r) ≥ 7
32 must hold for all q ∈ (0, 1),

r ∈ (0, 1) (that is, even for those parameter pairs that do not lie in region III). In order to do

so, note �rst that since each consumer has the choice between purchasing at P, purchasing at

A, or not purchasing at all, the aggregate consumer surplus in the market is bounded below by∫ 1

p∗III
(θ− p∗III)dθ =

(1−p∗III)2

2 . Hence, it is su�cient to show that the aggregate producer surplus

in the market does not fall short of
p∗III

4 , since it is easy to see that (1−p)2
2 + p

4 ≥
7
32 for all p ∈ R.

Moreover, because Π∗A,III is clearly non-negative (compare with the expression in Appendix B),

it is su�cient to establish that Π∗U,III + Π∗P,III ≥
p∗III

4 for all q ∈ (0, 1), r ∈ (0, 1). Algebraically,

this is equivalent to
Ω(q, r)(1− q)

8(4− q)2 (2r2 − qr2 − 2rq + 2q − q2)
2 ≥ 0

for all q ∈ (0, 1), r ∈ (0, 1), where

Ω = 24q3 − 20q4 + 4q5 +
(
−32q3 + 12q4

)
r +

(
32q + 64q2 − 50q3 + 11q4

)
r2+(

−96q + 10q3
)
r3 +

(
64− 8q − 20q2 + 5q3

)
r4.

Hence, it remains to show that Ω(q, r) ≥ 0 for all q ∈ (0, 1), r ∈ (0, 1). Now, a simple bijection

between the positive reals (0,+∞) and the open interval I := (0, 1) is given by f(x) := 1
1+x ,

where f maps from the positive reals to (0, 1). Thus, let q := 1
1+y and z := 1

1+z , which leads to
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the equivalent condition

∆(y, z) :=
Λ(y, z) + Ψ(y, z)

(1 + y)5(1 + z)4
≥ 0

for all y > 0, z > 0, where

Λ(y, z) :=
(
45z2 + 12z3 + 8z4

)
+y
(
81 + 54z + 243z2 + 60z3 + 28z4

)
+y2

(
297 + 102z + 382z2 + 64z3 + 24z4

)
,

Ψ(y, z) := 12y3
(
33 + 16z2

)
+ 8y4

(
31− 4z + 4z2

)
+ 64y5.

Observe that the only term that could potentially become negative in ∆(y, z) is given by

8y4
(
31− 4z + 4z2

)
. But it is trivial to see that 31−4z+4z2 > 0 for all z > 0, hence ∆(y, z) ≥ 0

for all y > 0, z > 0. This in turn implies that Ω(q, r) ≥ 0 for all q ∈ (0, 1) and r ∈ (0, 1), and

ultimately PSIII ≥ p∗III
4 , leading to WIII ≥ 7

32 for all q ∈ (0, 1), r ∈ (0, 1).

Finally, for region IV, one has to show that WIV := 1
2 −

1
8q strictly exceeds 7

32 . This is

equivalent to q > 4
9 . But as the lowest possible value of q in region IV is given by qh ≈ 0.86, this

is clearly ful�lled.

Proof of Proposition 4. In region V, U's pro�t is given by q
8 <

1
8 , which proves the second part

of the proposition. For the rest, it still needs to be shown that U's pro�t is lower (higher) than

in the standard double marginalization case whenever q < qh3 := 4
3

(
−2 +

√
7
)
≈ 0.861 and

r < re <
q
2 (r > re), or q ≥ qh3 and r < q

2 (r > q
2 ).

To see this, note �rst that solving 1
8 < ΠU,III leads to r ∈ (re, rf ), where re = q(2+q)

8−5q+
√

3(4−q)2(1−q)

and rf = q(2+q)

8−5q−
√

3(4−q)2(1−q)
. It is now straightforward to show that rf > rl for every q ∈ (0, 1),

implying that the upper boundary rf is not relevant, as the supplier does not allow for down-

stream competition for r > rl. But taking the lower boundary re into account, one can observe

that region III is split into two subregions: for r ∈ (re, rl], the supplier's pro�t is higher under

downstream competition, compared to the standard double marginalization case; for r < re, the

supplier's pro�t is lower.

It is now necessary to consider the region boundaries between regions III, IV and V (see

Figure 6 below for a graphical illustration). First, it is straightforward to show that r1 < re

must hold for every q ∈ (0, 1). Thus, the boundary between region III and region V is never

relevant when determining whether the supplier's pro�t increases in region III, compared to the

standard double marginalization case. Second, note that r2 only constitutes a boundary between

regions III and IV if q ∈ (qh, qh2) (where both r2 and r3 form the boundary between regions III

and IV). But as it can be shown that re is a strictly increasing function of q for every q ∈ (0, 1),
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and r2 is a strictly decreasing function of q for every q ∈ (qh, 1), r2 is an irrelevant boundary

if re(qh) > r2(qh). This can easily be con�rmed. The boundary r3 between regions III and IV

remains to be checked. Namely, for q > qh, only values of r that are not smaller than r3(q) are

part of region III. Now, re(q) ≥ r3(q) easily implies q ≤ qh3 = 4
3

(
−2 +

√
7
)
≈ 0.861. Moreover,

it is not di�cult to check that re(q) <
q
2 for every q ∈ (0, qh3), as claimed in the proposition.

Next, solving 1
8 < ΠU,IV , it trivially follows that the supplier's pro�t is higher (lower) in

region IV, compared to the standard double marginalization case, whenever r > q
2 (r < q

2 ).

Again, one has to consider the region boundaries of region IV (see Figure 6). First, as q
2 >

q2

2 ,

the boundary between region IV and region V is never relevant when determining whether the

supplier's pro�t increases in region IV, compared to the standard double marginalization case.

Second, r2 only constitutes a boundary between regions IV and III if q ∈ (qh, qh2). As q
2 is

strictly increasing in q, while r2 is strictly decreasing in q for every q ∈ (qh, 1), r2 is an irrelevant

boundary if qh
2 > r2(qh). This is in fact ful�lled. As above, the boundary r3 remains to be

examined. For q > qh, only values of r that are not larger than r3(q) are part of region IV. But

solving q
2 ≤ r3(q) leads to q ≥ qh3, the same value as was found when solving re(q) ≥ r3(q).

Overall, it is thus established that for q < qh3, re(q) marks U's indi�erence curve between

the standard double marginalization case and existence of A, whereas for q > qh3,
q
2 marks this

boundary. At q = qh3, both indi�erence curves touch each other at the region boundary between

regions III and IV.

The �nal step is to prove that U's pro�t is (weakly) higher in region II, compared to the

standard double marginalization case. It has already been shown in the proof of Proposition 2

(case A) that this condition is equivalent to r ∈ [rg, rh]. As rg < rl, it follows that region II

(where r ∈ [rl, rh]) is a subset of the region where the pro�t inequality holds. This completes

the proof.

Proof of Remark (page 19). An analytical proof of the optimality of (qh2,
(qh2)2

2 ) in terms of social

welfare is di�cult because of the complexity of the total social welfare function in region III.

However, this result can easily be con�rmed using numerical methods. Wmax is then calculated

by inserting q = qh2 and r = (qh2)2

2 into the social welfare function relevant for region III.

Proof of Corollary 2. If the downstream market is characterized by Bertrand competition be-

tween identical producers (leading to downstream equilibrium prices that are equal to marginal

cost), it is easy to prove that total social welfare is given by W = 3
8 = 0.375. But at the point
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Figure 6: Zoom of the supplier's optimal pricing regions. The dotted line represents the �rm's
pro�t indi�erence curve, where U has a higher (lower) pro�t than in the standard double
marginalization case whenever r is above (below) the dotted line.
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in parameter space where social welfare is maximized in the case of a duopolistic downstream

market as analyzed above, social welfare is given by Wmax ≈ 0.4284 > 0.375. By continuity of

WIII , there must exist a non-degenerate parameter region around the socially optimal parameter

combination where social welfare strictly exceeds 0.375.

Proof of Proposition 5. First, notice that if U is able to price discriminate, it is free to choose

any point in the (c, d) space of the downstream price competition game (compare with Figure

1). This is because the supplier can ignore the comparatively lower revenues it gets from the

more input e�cient �rm by setting its input price appropriately. Hence, it faces the problem

maxc1,c2 ΠU (c1, c2; q, r) = c1D
∗
P (c1, rc2)+c2rD

∗
A(c1, rc2), which is equivalent to maxc,d cD

∗
P (c, d)+

dD∗A(c, d).

Next, consider the demand functions given by Corollary 1 for the case of competition in

the downstream market and, for the moment, ignore the constraints under which downstream

competition can take place (take the demand functions for region III irrespective of c and d).

Then, it is straightforward to show that the unique global maximizing pair (c, d) of

ΠU
3rd := c

(
2 + d− 2c+ cq − 2q

(4− q)(1− q)

)
+ d

(
d(q − 2) + (1 + c− q)q

(4− q)(1− q)q

)

is given by c∗1,3rd = 1
2 and d∗2,3rd = rc∗2,3rd = q

2 , with an associated pro�t of ΠU∗
3rd = q+2

4(4−q) . Since

d∗2,3rd = qc∗1,3rd, this optimal pair of prices always lies in region III of the downstream price game

(compare with Figure 1).

What remains to be shown is that it cannot be optimal for U to choose its prices in such

a way that only one �rm is active downstream (regions I, II, IV and V). To see this, consider

regions I and V �rst. In these regions, U's maximal pro�t is given by 1
8 and q

8 <
1
8 , respectively

(compare with the table in Section 4). But as it is easy to show that 1
8 < ΠU∗

3rd for q ∈ (0, 1), a

higher pro�t could be achieved.

For the limit pricing case, notice that the active downstream �rm's demand in regions II

and IV is independent of its own cost and decreasing with the other �rm's cost (compare with

Corollary 1). Because U can freely choose the downstream cost levels, it wants to set the inactive

�rm's cost as low as possible, given that limit pricing still occurs in equilibrium. This maximizes

the limit pricing demand that arises from the active �rm. Thus, one may insert d = d (c = c) for

the inactive �rm's cost in regions II (IV), which leads to a �nal consumers' demand of 1−c
2−q (region

II) and q−d
(2−q)q (region IV), respectively. Hence, for a given active �rm's cost of c (d), U's maximal

limit pricing pro�t can be written as c
(

1−c
2−q

)
(d
(

q−d
(2−q)q

)
). Maximizing these expressions with
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respect to c and d yields a maximal limit pricing pro�t of U that is equal to 1
4(2−q) and q

4(2−q) ,

respectively. It is then straightforward to show that 1
4(2−q) < ΠU∗

3rd for q ∈ (0, 1), implying that

U will never want to induce limit pricing downstream.

Proof of Corollary 3. Insert c = 1
2 and d = q

2 into the downstream equilibrium expressions given

in the �rst part of Appendix B (accounting for the supplier's pro�t when calculating total social

welfare).

Proof of Proposition 6. The following properties need to be shown: (a) Under third degree price

discrimination by U, the total social welfare in the market is (i) always higher than in regions I

and V, but (ii) always lower than in regions II and IV. (b) If A is slightly more input-e�cient

than P, third degree price discrimination by U yields a higher total social welfare than in the

case were such discrimination is not feasible.

Start with (a). It is easy to show that W3rd = 28+3q−4q2

8(4−q)2 is strictly increasing in q for

q ∈ (0, 1). But for q = 0, W3rd = 7
32 , which is already as high as total social welfare in region I

and maximum total social welfare in region V. This proves part (i) of (a). For part (ii), it needs

to be shown that W3rd < WIV and W3rd < WII for all parameter-pairs (q, r) that lie in the

respective regions.

To see that W3rd < WIV , note that this condition is equivalent to 2q3 − 9q2 + 11q − 4 > 0,

or q ∈
(

7−
√

17
4 , 1

)
, which must always be ful�lled in region IV, as 7−

√
17

4 ≈ 0.72 < qh ≈ 0.86.

In order to prove that W3rd < WII , �rst observe that the total social welfare in region

II, WII = (r−q)(3r−2rq−q)
2(2r−rq−q)2 , is a strictly increasing function in r.26 Thus, if it can be shown

that even at the boundary of region II to region III, where r = rl is lowest in that region

(compare with Figure 2), it holds that W3rd < WII(rl) for every q ∈ (0, 1), the claim is

veri�ed. Inserting rl into WII , it follows that W3rd < WII(rl) is equivalent to 28+3q−4q2

8(4−q)2 <(
−8+5q+

√
16−40q+41q2−8q3

)(
−32+37q−8q2+

√
16−40q+41q2−8q3

)
2
(
−20+21q−4q2+

√
16−40q+41q2−8q3

)2 . The LHS and RHS of this inequal-

ity coincide for q = 0 or, in the limit, as q tends to 1. Finally, for q ∈ (0, 1), it can be shown

numerically that the inequality does in fact hold.27 This �nishes the proof of part (a).

For part (b), one can check that W3rd coincides with WIII for r = q, that is, if the down-

stream �rms are equally input e�cient. Now, W3rd is independent of r. On the other hand,

26This is true because ∂WII
∂r

=
(1−q)2qr

(2r−qr−q)3
> 0, where the inequality follows from r > q, as must be the case in

region II.
27A lengthy analytic proof can be obtained from the author upon request.
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di�erentiating WIII with respect to r and evaluating this expression at q = r yields

∂WIII

∂r

∣∣∣∣
q=r

=
1

4(8 + 2r − r2)
> 0.

Hence, starting from identical relative cost e�ciency (where downstream duopoly competition

must always be the equilibrium outcome), marginally decreasing A's input requirement r reduces

total social welfare, whereas it stays constant if the supplier can price discriminate. It follows

that there must exist a (small) parameter region slightly below r = q where total social welfare

is higher under third degree price discrimination.28 This con�rms claim (b), completing the

proof.

Proof of Proposition 7. The �rst part of the proposition has been proven numerically above.

Consider the second part. If only P is active downstream, the equilibrium of the downstream

game is characterized by p∗(c) = 1+c
2 , implying an upstream demand of D∗U = 1−c

2 . Inverting this

demand function, it follows that the market clearing price, given an aggregate output S in the

upstream market, can be written as c̃ = 1−2S. It is then trivial to see that the resulting Cournot-

equilibrium in the upstream market is characterized by S∗i = 1
6 , with individual upstream pro�ts

of Π∗i = 1
18 , a market clearing upstream price of c̃∗ = 1

3 , an equilibrium downstream price of

p∗ = 2
3 , and a downstream pro�t of Π∗P = (p∗ − c̃∗)(1− p∗) = 1

9 . Summing up the �rms' pro�ts

and the aggregate consumer surplus CS∗ :=
∫ 1

p∗
(θ − p∗)dθ = 1

18 , one arrives at a total social

welfare of W ∗ = 5
18 .

On the other hand, take equilibria where an excessive upstream price is found. In such

equilibria, A will behave like a downstream monopolist, implying a∗ = q+d
2 = q+rc

2 , and an

upstream demand of D∗U = r(q−rc)
2q . Inverting this demand function, it follows that the market

clearing price, given an aggregate output S in the upstream market, is equal to c̃ = rq−2qS
r2 .

Again, it is easy to compute that the resulting Cournot-equilibrium in the upstream market

is characterized by S∗i = r
6 , with individual upstream pro�ts of Π∗i = q

18 , a market clearing

upstream price of c̃∗ = q
3r , an equilibrium downstream price of a∗ = 2q

3 , and a downstream pro�t

of Π∗A = (a∗ − rc̃∗)(1 − a∗

q ) = q
9 . Summing up the �rms' pro�ts and the aggregate consumer

surplus CS∗ :=
∫ 1

a∗
q

(θq−a∗)dθ = q
18 , the resulting total social welfare is given by W ∗ = 5q

18 <
5
18 ,

which proves the statement.

28Solving WIII = W3rd, a complicated explicit solution for the parameter range where W3rd < WIII can be
given. This is depicted in Figure 2: in region III, W3rd exceeds WIII if and only if r ∈ (r3rd, q), where r3rd is
strictly smaller than q. The formula for r3rd can be obtained from the author upon request.
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Appendix B: Tables

(A) Downstream Subgame:

Let q ∈ (0, 1), c < 1, and d < q. Then, the equilibrium values of P's and A's pro�t, consumer

surplus, and total social welfare, are given by the following.

Region Condition Π∗P (c, d, q) Π∗A(c, d, q) CS(c, d, q) W (c, d, q)

I c ≤ c ∧ d > d̂ (1−c)2
4 0 (1−c)2

8
3
8 (1− c)2

II c ≤ c ∧ d ∈ (d, d̂] (q−d)(d−cq)
q2 0 (q−d)2

2q2
(q−d)(q+d−2cq)

2q2

III c ≤ c ∧ d ≤ d (2+d−2c+cq−2q)2

(4−q)2(1−q)
(d(q−2)+(1+c−q)q)2

(4−q)2(1−q)q CSacc Π∗P,III + Π∗A,III + CSacc

IV c ∈ (c, ĉ] ∧ d ≤ d 0 (c+q−1−d)(1−c)
q

(1−c)2
2q

(1−c)(1+c+2q−2−2d)
2q

V c > ĉ ∧ d ≤ d 0 (q−d)2

4q
(q−d)2

8q
3
8 (q − d)2

where

c =
2− q − (q − d)

2− q
, ĉ =

2− q + d

2
, d =

q(1− q + c)

2− q
, d̂ =

q(1 + c)

2
,

CSacc :=
d2(4− 3q)− 2dq[4 + (c− 4)q] + q[4 + c2(4− 3q) + q − 5q2 + 2c(q2 + 3q − 4)]

2(4− q)2(1− q)q
.

To calculate the above reduced form pro�t expressions, one may simply multiply the equilib-

rium prices as found in Proposition 1, net of the �rms' respective unit costs, with the reduced

form demand expressions as found in Corollary 1. Moreover, using the �rms' demand functions

speci�ed in equations (3a) and (3b), it holds that for arbitrary prices p, a (such that p ≥ 1 and

a ≥ q do not hold simultaneously), consumer welfare is given by

CS =



∫ 1

p
(θ − p)f(θ)dθ = (1−p)2

2 if p ≤ a
q∫ p−a

1−q
a
q

(θq − a)f(θ)dθ +
∫ 1

p−a
1−q

(θ − p)f(θ)dθ = a2−2apq+[1+p2−2p(1−q)−q]q
2(1−q)q if p ∈ (aq , a+ 1− q)∫ 1

a
q

(θq − a)f(θ)dθ = (q−a)2

2q if p ≥ a+ 1− q.

By inserting the corresponding equilibrium prices into the above equation, one can directly calcu-

late the equilibrium consumer surplus of the downstream subgame, as found in the table. Finally,

total social welfare is de�ned as the sum of P's and A's pro�t and consumer surplus, which is

straightforward to calculate.

50



(B) Full Game:

Region Condition

I q ≤ 1
2 and r ≥ rh

II r ∈ [rl, rh]

III q ≤ ql ≈ 0.635 or q ∈ (ql, qh] ≈ (0.635, 0.86) and r ≥ r1 or

q ∈ [qh, qh2] ≈ [0.86, 0.8603] and r ∈ [r1, r2] ∪ [r3, 1] or q ≥ qh2 and r ≥ r3

IV q ∈ [qh, qh2] ≈ [0.86, 0.8603] and r ∈ [r2, r3] or q ≥ qh2 and r ∈
[
q2

2 , r3

]
V q ∈ (ql, qh2] ≈ (0.635, 0.8603] and r ≤ r1 or q ≥ qh2 and r ≤ q2

2

where rh = q(9−8q)

6−5q−
√

8q(1−q)2
, rl = 4q(3−q)

4+q+
√

16−40q+41q2−8q3
,

r1 = q3−6q2+16q−8

4−q2+
√

(4−q)2(4−6q+3q2−q3)
, r2 = 8(1−q)

2+q+
√

q3−12q2+84q−64
q

, r3 = 8(1−q)
2+q−

√
q3−12q2+84q−64

q

.

Region c∗ p∗ a∗

I 1
2

3
4 {a | a ≥ r

2}

II q(1−q)
2r−qr−q

r(1−q)
2r−qr−q

qr(1−q)
2r−qr−q

III (1+2r)(1−q)q
2(2r2−qr2−2rq+2q−q2)

(1−q)[8r2+(12−4r−3r2)q−4q2]
2(4−q)(2r2−qr2−2rq+2q−q2)

(1−q)q[2r2(3−q)+r(4−3q)+2(3−q)q]
2(4−q)(2r2−qr2−2rq+2q−q2)

IV 1
2

1
2 q − 1

2

V q
2r {p | p ≥ q

2r}
3
4q

Region D∗U D∗P D∗A

I 1
4

1
4 0

II r−q
2r−qr−q

r−q
2r−qr−q 0

III r+2
2(4−q)

8r2+(4−8r−3r2)q−(2−r)q2
2(4−q)(2r2−qr2−2rq+2q−q2)

2r2−qr2−r(4+q)+2(3−q)q
2(4−q)(2r2−qr2−2rq+2q−q2)

IV r
2q 0 1

2q

V r
4 0 1

4
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Region Π∗U Π∗P Π∗A

I 1
8

1
16 0

II q(1−q)(r−q)
(2r−qr−q)2

(1−q)(r−q)2
(2r−qr−q)2 0

III (r+2)2(1−q)q
4(4−q)(2r2−qr2−2rq+2q−q2)

(1−q)[8r2+(4−8r−3r2)q−(2−r)q2]2

4(4−q)2(2r2−qr2−2rq+2q−q2)2
q(1−q)[2r2−qr2−r(4+q)+2(3−q)q]2

4(4−q)2(2r2−qr2−2rq+2q−q2)2

IV r
4q 0 2q−r−1

4q

V q
8 0 q

16

Region PS CS W

I 3
16

1
32

7
32

II r(1−q)(r−q)
(2r−qr−q)2

(r−q)2
2(2r−qr−q)2

(r−q)(3r−q−2qr)
2(2r−qr−q)2

III Π∗U,III + Π∗P,III + Π∗A,III CSIII Π∗U,III + Π∗P,III + Π∗A,III + CSIII

IV 1
2 −

1
4q

1
8q

1
2 −

1
8q

V 3
16q

q
32

7
32q

where

CSIII :=
U + V q +Wq2 +Xq3 + Y q4 + Zq5

8(4− q)2(2r2 − qr2 − 2rq + 2q − q2)2
,

with

U = 64r4, V = 80r2 − 208r3 − 12r4, W = 16− 144r + 216r2 + 44r3 − 23r4,

X = 68− 44r − 99r2 + 22r3 + 7r4, Y = −60 + 48r + 19r2 − 2r3, Z = 12− 4r.

52


