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Abstract: Studying a one-sector economy populated by finitely many heterogeneous house-
holds that are subject to no-borrowing constraints, we confirm a conjecture by Frank P. Ramsey
according to which, in the long run, society would be divided into the set of patient house-
holds who own the entire capital stock and impatient ones without any physical wealth. More
specifically, we prove (i) that there exists a unique steady state equilibrium that is globally
asymptotically stable and (ii) that along every equilibrium the most patient household owns
the entire capital of the economy after some finite time. Furthermore, we prove that despite
the presence of the no-borrowing constraints all equilibria are efficient. Our results are derived
for the continuous-time formulation of the model that was originally used by Ramsey, and they
stand in stark contrast to results that – over the last three decades – have been found in the
discrete-time version of the model.
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1 Introduction

Frank Ramsey’s seminal paper on “A Mathematical Theory of Saving” from 1928, which forms
a corner stone of modern economic growth theory, ends with a conjecture about the distribution
of consumption levels in a society consisting of individuals with heterogeneous time-preference
rates. More specifically, Ramsey concluded his paper by writing that “equilibrium would be
attained by a division of society into two classes, the thrifty enjoying bliss and the improvident
at the subsistence level” [Ramsey (1928, p. 559)]. Although the arguments that Ramsey used
in support of his conjecture apply only to constant (i.e., time-independent) equilibrium paths
of consumption and wealth, the Ramsey conjecture is nowadays usually interpreted as a “folk
result” about the eventual or asymptotic distribution of wealth in a heterogeneous society.
Becker (1980) confirmed the conjecture in its original form regarding constant equilibrium
paths by first adding a non-negativity constraint on the capital holdings of the households
and then proving that this model admits a unique constant equilibrium, in which the most
patient household owns the entire wealth of the economy and all other households consume
exactly their wage income. At about the same time Bewley (1982) proved that in an economy
with complete markets, i.e., without the no-borrowing constraint introduced by Becker (1980),
the consumption levels of all but the most patient households are zero after some finite time,
thereby establishing a link between dynamic general equilibrium theory and turnpike theory. It
is interesting to note that, while Ramsey formulated his model in a continuous-time framework,
both Becker (1980) and Bewley (1982) used a discrete-time formulation. Moreover, while
Bewley (1982) confirmed that impatient households are driven to the “subsistence level” within
finite time along every equilibrium, a corresponding result for the model from Becker (1980)
does not hold, as has been shown by several papers starting with Becker and Foias (1987). The
main purpose of the present paper is therefore to reconsider the model from Becker (1980) in
the continuous-time formulation originally used by Ramsey (1928) and to confirm in that model
the strong version of Ramsey’ conjecture, i.e., the “folk result” about the eventual distribution
of wealth.

In what follows, we shall refer to the dynamic general equilibrium model of Becker (1980), which
describes a competitive one-sector economy with heterogeneous households that are subject to
no-borrowing constraints, as the Ramsey model, and to the equilibria of that model as Ramsey
equilibria. The literature about this model up to 2005 has been comprehensively surveyed by
Becker (2006). We shall therefore only point out those articles on the Ramsey model that are
most closely related to our own paper. As has been mentioned above, Ramsey’s conjecture
about constant equilibria was confirmed by Becker (1980). Subsequent work by Becker and
Foias (1987) established that every household except for the most patient one must attain the
zero-capital state infinitely often on any interval of the form [T,+∞). This so-called recurrence
property is known to be the only major result about the dynamics of Ramsey equilibria that
can be proved under standard assumptions in the discrete-time setting. Indeed, Becker and
Foias (1987), Becker and Foias (1994), Sorger (1994), and Sorger (1995) demonstrated that
Ramsey equilibria can display non-convergent (periodic or chaotic) behavior, even if the most
patient household owns eventually (i.e., after some finite time) all the capital. An example due
to Michael L. Stern [reported in Becker (2006)] demonstrates that the limes superior of every
household’s capital stock can be strictly positive, i.e., the zero-capital state may not even be
approached asymptotically by impatient households. Finally, Becker et al. (2012) provide an
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example of a Ramsey equilibrium in which the most patient household reaches the zero-capital
position infinitely often on any interval of the form [T,+∞). To summarize, in the discrete-
time version of the model that has been proposed by Becker (1980), the “folk result” about the
eventual ownership pattern cannot be proved under standard assumptions. Furthermore, it has
been shown in Becker et al. (2012) that the possible non-convergence of discrete-time Ramsey
equilibria to the steady state may also be a cause of inefficiency.

In the present paper we analyze the above mentioned issues in the continuous-time formulation
of the model. Such an exercise would we futile if it simply confirmed the results from the
discrete-time analysis. It turns out, however, that the continuous-time approach allows both
for a more general and for a more precise characterization of the dynamics and the efficiency
properties of Ramsey equilibria. It is more general in the sense that certain properties which
can be proved in the discrete-time model only under additional (non-standard) assumptions
hold in the continuous-time model without such assumptions. And it is more precise in the
sense that one can derive monotonicity results about Ramsey equilibria in continuous time that
do not necessarily hold in the discrete-time framework.

We start by proving that there exists a unique steady state equilibrium. In this equilibrium the
most patient household owns the entire capital stock. Then we show that every equilibrium
satisfies the turnpike property, that is, there exists a finite time T such that all households except
for the most patient one hold no capital from time T onwards. This fully confirms the strong
version of Ramsey’s conjecture, i.e., the “folk result” about the eventual capital ownership
pattern, in the continuous-time version of Becker’s (1980) incomplete markets economy. We
can also show that the unique steady state equilibrium is globally asymptotically stable, that
is, all individual capital holdings and consumption levels, the aggregate capital stock, as well
as both factor prices converge along every equilibrium to their respective steady state values.
Obviously, this rules out oscillating or chaotic equilibria like those known to exist in the discrete-
time model. Moreover, we are able to prove that Ramsey equilibria can be of only two types.
Either the aggregate capital stock eventually exceeds its steady state value and the equilibrium
converges monotonically towards the unique steady state, or the aggregate capital stock remains
eventually below its steady state value. Finally we prove that, in contrast to the discrete-time
setting and despite the presence of the no-borrowing constraints, all equilibria in the continuous-
time Ramsey model are efficient.

The rest of the paper is organized as follows. In section 2 we formulate the model and state
the assumptions which will be maintained throughout the paper. Section 3 presents the main
results and relates them to corresponding findings in the discrete-time model. All proofs are
collected in section 4. In the final section 5 we make a couple of concluding remarks.

2 Model formulation

Time evolves continuously with the time variable t taking values in R+ = [0,+∞). We shall
also use the notation R++ = (0,+∞). The economy is populated by a fixed and finite number
H of infinitely-lived households, which own the production factors capital and labor, supply
them on the respective factor markets to the firms in the (single) production sector, and use
the resulting factor income to buy output. Output can be consumed or saved (i.e., turned
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into capital). The production sector consists of infinitely many identical firms, which rent the
production factors from the households and produce output. All agents in the economy act as
price takers. All three markets clear at every instant of time.

2.1 Firms

At every instant t ∈ R+ there exists a continuum of measure 1 of identical firms, which have
access to a production technology described by the function F : R2

+ 7→ R+. Here, F (K,L)
denotes the amount of output that can be produced with K units of capital and L units of
labor. The firms at time t take the current rental rate of capital, r(t), and the current real
wage rate, w(t), as given and maximize their profit

F (K(t), L(t))− r(t)K(t)− w(t)L(t)

with respect to the factor inputs K(t) and L(t).

The production function F satisfies the usual neoclassical assumptions including continuity
and linear homogeneity. We define the function f : R+ 7→ R+ by f(K) = F (K,H), where
H is the number of households; see below. It is assumed that f is continuous on R+ and
twice continuously differentiable on R++ with f(0) = 0, f ′(K) > 0, and f ′′(K) < 0 for all
K ∈ R++. Furthermore, we assume that the Inada conditions limK→0 f

′(K) = +∞ and
limK→+∞ f ′(K) = 0 hold.

The function W : R+ 7→ R+ is defined by W (0) = 0 and W (K) = f(K) − Kf ′(K) for all
K ∈ R++. The assumptions on f imply that W is differentiable on R++ with W (K) > 0 and
W ′(K) > 0 for all K ∈ R++. Note that the above definitions imply that (∂/∂K)F (K,H) =
f ′(K) and (∂/∂L)F (K,H) = W (K) for all K ∈ R++.

2.2 Households

There exist H ∈ N households indexed by h ∈ H := {1, 2, . . . , H}. Each household lives
throughout the entire time-domain R+ and is specified by a triple (uh, ρh, kh0 ), where u

h : R+ 7→
R is the utility function, ρh > 0 is the time-preference rate, and kh0 ≥ 0 is the initial endowment
of capital. It is assumed that the aggregate capital endowment of the economy, K0 :=

∑H
h=1 k

h
0 ,

is strictly positive. Furthermore, each household h is endowed with a constant flow of labor
normalized to 1.1

All households act as price takers and have perfect foresight. More specifically, the households
take the entire time paths of the rental rate of capital, r : R+ 7→ R+, and the wage rate,
w : R+ 7→ R+, as given. These time paths are continuous. Household h seeks to maximize the
objective functional ∫ +∞

0

e−ρhtuh(ch(t)) dt

subject to the flow budget constraint

k̇h(t) = [r(t)− δ]kh(t) + w(t)− ch(t), (1)

1Allowing heterogeneity with respect to the labor endowments does not add anything interesting.
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the no-borrowing constraint
kh(t) ≥ 0, (2)

the initial condition kh(0) = kh0 , and the non-negativity constraint on consumption

ch(t) ≥ 0. (3)

Here, ch(t) is the consumption rate at time t, kh(t) denotes the capital holdings at time t, and
δ > 0 is the rate of capital depreciation. A pair (kh, ch) consisting of a capital path and a
consumption path is feasible, if kh is continuous and piecewise differentiable, if ch is piecewise
continuous with finite left-hand and right-hand limits, if kh(0) = kh0 , if the non-negativity
constraints (2) and (3) hold for all t ∈ R+, and if the state equation (1) holds for all t ∈ R at
which kh is differentiable.2

We assume that, for all h ∈ H, the utility function uh : R+ 7→ R is continuous on R+ and twice
differentiable on R++. Furthermore, we assume that (uh)′(ch) > 0 and (uh)′′(ch) < 0 hold for
all ch ∈ R++ and that limch→0(u

h)′(ch) = +∞.

Finally, we assume that there exists a unique most patient household, and we order the house-
holds according to increasing impatience, that is, 0 < ρ1 < ρ2 ≤ ρ3 ≤ . . . ≤ ρH .

2.3 Market clearing

The labor market clears at time t if
L(t) = H, (4)

the capital market clears at time t if

K(t) =
H∑

h=1

kh(t), (5)

and the output market clears at time t if

K̇(t) + δK(t) +
H∑

h=1

ch(t) = f(K(t)). (6)

In all three market clearing equations, the left-hand side denotes the demand whereas the
right-hand side is the supply.

2.4 Equilibrium

An equilibrium for the economy described by the production function F and the households’
characteristics {(uh, ρh, kh0 ) |h ∈ H} is a family of real-valued functions (K,L, r, w, {kh, ch |h ∈
H}) defined on the common domain R+ such that the following conditions hold:

2These regularity assumption are usually made in optimal control models in economics; see Seierstad and
Sydsæter (1987).
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(i) Given the price paths (r, w) it holds for all h ∈ H that the individual allocation (kh, ch)
solves the utility maximization problem of household h.

(ii) For all t ∈ R+ and given the prices (r(t), w(t)) it holds that the aggregate allocation
(K(t), L(t)) solves the firms’ profit maximization problem.

(iii) All markets clear at all times t ∈ R+.

3 Results

In this section we present our results and compare or contrast them to related findings in the
discrete-time Ramsey model. All proofs can be found in section 4.

An equilibrium is called a steady state equilibrium, if it consists of functions that are constant
with respect to time. The following theorem proves that there exists a unique steady state equi-
librium. This result is the continuous-time counterpart to the main theorem in Becker (1980).
To state the result we introduce the notation r∗ = ρ1 + δ and we define the values K∗ ∈ R++

and w∗ by f ′(K∗) = r∗ and w∗ = W (K∗), respectively.

Theorem 1 There exists a unique steady state equilibrium with a positive aggregate capital
stock. In this equilibrium it holds that r(t) = r∗, w(t) = w∗, K(t) = k1(t) = K∗, c1(t) =
(r∗ − δ)K∗ + w∗, as well as kh(t) = 0 and ch(t) = w∗ for all h ≥ 2 and all t ∈ R+.

The steady state equilibrium features a degenerate wealth distribution in which only the most
patient household owns any capital whereas the less patient ones live off their wage incomes.
Theorem 1 therefore confirms Ramsey’s conjecture about the wealth distribution in a constant
equilibrium. However, an important open question is whether the steady state equilibrium is
in some sense stable, that is, whether all equilibria approach the steady state over time. There
are at least two ways in which one can interpret this question. First, convergence could mean
that the wealth distribution becomes degenerate and, second, it could mean that the factor
prices, capital holdings, and consumption rates converge to their respective steady state values.
We shall now show that both of these properties hold in the present model.

One of the weakest convergence properties of the first type is the recurrence property. An
equilibrium is said to satisfy this property, if for every household h ≥ 2 there exists a sequence
of time instants (thi )

+∞
i=1 such that limi→+∞ thi = +∞ and kh(thi ) = 0 for all i ∈ N. The recurrence

property therefore says that all households except for the most patient one possess no capital
infinitely often on any interval of the form [T,+∞) with T ∈ R+. For the discrete-time model,
Becker and Foias (1987) have proved that every equilibrium satisfies the recurrence property,
and Becker (2006, p. 427) has noted that “the recurrence theorem is the most general result in
the literature on the properties in a dynamic Ramsey equilibrium”. Indeed, an example due to
Michael L. Stern [reported in Becker (2006)] demonstrates that the zero-capital state may not
even be approached asymptotically by the impatient households, and another example due to
Becker et al. (2012) shows that the most patient household may reach the zero-capital position
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infinitely often on any interval of the form [T,+∞). Thus, the recurrence property does not
confirm the “folk result” about the eventual distribution of wealth.3

The “folk result” would only be established if it were true that the most patient household
owns the entire capital stock from some finite time onwards. Becker and Foias (1987) call this
the turnpike property and define it formally in the following way: an equilibrium satisfies the
turnpike property, if there exists T ∈ R+ such that K(t) = k1(t) and kh(t) = 0 hold for all
h ≥ 2 and all t ≥ T .

Theorem 2 Every equilibrium satisfies the turnpike property.

For the discrete-time version of the model it is known that the turnpike property does not
hold for all equilibria unless additional non-standard assumptions are imposed on the form of
the production function. Furthermore, it was shown by Becker and Foias (1987), Becker and
Foias (1994), Sorger (1994), and Sorger (1995) that, even when an equilibrium in the discrete-
time model satisfies the turnpike property, it need not converge to the steady state equilibrium.
As a matter of fact, these authors have constructed periodic equilibria, chaotic equilibria, and
even sunspot equilibria of the discrete-time Ramsey model which satisfy the turnpike property.
In the continuous-time model, on the other hand, the unique steady state equilibrium is globally
asymptotically stable, which rules out any form of complicated equilibrium dynamics. Here,
global asymptotic stability of the steady state equilibrium is defined in the sense that the
aggregate capital stock K(t), both factor prices r(t) and w(t), all individual capital holdings
kh(t), as well as all individual consumption rates ch(t) converge to their respective steady state
values as t approaches infinity.

Theorem 3 The unique steady state equilibrium is globally asymptotically stable.

Theorem 3 goes beyond the “folk result” by showing that, in addition to the wealth distribution
becoming degenerate, all variables of the model converge asymptotically towards their steady
state values. As a matter of fact, one can derive even more properties of the equilibrium
dynamics in the continuous-time model, some of which are stated in the following theorem.
A corresponding result for the discrete-time model is known under additional (non-standard)
assumptions on the production function [see Becker et al. (2012)] or in a variant of the discrete-
time model in which wages are paid out of capital rather than out of output [see Borissov (2011)].

Theorem 4 There exists T ∈ R+ such that one of the following two statements is correct:
(a) It holds that K(t) ≥ K∗ for all t ≥ T and K is non-increasing on [T,+∞).
(b) It holds that K(t) ≤ K∗ for all t ≥ T .

We conclude this section by stating a result on efficiency. Given the aggregate capital en-
dowment K0 =

∑H
h=1 k

h
0 , an aggregate capital path K : R+ 7→ R+ is feasible if K(0) = K0

and if f(K(t)) − δK(t) − K̇(t) ≥ 0 holds for all t ∈ R+ at which K is differentiable. The

3It will be proved in lemma 8 in section 4 that the recurrence property holds also for all continuous-time
Ramsey equilibria. We do not state this result in the present section because theorem 2 below establishes a
much stronger property.
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aggregate consumption path corresponding to that aggregate capital path is given by C(t) =
f(K(t))− δK(t)− K̇(t). An equilibrium with aggregate consumption path C(t) is efficient, if
there exists no feasible aggregate capital path K̃ emanating from K0 with associated aggregate
consumption path C̃ such that C̃(t) ≥ C(t) holds for all t ∈ R+ and C̃(t) > C(t) holds for
all t in a subset of R+ that has positive Lebesgue measure. In the discrete-time model it has
been shown by Becker et al. (2012) that not all equilibria are efficient; see also Becker and
Mitra (2012). Our last result demonstrates that all equilibria in the continuous-time Ramsey
model are efficient.

Theorem 5 Every equilibrium is efficient.

4 Proofs

In this section we present the proofs of all theorems stated in section 3. We shall also outline
which intermediate results hold or fail, respectively, in the discrete-time setting.

4.1 Equilibrium conditions

Let us start with the firms’ optimization problem at instant t. It is well known that the
necessary and sufficient first-order optimality conditions for this problem are given by

r(t) = f ′(K(t)) and w(t) =W (K(t)). (7)

Now let us turn to household h’s utility maximization problem, where h ∈ H. We denote by
µh and νh the adjoint variable corresponding to the budget constraint (1) and the Lagrange
multiplier corresponding to the no-borrowing constraint (2), respectively. The first-order opti-
mality conditions of the maximum principle for the utility maximization problem of household
h can be stated as follows; see Hartl et al. (1995, theorem 4.1) or Feichtinger and Hartl (1986,
theorem 6.2):

(uh)′(ch(t)) = µh(t), (8)

µ̇h(t) = [ρh + δ − r(t)]µh(t)− νh(t), (9)

νh(t) ≥ 0, (10)

kh(t)νh(t) = 0. (11)

Condition (8) shows that µh(t) equals the marginal utility of consumption and, therefore, it
must hold for all t ∈ R+ that µh(t) > 0.

An interval I ⊆ R+ such that kh(t) = 0 holds for all t ∈ I is called a boundary interval for
household h’s optimization problem. Analogously, an interval I ⊆ R+ such that kh(t) > 0
holds for all t ∈ I is called an interior interval . Because of the continuity of kh, boundary
intervals must be closed and interior ones must be open. A time instant t̄ ∈ R+, at which the
no-borrowing constraint (2) becomes binding (i.e., kh(t̄ − ε) > 0 and kh(t̄ + ε) = kh(t̄) = 0
for all sufficiently small ε > 0), is called an entry point . A time instant t̄ ∈ R+, at which the
constraint ceases to be binding (i.e., kh(t̄− ε) = kh(t̄) = 0 and kh(t̄+ ε) > 0 for all sufficiently
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small ε > 0), is an exit point . An isolated time instant t̄ ∈ R+, at which the constraint is
binding (i.e., kh(t̄) = 0, kh(t̄ − ε) > 0, and kh(t̄ + ε) > 0 for all sufficiently small ε > 0), is a
contact point . Entry points, exit points, and contact points together form the set of junction
points .

Lemma 1 For all h ∈ H it holds that ch and µh are continuous functions of time and that
they are piecewise continuously differentiable with possible kinks only at junction points. The
aggregate variables K, r, and w are continuously differentiable.

Proof: Because the Hamiltonian function of household h’s optimization problem,

Gh(kh, ch, µh, νh, t) = uh(ch) + µh{[r(t)− δ]kh + w(t)− ch}+ νhkh,

is strictly concave with respect to the consumption rate ch, it follows that the optimal control
path ch is continuous on R+; see, e.g., Seierstad and Sydsæter (1987, page 86) or Feichtinger
and Hartl (1986, corollary 6.2). Because of condition (8), this implies that the adjoint variable
µh is also continuous on R+.

Since all individual capital paths kh are assumed to be continuous and piecewise differentiable,
it follows from (5) that K is continuous and piecewise differentiable. Having shown that all
individual consumption paths ch are continuous it follows from (6) that K̇ must be continuous.
These observations prove that K is continuously differentiable. Because of (7) the factor prices
r and w must also be continuously differentiable.

On boundary intervals it must hold that ch(t) = w(t) = W (K(t)), which together with con-
tinuous differentiability of K shows that ch must be continuously differentiable on the interior
of such an interval. Appealing again to condition (8) it follows that µh is also continuously
differentiable on the interior of a boundary interval. On an interior interval it follows from
(9)-(11) that µ̇h(t) = [ρh + δ − r(t)]µh(t). This shows that µh is continuously differentiable on
such an interval and, appealing again to (8), ch must be continuously differentiable as well. �

Lemma 2 Let t̄ be any junction point for household h’s optimization problem. Then it follows
that ch(t̄) = w(t̄). If t̄ is an entry point or a contact point, then there does not exist ε > 0 such
that ch(t) ≤ w(t) holds for all t ∈ (t̄− ε, t̄). Analogously, if t̄ is an exit point or a contact point,
then there does not exist ε > 0 such that ch(t) ≥ w(t) holds for all t ∈ (t̄, t̄+ ε).

Proof: On any boundary interval it holds that kh(t) = 0. If such an interval has non-empty
interior, then we must obviously have k̇h(t) = 0 on the interior. Substituting this into (1) one
obtains ch(t) = w(t) on the interior of a boundary interval. By continuity of ch and w this
equality holds also for entry and exit points. If t̄ is a contact point, it must be a local minimum
of kh. This implies that kh(t̄) = k̇h(t̄) = 0 and ch(t̄) = w(t̄) follows again from (1).

Now suppose that t̄ is an entry or contact point and that there exists ε > 0 such that ch(t) ≤ w(t)
holds for all t ∈ (t̄ − ε, t̄). It is straightforward to see from (1) and kh(t̄) = 0 that this would
imply that kh(t) ≤ 0 holds for all t ∈ (t̄− ε, t̄). Since this is a contradiction to t̄ being an entry
or contact point, there does not exist ε > 0 such that ch(t) ≤ w(t) holds for all t ∈ (t̄ − ε, t̄).
The statement about exit or contact points can be proved analogously. �
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4.2 Proof of theorem 1

We first show that there can exist at most one steady state equilibrium and that this equilibrium
must satisfy the formulas stated in the theorem. In a steady state equilibrium the aggregate
capital stock K must be constant, say, K(t) = K̃ for all t ∈ R+. Together with condition (7)
this implies that r(t) = r̃ := f ′(K̃) for all t ∈ R+. Constancy of ch together with (8) implies
that µh is constant and, hence, µ̇h(t) = 0 for all t ∈ R+. Substituting this together with (10),
µh(t) > 0, and r(t) = r̃ into (9) it follows that

ρh + δ − r̃ ≥ 0 (12)

holds for all h ∈ H whereby, due to (11), the equality must hold whenever kh(t) > 0. Now
suppose that there exists h ≥ 2 and t ∈ R+ such that kh(t) > 0. In this case (12) must
hold as equality and we obtain ρ1 + δ − r̃ < ρh + δ − r̃ = 0, where we have used ρ1 < ρh

for all h ≥ 2. Since (12) must also hold for h = 1, this is a contradiction. Hence kh(t) = 0
must hold for all h ≥ 2 and all t ∈ R+ and, consequently, k1(t) = K(t) = K̃ > 0 holds
for all t ∈ R+. Appealing again to (12), of which we now know that it must hold as an
equality for h = 1, we obtain r̃ = ρ1 + δ = r∗. Together with (7) this implies K̃ = K∗.
Finally, by substituting the above results into (1) we obtain for all h ≥ 2 and all t ∈ R+ that
ch(t) = w(t) = W (K∗) = w∗, and by substituting all of these results into (6) it follows that
c1(t) = f(K∗)− δK∗ − (H − 1)w∗ = (r∗ − δ)K∗ + w∗.

We have already mentioned that the conditions in (7) are sufficient for the firms’ profit maxi-
mization problem. Because of the convexity properties of the model, the conditions stated in
(8)-(11) are also sufficient for the households’ optimization problems provided that the transver-
sality condition holds. The latter, however, is trivially satisfied along a steady state equilibrium.
This shows that the solution stated in the theorem qualifies indeed as an equilibrium.

4.3 Boundedness and recurrence

In the present subsection we collect a number of results dealing with the boundedness of capital
and consumption paths in equilibrium. Almost all of these results have exact counterparts in
the discrete-time setting, although the proofs in continuous time often require more elaborate
arguments. We start by proving that, in every equilibrium, the aggregate capital stock as well
as the individual capital holdings remain bounded.

Lemma 3 There exists K̄ > 0 such that the inequalities 0 ≤ K(t) ≤ K̄ and 0 ≤ kh(t) ≤ K̄
hold for all h ∈ H and all t ∈ R+. This is not only true for every equilibrium but for all feasible
aggregate and individual capital paths.

Proof: Because of (3) and (6) we have K̇(t) ≤ f(K(t)) − δK(t). The properties of f and
the assumption δ > 0 ensure that the right-hand side of this inequality is non-positive for all
sufficiently large K(t), say, for all K(t) ≥M . Setting K̄ = max{M,K0}, where K0 =

∑H
h=1 k

h
0 ,

it follows that 0 ≤ K(t) ≤ K̄ holds for all t ∈ R+. The statement 0 ≤ kh(t) ≤ K̄ follows then
trivially from (2) and (5). �
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We continue by showing that consumption also remains bounded. Whereas this result is rather
trivial in discrete-time setting,4 it requires some subtle arguments in the continuous-time frame-
work. This is the case because consumption and investment (for each household) are flows in
the continuous-time formulation, and there is no a-priori upper bound on the choice of con-
sumption, and no a-priori bound on the choice of investment in the household’s optimization
problem. Thus, the upper bound on consumption (obtained in lemma 4 below) results from
using information beyond that available for feasible aggregate and individual capital paths.

Lemma 4 There exists c̄ > 0 such that 0 ≤ ch(t) ≤ c̄ holds for all h ∈ H and all t ∈ R+.

Proof: Non-negativity of ch(t) follows from (3). To demonstrate the existence of an upper
bound on consumption, we proceed in four steps.

Step 1: For all j ∈ H and all t ∈ R+ it holds that

[r(t)− δ]kj(t) + w(t) ≤ f ′(K(t))K(t) +W (K(t))

= (1/H)f(K(t)) + [(H − 1)/H]f ′(K(t))K(t).

Because of f ′(K)K < f(K) and lemma 3, this implies

[r(t)− δ]kj(t) + w(t) < f(K(t)) ≤ f(K̄). (13)

From this property and conditions (1) and (3) we obtain for all j ∈ H and all t ∈ R+ that

k̇j(t) = [r(t)− δ]kj(t) + w(t)− cj(t) < f(K̄).

Step 2: Suppose that there exists h ∈ H and t̄ ∈ R+ such that ch(t̄) > Hf(K̄). Because ch is
continuous, the inequality ch(t) > Hf(K̄) must hold for all t ∈ I, where I is an open interval
containing t̄. Together with (1) and (13) we obtain for all t ∈ I that

k̇h(t) = [r(t)− δ]kh(t) + w(t)− ch(t) < (1−H)f(K̄) < 0. (14)

From (5), (14), and the result of step 1 it follows for all t ∈ I that

K̇(t) =
H∑
j=1

k̇j(t) < (H − 1)f(K̄) + (1−H)f(K̄) = 0

and, therefore,
ṙ(t) = f ′′(K(t))K̇(t) > 0. (15)

Furthermore, because of (2) the inequality k̇h(t) < 0 can only hold if

kh(t) > 0. (16)

We have therefore proved that, in the case where ch(t̄) > Hf(K̄) holds at some instant t̄ and
for some household h ∈ H, there exists an open interval I containing t̄ such that conditions
(14)-(16) must be satisfied for all t ∈ I.

4See equation (7) in Becker and Foias (1987) and the sentence following that equation.
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Step 3: Now suppose that there exists T ∈ R+ and h ∈ H such that ch(t) > Hf(K̄) holds
for all t ≥ T . In this case we see from (14) that kh(t) must eventually become negative. Since
this would contradict condition (2), it follows that lim inft→+∞ ch(t) ≤ Hf(K̄). If the lemma
were not true, there would therefore exists h ∈ H for which lim supt→+∞ ch(t) = +∞ and
lim inft→+∞ ch(t) ≤ Hf(K̄). These two properties together imply that ch attains infinitely
many local maxima with values greater than Hf(K̄).

Step 4: From step 3 we know that in the case where there exists h ∈ H such that ch is
unbounded, there must exist t̄ ∈ R+ such that ch attains a local maximum at t̄ and such that
ch(t̄) > Hf(K̄). Because of (16) it follows that t̄ cannot be a junction point, nor can it be
contained in a boundary interval. This implies (by lemma 1) that µh must be differentiable at
t̄. Furthermore, because of (8) and the fact that t̄ is a local maximum of ch it follows that t̄
is a local minimum of µh. These properties imply that µ̇h(t̄) = 0. Because of of (9), (11), and
(16) we have µ̇h(t) = [ρh + δ − r(t)]µh(t) for all t close to t̄. This shows (again by lemma 1)
that µh is actually twice differentiable with

µ̈h(t̄) = [ρh + δ − r(t̄)]µ̇h(t̄)− ṙ(t̄)µh(t̄).

Substituting µ̇h(t̄) = 0 and using (15) we therefore see that µ̈h(t̄) < 0, which is a contradiction
to t̄ being a local minimum of µh. This completes the proof of the lemma. �

The above lemma has a number of consequences that we collect in the following corollary.
Recall that we have defined the steady state values r∗ and K∗ by f ′(K∗) = r∗ = ρ1 + δ.

Corollary 1 (a) For all t ∈ R+ and all h ∈ H it holds that µh(t) ≥ (uh)′(c̄) > 0.
(b) For all T ∈ R+ it holds that

lim inf
t→+∞

∫ t

T

[r∗ − r(s)] ds > −∞. (17)

(c) There exists κ ∈ R+ such that |K̇(t)| ≤ κ holds for all t ∈ R+.

Proof: Part (a) is obvious from (8) and lemma 4. From (9)-(10) for household h = 1 we
have µ̇1(t) ≤ [ρ1 + δ − r(t)]µ1(t) = [r∗ − r(t)]µ1(t) or, equivalently, (d/dt) lnµ1(t) ≤ r∗ − r(t).
Together with part (a) this implies for all (T, t) ∈ R2

+ satisfying T ≤ t that

0 < (uh)′(c̄) ≤ µ1(t) ≤ µ1(T )e
∫ t
T [r∗−r(s)] ds.

Part (b) of the corollary follows from this inequality by letting t approach +∞.

It remains to prove part (c). Define κ = max{δK̄ + Hc̄, f(K̄)}. From (6) it follows for all
t ∈ R+ that

K̇(t) = f(K(t))− δK(t)−
H∑

h=1

ch(t) ≤ f(K̄) ≤ κ,

where we have also used (2), (3), (5), lemma 3, and the fact that f is increasing on R+. In a
similar way, we can use (5), (6), lemmas 3 and 4, and the fact that f is increasing on R+ with
f(K) ≥ f(0) = 0 for all K ∈ R+ to obtain for all t ∈ R+ that

−K̇(t) = −f(K(t)) + δK(t) +
H∑

h=1

ch(t) ≤ −f(0) + δK̄ +Hc̄ ≤ κ.

12



These results establish that |K̇(t)| ≤ κ for all t ∈ R+. �

Part (c) of the above corollary states that the time derivative of the aggregate capital stock
remains uniformly bounded. This result has obviously no counterpart in the discrete-time
setting. The following lemma, on the other hand, corresponds to lemma 1 in Becker and
Foias (1987).

Lemma 5 In every equilibrium it holds that lim supt→+∞K(t) ≥ K∗.

Proof: Suppose to the contrary that lim supt→+∞K(t) < K∗. Then there exists T ∈ R+

and ε > 0 such that r(s) ≥ r∗ + ε holds for all s ≥ T . Obviously, this is a contradiction to
corollary 1(b) and the proof of the lemma is complete. �

Let us define the value K by the condition f ′(K) = ρH + δ. With this definition we can prove
the following lemma, which corresponds to proposition 2 in Becker and Foias (1987).

Lemma 6 There exists T ∈ R+ such that K(t) ≥ K holds for all t ≥ T .

Proof: Step 1: Suppose to the contrary that there exists a sequence (ti)
+∞
i=1 with limi→+∞ ti =

+∞ and K(ti) < K for all i ∈ N. Together with lemma 5 this implies that K must attain
infinitely many local minima with values smaller than K. Let t̄ be such a local minimum.
From (7) and the monotonicity of W it follows that w also attains a local minimum at t̄.
Furthermore, it must hold that K̇(t̄) = 0 and ẇ(t̄) = W ′(K(t̄))K̇(t̄) = 0. In the following
steps 2-5 we discuss implications of these properties depending on whether t̄ is contained in an
interior interval, a boundary interval, or in the set of junction points. In step 6 we shall then
construct a contradiction to t̄ being a local minimum of K.

Step 2: Let t̄ be contained in an interior interval of household h’s optimization problem. From
K(t̄) < K and the continuity of K and kh, it follows that there exists an interval I containing
t̄ such that r(t) > ρh + δ and kh(t) > 0 for all t ∈ I. From (9)-(11) it follows therefore that
µ̇h(t) = [ρh + δ− r(t)]µh(t) < 0 for all t ∈ I. Together with (8) this implies that ċh(t̄) > 0. For
later use in step 6 let us define J (t̄) = {h ∈ H | kh(t̄) > 0} ̸= ∅ and η =

∑
h∈J (t̄) ċ

h(t̄) > 0.

Step 3: Suppose that t̄ is in the interior of a boundary interval of household h’s utility
maximization problem. Then it must hold that ch(t) = w(t) locally around t̄ and therefore it
follows that ċh(t̄) = ẇ(t̄) = 0.

Step 4: Next suppose that t̄ is an entry point or a contact point. Then there exists ε > 0 such
that kh(t) > 0 holds for all t ∈ (t̄−ε, t̄). Using the argument employed in step 2 we obtain that
ċh(t) > 0 for all t ∈ (t̄− ε, t̄) and it follows that ch is strictly increasing to the left of t̄. Because
ch(t̄) = w(t̄) must hold (see lemma 2) and because t̄ is a local minimum of w, it follows that
ch(t) < ch(t̄) = w(t̄) ≤ w(t) for all t ∈ (t̄− ε, t̄). Obviously, this is a contradiction to lemma 2,
and it follows that t̄ can be neither an entry point nor a contact point.

Step 5: Finally, assume that t̄ is an exit point. In this case there exists ε > 0 such that
ch(t) = w(t) for all t ∈ (t̄ − ε, t̄). Thus, the left-hand derivative of ch at t̄ must coincide with
the left-hand derivative of w at t̄, which we have shown in step 1 to be equal to 0.

13



Step 6: Steps 2-5 imply that the left-hand derivative of the function t 7→ −
∑H

h=1 c
h(t) at t = t̄

exists and is given by −η < 0. Together with K̇(t̄) = 0 and (6) this implies that the left-hand
derivative of

K̇(t) = f(K(t))− δK(t)−
H∑

h=1

ch(t)

at t = t̄ is negative. Hence, K̇ must be strictly decreasing on an interval (t̄ − ε, t̄) for some
ε > 0. This, in turn, implies that K̇(t) > K̇(t̄) = 0 for all t ∈ (t̄ − ε, t̄) and it follows that
K is strictly increasing immediately to the left of t̄. This is a contradiction to t̄ being a local
minimum of K. �

Lemma 6 has the implication that the consumption level of any household h ∈ H does not
converge to 0. This is the content of the following lemma which is similar to corollary 1 in
Becker and Foias (1987).

Lemma 7 For all h ∈ H it holds that lim supt→+∞ ch(t) > 0.

Proof: From lemma 6 it follows that there exists T ∈ R+ such that for all t ≥ T it holds that
w(t) = W (K(t)) ≥ W (K) > 0. If the present lemma were not true, there would exist h ∈ H
such that limt→+∞ ch(t) = 0. But this would imply that there is t̄ > T such that ch(t) < w(t)
for all t ≥ t̄. Clearly we can choose t̄ so that kh is differentiable at t̄ and ch is continuous at t̄.
Define an alternative path (kh, ch) as follows:

kh(t) =

{
kh(t) for t ∈ [0, t̄],

kh(t̄)e−δ(t−t̄) for t > t̄,

and

ch(t) =

{
ch(t) for t ∈ [0, t̄],

w(t) + r(t)kh(t̄)e−δ(t−t̄) for t > t̄.

Note that kh is clearly continuous on R+ and piecewise differentiable. Further,

k̇h(t) =

{
k̇h(t) = [r(t)− δ]kh(t) + w(t)− ch(t) for t ∈ [0, t̄)

−δkh(t̄)e−δ(t−t̄) = −δkh(t) for t > t̄
(18)

so that
lim
t→t̄−

k̇h(t) = [r(t̄)− δ]kh(t̄) + w(t̄)− ch(t̄) > −δkh(t̄) = lim
t→t̄+

k̇h(t).

This shows that kh is not differentiable at t = t̄.

Note that ch is piecewise continuous with finite left-hand and right-hand limits. Also, for all
t > t̄,

ch(t) = w(t) + r(t)kh(t̄)e−δ(t−t̄) = w(t) + r(t)kh(t) ≥ w(t) > ch(t). (19)

Finally, we show that (kh, ch) satisfies the flow budget constraint (1) for all t ∈ R+ at which
kh is differentiable. Indeed, for t ∈ [0, t̄), the points of differentiability of kh are precisely the
points of differentiability of kh and we have

k̇h(t) = k̇h(t) = [r(t)− δ]kh(t) + w(t)− ch(t) = [r(t)− δ]kh(t) + w(t)− ch(t).
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For all t > T we can use (18) and (19) to obtain

k̇h(t) = −δkh(t) = [r(t)− δ]kh(t)− r(t)kh(t) = [r(t)− δ]kh(t) + w(t)− ch(t).

Since (kh, ch) is feasible for the optimization problem of household h, (19) contradicts the fact
that (kh, ch) solves this problem. This contradiction proves the lemma. �

We conclude this section by proving that the recurrence property holds for all equilibria. This
result corresponds to proposition 3 in Becker and Foias (1987).

Lemma 8 Every equilibrium satisfies the recurrence property, that is, for every household h ≥
2 there exists a sequence of time instants (thi )

+∞
i=1 with limi→+∞ thi = +∞ such that kh(thi ) = 0

holds for all i ∈ N.

Proof: Suppose to the contrary that there exists T ∈ R+ and h ≥ 2 such that kh(t) > 0 for all
t ≥ T . Because of (9)-(11) this implies µ̇h(t) = [ρh + δ − r(t)]µh(t) for all t ≥ T and therefore

µh(t) = µh(T )e
∫ t
T [ρh+δ−r(s)] ds = µh(T )e(ρ

h−ρ1)(t−T )e
∫ t
T [r∗−r(s)] ds.

Because of corollary 1(b) and ρ1 < ρh it follows that the right-hand side approaches +∞
as t goes to +∞. This, in turn, implies that limt→+∞ µh(t) = +∞ and it follows from (8)
that limt→+∞ ch(t) = 0. Because this contradicts lemma 7 the proof of the present lemma is
complete. �

4.4 Aggregate dynamics and the proof of theorem 4

The present subsection contains results about the dynamics of the aggregate capital stock in
the continuous-time Ramsey model. These results either have no counterparts at all in the
Ramsey model in discrete time or they hold in discrete time only under additional assumptions
on the production function.

We start by proving that the turnpike property implies convergence to the unique steady state
equilibrium. It is known from various examples in the literature that there does not exist
a corresponding result in the discrete-time formulation of the model; see, e.g., Becker and
Foias (1987), Becker and Foias (1994), Sorger (1994), or Sorger (1995).

Lemma 9 If an equilibrium satisfies the turnpike property, then it converges to the unique
steady state equilibrium.

Proof: Suppose that the turnpike property holds, that is, there exists T ∈ R+ such that
k1(t) = K(t) and kh(t) = 0 for all t ≥ T and all h ≥ 2. In this case the equilibrium dynamics
after time T can be described by just two differential equations. The first one is the flow budget
constraint of household h = 1, which can be written as

K̇(t) =M(K(t))− δK(t)− ψ(µ1(t)), (20)
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where M(K) = f ′(K)K +W (K) = (1/H)[f(K) + (H − 1)f ′(K)K] and where ψ is the inverse
of (u1)′. The second equation is household 1’s adjoint equation

µ̇1(t) = [ρ1 + δ − f ′(K(t))]µ1(t). (21)

We first show that the system of differential equations (20)-(21) has a unique fixed point.
Indeed, if µ̇1(t) = 0, then it follows from (21) that either µ1(t) = 0 or f ′(K(t)) = ρ1 + δ = r∗.
The former cannot hold since µ1(t) = (u1)′(c1(t)) > 0. Hence, we must have K(t) = K∗.
Substituting this into (20) we obtain c1(t) = ψ(µ1(t)) = M(K∗) − δK∗, which coincides with
the corresponding value in the steady state equilibrium.

The Jacobian matrix of system (20)-(21) evaluated at the steady state is given by(
M ′(K∗)− δ −ψ′(µ1)
−f ′′(K∗)µ1 0

)
.

Because ψ is the inverse of (u1)′, it follows that ψ′(µ1) < 0 which, together with µ1 > 0 and
f ′′(K∗) < 0, implies that the determinant of the Jacobian matrix is negative. This proves that
the fixed point is a saddle point with one positive and one negative real eigenvalue.

We know from the results in subsection 4.3 that every equilibrium satisfying the turnpike
property corresponds to a bounded solution of system (20)-(21) (after some finite time T ).
Because the only fixed point of that system is a saddle point, there cannot exist any periodic
orbits. This is an implication of index theory; see, e.g., section 6.8 in Strogatz (1994). It
follows therefore from the Poincaré-Bendixson theorem that every solution of (20)-(21) that
corresponds to an equilibrium must converge to the unique fixed point; see section 7.3 in
Strogatz (1994). This implies that limt→+∞K(t) = K∗, limt→+∞ r(t) = f ′(K∗), limt→+∞w(t) =
w∗, and limt→+∞ c1(t) = limt→+∞ ψ(µ1(t)) = M(K∗) − δK∗. Since the turnpike property is
assumed to hold, the capital holdings and consumption rates of all households h ≥ 2 also
converge to the corresponding steady state values. �

The following lemma is the key to all the results in the rest of this subsection. In the discrete-
time framework, this result has only been proved under the so-called maximal income mono-
tonicity assumption; see lemma 2 in Becker et al. (2012). In the continuous-time model it holds
under standard assumptions.

Lemma 10 The aggregate capital stock K does not attain a local maximum at any t̄ ∈ R+ for
which K(t̄) > K∗.

Proof: Step 1: Suppose to the contrary that there exists t̄ > 0 such that K(t̄) > K∗ and
such that t̄ is a local maximum of K. Then it follows that K̇(t̄) = 0 and that w attains
a local maximum at t̄. In the following steps 2-5 we shall show that there exists ε > 0
such that ch(t) ≤ ch(t̄) holds for all h ∈ H and for all t ∈ (t̄, t̄ + ε), and ċh(t̄) < 0 for all
h ∈ J (t̄) = {j ∈ H | kj(t̄) > 0} ̸= ∅. In step 6 we shall derive a contradiction to t̄ being a local
maximum of K.

Step 2: Let h ∈ J (t̄). From K(t̄) > K∗ and the continuity of K and kh it follows that there
exists an interval I containing t̄ such that r(t) < ρh + δ and kh(t) > 0 all t ∈ I. From (9)-(11)
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it follows therefore that µ̇h(t) = [ρh + δ − r(t)]µh(t) > 0 for all t ∈ I. Together with (8) this
implies that ċh(t̄) < 0. This implies of course that there exists ε > 0 such that ch(t) < ch(t̄)
holds for all t ∈ (t̄, t̄+ ε). For later use in step 6 let us define η =

∑
h∈J (t̄) ċ

h(t̄) < 0.

Step 3: Suppose that t̄ is in the interior of a boundary interval of household h’s utility
maximization problem. Then it must hold that ch(t) = w(t) locally around t̄ and it follows
therefore that ch has a local maximum at t̄. This implies that there exists ε > 0 such that
ch(t) ≤ ch(t̄) holds for all t ∈ (t̄, t̄+ ε).

Step 4: Next suppose that t̄ is an exit point or a contact point. Then there exists ε > 0 such
that kh(t) > 0 holds for all t ∈ (t̄, t̄ + ε). Using the argument employed in step 2 we obtain
that ċh(t) < 0 for all t ∈ (t̄, t̄ + ε) and it follows that ch is strictly decreasing to the right of t̄
and, hence, that ch(t) < ch(t̄) holds for all t ∈ (t̄, t̄+ ε).

Step 5: Finally, assume that t̄ is an entry point. In this case there exists ε > 0 such that
ch(t) = w(t) ≤ w(t̄) = ch(t̄) for all t ∈ (t̄, t̄ + ε), where we have used the fact that t̄ is a local
maximum of w and that ch(t̄) = w(t̄) holds at every junction point (see lemma 2).

Step 6: From the steps 2-5 it follows that there exists ε > 0 such that the function t 7→
−
∑H

h=1 c
h(t) is bounded below on (t̄, t̄+ ε) by the linearly increasing function

H∑
h=1

[−ch(t̄)]− (η/2)(t− t̄).

Because K̇(t̄) = 0 it follows furthermore that the slope of the function t 7→ f(K(t)) − δK(t)
at t = t̄ is equal to 0. Putting these observations together and using (6) we can see that for all
t ∈ (t̄, t̄+ ε) it holds that

K̇(t) = f(K(t))− δK(t)−
H∑

h=1

ch(t) > K̇(t̄) = 0.

Hence, K̇(t) > 0 holds immediately to the right of t̄ which constitutes a contradiction to t̄ being
a local maximum of K. �

We can now derive the following important result; see also lemma 3 in Borissov (2012) for an
analogous result in a discrete-time variant of the model that assumes that wages are paid before
production takes place.

Corollary 2 There exists T ∈ R such that one of the following two statements is correct:
(a) It holds for all t ≥ T that K(t) ≥ K∗ and that K is monotonic on [T,+∞).
(b) It holds for all t ≥ T that K(t) ≤ K∗.

Proof: Suppose that there exists t̄ ∈ R+ such that K(t) ≥ K∗ holds for all t ∈ [t̄,+∞). In
this case it follows from lemma 10 that K can change monotonicity at most once on [t̄,+∞).
If it does not change monotonicity at all on [t̄,+∞), then statement (a) holds with T = t̄. If it
changes monotonicity once at T > t̄, then statement (a) holds as well.

Now suppose that there exists t̄ ∈ R+ such that K(t̄) < K∗. If, in addition, it holds that
K(t) ≤ K∗ for all t ≥ t̄, then statement (b) is true with T = t̄. Otherwise, there must exist
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t1 > t̄ such that K(t1) > K∗. Note that in this case there cannot exist t ≥ t1 such that
K(t) ≤ K∗, because that would imply that K attains a local maximum at some s ∈ [t̄, t] and
that K(s) > K∗. Since this would contradict lemma 10, it follows that statement (a) must be
true with some T ≥ t1. �

Using the above corollary we can now show that K converges.

Lemma 11 It holds that limt→+∞K(t) exists. In the case described in corollary 2(a), this limit
must be greater than or equal to K∗; in the case described in corollary 2(b), it must be equal to
K∗.

Proof: Consider first the situation described in part (a) of corollary 2. SinceK is monotonic on
[T,+∞) andK(t) ∈ [K∗, K̄] holds for all t ∈ [T,+∞), it follows immediately that limt→+∞K(t)
exists and that limt→+∞K(t) ≥ K∗.

Now consider the situation described in part (b) of corollary 2, that is, there exists T ∈ R+

such that K(t) ≤ K∗ holds for all t ≥ T . Clearly, we can assume without loss of generality,
that T is such that K(t) ≥ K holds for all t ≥ T (using lemma 6), where K is defined by the
equation f ′(K) = ρH + δ. The fact that K(t) ≤ K∗ holds for all t ≥ T implies r(t) ≥ r∗ for
all t ≥ T . From lemma 5 we know that lim supt→+∞K(t) ≥ K∗. If the present lemma is not
true, then it must hold that lim inft→+∞K(t) < K∗. This implies that lim supt→+∞ r(t) > r∗.
This, in turn, implies that there exist ε > 0 and a sequence (ti)

+∞
i=1 with limi→+∞ ti = +∞ and

r(ti) ≥ r∗+ε for all i ∈ N. Continuous differentiability of f on R++ implies that f ′ is uniformly
continuous on the closed interval [K, K̄]. Condition (7) and corollary 1(c) imply therefore that
there exists σ > 0 such that r(t) ≥ r∗ + ε/2 for all t ∈ [ti − σ, ti + σ] and all i ∈ N. All of these
facts together show that

lim
t→+∞

∫ t

T

[r∗ − r(s)] ds = −∞.

Since this contradicts corollary 1(b), we obtain lim inft→+∞K(t) = K∗ and, consequently,
limt→+∞K(t) = K∗. �

To establish convergence of the aggregate capital stock towards K∗ also in the case described
in corollary 2(a) we need two more results.

Lemma 12 Assume that there exists T ∈ R such that K(t) ≥ K∗ holds for all t ≥ T and such
that K is monotonic on [T,+∞). Then it follows that K is non-increasing on [T,+∞) and
that limt→+∞ K̇(t) = 0.

Proof: Step 1: We first prove that K is non-increasing on [T,+∞). We distinguish two
cases: the equilibrium satisfies the turnpike property or it does not. In the first case, we know
from lemma 9 that limt→+∞K(t) = K∗. Since K(t) ≥ K∗ holds for all t ≥ T and since K is
monotonic on [T,+∞) by assumption, it must be the case that K is non-increasing on [T,+∞).

Now let us suppose that the turnpike property does not hold. In this case there exists a
household h ≥ 2 for which the equilibrium contains an interior interval I = (t1, t2) with
T ≤ t1 < t2. Without loss of generality we may assume that t1 is an exit point or a contact
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point and that t2 is an entry point or a contact point. Because of the recurrence property
from lemma 8, t2 must be finite. To summarize, we have kh(t1) = kh(t2) = 0 and kh(t) > 0
for all t ∈ I. Since K(t) ≥ K∗, we have r(t) ≤ r∗ < ρh + δ, and since kh(t) > 0 we have
µ̇h(t) = [ρh + δ − r(t)]µh(t) > 0 and, consequently, ċh(t) < 0 for all t ∈ I. The function ch is
therefore strictly decreasing on I. Moreover, because t1 and t2 are junction points, we know
from lemma 2 that w(t1) = ch(t1) and w(t2) = ch(t2). Hence, it follows that w(t1) = ch(t1) >
ch(t2) = w(t2). Because we know that K is monotonic on [T,+∞), it follows that w must be
monotonic on [T,+∞) as well. Because w(t1) > w(t2) we see that w must be non-increasing.
This, in turn, implies that K is non-increasing.

Step 2: Next we prove that limt→+∞ K̇(t) = 0. This is trivially true, if there exists t̄ > T such
that K(t̄) = K∗, because then K must remain constant from t̄ onwards. We may therefore
assume that K(t) > K∗ holds for all t ≥ T . Note that we must have ẇ(t) = W ′(K(t))K̇(t) ≤ 0
(due to step 1) and r(t) < ρh+δ for all t ≥ T and all h ∈ H. We claim that ch is non-increasing
on [T,+∞) for all h ∈ H. Because ch is continuous due to lemma 1 and because junction points
are isolated, it suffices to prove that ch is non-increasing on boundary intervals and on interior
intervals. On a boundary interval it holds that ch(t) = w(t) and we know already that w is
non-increasing. On an interior interval we can use the argument from step 1 to show that ch

is strictly decreasing. Since ch is non-increasing and non-negative on [T,+∞) for all h ∈ H, it
follows that limt→+∞ ch(t) must exist for all h ∈ H. Using this result as well as the convergence
of K (see lemma 11) it follows from the output market clearing condition (6) that limt→+∞ K̇(t)
must exist as well. This limit can obviously not differ from 0 because that would contradict
the convergence of K(t). �

Lemma 13 Suppose that limt→+∞ K̇(t) exists. Then it follows that the turnpike property holds.

Proof: From lemma 11 we know that limt→+∞K(t) exists. This implies obviously that
limt→+∞ K̇(t), which is assumed to exist, must be equal to 0. From lemma 11 we also know
that limt→+∞K(t) ≥ K∗. Hence, there exist T ∈ R+ and ε > 0 such that r(t) ≤ ρh + δ − ε for
all t ≥ T and all h ≥ 2. All of these observations together imply that there exists t̄ ≥ T such
that

(uh)′′(w(t))

(uh)′(w(t))
ẇ(t) < ε ≤ ρh + δ − r(t) (22)

holds for all t ≥ t̄ and all h ≥ 2. This is the case because the two limits limt→+∞w(t) =
limt→+∞W (K(t)) ≥ W (K∗) > 0 and limt→+∞ ẇ(t) = limt→+∞W ′(K(t))K̇(t) = 0 exist and uh

is twice continuously differentiable on R++.

Now suppose that the turnpike property does not hold. Then there exists a household h ≥ 2
for which the equilibrium contains an interior interval I = (t1, t2) with t̄ ≤ t1 < t2 . Without
loss of generality we may assume that t1 is an exit point or a contact point and that t2 is an
entry point or a contact point. Because of lemma 8, t2 must be finite. To summarize, we have
kh(t1) = kh(t2) = 0 and kh(t) > 0 for all t ∈ I.

Let us define z(t) = (uh)′(w(t))− µh(t). Noting that both w and µh must be differentiable on
I, that µ̇h(t) = [ρh + δ − r(t)]µh(t) must hold for all t ∈ I, and that µh(t) = (uh)′(ch(t)) by
equation (8), it follows that

ż(t) = (uh)′′(w(t))ẇ(t)− [ρh + δ − r(t)](uh)′(ch(t)). (23)
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From lemma 2 we know that there must exist t3 ∈ I such that ch(t3) < w(t3) and, hence,
z(t3) = (uh)′(w(t3)) − (uh)′(ch(t3)) < 0. We claim that z(t) < 0 holds for all t ∈ (t3, t2). If
this were not the case, the graph of (uh)′(w(t)) would have to intersect the graph of µh(t) =
(uh)′(ch(t)) at some point t ∈ (t3, t2) from below. From (22) and (23), however, we see that

ż(t)
∣∣∣
w(t)=ch(t)

= (uh)′(w(t))

{
(uh)′′(w(t))

(uh)′(w(t))
ẇ(t)− [ρh + δ − r(t)]

}
< 0, (24)

which rules out such an intersection. Therefore, the claim that ch(t) < w(t) holds for all
t ∈ (t3, t2) is proved. Because (t3, t2) is contained in the interior interval I = (t1, t2), it holds
that kh(t3) > 0. Using these results and integrating equation (1) it follows therefore that

kh(t2) = e
∫ t2
t3

[r(t)−δ] dt

{
k(t3) +

∫ t2

t3

e
−

∫ t
t3
[r(s)−δ] ds

[w(t)− ch(t)] dt

}
> 0.

As this contradicts the property kh(t2) = 0 that we assumed above, the proof of the lemma is
complete. �

We are now ready to prove the main result about the aggregate dynamics of Ramsey equilibria.

Lemma 14 Along every equilibrium it holds that limt→+∞ r(t) = r∗, limt→+∞w(t) = w∗, and
limt→+∞K(t) = K∗.

Proof: From corollary 2 it follows that there are two cases to consider. If the equilibrium sat-
isfies K(t) ≤ K∗ for all sufficiently large t, then the lemma follows immediately from lemma 11
and from (7). If K(t) ≥ K∗ holds for all sufficiently large t, then we obtain from corollary 2(a)
and lemma 12 that K is eventually non-increasing and that limt→+∞ K̇(t) = 0. Together with
lemma 13 this implies that the turnpike property holds. The present lemma follows then from
lemma 9. �

We conclude the subsection by proving theorem 4. From corollary 2 we already know that there
exists T ∈ R+ such that either K(t) ≥ K∗ or K(t) ≤ K∗ holds for all t ≥ T . In the former
case it follows from lemma 12 that K is non-increasing on [T,+∞). This completes the proof
of theorem 4.

4.5 Individual dynamics and the proofs of theorems 2 and 3

Having established the convergence of all aggregate variables in the previous subsection, we
now turn to the individual capital holdings and consumption rates. We proceed in two separate
lemmas.

Lemma 15 Along every equilibrium it holds that limt→+∞ k1(t) = K∗ and limt→+∞ kh(t) = 0
for all h ≥ 2.

Proof: Because of condition (5) and lemma 14 it is sufficient to prove the statement about
the impatient households h ≥ 2. Suppose that this statement is not true. Then there exist
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h ≥ 2 and θ > 0 such that lim supt→+∞ kh(t) = θ. We shall show in three steps that this leads
to a contradiction.

Step 1: Because of lemma 14 there exists t̄ ∈ R+ such that for all t ≥ t̄ it holds that

|r(t)− r∗| ≤ min{ρ1/2, (ρh − ρ1)/2} (25)

and
|w(t)− w∗| ≤ ε := θρ1/16. (26)

Furthermore, because of the recurrence property established in lemma 8, there exists T ≥ t̄
such that kh(T ) = 0.

Step 2: We claim that for all s ≥ T it holds that ch(s) ≤ w∗ + ε, where ε is defined in (26).
There are two cases to consider: kh(s) = 0 and kh(s) > 0. In the first case, it must hold that
k̇h(s) ≥ 0 in order not to violate (2). It follows therefore from (1) that 0 ≤ k̇h(s) = w(s)−ch(s).
Combining this with (26) we obtain ch(s) ≤ w(s) ≤ w∗ + ε and the claim is proved.

Now consider the second case, in which kh(s) > 0. This implies that s is contained in an interior
interval. Let (t1, t2) be this interval where, without loss of generality, t1 is an exit point or a
contact point and t2 an entry point or a contact point. Because of s ≥ T , kh(T ) = 0, kh(s) > 0,
and the continuity of kh, it follows that T ≤ t1 < s, kh(t1) = 0, and kh(t) > 0 for all t ∈ (t1, s].
From (9)-(11) it follows therefore that µ̇h(t) = [ρh+δ−r(t)]µh(t) for all t ∈ (t1, s]. This implies
that

µ̇h(t) = [ρh + δ − r(t)]µh(t)

= [ρh − ρ1 + r∗ − r(t)]µh(t)

≥ [ρh − ρ1 − (ρh − ρ1)/2]µh(t)

= (ρh − ρ1)µh(t)/2 > 0,

where we have used r∗ = ρ1+ δ and (25). Thus, µh is strictly increasing on (t1, s] and it follows
from (8) that ch must be strictly decreasing on that interval. Together with the continuity of
ch (see lemma 1) we therefore obtain ch(s) < ch(t1). We have already seen in the first case that
kh(t1) = 0 and t1 ≥ T imply that ch(t1) ≤ w∗+ ε so that we must have ch(s) < ch(t1) ≤ w∗+ ε.
This proves the claim in the second case.

Step 3: Since lim supt→+∞ kh(t) = θ > 0 there exists t1 > T such that kh(t1) ≥ θ/2, and
because of the recurrence property there exists t2 > t1 such that kh(t2) = 0. Since kh is
continuous, it must attain a maximum on the compact interval [t1, t2]. Suppose that this
maximum is attained at t3. Then we have kh(t3) ≥ kh(t1) ≥ θ/2 > 0 = kh(t2) and, therefore,
t3 < t2. We obtain

k̇h(t3) = [r(t3)− r∗ + r∗ − δ]kh(t3) + [w(t3)− w∗] + [w∗ − ch(t3)]

≥ −(ρ1/2)kh(t3) + ρ1kh(t3)− ε− ε

≥ θρ1/4− 2ε

= θρ1/8 > 0,

where we have used (1) for the first line, the definition of r∗, conditions (25) and (26), and the
result from step 2 for the second line, the fact that kh(t3) ≥ θ/2 for the third line, and the
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definition of ε from (26) for the last line. The above chain of inequalities therefore proves that
k̇h(t3) > 0 which is obviously a contradiction to kh attaining its maximum on [t1, t2] at the
point t3 < t2. This contradiction completes the proof of the lemma. �

Lemma 16 In every equilibrium it holds that limt→+∞ c1(t) = (r∗−δ)K∗+w∗ and limt→+∞ ch(t) =
w∗ for all h ≥ 2.

Proof: Step 1: In this step we prove limt→+∞ c1(t) = (r∗ − δ)K∗ + w∗. Consider the two
cases described in corollary 2. In case (a) it follows from lemmas 12 and 13 that the turnpike
property holds and the claim follows from lemma 9.

Now consider the situation described in part (b) of corollary 2. BecauseK(t) ≤ K∗ for all t ≥ T
it must hold that r(t) ≥ r∗ = ρ1 + δ for all t ≥ T . Because of limt→+∞ k1(t) = K∗ > 0 (see
lemma 15) there must exist t̄ ≥ T such that k1(t) > 0 for all t ≥ t̄. Together with conditions
(9)-(11) these properties imply that µ̇1(t) = [ρ1 + δ − r(t)]µ1(t) ≤ 0. It follows that µ1 is non-
increasing on [t̄,+∞) and, due to (8), that c1(t) is non-decreasing on [t̄,+∞). Since we know
from lemma 4 that c1 remains uniformly bounded, the limit of c1(t) as t approaches infinity
must exist. This property together with lemmas 14 and 15 shows that for h = 1 all terms on
the right-hand side of (1) converge. Consequently, limt→+∞ k̇1(t) must also exist. However,
because k1(t) converges, the only possible limit of k̇1(t) is 0. Substituting all of this into (1) it
follows that limt→+∞ c1(t) = (r∗ − δ)K∗ + w∗.

Step 2: For the rest of the proof let us fix a household h ≥ 2. We first claim that lim supt→+∞ ch(t) ≤
w∗. If this is not the case, there exists θ > 0 such that lim supt→+∞ ch(t) = w∗ + θ. Because of
lemma 14 there exists t̄ ∈ R+ such that for all t ≥ t̄ it holds that

|r(t)− r∗| ≤ (ρh − ρ1)/2

and
|w(t)− w∗| ≤ ε := θ/2. (27)

Furthermore, because of lemma 8 there exists T ≥ t̄ such that kh(T ) = 0. In exactly the same
way as in step 2 of the proof of lemma 15 one can now show that ch(s) ≤ w∗ + ε holds for all
s ≥ T . By the definition of ε in (27) this is a contradiction to lim supt→+∞ ch(t) = w∗ + θ.
Hence, we have proved lim supt→+∞ ch(t) ≤ w∗.

Step 3: Next we prove that lim supt→+∞ ch(t) ≥ w∗ for all h ≥ 2. Suppose to the contrary
that there exists θ > 0 such that lim supt→+∞ ch(t) = w∗ − θ. This implies that there exists
t̄ ∈ R+ such that

ch(t) ≤ w∗ − θ/2 (28)

holds for all t ≥ t̄. Because of lemma 14 and r∗ = ρ1 + δ > δ one can choose T ≥ t̄ such that
for all t ≥ T it holds that [r(t) − δ]kh(t) ≥ 0 and w(t) − w∗ ≥ −θ/4. Together with (1) and
(28) this implies that

k̇h(t) ≥ [w(t)− w∗] + [w∗ − ch(t)] ≥ θ/4 > 0

for all t ≥ T . Obviously, this is a contradiction to the boundedness of kh (see lemma 3).
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Step 4: In this step we prove that lim inft→+∞ ch(t) ≥ w∗. Suppose to the contrary that there
exists θ > 0 such that lim inft→+∞ ch(t) = w∗ − θ. Because of lemma 14 and r∗ = ρ1 + δ > δ
one can choose t̄ ∈ R+ such that for all t ≥ t̄ it holds that

[r(t)− δ]kh(t) ≥ 0 , |r(t)− r∗| ≤ (ρh − ρ1)/2 , w(t) ≥ w∗ − θ/4. (29)

Furthermore, because of lim inft→+∞ ch(t) = w∗ − θ there exists t1 ≥ t̄ such that ch(t1) ≤
w∗−(3/4)θ and because of the result from step 3 there exists t2 > t1 such that ch(t2) ≥ w∗−θ/2.
Now define t3 = inf{t ∈ [t1, t2] | ch(t) ≥ w∗−θ/2}. Since ch(t2) ≥ w∗−θ/2, the infimum is taken
over a non-empty set and is therefore well-defined. Since ch(t1) ≤ w∗ − (3/4)θ < w∗ − θ/2, the
infimum must be strictly larger than t1. Thus, the interval [t1, t3] is non-degenerate and

ch(t) ≤ w∗ − θ/2 (30)

holds for all t in [t1, t3]. Combining (1), (29), and (30) it follows for all t ∈ [t1, t3] that

k̇h(t) ≥ [w(t)− w∗] + [w∗ − ch(t)] ≥ θ/4 > 0.

This, in turn, implies that kh(t) > 0 for all t ∈ (t1, t3]. From conditions (9)-(10) and (29) we
therefore obtain

µ̇h(t) = [ρh + δ − r(t)]µh(t) = [ρh − ρ1 + r∗ − r(t)]µh(t) ≥ (ρh − ρ1)µh(t)/2 > 0.

Hence, µh is strictly increasing on (t1, t3] and it follows from (8) that ch is strictly decreasing
on that interval. Using continuity of ch as well as the results from above it follows that

w∗ − θ/2 = ch(t3) < ch(t1) ≤ w∗ − (3/4)θ.

Obviously, this is a contradiction and our claim is proved.

Step 5: From steps 2 and 4 it follows obviously that limt→+∞ ch(t) = w∗. This completes the
proof of the lemma. �

We are now ready to establish theorems 2 and 3. Theorem 3 is an immediate implication
of lemmas 14, 15, and 16. To see that theorem 2 holds, we distinguish again the two cases
described in corollary 2. In case (a) we know from lemma 12 that limt→+∞ K̇(t) exists and it
follows therefore from lemma 13 that the turnpike property holds. In case (b) of corollary 2
the limit of all variables on the right-hand side of (1) exists, which implies that limt→+∞ k̇h(t)
exists for all h ∈ H. Using (5) it follows therefore that limt→+∞ K̇(t) exists and theorem 2
follows again from lemma 13.

4.6 Proof of theorem 5

The proof follows the general idea put forward by Malinvaud (1953). Consider any equilibrium
and denote by K and C the aggregate capital path and the aggregate consumption path in
that equilibrium. Note that r(t) = f ′(K(t)) must hold due to (7). Defining

p(t) = e
∫ t
0 [δ−r(s)] ds
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we obtain p(t) > 0 for all t ∈ R+. Moreover, because of theorem 3 we know that limt→+∞ r(t) =
r∗ = ρ1 + δ > δ, which implies that limt→+∞ p(t) = 0. Finally, the definition of p together with
(7) implies that p(t)[f ′(K(t)) − δ] + ṗ(t) = 0 holds for all t ∈ R+. Due to the concavity of f
this proves that

p(t)[f(K(t))− δK(t)] + ṗ(t)K(t) ≥ p(t)[f(x)− δx] + ṗ(t)x (31)

holds for all x ≥ 0.

Now suppose that the theorem is not true. Then there exists a feasible capital path K̃ emanating
from K0 such that the corresponding consumption path C̃ dominates the given consumption
path C. Defining g(K) = f(K)− δK we have∫ T

0

p(t)[C(t)− C̃(t)] dt

=

∫ T

0

p(t)[g(K(t))− K̇(t)− g(K̃(t)) + ˙̃K(t)] dt

=

∫ T

0

p(t)[g(K(t))− g(K̃(t))] + ṗ(t)[K(t)− K̃(t)] dt− p(T )[K(T )− K̃(T )],

where we have used partial integration and the fact that both capital paths K and K̃ start
from the same initial value K0. Noting that K must remain bounded due to lemma 3 and
combining the above result with (31) and limt→+∞ p(t) = 0 it follows therefore that

lim inf
T→+∞

∫ T

0

p(t)[C(t)− C̃(t)] dt ≥ 0.

Since this contradicts the assumption that C̃ dominates C, the proof of the theorem is complete.

5 Concluding remarks

The purpose of the present paper was to analyze the Ramsey model in a continuous-time setting
in order to see which of the results that have been derived in the discrete-time formulation carry
over to the continuous-time model and which ones need to be modified. It turned out that the
continuous-time formulation allows for a full confirmation of the “folk result” about the eventual
capital ownership pattern (Ramsey’s conjecture), for a considerably more accurate description
of the equilibrium dynamics, for a verification of the global asymptotic stability of the unique
steady state equilibrium, and for a proof of the efficiency of all equilibria. All of these properties
need not be true in the discrete-time setting unless one imposes non-standard assumptions.

We do not claim that the continuous-time formulation is more appropriate than the discrete-
time formulation or vice versa, neither for the Ramsey model considered in the present paper nor
for most of the other models that are used in economic research. However, as the present study
clearly demonstrates, the differences in the predictions of models formulated in the two settings
can be significant. As a consequence, one has to be very careful with intuitive explanations
that do not take into account the way in which time is modeled.
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