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Abstract We present methods of belief elicitation which are applicable for
any non-trivial utility function. Unlike existing techniques that account for
deviations from risk-neutrality, these methods are highly transparent to sub-
jects. Rather than identifying beliefs exactly we identify bounds on beliefs,
thus trading off precision for generality and simplicity.

Keywords Belief elicitation

1 Introduction

As with other decision-making tasks in experimental economics, it is deemed
desirable to incentivize belief elicitation; that is to pay subjects in such a way
that revealing their “true belief” is utility maximizing. The most commonly
used incentive mechanism is the quadratic scoring rule (QSR) (Brier, 1950).
The standard way of implementing the QSR in a situation with n possible
outcomes is to ask subjects to report for each outcome i the probability qi
with which they believe that it will occur. They are then paid according to the
following function of the reported probabilities when outcome j has occurred:

Q (q, j) = α− β (1− qj)2 − β
∑

i∈{1,..,n}\{j}

q2i ,

where β > 0.
There are two major drawbacks of the QSR and any other scoring rule

where payment is deterministic and based on a single realized outcome. First
of all, the scoring rule cannot be incentive compatible for all utility functions
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(Schlag and van der Weele, 2012). Secondly, the implementation can be confus-
ing for subjects not familiar with mathematics and specifically probabilities.

In the first elicitation method, we ask the subject to guess the empiri-
cal frequency of a each outcome and we then award a prize if and only if
their guess coincides with the realized frequencies. This method has been used
before (Wilcox and Feltovich, 2000; Bhatt and Camerer, 2005), however the
properties of this method do not appear to have been well understood. Ref-
erences in the literature state only that the modal frequency of outcomes is
elicited (Wilcox and Feltovich, 2000; Blanco et al, 2010) or that it is valid only
when the true subjective probability coincides exactly with one of the possible
empirical distributions (Costa-Gomes and Weizsacker, 2008).

Not only does the method elicit beliefs about the modal frequencies, but
we show in addition that it enables the researcher to identify a region on a
simplex in which the belief of the subject must lie. Inference does not require
postulating any assumptions on the utility function beyond assuming that the
subject strictly prefers the prize. For binary events this region is an interval
of width 1/(n + 1), where n is the number of realizations of the variable in
question. For sizes of n feasible in laboratory studies this level of precision
should be adequate for many practical purposes, and indeed the degree of
precision to which people are capable of expressing subjective probabilities
is questionable. When asked for percentages, respondents tend to answer in
multiples of five 1 (Manski, 2004), which means that there is no loss of precision
for a binary event when n ≥ 20. We show that our rule is most precise in a
well defined sense.

The second method discussed in this paper elicits beliefs about the median
of a distribution. Subjects are asked to report a number such that half the
realizations will be below that number, and are rewarded the prize if and only if
this condition holds. As with the first method, this is extremely straightforward
to explain to subjects, and is equally valid for all non-trivial utility functions.
Similar techniques work for other quantiles.

The applicability of the QSR to only risk neutral subjects has been treated
in two different ways: estimating individual utility functions by presenting the
subjects with a large number of choices between binary lotteries and using
this estimation to adjust the stated beliefs (Offerman et al, 2009) ; using a
randomized payment rule, that is paying with binary lotteries (Schlag and
van der Weele, 2012). However both of these avenues add to the confusion of
the subject which is what we wish to minimize.

Reducing the complexity of instructions, and simplifying the communi-
cation of probabilistic information has not been a focus of the experimental
economics literature on belief elicitation. Confusion and difficulties with pro-
cessing probabilities without doubt increase noise and possibly introduce biases
in responses. In light of this we suggest that an important route to improving
the quality of belief elicitation is by better facilitating the understanding and
communication of probabilities by subjects.

1 Responses do become more precise when the percentages are close to zero or 100.
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Probabilities can be expressed in a number of different ways: as a number,
a percentage, or as a frequency. There is substantial evidence that even highly
educated individuals often perceive mathematically equivalent probabilities
as different when presented in the alternative formats. Lipkus et al (2001)
found that in a sample where 90 % of respondents had at least some tertiary
education, 40% were unable to convert a percentage to a frequency, while 79%
were unable to convert a frequency to a percentage. Similar but more extreme
results have been found for less educated respondents (Schwarz et al, 1997).
Consequently, the format of probabilities has the potential to affect responses
when eliciting beliefs.

There is evidence that people tend to be more comfortable and better able
to process probabilities expressed as natural frequencies rather than other
formats.2 Experiments by Kahneman and Tversky (1983) find that expressing
probabilities as natural frequencies can mitigate the conjunction fallacy, while
Gigerenzer and Hoffrage (1995) show that it also facilitates Bayesian reasoning.
Cosmides and Tooby (1996) confirm the latter result and argue that human
cognitive architecture has evolved to process natural frequencies rather than
single-event probabilities in many situations. Schapira et al (2001) report that
participants in their study identify frequency formats as being intuitive and
easy to interpret. To illustrate the primacy of natural frequency in probability
related cognition the reader may try to explain the meaning of the statement
“a fair coin will come up heads with probability 0.5” to someone not fluent in
mathematics without referring to natural frequencies!

Most of the literature on belief elicitation focuses on payments based on
single events. However, in many laboratory experiments, there will be not just
one but many independent realisations of the random variable of interest. Take,
for example, a one-shot prisoners’ dilemma experiment where the experimenter
is interested in beliefs the subjects hold about the probability of defection. If
there are 21 subjects per session, each stated belief can be matched with the
20 realizations of the decisions of others. This allows the experimenter and
subject to communicate purely in terms of natural frequencies: “How many
of the other 20 participants will choose to defect.” The advantage of this
approach in increasing transparency for the subjects has been recognized by
some experimenters. Blanco et al (2010) ask how many out of nine subjects will
cooperate as a second mover in a sequential prisoners’ dilemma, but incentivize
the guess with the QSR leaving the reported beliefs vulnerable to distortion
because of deviations from risk-neutrality.

2 Another avenue we believe worth pursuing is the use of graphical aids. There has been
a great deal of work on this in the fields of cognitive psychology and medical risk commu-
nication which could both complement and be complemented by experimental economics
methodology. See, for example, references in Schapira et al (2001).



4 Karl H. Schlag,James Tremewan

2 Eliciting Probabilities and Functions Thereof

In this section we present a non-randomized method for eliciting probabili-
ties, derive tight bounds on the “true” underlying probabilities and show how
this can be used to gain an understanding of perceived means, variation and
expected utility.

2.1 Eliciting Probabilities

Let Y be a random variable with k possible outcomes s1, .., sk, where pi is a
subject’s subjective belief about the probability that outcome si will occur.
Subjects are asked to report b = (b1, .., bk) , bi being a non-negative number
for all i, and are paid a prize of value R if and only if for all i ∈ {1, ..., k} bi is
equal to the number of times si occurs out of n independent3 realisations of
Y. We call this the frequency guessing method. In the context of a strategic
form game in a laboratory experiment, each si is a strategy available to the
subject’s partner. The subject is then told that they will be awarded a prize if
they can correctly guess the number of people in their partner’s role who play
each strategy. Thus, from the standpoint of the subject making the report, the
prize will be awarded with probability

f (b) =
n!

b1! · .. · bk!

∏
pbii .

It follows immediately that the subject maximizes expected utility if and
only if they maximize the probability f of receiving the prize. Hence, and
without loss of generality, we are interested in the relationship between the
maximizers of f and the underlying subjective beliefs. In the following we
provide a complete characterization of this relationship.

LetB be the set of feasible reports, soB = {b ∈ {0, 1, .., n}n : bi ≥ 0∀i,
∑n

i=1 bi = n} .

Proposition 1 Consider b ∈ B. Then b maximises f over all B if and only
if

bi
bj + 1

≤ pi
pj
≤ bi + 1

bj
∀j 6= i when pj , bj 6= 0 (1)

bj = 0 if pj = 0.

In particular, if b maximizes f then

bi
n+ k − 1

≤ pi ≤
bi + 1

n+ 1
holds for all i. (2)

3 The independence assumption will be discussed in Section 4.
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Proof To prove the “only if” statement suppose b maximises f (b). If pv = 0
then clearly best if bv = 0. For any u 6= v with bv, pv > 0,

f (b1, ..., bu, ..., bv, ...bk)− f (b1, ..., bu + 1, ..., bv − 1, ...bk)

=
n!

b1! · .. · bk!

∏
pbii −

bvpu
(bu + 1) pv

n!

b1! · .. · bk!

∏
pbii

= f (b)

(
1− bvpu

(bu + 1) pv

)
which gives us the set of constraints

bvpu ≤ (bu + 1) pv∀u 6= v. (3)

Now pi =
∑

j
bj
n pi = bi

n pi +
∑

j 6=i
bj
n pi ≤

bi
n pi +

∑
j 6=i

bi+1
n pj = bi

n +
1
n (1− pi) which implies

pi ≤
bi + 1

n+ 1
. (4)

Also, for bi > 0, pi = 1−
∑

i6=j pj ≥ 1−
∑

j 6=i
(bj+1)pi

bi
= 1−pi

bi
(n− bi + k − 1),

which implies

pi ≥
bi

n+ k − 1
. (5)

To prove the “if” statement assume that b satisfies (1). Consider any b′ such
that f (b′) > 0, b′u > bu and b′v < bv. Hence, pv > 0. From the above equations
above we obtain

f (b′1, ..., b
′
u, ..., b

′
v, ...b

′
k)− f (b′1, ..., b

′
u + 1, ..., b′v − 1, ...b′k)

= f (b′)

(
1− b′vpu

(b′u + 1) pv

)
> f (b′)

(
1− bvpu

(bu + 1) pv

)
> 0.

This means that whenever we increase the report of event u by one and at the
same time decrease the report of v by one then the probability of winning the
prize goes down, provided the report of u was above bu and the report of v was
below bv. Thus, for any given p we can compare f (b) to any other f (b′) , by
repeating the above for all u ∈ {i : b′i > bi} and v ∈ {i : b′i < bi} . This shows
that b maximizes f over all b′ ∈ B which completes the proof.

Figure 1 demonstrates this result for k = 2 and n = 4. The dots show the
possible reports (divided by n) and the surrounding intervals show the possible
values of p given the reports. In the figure we see that only those beliefs on the
boundary between two regions give rise to two different optimal reports. More
generally, our proof of Proposition 1 reveals that any subject with beliefs that
satisfy (1) with strict inequalities has a unique best report.

For k = 2 we hasten to point out that one cannot extract more precise
information for any given utility function in the following sense. Consider any
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Fig. 1 Reported and consistent true beliefs for k = 2 and n = 4

u u u u u0 b
n

= 1
4 1

1
5
� p - 2

5

alternative payment rule with the same input, that is a subject’s stated belief
about the number of times that an outcome will occur. For a given utility
function u let Pu

b be the set of beliefs under which it is optimal under the
alternative rule to report b, b ∈ {0, 1, .., n} . Then ∪b∈{0,1,..,n}Pu

b = [0, 1] .
Consequently, maxb∈{0,1,..,n} d (Pu

b ) ≥ 1/ (n+ 1) where d (Pu
b ) is maximal dis-

tance between any two points belonging to Pu
b (where d is its width if Pu

b is an
interval). Let the minimal precision of a rule be the negative of the maximal
difference between any two probabilities that lead to the same report. Then
we find that there is no payment rule with a strictly higher minimal precision
than the one we have presented. In fact, it is easy to see that the inferred true
probabilities of any rule with this value of minimal precision are unique. We
summarize.

Proposition 2 Any alternative rule that elicits the frequency of the occur-
rence of a single event (so k = 2) has a strictly lower minimal precision than
that of the frequency guessing method.

In general the set of feasible probabilities is constrained by pi ≥ 0 for all i,
by
∑n

i=1 pi = 1 and by the constraints given in (1). Figure 2 shows how these
constraints divide the simplex into regions of feasible combinations of ”true”
beliefs given each report, for k = 3 and n = 6.

2.2 Applications and Extensions

2.2.1 Best responding to beliefs

One of the more common uses for elicited probabilities is testing whether
subjects are behaving rationally, that is: are they best-responding to their
beliefs? Having identified the bounds within which the true probability lies, the
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Fig. 2 Reported and consistent true beliefs for k = 3 and n = 6

question remains as to which precise probabilities to use for further analysis.
The midpoint (or centroid for k ≥ 3) of the set of potentially underlying
beliefs, or alternatively the stated frequencies, can be used as estimate of the
underlying beliefs and as input to determine an estimate of expected utility.
However, for statistical analysis of whether subjects are behaving rational it
is advisable to work directly with the inferred set of possible beliefs.

When eliciting beliefs with the frequency guessing method, there is evi-
dence that is consistent with the subject best-responding if the choice of action
is payoff-maximising for all combinations of probabilities consistent with their
reported beliefs. On the other hand,a subject can be identified as not being a
best-responder if the action is not payoff-maximising for any of the probabil-
ities that make their report optimal. Calculation of maximum and minimum
expected values for a given strategy and set of stated beliefs is a straightfor-
ward constrained optimization problem, as presented in the following section.

As the number n of subjects belonging to the same role increases, the
difference between estimated probabilities and probabilities that are consistent
with the reported frequencies gets smaller. Thus, insights derived based on
estimates for larger n more likely carry over to the rigorous treatment of
reports.
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Table 1 Maximum and minimum means and variances for k = 3 and n = 10

Stated belief Max Mean Min Mean ∆ Mean Max Var Min Var ∆ Var
(3,3,4) 0.727 0.667 0.061 0.083 0.070 0.013
(2,3,5) 0.788 0.722 0.066 0.077 0.062 0.015
(1,1,8) 0.909 0.833 0.076 0.068 0.042 0.026
(0,0,10) 1 0.917 0.083 0.039 0 0.039

2.2.2 Eliciting mean and variance

The bounds on probabilities derived in the previous subsection can be used to
also place bounds on beliefs about the mean and variance of a distribution.

Assume that si ∈ R for i = 1, .., k. If one has elicited {bi}ki=1 then one can
derive 100% confidence intervals for functions of Y, such as EY and V arY.

Consider for instance EY . We obtain EY ∈ [L (b) , U (b)] where

L (b) = min

{
k∑

i=1

pisi s.t. pi ≥ 0,
∑

pi = 1, and bjpi ≤ (bi + 1) pj∀i 6= j

}

and

U (b) = max

{
k∑

i=1

pisi s.t. pi ≥ 0,
∑

pi = 1, and bjpi ≤ (bi + 1) pj∀i 6= j

}
.

The width of this interval, U (b) − L (b), depends on the precise values of
the stated beliefs. Bounds are tight given that the underlying constraints as
stated in Proposition 1 are necessary and sufficient. 4 Table 1 shows bounds on
beliefs about means for k = 3, n = 10, and a selection of stated beliefs when
si = i

3 for i ∈ {1, 2, 3}. Bounds on beliefs about variances can be calculated
in a similar way and are shown in the same table.

Precision is decreasing in k and increasing in n. For example for k = 5 and
n = 10 the maximal interval width when eliciting information about a mean
is 0.138, whereas for k = 3 and n = 20 it is 0.045. For k = 5 and n = 20 the
maximal interval width is 0.083.

3 Eliciting the Median and Quantiles

3.1 Median

In the following we present a method, the median guessing method, for eliciting
the median of the belief distribution of a subject. The method determines when
to award a prize based on the report of the subject and on n realizations of
the underlying random variable Y.

4 The same calculations also give the maximum and minimum possible expected utility of
a subject playing a particular strategy when si is the payoff to the subject associated with
that strategy when their partner plays strategy i.
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We consider only the case where n is even. While all results extend in a
straightforward way to odd n, in this case the instructions for subjects become
less intuitive. For even n the instructions would be along the following lines:
“Please tell us a number such that you think half the outcomes will be below
or equal to that number. If your guess is correct you will receive R.”Odd n
requires explaining that the prize will be paid if either n−1

2 or n+1
2 outcomes are

weakly less than the guess. There is no advantage to this increased complexity5

so when the maximal number of subjects in the role of the subject’s partner
is odd we suggest to drop one of the realizations at random.

Recall that the a real number m1/2 is called a median of the random

variable Y if P
(
Y ≤ m1/2

)
= P

(
Y ≥ m1/2

)
= 1/2. There are several different

ways do adjust the definition when there is no real number m1/2 with this
property. In the following we define the median of Y equal to m1/2 if m1/2 is
the smallest number m that satisfies P (Y ≤ m) ≥ 1/2. With this definition,
the median both always exists and is unique due to the right continuity of any
cdf.

According to the median guessing method, the subject is asked to report
m ∈ R and is awarded a prize with value R if and only if half the realizations
are smaller than or equal to m. Thus the prize is awarded with probability

f (m) =

(
n

n/2

)
P (Y ≤ m)

n/2
P (Y > m)

n/2
.

Analogous to Section 2 without loss of generality we now investigate which
reports maximize the probability of winning the prize. Again the only as-
sumption on risk preferences is that u (R) > u (0).

Consider first the case where the underlying distribution has no point
masses.

Proposition 3 Assume that n is even and P (Y = y) = 0 for all y. Then m
maximizes f if and only if m is the median of Y .

Proof Note that

f (m) =

(
n

n/2

)
(P (Y ≤ m) · (1− P (Y ≤ m)))

n/2
(6)

Since x (1− x) is maximized if and only if x = 1/2 we obtain that f is maxi-
mized if and only if P (Y ≤ m) = 1/2 which completes the proof.

Consider now the case where point masses are possible. In particular, as-
sume that Y only takes values on a finite grid X = {x1, .., xK} ⊂ R with
xi < xi+1 for all i = 1, ..,K − 1. In this case it is enough to ask for reports
that belong to X. Assume that each outcome occurs with strictly positive
probability. We find that the report that maximizes the probability of receiv-
ing the prize is either equal to the median of their beliefs or equal to the next
lower outcome.

5 Unlike the methods in the previous section increasing n here does not increase precision.
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Proposition 4 Assume n even, Y ∈ X with X finite and P (Y = x) > 0 for
all x ∈ X. If xm ∈ X maximizes f then the median of Y is contained in
{xm−1, xm} .

Proof Following the proof of Proposition 4, f is maximized by xm if and only if∣∣P (Y ≤ xm)− 1
2

∣∣ ≤ ∣∣P (Y ≤ x)− 1
2

∣∣ for all x ∈ X. Let xi be the median of Y.
If P (Y ≤ xi) = 1/2 then xm = xi. If P (Y ≤ xi) > 1/2 then xm ∈ {xi−1, xi}
as P (Y ≤ xi−1) < 1/2.

It is easy to see that the proof also goes through if one allows for multiple
medians by defining m1/2 to be a median of Y if P

(
Y ≥ m1/2

)
≥ 1/2 and

P
(
Y ≤ m1/2

)
≥ 1/2. One only has to adjust the statement of the proposition,

replacing “the median” by “a median”.
We suggest to use the report xm as an estimate of the median, and to use

the pair {xm−1, xm} for any statistical analysis.

3.2 Quantiles

Our results for median elicitation are easily extended to general quantiles.
Given q ∈ (0, 1) assume that we are interested in the quantile mq of Y , where
mq is the smallest number that satisfies P (Y ≤ mq) ≥ q. We show how to
do this when nq is an integer. The idea is to award the prize if and only if
the fraction q of the observations are smaller than or equal to m. The proofs
follow analogously to those for the median, as xq1 (1− x)

q2 is maximized over
all x for given q1, q2 ∈ N if and only if x = q1

q1+q2
.

4 Discussion

We have already discussed in some detail the primary advantages of these
methods: validity for all non-trivial utility functions, and simplicity for sub-
jects. The loss of precision in the elicitation of probabilities has also been
mentioned.

One advantage of these methods is that the ease with which they can be
communicated to subjects means that one can obtain measures of beliefs with-
out adding a great deal of time or complexity to an experiment. Alternative
methods typically require lengthy instructions, explanation of a formula or
payoff tables, and in some cases additional tasks to approximate utility func-
tions.

Which method to apply depends on the purpose of the elicitation, and the
nature of the random variable one is considering. In any application involving
expected utility theory the elicitation of probabilities and means will be nec-
essary. However, if a measure of beliefs about a central tendency is desired,
one must consider the tradeoff between the number of choices available and
precision. For example, in a public goods game with an endowment of $10 one
could allow subjects to contribute only the whole endowment or nothing, or
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only multiples of $5, thus reducing k to two or three.6 For larger choice sets
or continuous variables, the tests in Section 3 allow for precise estimation of
medians and other quantiles, even with small numbers of subjects.

One theoretical issue that should be addressed is the assumption that the
subject believes the realisations of Y to be independent, which is crucial for
our results. However, statistical analysis of experimental data routinely rests
upon this assumption, so we are confident that this will not be seen as a serious
weakness. Furthermore, we do not require that the realisations are genuinely
independent, as required for the validity of many statistical tests, but only that
they are perceived to be independent by the subjects. While the assumption
of independence should be borne in mind as a requirement for the validity of
our results, we believe that in general it will be of little practical importance.

The assumption in the median elicitation described in Proposition 4 that
every outcome is believed to have a non-zero probability of occurring could also
be important. In most cases it is unlikely that subjects will see any outcome as
completely impossible and would place some, perhaps infinitesimal, weight on
it occurring. If there are outcomes that could credibly be seen as impossible
however, this issue can be dealt with by simply removing these from the set
of possible realizations prior to the elicitation.

One potential drawback is the possibility of weak incentives when eliciting
probabilities with large n. For example, for k = 3, n = 21 and some sets of
beliefs, the payment probability may be as low as 3.8%. This means P would
have to be very large for the expected payoff to be of a significant size. It is an
empirical question as to whether subjects will perceive the payment probability
to be so low; any optimism about the accuracy of one’s own predictions would
lead to an increased perception of the payment probability. Also, the all or
nothing nature of the payment should focus the attention of subjects, especially
in comparison to the QSR where one can often guarantee half the maximum
payoff by placing equal weight on all options. In the design of an experiment
one may want to consider this trade-off between precision and strength of
incentives when choosing n.

We add some more notes [as paragraph above already does some com-
parison] on the strength of incentives with the frequencing guessing method
as compared to the QSR. From an ex-ante perspective QSR has a very flat
payoff-function around the true belief, resulting in weak incentives to be pre-
cise. Similarly, the probability of winning the prize of the frequency guessing
method may be of same magnitude as the optimal report for reports nearby.
However, incentives are very different from an ex-post perspective, consider-
ing how other reports would have fared for the given realization. For a given
realization, similar reports will generate similar payoffs under QSR. In con-
trast, under our method the prize is only awarded when reporting what had
occurred. Thus, from an ex-post perspective the incentives of our method are
dramatically stronger.

6 Internet experiments would allow for very large n, and thus reasonably precise elicitation
of beliefs about a larger choice set.
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Weak incentives are not a problem in eliciting medians, however, as one
can increase the probability of receiving the prize by reducing the number of
realizations the payment is based on. In contrast to the case of probability
elicitation, here reducing n does not result in loss of precision.

A related practical issue is that implementation of these methods could
result in a large variance in payoffs between subjects, and also the total pay-
ment required for a session, which is often undesirable. With a small payment
probability offset by a large prize the experimenter could be at risk of going
over budget if too many subjects’ predictions turn out to be accurate. This
concern is easily circumvented by choosing a moderate prize, understanding
that the utility of winning the prize incorporates non monetary pleasure of
winning.

5 Conclusion

In this paper we have presented and characterized methods of belief elicitation
which are extremely transparent to subjects and not dependent on restrictive
assumptions about utility functions. We encourage experimentalists to use
these methods in their own work, and especially to compare their empirical
performance with other existing scoring rules.
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