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Abstract

In Rome, if you start digging, chances are you will find things. We consider a

famous complaint that justifies the underdeveloped Roman metro system: “if we tried

to build a new metro line, it would probably be stopped by archeological finds that are

too valuable to destroy, so we would have wasted the money.” Although this statement

appears to be self-contradictory, we show that it can be rationalized in a voting model

with diverse constituents. Even when there is a majority preference for a metro line,

and discovery of an antiquity has the character of a positive option, a majority may

oppose construction. We give sufficient conditions for this inefficiency to occur. One

might think it arises from the inability to commit to finishing the metro (no matter

what is discovered in the process). We show, however, that the inefficient choice is

made in voting over immediate actions precisely when there is no Condorcet winner

in voting over contingent plans with commitment. Hence, surprisingly, commitment

cannot really solve the problem. Our results extend to other common dynamic voting

scenarios, such as the academic job market, which share the essential features of the

Roman metro game.

JEL classification: D70, H41, C70.

1 Introduction

The Roman underground has two lines, 49 stations, that serve a metropolitan area of

3.4 million residents and 9 million annual visitors. Berlin is similar in size, but has 173

subway stations. Madrid, about one-and-a-half times as big as Rome, has 300. Even in

Oslo, where less than a million people live, the metro has 105 stops.1 What is lacking

underground cannot be compensated on the surface - the eternal city was not built with

suspended monorails and large buses in mind. So why don’t Romans invest more in their

metro system? Every Roman will eagerly explain why: metro projects are extremely

expensive, and in Rome, more than anywhere else in the world, one is likely to run into

ancient ruins of such value that the metro project would be suspended to preserve the

ruins.2 Hence, Romans stopped trying to build metro lines altogether.

1London and Paris, with 8.6 and 10.5 million people (according to the UN definition), have respectively
270 and 301 stations. There is no major metropolitan area in Europe that has more inhabitants per metro
stop than Rome - except Athens, which has 3.3 million inhabitants and 33 metro stops. It’s no coincidence
... as the paper proceeds to explain.

2The issue is actually not the metro tunnel itself, which could be built below the archeological layer;
it’s the various vents and exits that have to be dug at regular distances.
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There is only one small problem with this explanation: on the face of it, this argument

makes little sense. Consider the following analogy. Your house needs water so you want to

dig a well in a place where you suspect there may also be gold. It is possible that you will

strike upon gold while excavating, get rich and never finish the well. Given this “risk,”

you decide not to dig in the first place. It seems like a ridiculous conclusion to draw

because the “risk” has no downside, it’s an option that might materialize, and options

cannot have negative value (you can, after all, drill right past the gold if you want to).

With the possibility of finding gold, digging the well is more, not less, attractive - either

your house gets water supply or you get rich and move out.

From this standpoint, Romans should not worry that they might discover ancient ruins.

What happens if they do not build the metro line? They will never know there are ruins

in the way.3 If they find ruins, they can still destroy them. If they do not wish to destroy

them, then apparently the ruins are more valuable than the metro - and the construction

project has paid off more than initially expected. Romans should hope they find ruins!

It’s a valuable option.

Or is it that simple? The above argument implicitly presumes that there is a single

decision maker. Only a time-inconsistent person would refuse to start a project for fear

of not finishing it because she might pursue an even better opportunity that appears in

the process of implementing the initial project. We show that such time inconsistency can

easily arise as a result of a political process with diverse constituents.4

We study the Roman metro problem as a majority voting game in two stages. If

an initial majority decision is made to build a metro, an antiquity will be found with

some probability, which triggers a second vote to determine whether construction should

continue. Suppose (i) a majority values the metro more than the cost of construction;

(ii) the total utility from metro construction is also positive; (iii) a majority values the

antiquity that may be discovered more than the metro; (iv) the total utility from the

antiquity is also higher than the total utility from the metro. Given (iv) the antiquity

represents a positive option for a social planner, which in addition to (i) means that the

social planner would start the metro project. We show that nevertheless a majority of

voters might oppose beginning construction, which is inefficient.

Specifically, there normally (under plausible restrictions on the payoff distribution)

exists a range of probabilities of finding an antiquity that cause a majority to oppose

construction. Some voters will reject the metro outright because they find it too costly,

but would favor preserving an antiquity if found (when construction has already begun

and cost is sunk). Metro proponents must anticipate that some who are initially in their

3A similar sentiment was voiced by Enrico Testa, the chairman of Roma Metropolitane SpA, who said
in 2007: “There are treasures that are underground that would stay buried forever, but as soon as we
uncover them, our work gets blocked.” (Appeared in the Wall Street Journal, January 27, sec. A, p. 1.)

4The immediate causes of Rome’s inability to develop its metro system do not necessarily have the
appearance of a voting game. Romans might mention misaligned interests between those in charge of metro
construction and the city dwellers. Or the independence of the archeological authority, the Sopraintendenza
ai Beni Culturali (Superintendency of Cultural Heritage), which can hold the city hostage to its devotion
for the preservation of antiquities that ordinary Romans would sacrifice for the metro. We take the view, as
is common in political economy analysis, that the existence and decisions of institutions ultimately have to
reflect majority opinion. The underlying policy preferences factor in local aspects such as the inefficiency
of public works, disruptions from construction in a densely populated city like Rome, etc.
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camp will join these metro opponents in voting to preserve the antiquity, if it is discovered.

Those who value the antiquity less than the cost of the metro line may then vote against

their inclination to build the metro. Thus, shifting coalitions lie at the heart of our

argument.

Many authors have highlighted that a Condorcet cycle among three or more policies

may lead to strategic voting in a dynamic setting. In the Roman metro problem, all

votes are between two actions, so that a Condorcet cycle cannot occur. This is because

we rule out commitment to future choices. In a hypothetical world with commitment,

there is a richer set of alternatives - (i) take no action, (ii) start building the metro

and continue regardless of whether an antiquity is found or not, and (iii) start building

the metro but stop if an antiquity is discovered. It turns out that a Condorcet cycle

on this set is necessary and sufficient for a majority to vote against construction in our

model without commitment. Therefore, commitment does not help eradicate economic

inefficiency because it leads to a situation without a Condorcet winner. That the failure

to implement a beneficial project can ultimately be linked to a Condorcet cycle, even

though the game is quite different in character, suggests that the relationship between

Condorcet cycles and economically inefficient majority choices may be a fundamental one.

We are not aware of research that has examined the precise game we model, or classes

that contain it, but there are various literatures on voting games with related features.

We contrast them briefly. In models with dynamic Condorcet cycles (e.g. Penn (2009);

see also Roberts (2007), and Bernheim and Slavov (2009)), a status quo is pitted against

a new alternative in each period, and payoffs accrue in every period. Voters not only

consider their immediate benefit from the current policy, but also future votes and their

outcomes. Since the presently preferred policy may be a weak competitor against an unde-

sirable alternative that may come up next, voters have to be “farsighted” and potentially

vote against an option with a higher immediate payoff. In our model, agents do not en-

counter the same trade-off, since there are no payoffs beyond the ones arising from the

final outcome. Instead, a change in voter alliances, triggered by a random event (finding

an antiquity) can dissolve a majority preference (for building the metro) that exists today.

Metro supporters anticipate a possible future vote which will terminate the project and,

because the costs are sunk, may not be willing to take the risk.

Barbera et al. (2001) and Jack and Lagunoff (2006) study situations where current

members of a group vote to include new members who will get voting rights if admitted.

Agents may vote strategically for less preferable newcomers, anticipating that their voting

behavior in the future will lead to favorable outcomes. These models are related to our

model in that the voting blocks change over time. In our model, a group that gets no net

benefit from either the metro or the antiquity would like to be excluded from the project,

but because this is not possible, its potentially pivotal role in preserving the antiquity,

induces a group that wants the metro to reject it.

There is a literature on voting rules that are implementable by backward induction,

also called sophisticated voting (see McKelvey and Niemi (1978), Srivastava and Trick

(1996), and Dutta and Sen (1993), among others). The objective is to narrow a set of

3



alternatives down to a single choice through pairwise majority voting, as in an elimination

tournament. Hence, the voting process starts at the leaves and ends at the root with a

winner. The focus is on the implementability of voting rules on suitably chosen trees.

We, on the other hand, are concerned with the efficiency of voting on a specific tree that

reflects a particular decision problem, where voting proceeds from the root to the leaves.

Our tree does not represent a voting agenda where the aim is to choose a single policy,

but rather it is a conventional game tree where at some nodes a majority needs to make

a decision.

We begin with an example of how the economically efficient choice, to start construc-

tion, can fail in the Roman metro problem. Then we present graphic intuition for how

the example generalizes and demonstrate that majority decisions to build or not build the

metro (without commitment to what happens in case an antiquity is found) are determined

by the existence of a Condorcet cycle under commitment. Then, we derive restrictions on

the payoff distribution, which guarantee respectively a yes or no vote on construction (or

equivalently the absence or presence of a Condorcet cycle under commitment). Finally,

we illustrate that the Roman metro game is also applicable to a variety of other dynamic

voting environments.

2 An Example

The city has the option to build a metro, but there is a probability q that, while doing

so, an antiquity will be found that lies in the path. If so, the antiquity could either be

destroyed, or the construction project could be abandoned. The decision maker (mayor)

is acting in line with majority preferences.5

Part of the consideration in building the metro is that it will have to be financed

(through taxes or cuts elsewhere). Therefore, negative valuations are entirely possible.

Suppose that the population consists of three types (A,B,C) of equal mass, so any two

types together form a majority. A wants to build the metro, but only if it will not be

abandoned if an antiquity is found. B wants to build the metro and abandon it if an

antiquity is found. C does not want to build the metro and, if it is built and an antiquity

is found, wants to abandon it. Thus, we have the following game tree, with some possible

payoffs that reflect the preferences of the three constituencies:

Note that, if q = 0 (i.e. there is no possibility of finding an antiquity), building the

metro has majority support (from A and B) and yields a surplus of 1/3 per voter. If

q > 0, and an antiquity is found, a majority (B and C) will vote in favor of abandoning

the metro. Abandoning the metro not only has majority support, but also is an option

that is strictly valuable in terms of social surplus (per voter utility from abandoning is

2/3 while it is 1/3 from metro).

Anticipating future voting outcomes, A initially votes for construction if

−2q + 1− q ≥ 0 ⇐⇒ q ≤ 1

3
.

5See footnote 4 for a discussion of this assumption.
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dig do nothing

(0,0,0)

(1,2,-2)

(-2,3,1)(1,2,-2)

(antiquity found)
q 1-q

continue digging stop

Figure 1: The Roman Metro Game

B votes for construction regardless of q, because it benefits whether or not an antiquity

is found. C votes for construction if

q − 2 (1− q) ≥ 0 ⇐⇒ q ≥ 2

3
.

Overall, there is a majority for construction at the outset if q ≤ 1
3 (in which case, the

project is supported by A and B) or q ≥ 2
3 (then, the project is supported by B and C).

But in case 1
3 < q < 2

3 , a majority (consisting of A and C) will oppose digging.

At the same time, for any q, the expected utility per voter from the project is (2/3)q+

(1/3)(1 − q). The latter is always positive, so a social planner would start the project

regardless of q, and stop if an antiquity were found. Hence, adding the option to abandon

may lead to an economically inefficient decision if q is intermediate. Rome’s problem

is that the probability of finding an antiquity is relatively high (while most other cities

can ignore the possibility), yet not high enough for those who would like to discover an

antiquity to support digging only as a way to search for antiquities. As we will see, there

is a range of probabilities q that leads to the inefficient choice in this game under more

general conditions.

3 The General Problem

We define the Roman metro problem as a voting game where the sequence of decisions is

as in the example above, but the population consist of arbitrary types, and payoffs satisfy

some restrictions that stack the deck squarely in favor of digging. We use M to denote

the outcome that the metro is completed and T for the preservation of the antiquity (with

the consequence that the metro line is never finished). The lower-case letters (m and t)

represent the associated payoffs.6

The initial choice is either Y (“yes”) to start digging or N (“no”) to shelve the project.

The decision tree, from the point of view of an individual citizen, looks as in Figure 2. At

6 Payoff t from abandoning the metro for the antiquity could be the expectation of a lottery over various
stages at which the antiquity may be found. Finding it earlier may mean that less cost is sunk into building
the metro, and this would increase the effective value of the antiquity. Specifically, if discovery happens
at a stage where only some share λ < 1 of the total cost c of the metro is sunk, the value of the antiquity
increases for all types to t + (1 − λ) c. Then, a type votes for digging if (1 − q)m + qt + q (1 − λ) c) ≥ 0.
This is a weaker inequality to satisfy than previously.
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Y N

0

m

tm

q 1-q

M T

Figure 2: Decision Problem

the square nodes, decisions are made according to voting majorities. The circular node is

a chance node. Action Y (dig) leads either to M or, with probability q, a choice between

M and T . Inaction N gives a payoff of zero.

We impose that T beats M , and M beats 0, both in terms of majority preference and

average payoff. Hence, for at least half the population,

t > m

and, for at least half the population,

m > 0.

(a majority prefers the metro over nothing, and another majority prefers the antiquity

over the metro). Moreover

E (t) > E (m) > 0

(on average, across the population, the metro yields a positive payoff, and the antiquity

yields a greater payoff than the metro). Therefore, from a social standpoint, the metro is

desirable, and the antiquity is a valuable option if found. This assumption is not implied by

the previous two about the majority support. It could have been that a majority supports

the antiquity over the metro even though the average payoff of the metro is higher. By

assuming that, in the pairwise comparisons, a majority sides with the average voter (the

social planner), we bias the game against the possibility of an inefficient decision on the

project.

It is crucial that the majority that favors m over 0 can have a different composition

from the majority that prefers t to 0. If a majority of citizens individually preferred both

m and t to 0, the initial vote would clearly be in favor of construction. Since we are

interested in the possibility that a majority opposes building the metro, we rule this out:

those who prefer both m and t to 0 constitute less than half the population. Let there

be a distribution of types θ, who are described by a payoff tuple (mθ, tθ). Then, the

above statements amount to restrictions on the type distribution, which we refer to (in

combination with the game form) as the Roman metro problem.

To summarize our assumptions: a majority (and the social planner) prefers building

the metro over doing nothing, a majority (and the social planner) prefers the antiquity

over the metro, but those who prefer both the metro and the antiquity to doing nothing

6



are in the minority.

4 Graphic Analysis and Condorcet Cycle Characterization

In order to find the expected payoff from digging for any agent, recall that the antiquity by

assumption, if found, has majority support over the metro, hence the project stops. This

means that the project is a lottery where the agent receives a payoff of m with probability

1 − q and t with probability q. The payoff from doing nothing is assumed to be zero, so

the individual supports digging if

(1− q)m+ qt > 0,

and is against starting the project otherwise.

Now we turn to efficiency. A social planner who wants to maximize total payoff has

a simple problem to solve. If an antiquity is found, he should choose the option with the

highest total payoff. Since E(t) > E(m) by assumption, he should stop building the metro

in that case. This gives expected welfare

(1− q)E(m) + qmax{E(m), E(t)}

= (1− q)E(m) + qE(t)

from the project. The expression max{E(m), E(t)} reflects that the antiquity is an option

that does not need to be exercised. The social planner’s implied decision rule

(1− q)E(m) + qE(t) > 0

is identical to that of an individual agent, with the sole difference that the social planner

uses average payoffs to make the decision.

Figure 3 depicts our opening example for q = 1
2 . The line (1− q)m+ qt = 0 represents

the types who are indifferent between digging and doing nothing. This line has a slope of

− (1− q) /q and passes through the origin. Agents whose payoff pairs (m, t) lie above the

indifference line will vote for the project, all others will vote against it. The line m = t

separates agents who prefer the antiquity to the metro from those who prefer the metro

to the antiquity. Each type is shown by a dot that reflects valuations for the metro and

the antiquity. The dot labeled P depicts the average payoffs used by the planner, who can

be thought of as an agent with payoffs (E (m) , E (t)).

A two-thirds majority (groups B and C) prefers the antiquity to the metro, another

two-thirds majority (A and B) favors the metro over doing nothing, but the project only

has the support of a third of the population (B). At the same time, average payoffs

from the antiquity and the metro are such that the social planner would implement the

project. Hence, even though votes are aligned with the social planner’s choice in the direct

comparisons of metro vs. antiquity and metro vs. doing nothing, the majority is against

a socially desirable project.
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B:(2,3)

A:(1,-2)

C:(-2,1)

t=m

t

m

qt+(1-q)m=0

P:(1/3,2/3)

Figure 3: Majority Separated from Average Type

Such a situation is not unique. All that is required of the distribution of preferences

is that a majority is below the indifference line, while the average type is above the line.

In fact, given any distribution of types, if there exists a downward-sloping line through

the origin that separates the average type from the majority of the population, then there

exists q such that the majority takes the socially inefficient decision not to dig.

To see this, assume that we can find such a line, so that t = −βm for some β > 0.

If we set q = 1/ (1 + β), the line t = −βm is the same as the line t = − ((1− q) /q)m,

which is comprised of the types who are indifferent between digging and not digging. But

since the social planner and the majority are on opposite sides of this line, they support

different choices; thus, the majority decision cannot be efficient in terms of total surplus.

Visual inspection shows that getting a majority to reject the project does not require

a very special type distribution. On the other hand, symmetric distributions, such as

a uniform distribution on a circle, will not produce the inefficiency - in such cases, the

average type and the majority always vote the same way.7 As q goes to zero, we always get

to a socially efficient decision, since the expected value from digging approaches E(m) > 0

from above, and the majority prefers the metro to doing nothing, hence will support the

project if the chance of finding an antiquity is small enough. As Figure 4 illustrates, if in

our example we decrease q from 1
2 to 1

4 , group A swings from opposing to supporting the

project, and the project is majority-approved.

7See Proposition 4, later in the text.
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B:(2,3)

A:(1,-2)

C:(-2,1)

t=m

t

m

P:(1/3,2/3)

qt+(1-q)m
=0

Figure 4: Majority Aligned with Average Type

4.1 Condorcet cycles

In the Roman metro problem, alternatives are defined such that one cannot commit be-

forehand to a course of action; decisions are only over the “next step.” If the contingent

plans (YM) “dig and build the metro, whether or not an antiquity is found,” (Y T ) “dig,

but preserve the antiquity if found” and (N) “do nothing” were put to the vote, then,

in our initial example, A could condition support for the project on a commitment to

continue even if an antiquity is found. It would then be joined by B in favoring digging

over doing nothing. (The fully efficient choice, to dig but preserve the antiquity, is only

possible if q is large enough so that C will join B in support of it.) It turns out that

majority opposition to digging without commitment is equivalent to the existence of a

Condorcet cycle over contingent plans.

Proposition 1. In the Roman metro problem, a majority opposes digging if and only if

there exists a Condorcet cycle over the set of contingent plans that would be feasible with

commitment.

Proof. If a Condorcet cycle exists, then it has to take the form that (YM) is majority-

preferred to (N), (Y T ) is majority-preferred to (YM) and (N) is majority-preferred to

(Y T ). The reason is that (YM) delivers m with certainty, and by assumption, for a

majority m > 0, where 0 is the certain outcome of (N). Moreover, (Y T ) is a lottery

between m and t with expected value (1− q)m + qt, which is majority-preferred to m

because t > m for a majority. The only way to get a Condorcet cycle is then for (N) to

9



beat (Y T ) in majority voting. But this is precisely the choice voters make in the Roman

metro problem when they forego digging, because (1− q)m + qt ≤ 0 for a majority.

Conversely, if a majority opposes digging in the Roman metro problem, then it favors 0

over (1− q)m + qt, i.e. (N) is majority-preferred to (Y T ). Because (Y T ) is majority-

preferred to (YM), and (YM) is majority-preferred to (N) by the assumptions of the

game, we have a Condorcet cycle. �

In our example, we found that the majority vote against digging is supported by

q ∈
[
1
3 ,

2
3

]
. With the probability of finding an antiquity in this interval, A and C oppose

the metro project. When is there a Condorcet cycle between the contingent plans (YM),

(Y T ) and (N)? When (N) beats (Y T ), i.e. (1− q)m + qt ≤ 0 for a majority. This

majority must consist of A and C, since B prefers both metro and antiquity to doing

nothing. But A and C both satisfy the inequality exactly when q ∈
[
1
3 ,

2
3

]
. Thus, the

requirement for the Condorcet cycle to exist is the condition for a majority to oppose

digging.

It turns out then that it is not simply the inability to commit to contingent plans that

causes inefficiency in the Roman metro problem. If commitment is possible, and there

is a Condorcet winner among contingent plans, a majority supports construction of the

metro even without commitment, i.e. when voting on immediate actions.8 Whenever a

majority would oppose construction, there is no Condorcet winner among the contingent

plans, so commitment does not guarantee an efficient outcome. Rather, we must look at

the distribution of preferences to understand the source of inefficiency.

5 Sufficient Conditions on the Type Distribution

We consider now properties of the type distribution (beyond the ones which are already

imposed by the game form), which guarantee either that the metro project fails or succeeds

in majority voting. By the equivalence we just established, these conditions are also

sufficient for a Condorcet cycle on contingent plans (involving commitment) to exist or

not exist. Let u1θ denote type θ’s utility from the top-ranked alternative, u2θ the utility

from the mid-ranked alternative, and u3θ the utility from the bottom-ranked alternative.

Definition: Type θ satisfies decreasing differences if u1θ − u2θ ≤ u2θ − u3θ. Type θ

satisfies increasing differences if u1θ − u2θ ≥ u2θ − u3θ.

That is, with decreasing differences, the top-ranked alternative improves on the mid-

ranked alternative by less than the mid-ranked alternative improves on the bottom-ranked

alternative. In other words, moving from the worst to the best alternative, one gains

smaller increments of utility. With increasing differences, the situation is opposite. Moving

from the worst to the best alternative, one gains larger increments of utility.

8In the absence of a Condorcet cycle on contingent plans, there is a majority for digging (and preserv-
ing the antiquity), regardless of whether agents are voting over contingent plans or immediate actions.
Construction will start and terminate in case an antiquity is found, in line with efficiency.
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Though such properties might conceivably hold for the entire population, for the

purpose of our results only a critical subset of types needs to have them. Let θ be

a pivotal type if u2θ = 0, or expressed differently, max {mθ, tθ} ≥ 0 ≥ min {mθ, tθ}.
That is, θ neither prefers both M and T to zero, nor prefers zero to both M and

T . This means that θ’s preference between the lottery that yields (1− q)m + qt and

zero depends on the magnitude of q.9 A pivotal type satisfies decreasing differences

if and only if max {mθ, tθ} ≤ −min {mθ, tθ}, and positive differences if and only if

max {mθ, tθ} ≥ −min {mθ, tθ}.10 Starting at zero (inaction), with decreasing differences,

I lose more from switching to my least-preferred option than I gain from switching to

my most-preferred option. With increasing differences, it is opposite. Therefore, a piv-

otal type prefers 0 to an even-odds (fifty-fifty) gamble between m and t under decreasing

differences, but prefers the gamble under increasing differences.

With decreasing differences, the support of the type distribution is the darker shaded

area in Figure 5 a) (with decreasing differences applied only to pivotal types, it is the

whole shaded area). By reflecting over the line t = −m, we get the support for a type

distribution with increasing differences. This is illustrated in Figure 5 b).

t

m

t=-m

t=m
/2

t=
2m

t

m

t=-m

t=m
/2

t=
2m

a) b)

Figure 5: Types with Decreasing (left) and Increasing (right) Differences

Our introductory example satisfied decreasing differences.11 There, we had
(
u1A, u

2
A, u

3
A

)
=

(1, 0,−2) =
(
u1C , u

2
C , u

3
C

)
and

(
u1B, u

2
B, u

3
B

)
= (3, 2, 0). If we were to adjust these pay-

9The assumption that types who prefer M and T to zero are in the minority ensures that pivotal types
are of consequence: at least some of them are needed to get a majority in favor of building the metro.

10One can see this directly from the definitions since, in the special case that u2
θ = 0, decreasing

differences reduces to u1
θ ≤ −u3

θ and increasing differences to u1
θ ≥ −u3

θ.
11If one has identified one type distribution that meets the assumptions of the game (and exhibits either

decreasing or increasing differences), one can find more by raising the highest payoff and reducing the
lowest payoff (by the same amount) for pivotal types, and raising the payoffs from metro and antiquity for
the others (without changing the ordering and signs). This preserves the relative magnitude of differences
and increases expected surplus from building, but does not affect voting majorities.

11



offs to obtain increasing differences for the pivotal types A and C, namely such that

(mA, tA) = (2,−1) and (mC , tC) = (−1, 2), it is easy to see that, at any q, either A or C

(if not both) would support digging and form a majority with B, since

qtA + (1− q)mA = −q + 2 (1− q) = 2− 3q ≤ 0

only if q ≥ 2
3 , which implies

qtC + (1− q)mC = 2q − (1− q) = 3q − 1 > 0.

Our main result regarding type distributions has two parts. First, a majority that

opposes building the metro is always supported by some probability q ∈ [0, 1] that an

antiquity is found, if the type distribution satisfies decreasing differences for pivotal types.

Second, a majority always supports digging at any q, if the type distribution exhibits

increasing differences for pivotal types.12

Proposition 2. If the pivotal types satisfy decreasing differences, there exists a nonempty

interval for q such that a majority opposes digging.

Proof. We show that the votes of pivotal types (who rank 0 in the middle) are sufficient to

achieve a majority that opposes digging, and that there exists a q such that both groups

will in fact vote against it.

By assumption, types who rank 0 at the bottom (M %θ T %θ 0 and T %θ M %θ 0)

are a minority. Those who rank 0 on top (0 %θ M %θ T and 0 %θ T %θ M) will certainly

oppose digging, since that guarantees 0 and they prefer 0 to anYThing else. Thus, getting

the remaining types, who rank 0 in the middle, to oppose digging is enough for a majority.

Any type θ opposes digging if (1− q)mθ + qtθ ≤ 0. For someone with preference

M %θ 0 %θ T , this is true if

q ≥ mθ

mθ − tθ
≡ q

θ
.

Similarly, someone with preference T %θ 0 %θ M opposes digging if

q ≤ − mθ

tθ −mθ
≡ qθ.

With decreasing differences for pivotal types, q
θ
≤ 1/2 for all θ such that M %θ 0 %θ T ,

since
mθ

mθ − tθ
≤ − tθ

mθ − tθ
implies q ≤ 1− q. Similarly, qθ ≥ 1/2 for all θ such that T %θ 0 %θ M . Therefore,

0 ≤ max
θ∈M0T

q
θ
≤ 1

2
≤ min

θ∈T0M
qθ ≤ 1,

12These are statements about sufficiency; decreasing (respectively, increasing) differences is not necessary
for them to hold. But they are about as weak as can be - any sufficient and necessary condition would
have to restrict type densities in specific ways that would make the results more or less tautological.
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which means there exists a q (in an interval that contains 1
2) such that anybody who ranks

0 in the middle opposes digging. Given that less than half the population ranks 0 worse

than both M and T , this is enough for a majority to oppose digging. �

In a sense, decreasing differences ”punishes” the introduction of a third alternative

(finding the antiquity) through digging, which is the worst option for a significant part of

the population (given our restrictions on the type distribution). The votes align against

digging because those who would rank the antiquity last (the As in our initial example)

want to shut this alternative out, even at relatively low q that make finding the antiquity

unlikely. This eliminates intervals where those who like and dislike the antiquity might

both support digging, since the latter require a lower q than the former are willing to

accept. In consequence, the metro may not be built, even though it yields a net benefit

and a majority desires it, and if the metro were abandoned later, a majority would consider

that an even better outcome.

t

m

t=-m

qt+(1-q)m=0

Figure 6: Inefficiency with Increasing Differences

Figure 6 illustrates how decreasing differences (so that the type support is the shaded

area) in combination with the fact that a majority of types does not prefer both M and

T to doing nothing (occupies the area inside the dark gray rim, where at least one of m

and t is negative) brings about the possibility that a majority will oppose digging. As q

approaches 1/2 (the slope of the indifference line approaches q/ (1− q) = −1), more types

fall below the line, until at q = 1/2 a majority is sure to vote against the project.

Proposition 3. If the pivotal types satisfy increasing differences, a majority supports

digging, regardless of q.

13



Proof. Increasing differences for pivotal types implies

1

2
mθ +

1

2
tθ ≥ 0

for those who rank 0 in the middle, i.e. M %θ 0 %θ T or T %θ 0 %θ M . Suppose, for the

sake of contradiction, that a majority strictly opposes digging at some q ∈ [0, 1]. Which

types could comprise this majority? Type θ would strictly oppose digging only if

(1− q)mθ + qtθ < 0.

Given increasing differences for pivotal types, one of (i) 0 %θ M and 0 %θ T , (ii) M %θ
0 %θ T and q > 1

2 or (iii) T %θ 0 %θ M and q < 1
2 has to be true then. Therefore, if

q < 1
2 , types that satisfy (i) and (ii) must have a majority for there to be a majority that

opposes digging. But then doing nothing is majority-preferred to T , which violates our

payoff restrictions. If q > 1
2 , then types that satisfy (i) and (iii) must have a majority.

Now, 0 is majority-preferred to M , another violation.

The only remaining possibility, q = 1
2 , is ruled out directly by increasing differences

for pivotal types, since all who rank 0 in the middle would support digging, leaving only

(i) to oppose it. But (i) cannot be a majority (again, because by assumption M and

T are majority-preferred to doing nothing). Hence, there is no q that could produce a

majority against digging and satisfy the basic assumptions of the game as well as increasing

differences for pivotal types. �

Increasing differences “rewards” the introduction of a third alternative through digging,

which is the best option for part of the population. The votes align for digging because

those who would rank the antiquity first (the Cs in our initial example) would like to

enable this alternative, even at a relatively unfavorable (low) q. This creates an interval

of qs where those who like and dislike the antiquity are both willing to support digging.

In Figure 7, we see how increasing differences ensure support for digging because of the

assumptions that T and M are each majority-preferred to 0. If q > 1/2, the indifference

line is relatively flat: its slope is − (1− q) /q > −1. Then the area shaded in the top panel

lies completely above the indifference line. This area contains all types in the support who

prefer T to 0 (i.e. for whom t > 0), which is a majority of the population. If q < 1/2, the

indifference line is relatively steep with a slope smaller than −1. Then the area shaded in

the right panel lies completely above the line. This area contains all types in the support

who prefer M to 0 (i.e. for whom m > 0), and again this is a majority.

Decreasing differences for pivotal types is not necessary for a majority to oppose dig-

ging. Suppose, in violation, (mA, tA) = (2,−1), while (mB, tB) = (5, 6) and (mC , tC) =

(−4, 1), where each type has mass of one-third. There is a majority for T over M , and

for M over 0. The average payoff from T (2) exceeds that from M (1), which exceeds 0.

Despite the fact that decreasing differences does not hold for one pivotal type, a majority

opposes digging at q = 3
4 , since

(1− q)mA + qtA =
1

4
(2) +

3

4
(−1) = −1

4
≤ 0

14



a) b)

t

m

t=-m

qt+(1-q)m=0, q>1/2

t

m

t=-m

qt+(1-q)m=0, q<1/2

Figure 7: Efficiency with Increasing Differences

and

(1− q)mC + qtC =
1

4
(−4) +

3

4
(1) = −1

4
≤ 0.

If we now increase tC to 4, increasing differences is satisfied for the pivotal types. But

then

(1− q)mC + qtC =
1

4
(−4) +

3

4
(4) = 2 ≥ 0,

so we have a majority for digging, consistent with Proposition 3. In fact, for C to oppose

digging, q would now have to be smaller than 2
5 , but no such q can induce A to oppose

digging, i.e. solve

(1− q) (2) + q (−1) = 2− 3q ≤ 0.

There is a majority in support of digging at any q.

Two common classes of type distributions guarantee that the metro has majority sup-

port. We prove the following propositions in the appendix.

Proposition 4. If the type distribution is symmetric about a point, a majority supports

digging, regardless of q.

In the case of point-symmetric distributions, it is impossible to divide the space with a

line in such a way that the average voter (social planner) and the majority are on different

sides, hence it is impossible for the majority to support an inefficient decision.

Proposition 5. If valuations m and t are independently uniformly distributed (so that the

type distribution is uniform on a rectangle), then a majority supports digging, regardless

of q.

A uniform distribution over a rectangle has the same basic property as a fully sym-

metric distribution - the majority and the average type always lie on the same side of any

15



line. While it is tempting to generalize the previous proposition to uniform distributions

on other (non-rectangular) shapes, this cannot be done. For example, if population pref-

erences were uniformly distributed on a triangle, Proposition 5 would not hold in general.

6 Extensions

Our results in the previous section take advantage of the fact that the Roman metro game

can be reduced to a decision between a choice (N) that leads to certain outcome (0) and

a choice (Y ) that leads to a lottery over two outcomes (M and T ), which respect certain

properties. (Namely that, in terms of majority preference and average payoff, T beats M ,

and M beats 0.) That some of these payoffs arise from further events (a vote between M

and T , in case the antiquity is found) does not affect the proofs of Propositions 2 to 5.

Hence, a similar inefficiency to that in the Roman metro problem arises in any game that

can be reduced by backward induction to a choice between a certain outcome and a lottery

over outcomes that satisfy the basic payoff restrictions, as well as decreasing differences.

Next we discuss a familiar job market situation where an inefficiency may arise.13

Consider an economics department that considers flying out a job candidate for a macro

position, who presents herself as both a macro and a labor economist. It is not clear where

her primary interest lies, but if the flyout is scheduled, it will reveal the candidate’s true

field. After the candidate’s field is revealed the faculty will vote on whether to hire her or

to stick with the status quo candidate.

To some of the faculty (groupA), it is important to hire a candidate who will exclusively

work on macroeconomics; they would prefer to make an offer to the status quo candidate

over a labor economist. Others (group B) are willing to make an offer to this candidate

over the status quo candidate, regardless of whether she works in macro or labor. The

remainder (group C) will vote for the candidate only if she is a labor economist, and

otherwise prefer the status quo candidate.

In this case the uncertainty is over the type of the candidate. With probability q, the

flyout would reveal that she is actually a labor economist. If q is neither very small nor

very large, groups A and C may both refuse to fly her out, for different reasons. A worries

that the candidate turns out to be a labor economist, and B and C then align to make her

an offer. C worries that the candidate turns out to be a macroeconomist and is supported

by A and B. Hence, the candidate may fail to get the flyout, even though, regardless of

what the flyout reveals, a majority would vote to make her an offer!

The game is illustrated in the following Figure.

Here the utility from the status quo candidate is normalized to zero and the flyout is

assumed to be costless in the sense that the status quo candidate yields the same payoff

before and after the flyout.

Let us assume that E(m) > 0 and E(t) > 0 and that for at least half of the faculty,

t > 0

13This example was suggested by Jeff Ely.
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t 00

status quo

Figure 8: The job market game

and, for at least half of the faculty,

m > 0.

Given the above, regardless of what is revealed about the candidate, she will be hired

over the status quo, and the social planner would also do the same. Nevertheless, as in

the Roman metro game, an inefficient decision may be made not to fly the candidate

out in the first place. Note that, given how majorities are allocated, and using backward

induction, the choice to fly the candidate out amounts to playing a lottery, which gives t

with probability q, and m with probability 1− q.
The inefficient decision not to fly the candidate out will be taken if for a majority

qt+ (1− q)m < 0 because, by assumption, qE(t) + (1− q)E(m) > 0. As with the Roman

metro game, we can state the following proposition:

Proposition 6. In the job market game, a majority opposes the flyout if and only if

there exists a Condorcet cycle over the set of contingent plans that would be feasible with

commitment.

Proof. Here there are five possible contingent plans: do not fly the candidate out (N); fly

the candidate out and hire if she is macro but do not hire if she is labor (YM1L0); fly

the candidate out and hire if she is labor, but do not hire if she is macro (YM0L1); fly

the candidate out and hire in any case (YM1L1); and finally, fly the candidate out, but

do not hire in any case (YM0L0). By our assumptions, (YM0L0) and (N) produce the

same payoffs. Also, (YM1L0) and (YM0L1) are majority-preferred to (N) because they

are lotteries between (N) and something that is preferred by a majority to (N). (YM1L1)

is majority-preferred to (YM1L0) and (YM0L1) because it shares one outcome with them

and has another outcome which is majority-preferred. The only remaining comparisons

are between (YM0L1) and (YM1L0), which - regardless of where the majority stands -

cannot lead to a Condorcet cycle, and between (YM0L0) and (YM1L1). The only way

the Condorcet cycle can arise is that (YM0L0) is majority-preferred to (YM1L1), which

is exactly when the inefficient choice is made not to fly the candidate out. Hence, the

majority opposes the flyout when there is a Condorcet cycle over contingent plans. �

The job market game has an added dimension compared to the Roman metro game.
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Candidates have some control over how they position themselves in the market. By iden-

tifying herself clearly as a macroeconomist or a labor economist, the candidate can remove

any uncertainty, in which case the department makes the efficient choice and invites her.

This rationalizes the advice job candidates often get from their advisors: avoid mixing

fields.

The job market example illustrates that, while decision makers have no clear way out

of the inefficiency - recall that pre-commitment to hire in a particular field, or not at all,

only leads to a Condorcet cycle - candidates can fix the problem by revealing their type.

The corresponding action in the Roman metro problem would be to locate antiquities

prior to the decision over construction, so that the uncertainty is resolved. Unfortunately,

this is not feasible in practice.

7 Conclusion

In the Roman metro problem, citizens decide whether to construct a metro line, which

has a positive value for a majority, and which yields with some probability an option

that a majority considers to be still better (finding a valuable antique). We presented an

example in which a majority nevertheless prefers to do nothing instead (which is the worst

possible outcome from an efficiency standpoint), then derived sufficient conditions both

for an inefficient and an efficient majority choice (pro and contra construction). These

are, respectively, a tendency to regard the worst outcome as too bad to be compensated

by the best outcome (a property we call decreasing differences) and the opposite tendency

(increasing differences). Under decreasing differences, the fact that digging and maybe

finding an antiquity opens the door to a new alternative is a bad thing for many citizens.

Under increasing differences, more possibilities are good. In this sense, one could look at

the decision not to extend Rome’s metro as a kind of field experiment, which reveals that

citizens are preoccupied with the possibility of getting their least-preferred outcome.14

As a game form, the metro story fits other applications where “projects” unfold over

time, with new possibilities arising as a result of initial actions. At the risk of oversim-

plifying complex realities, the logic of the Roman metro problem can be related to the

civil uprisings in the Arab world, such as the current one in Syria, which is in danger of

failing.15 The population divides roughly into three camps: secular opposition, moder-

ate Muslims who would like to establish a democracy, and religious fundamentalists, who

want an Islamic state. Arguably, secularists would rather live under the current dictator-

ship than under Islamic law, while fundamentalists favor the dictatorship over democracy,

which would grant liberties they view as offensive. Moderate Muslims prefer an Islamic

state to a dictatorship.

Suppose a successful revolt requires that any two groups join forces. Ideally, it will

lead to a popular vote on the country’s future. But there is a risk that the situation would

escalate and turn into a civil war between the secular and religious opposition. At the end

14This is not risk aversion, which would be refusal of a fair gamble with an equal upside and downside.
Decreasing differences says, simply put, that the downside is regarded as large relative to the upside.

15This is a variation on an example that was first suggested to us by Steve Schmidt.
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of the civil war, the dictator would be deposed, but it would be impossible to establish a

political process that respects majorities. Instead, an Islamic state emerges. The lesson

from the Roman metro problem is that the uprising may not succeed because of this risk.

While moderate Muslims always support it, secularists participate only if the probability

that civil war will break out is small, since they do not want to aid the creation of an

Islamic state. Fundamentalists, on the other hand, will only act if the probability that

an Islamic state results is high. They distrust the intentions of secularists and moderate

Muslims to establish a democracy if the revolt succeeds and leads to a vote. Hence, if

the probability of civil war is intermediate, secularists and fundamentalists may form an

unlikely coalition to keep the dictator (whom it is in everyone’s interest to remove) in

power.16

Appendix

Proof of Proposition 4. If a distribution is symmetric about a point, that point is

(E (mθ) , E (tθ)): its coordinates are the population averages of mθ and tθ. According to

our assumptions (E (tθ) > E (mθ) > 0), this point has to lie in the positive quadrant.17

Clearly, a hypothetical type that occupies the symmetry center will support digging, since

this type prefers both antiquity and metro to 0. Every line that goes through the center

of a symmetric distribution is a median (i.e. a line that divides the space into half-spaces

containing equal mass).18 In particular, the line with slope − (1− q) /q passing through

the center is a median. Since this line is parallel to, and lies above, the line with slope

− (1− q) /q passing through the origin, which is the indifference line, a majority values

digging at least as much as the center. Since the center prefers digging, a majority must

prefer digging, too.

Proof of Proposition 5. Consider a uniform distributionG on [m,m]×
[
t, t
]
, a rectangle.

The density is g (mθ, tθ) = 1/
(
(m−m)

(
t− t

))
for all θ. In general, an individual of type

θ will oppose digging provided

(1− q)mθ + qtθ ≤ 0,

i.e. when

mθ ≤ −
q

1− q
tθ.

16Even if there were a way to commit to either a democracy or an Islamic state in the event that the
dictator is overthrown, our first proposition shows that it would not solve the problem (if a majority
opts not to revolt without commitment), since there is then necessarily a Condorcet cycle over the three
alternatives (future democracy, future Islamic state, no revolt).

17Or, exactly at zero when the distribution is symmetric about zero, so that E (tθ) = E (mθ) = 0.
18More precisely (to allow for distributions whose support consists of disjoint sets), there exists, for every

median, a parallel hyperplane (median) that passes through the center and divides the population in the
same way.

19



Hence, a majority opposes digging if and only if

∫ t

t

(∫ − q
1−q tθ

m
g (mθ, tθ) dm

)
dt ≥ 1

2
.

Resolving the integral with uniform densities, a majority opposes digging only if (i)

t+ t ≤ 0 ≤ m+m and

q ≥ m+m

m+m− t− t
,

or (ii) m+m ≤ 0 ≤ t+ t and

q ≤ m+m

m+m− t− t
,

or (iii) m+m, t+t ≤ 0 (and any q). The conditions t+t ≤ 0 ≤ m+m and m+m ≤ 0 ≤ t+t
imply that average payoffs rank M over 0 over T , respectively T over 0 over M .

For an individual of type θ, the expected surplus from digging is (1− q)mθ+qtθ. This

is positive across individuals if∫ ∞
−∞

(∫ ∞
−∞

((1− q)mθ + qtθ) g (mθ, tθ) dm

)
dt ≥ 0.

In the case of the uniform distribution, the necessary condition for positive surplus from

digging is ∫ t

t

(∫ m

m

(1− q)mθ + qtθ

(m−m)
(
t− t

) dm) dt ≥ 0,

which is true if and only if

(1− q) (m+m) + q
(
t+ t

)
≥ 0.

This is consistent with two scenarios: (i) t+ t ≤ m+m and

q ≤ m+m

m+m− t− t

or (ii) m+m < t+ t and

q ≥ m+m

m+m− t− t
.

These directly contradict the conditions for a majority to oppose digging. (Except in the

special case that m + m, t + t ≤ 0, which is inconsistent with majorities for T and M

against 0.) Therefore, uniformly distributed types on a rectangle guarantee support for

digging.
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