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Abstract: We introduce tests for finite sample multivariate linear regressions

with heteroskedastic errors that have mean zero. We assume bounds on endoge-

nous variables but do not make additional assumptions on errors. The tests are

exact, i.e., they have guaranteed type I error probabilities. We provide bounds

on probability of type II errors, and apply the tests to empirical data.
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1. Introduction

A common problem in linear regressions is to find a test that guarantees a certain

type I error probability when error terms are not normally and identically distributed.

Ideally, such a test should guarantee a type I error probability under no assumption

the on error terms except for them being independent. It should also be sufficiently

powerful to reject the null hypothesis often enough in practice.

This paper introduces two tests for linear regressions and examines their powers.

These tests are exact under no assumption but independence, i.e., they guarantee

∗Karl Schlag gratefully acknowledges financial support from the Spanish Ministerio de Educación

y Ciencia, Grant MEC-SEJ2006-09993 and from the Barcelona Graduate School of Economics.
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type I error probabilities below the level independently of the noise structure. They

can be used to derive exact confidence intervals. We also provide bounds on the type

II error probabilities of these tests.

The tests require the knowledge of a bounded range for the dependent variable.

In practice, such bounded variables are plenty, and include test scores, percentages,

as well as indicator variables. The results of Bahadur and Savage (1956) and Du-

four (2003) show that without assumptions on the error structure and without such

bounds, the only exact tests are trivial.

Starting with White (1980), several asymptotic tests have been proposed (see e.g.

MacKinnon and White, 1985; Davidson and MacKinnon, 1993). It has already be

pointed out (Greene, 2002, chapter 11) that the use of asymptotic tests for finite sam-

ples can be problematic as these tests are not exact. An exact test for finite samples

was provided by Schlag (2008a) for simple linear regressions, but their construction

remains an open question for general linear regressions.

A branch of literature initiated by Dufour and Hallin (1993) develops exact fi-

nite sample tests when errors have median zero (see also Boldin, Simonova, and

Tyurin, 1997; Chernozhukov and Jansson, 2009; Coudin and Dufour, 2009; Dufour

and Taamouti, 2010). Our work complements this line of research, and is, to the best

of our knowledge, the first to develop exact methods in the case of errors with mean

zero and more than one non-constant covariate.

Our two tests are referred to as “Non-Standardized” and “Bernoulli”. We briefly

summarize their construction. Each test relies on a linear combination of the depen-

dent variables (such as in the OLS method) that is an unbiased estimator of the

coefficient to be tested.

The Non-Standardized test relies on inequalities due to Cantelli (1910), Hoeffding

(1963), and Bhattacharyya (1987), as well as on the Berry-Esseen inequality (Berry,

1941; Esseen, 1942; Shevtsova, 2010) to bound the tail probabilities of the unbiased
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estimator.

The Bernoulli test combines insights used in the mean tests of Schlag (2006, 2008b)

with a bound for the sum of independent Bernoulli variables due to Hoeffding (1956).

Each term of the linear combination that constitutes the unbiased estimator is trans-

formed into a Bernoulli random variable. We then test the mean of the obtained

family of Bernoulli random variables. This defines a randomized test, on which we

then rely to construct a deterministic test.

We provide bounds on the probabilities of type II errors for each of these tests.

These bounds can be used to select among the tests, and to choose the free parameters

used in the definition of each test.

We investigate the performance of our tests in two canonical numerical examples

involving one covariate in addition to the constant. We find that the tests perform

well even for small sample sizes (e.g. n = 40).

We also implement our tests and compute confidence intervals using the empirical

data from Duflo, Kremer, and Robinson (2011). The results show that, compared to

the standard OLS regresssion analysis, the losses of significance of our exact method

are moderate, and the confidence intervals are in most cases inflated by a factor of

about 50%. The software used to implement the tests is freely downloadable from the

authors’ webpages.

The paper is organized as follows. Section 2 introduces the model. Sections 3 and 4

present the Non-Standardized test and the Bernoulli test. In Section 5, we examine

their efficiency using numerical examples. Section 6 implements the tests in empirical

data. Relaxations of the assumptions on the underlying data generating process are

discussed in Section 7. We conclude in Section 8. All proofs are presented in the

appendix.
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2. Linear regression

We consider the standard linear regression model with random regressors, given by

Yi = Xiβ + εi, i = 1, .., n (1)

where Xi is the i-th row of a random matrix X ∈ R
n×m of independent variables,

β ∈ R
m is the vector of unknown coefficients, and ε ∈ R

n is the random vector of

errors. The fixed regressor case in which X is non random and known ex-ante to the

statistician is a special case. We assume (i) strict exogeneity : E (ε|X) = 0, (ii) almost

surely no multi-colinearity : X has rank m with probability 1, and (iii) conditional

independence of errors : (εi)i are independent conditional on X . Finally, we assume

(iv) boundedness of the endogenous variable: there exist ω and ω′ with ω < ω′ such

that P (Yi ∈ [ω, ω′]) = 1 for i = 1, ..., n. In particular, (iv) implies that Xiβ ∈ [ω, ω′]

almost surely and ensures existence of all moments of εi for i = 1, ..., n. We assume

wlog. that ω′ = ω+1, other cases reduce to this one by dividing each side of the linear

equation equation (1) by ω′−ω. We relax (iii) and (iv) in Section 7. We do not make

further assumptions on error terms such as Var(εi) > 0 or homoskedasticity.

We present exact tests at the level of significance α for the one-sided hypotheses

H0 : βj ≤ β̄j against H1 : βj > β̄j where β̄j ∈ R. Tests of H0 : βj ≥ β̄j , H0 : βj = β̄j

and confidence intervals can be derived easily. Exact means that the probability of

a type I error of the test is proven to be at most α for any random vectors (X, ε)

that satisfy (i)-(iv). In particular, bounds on the probabilities of type I errors are

guaranteed for every given sample size and do not rely on asymptotic theory.

3. The Non-Standardized test

Assumption (ii) ensures the existence of τ j ∈ R
n such that X ′τ j = ej where ejj = 1

and ejk = 0 for k 6= j. For such τ j , β̂j = τ ′
jY is an unbiased estimate of βj. We
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present a test given τ j, and later discuss the choice of τ j. We let ‖ ‖∞ denote the

supremum norm, and ‖ ‖ denote the Euclidian norm, and Φ denotes the cumulative

normal distribution.

Consider the functions defined for σ, t > 0, τ j ∈ R
n.

ϕC(σ, t) =
σ2

σ2 + t2

ϕBh(σ, t, τ j) =



















3σ4

4σ4−2σ2t2+t4
if

t2−t‖τ j‖∞
σ2 > 1, σ2 ≤ t2‖τ j‖

∞

‖τ j‖
∞
+3t

(3σ2−‖τ j‖2
∞
)σ2

(3σ2−‖τ j‖2
∞
)(σ2+t2)+(t2−t‖τ j‖

∞
−σ2)

2 if
t2−t‖τ j‖∞

σ2 > 1, σ2 >
t2‖τ j‖

∞

‖τ j‖
∞
+3t

1 if
t2−t‖τ j‖∞

σ2 ≤ 1

ϕH(t, τ j) = exp

(

− 2t2

‖τ j‖2
)

ϕBE(σ, t) = inf
w>0,b1∈R

1− Φ
(

t−b1√
σ2+w2

)

+ A
2‖τ j‖

∞√
27w

Φ (b1/w)

and

ϕ(σ, t, τ j) = min {ϕC(σ, t), ϕBh(σ, t, τ j), ϕH(t, τ j), ϕBE(σ, t)} .

The tests use the following bound (see Lemma 1 in the Appendix) on the variance

of β̂j as a function of βj

σ̄2
βj

= max
z∈Rm

{

∑

i

τ 2ji(Xiz − ω)(ω + 1−Xiz) : zj = βj, Xz ∈ [ω, ω + 1]n
}

, (2)

and the bound on the variance of β̂j under the null hypothesis given by

σ̄0,βj
= max

βj≤β̄j

σ̄βj
.

It is easily checked that ϕ is continuously decreasing in t and limt→∞ ϕ(σ̄0,βj
, t, τ j) =

0. Hence, for 0 < α < 1, there is minimal value t̄N such that ϕ(σ̄0,βj
, t̄N , τ j) ≤ α.

We define the Non-Standardized test as the one that rejects the null hypothesis when

β̂j − β̄j ≥ t̄N .
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Theorem 1 The Non-Standardized test has type I error probability bounded above by

α, and type II error probability bounded above by ϕ
(

σ̄βj
, βj − β̄j − t̄N , τ j

)

for every

βj ≥ β̄j − t̄N .

To prove Theorem 1, we use inequalities due to Cantelli (1910), Bhattacharyya

(1987), Hoeffding (1963) and Berry-Esseen (Berry, 1941; Esseen, 1942; Shevtsova,

2010) to prove that under the null hypothesis, P (β̂j≥β̄j + t̄N) is bounded above by

ϕC(σ̄0,βj
, t̄N),

ϕBh(σ̄0,βj
, t̄N , τ j), ϕH(t, t̄N ) and ϕBE(σ̄0,βj

, t̄N) respectively. Combining these results

yields the bounds on the probability of type I errors. The bounds on the type II error

probability are obtained in a similar manner.

The test is called “Non-Standardized” since it relies on maximal bounds on the

deviation of β̂j from its mean and does not try to estimate the variance of β̂j from

the data (as the standard OLS test and White’s test do).

In the definition of the Non-Standardized test, τ j is any vector with the property

that X ′τ j = ej . The bound on type II error probabilities of Theorem 1 can be used

to select a vector of weights τ j . In practice, the system of weights τ j corresponding

to the OLS estimator allows for a good performance of the test, as illustrated in

Sections 5 and 6. It has the additional advantage that results are easily comparable

to other tests based on the OLS estimate.

4. The Bernoulli test

As the Non-Standardized test, the Bernoulli test is built on a vector τ j ∈ R
n such

that X ′τ j = ej , so that β̂j = τ ′
jY is an unbiased estimate of βj. The test also depends

on a vector d ∈ R
n such that for every i, both τ jiω + di and τ ji(ω + 1) + di are in

[0, ‖τ i‖∞] and on a parameter θ ∈ (0, 1). First we present the test for significance

level α, then we discuss the choice of τ , d and θ.
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As in Schlag (2006, 2008b), we reduce the problem of testing βj against βj,0 to

testing the mean of a sequence of Bernoulli random variables. More precisely, consider

a family (Wi) of independent Bernoulli random variables such that the probability of

success of Wi is (τ jiYi+di)/‖τ j‖∞, and the conditions imposed on d ensure that these

probabilities are in [0, 1]. The proportion of successes W̄ =
∑

i Wi/n has expectation

pβj
=

βj+
∑

i di
n‖τ j‖∞ , and p̄ = pβ̄j

is the maximum of pβj
under the null hypothesis.

The Bernoulli test compares the tail distribution of W̄ with the tail of the binomial

distribution with parameters (n, p̄). For 0 < p < 1 and k ∈ {0, ..., n}, we thus let

B(k, p) =
n
∑

i=k

(

n

i

)

pi(1− p)n−i.

Let k̄ be the smallest integer such that k̄ > np̄ + 1 and B(k̄, p̄) ≤ θα, and let

λ = θα−B(k̄,p̄)

B(k̄−1,p̄)−B(k̄,p̄)
.

The Bernoulli test rejects the null hypothesis if

λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≥ θ.

Theorem 2 The Bernoulli test has type I error probability bounded above by α. If

pβj
> k̄/n, the type II error probability is bounded above by

1− λB(k̄ − 1, pβj
)− (1− λ)B(k̄, pβj

)

1− θ
.

In a first step to prove Theorem 2, we build a randomized test that, based on a

realization of (Wi), rejects the null hypothesis for large enough values of W̄ . Recall

that under the null hypothesis, the expected value of W̄ is at most p̄. A theorem by

Hoeffding (1956) shows that, for a given value of its expectation, the tail probability

of W̄ is maximal when (Wi)i is an i.i.d. family of random variables. That theorem

yields bounds on the probability of type I and type II errors of the randomized test

as a function of the binomial distribution with parameter p̄.
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In a second step, we construct a deterministic test from the randomized test as in

Schlag (2006). This deterministic test rejects the null hypothesis at significance level

α whenever the probability that the randomized test rejects the null hypothesis, at

the significance level θα, exceeds θ. We then bound the probability of type I and type

II errors of the deterministic test.

As in the case of the Non-Standardized test, the bound on type II error proba-

bilities of Theorem 2 can be used to select the parameters τ j, d, and θ. In practical

applications, good performance is attained when τ minimizes ‖τ j‖∞, d is given by

di = ‖τ j‖∞ − max{τ jiω, τ ji(ω + 1)} (note that this choice of d satisfies all required

constraints), and θ is computed numerically to minimize the value of βj for which

our bounds guarantee a type II error probability below 0.5, as illustrated in Sections

5 and 6.

5. Numerical examples

We investigate the performance of our tests in two numerical examples. Both examples

involve a constant and a second covariate. We test forH0 : β2 ≤ 0 againstH1 : β2 > 0.

For a given sample, and fixing a significance level α, we look for the minimal value

of β2 such that the type II error of the test is guaranteed to fall below 0.5. The tests

are implemented with the choice of free parameters explained at the end of Sections

3 and 4.

In the first example, which we call the extreme example, the second covariate X2

takes only the values −1 and 1. The number of times that X2 takes the value 1 is

denoted by h. The sample is balanced for h = n/2, and gets more and more unbalanced

as h gets closer to 1. In the second example, which we call the uniform example, Xi2

is uniformly distributed on [−1, 1]: Xi2 = −1 + (2i − 1)/n for every i. We assume

Yi ∈ [0, 1] for every i, which constrains the values of β2 to belong to [−1/2, 1/2].

Table 1 presents results in the extreme example, and Table 2 presents results in



Exact Tests for Linear Regressions 9

the uniform example. We consider different values of the sample size n, and vary

h/n and the significance level α in the extreme example. The column β2 reports the

minimal value of β2 for which one of our tests is, using the bounds of Theorem 1

and 2, guaranteed to have a type II error probability below 0.5. We then indicate the

bound on the value of the type II error at this value of β2 for the Non-Standardized

test, and for the Bernoulli test. For the Non-Standardized test, we also report, in

parenthesis, which of the four bounds is binding when determining the threshold t̄N

used for rejecting the null hypothesis and when deriving the type II error bound at

β2: Cantelli (C), Bhattacharyya (Bh), Hoeffding (H) or Berry-Esseen (BE).

For instance, in the extreme example with n = 40, the Bernoulli test is selected for

testing H0 : β2 ≤ 0 at level 0.05. It guarantees a type II error probability below 0.5

for all β2 ≥ 0.2. In contrast, the Non-Standardized test can only guarantee a type II

error probability below 0.94 for this set of parameters, it does this by deriving the

threshold t̄N with ϕH and the type II error probability bound using ϕBE .

n h/n α β
2

NS B
40 0.50 0.05 0.20 0.94 (H,BE) 0.50
40 0.25 0.05 0.30 0.50 (H,C) 0.54
40 0.25 0.10 0.11 0.50 (H,Bh) 1.0
100 0.50 0.05 0.13 0.84 (H,BE) 0.50
100 0.25 0.05 0.20 0.50 (H,C) 0.59
5000 0.50 0.05 0.02 0.59 (BE,BE) 0.50

Table 1

Extreme example

n α β
2

NS B
60 0.05 0.32 0.78 (H,C) 0.50
500 0.05 0.11 0.63 (H,BE) 0.50
6000 0.05 0.03 0.50 (H,BE) 0.51

Table 2

Uniform example

Note that since the reported values of β2 are based on Theorems 1 and 2, they

are upper bounds on the minimal value of β2 for which the type II error probability
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falls below 0.5. Note also that we make no claims that our selection of parameters is

optimal, optimizing on these parameters can further improve the performance of the

test.

We make a few observations based on these tables. The methods work sufficiently

well to allow to reject the null in a substantial range of values of β2 even for small

samples (n = 40, 60). The Bernoulli test performs better than the Non-Standardized

test when the covariates are symmetrically distributed around 0 (in the extreme

example when h/n = 0.5 or in the uniform example) and the sample size is small

or moderate. Each of the four probability bounds used in the construction of the

Non-Standardized test is binding for some range of parameters.

6. Empirical application

In this section we apply our methods to regressions from Duflo, Kremer, and Robinson

(2011, Table 4 Panel A). Their objective is to understand, by means of a random-

ized experiment, whether farmers can be induced to use fertilizer with the so-called

SAFI program. We apply our tests to investigate the robustness of their analysis to

assumptions on errors.

In each of the six regressions, the dependent variable is a Bernoulli random variable

specifying whether or not a farmer has used fertilizers in a given season: season 1 for

regressions 1-2, season 2 for regressions 3-4, and season 3 for regressions 5-6. The

independent variables “safi season 1” indicates whether or not the farmer was offered

or not a certain SAFI program, “starter kit” and “demo” indicate whether the farmer

received a starter kit or participated in a demonstration plot, and “kit and demo”

is the interaction between these two variables. The “household” dummy variable

indicates whether the household used fertilizer previous to the treatment. Additional

dummy variables control for the 16 possible schools attended. Regressions 2, 4, 6

include a number of controls (non-reported), including the farmer’s gender, whether
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home has mud walls, the number of years of education, and the income in the past

month.

The number of observations ranges from 626 to 902, the number of variables is 21

for regressions without extra control variables and 28 for those with them.

We test the significance of parameters, and provide 95% confidence intervals. We

use the specification of parameters as in the end of Sections 3 and 4, and rely on the

exact test that guarantees type II error probability below 0.5 for the largest range

of parameters. Confidence intervals are derived by considering the set of parameters

where we cannot reject the null hypothesis with the equi-tailed two-sided test with

level 0.05. We report variable significance and confidence intervals from the OLS,

White, and our method.

The OLS method used in Duflo, Kremer, and Robinson (2011) relies on the assump-

tion on homoskedastic errors. However, this assumption is rejected at the 1% level in

the data in all six models by the Breusch-Pagan test. White’s method is robust to

heteroskedastic errors, but is based on asymptotic theory. A Monte Carlo simulation

shows that the demo variable, which is found to be significant by White’s test at the

1% level in regressions 2-6, is rejected at this level with probability as large as 72%

under the null hypothesis.

Our tests confirm the main findings of Duflo, Kremer, and Robinson (2011), which

is the significant effect of the SAFI program on fertilizer adoption in the same season.

This is a robust conclusion that is not based on any assumption on the error terms.

We also confirm the absence of a significant effect of SAFI on fertilizer adoption in

future seasons (regressions 3-6). The loss of significance of parameters using our exact

method is very mild compared to the OLS method: two variables found significant

at the 1% significance level with OLS are only significant at the 5% with our exact

test, other variables have in the same range of significance with OLS and with our

method. This loss is somewhat higher compared to White’s method, which finds the
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test of H0 : βj = 0 95% confidence intervals
variable model exact t test robust exact t test robust
safi season 1 1 ** *** *** [0.00, 0.23] [0.04, 0.19] [0.04, 0.19]
starter kit 1 not not not [−0.07, 0.19] [−0.03, 0.15] [−0.02, 0.14]
kit and demo 1 not not not [−0.22, 0.16] [−0.15, 0.10] [−0.14, 0.10]
demo 1 not not not [−0.99, 1.00] [−0.61, 0.63] [−0.46, 0.48]
household 1 *** *** *** [0.27, 0.47] [0.30, 0.43] [0.30, 0.44]
safi season 1 2 ** *** *** [0.02, 0.27] [0.06, 0.22] [0.06, 0.22]
starter kit 2 not * * [−0.07, 0.23] [−0.01, 0.17] [−0.01, 0.17]
kit and demo 2 not not not [−0.27, 0.15] [−0.20, 0.07] [−0.20, 0.07]
demo 2 not not *** [−0.95, 1.84] [−0.42, 1.30] [0.24, 0.64]
household 2 *** *** *** [0.19, 0.43] [0.24, 0.39] [0.24, 0.39]
safi season 1 3 not not not [−0.11, 0.13] [−0.08, 0.09] [−0.08, 0.09]
starter kit 3 not not not [−0.12, 0.16] [−0.07, 0.12] [−0.07, 0.12]
kit and demo 3 not not not [−0.18, 0.23] [−0.11, 0.16] [−0.11, 0.16]
demo 3 not not *** [−1.02, 1.75] [−0.55, 1.27] [0.18, 0.55]
household 3 *** *** *** [0.21, 0.42] [0.25, 0.39] [0.24, 0.40]
safi season 1 4 not not not [−0.13, 0.14] [−0.08, 0.10] [−0.08, 0.10]
starter kit 4 not not not [−0.15, 0.16] [−0.10, 0.11] [−0.10, 0.10]
kit and demo 4 not not not [−0.23, 0.22] [−0.16, 0.15] [−0.16, 0.15]
demo 4 not not *** [−0.94, 1.82] [−0.45, 1.38] [0.23, 0.69]
household 4 *** *** *** [0.16, 0.38] [0.20, 0.37] [0.19, 0.37]
safi season 1 5 not not not [−0.10, 0.12] [−0.07, 0.08] [−0.07, 0.08]
starter kit 5 not not not [−0.14, 0.12] [−0.10, 0.08] [−0.10, 0.08]
kit and demo 5 not not not [−0.18, 0.19] [−0.13, 0.13] [−0.13, 0.13]
demo 5 not not *** [−0.63, 1.35] [−0.30, 1.02] [0.10, 0.62]
household 5 *** *** *** [0.18, 0.38] [0.21, 0.35] [0.21, 0.35]
safi season 1 6 not not not [−0.11, 0.13] [−0.07, 0.09] [−0.07, 0.09]
starter kit 6 not not not [−0.17, 0.12] [−0.13, 0.07] [−0.12, 0.07]
kit and demo 6 not not not [−0.24, 0.18] [−0.17, 0.11] [−0.17, 0.11]
demo 6 not not *** [−0.96, 1.81] [−0.48, 1.35] [0.22, 0.65]
household 6 *** *** *** [0.14, 0.36] [0.17, 0.33] [0.17, 0.33]

Table 3

Comparison of tests and confidence intervals: exact for our method, t-test for the standard OLS,

robust for White’s method. Model indicates the regression number. Significance levels: *** for 1%,
** for 5%, * for 10%, and not for no significance at 10%.
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demo variable to be highly significant in regressions 2-6, while neither our method

or the OLS method find this variable to be significant. As mentioned above, Monte

Carlo simulations cast doubts on the appropriateness of White’s test for this variable.

The size of the confidence intervals using the exact method is typically inflated by

50% compared to OLS or White’s method. This seems a moderate price to pay for

exactness under no assumptions on error terms.

7. Relaxing assumptions on errors

We now discuss some relaxations of assumptions (iii) and (iv) in Section 2.

Assumption (iii) states that errors conditional on X are independent. For the

bound based on Cantelli’s inequality, the classic pairwise orthogonality condition

E (εiεj|X) = 0 for i 6= j is sufficient. The inequality of Bhattacharyya relies on fourth

moments of β̂j , accordingly we need to impose that E (εiεjεkεl|X) = 0 if i /∈ {j, k, l}.
Hoeffding’s inequality holds for Markov chains (Hoeffding, 1963, p. 18), the relevant

condition here is that E (εj+1|ε1, . . . , εj, X) = 0 for j = 1, ..., n−1. We however cannot

relax conditional independence when using the Berry-Esseen inequality when deriving

the Bernoulli test. The inequality of Berry-Esseen and the result of Hoeffding (1956)

explicitly require independence of the random variables.

Assumption (iv) that the dependent variables are bounded, i.e.P (Yi ∈ [ω, ω′]) = 1

can be relaxed in several ways. The methods presented can be adapted to the case in

which the bounds depend both on X and on i, i.e., for every X , there exists (ω1i)i

and (ω2i)i such that P (εi ∈ [ω1i, ω2i] |X = x) = 1 holds every i. Alternatively, one

can assume a bound on the variance of the noise terms. One can easily adapt the

Non-Standardized test to this case using Cantelli, Hoeffding, and Bhattacharyya’s

inequalities. Note that without any restriction on the support of Y , the possibility of

very small or very large outcomes that occur with very small probability (fat tails)

make it impossible to make any inference about EY based on the observed values of
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Y , as shown by Bahadur and Savage (1956) when testing for means and by Dufour

(2003) in linear regression analysis.

8. Conclusion

This paper introduces finite sample methods that are exact in the sense that they

do not rely on assumptions on the noise terms beyond independence. These tests

perform well even in small sample sizes (n = 40, 60). They are powerful enough to

draw practical conclusions when applied to independently collected empirical data.

The Non-Standardized test relies on a selection of probabilistic bounds. Improve-

ments of these bounds would lead to an improved test. A thorough, yet non-exhaustive,

examination of bounds derived from a series of known inequalities did not allow for

any improvement over the ones used in this paper for the construction of one-tailed

tests.
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Appendix A: Proof of Theorem 1

The proof of Theorem 1 is obtained by combining a bound on the variance of β̂j

(Lemma 1) with bounds on the deviation of β̂j from its mean provided by Propositions

1, 2, 3 and 4.



Exact Tests for Linear Regressions 17

A.1. Bound on the variance of β̂j

Lemma 1

Var(β̂j) ≤ σ̄2
βj

Proof. For a given mean of Yi, Var(Yi) is maximized when Yi is a Bernoulli random

variable taking the values ω and ω + 1:

Var(Yi) ≤ E(Yi − ω)E(ω + 1− Yi) = (Xiβ − ω) (ω + 1−Xiβ) .

Since Var(Y ) =
∑

τ 2jiVar(Yi),

Var(Y ) ≤
∑

i

τ 2
ji(Xiβ − ω) (ω + 1−Xiβ)

≤ max
z∈Rm

{

∑

i

τ 2
ji(Xiz − ω) (ω + 1−Xiz) : zj = βj, Xz ∈ [ω, ω + 1]n

}

= σ̄2
βj
.

A.2. Cantelli

Cantelli (1910)’s inequality states that for a random variable Z of variance σ2 and

k > 0:

P (Z −EZ ≥ kσ) ≤ 1

1 + k2
.

We rely on Cantelli’s inequality to bound P
(

β̂j − β̄j ≥ t̄
)

using ϕC .

Proposition 1 1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕC(σβj
, t̄).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕC(σβj
, βj − β̄j − t̄).
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3. For σ, t > 0, ϕC is increasing in σ and decreasing in t.

Proof. For t̄ > 0 and βj ≤ β̄j , by applying Cantelli’s inequality to β̂ we obtain

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤
σ2
βj

σ2
βj

+ t̄2
= ϕC(σβj

, t̄),

which is point 1. For t̄ such that βj > β̄j + t̄ we have

P
(

β̂j − β̄j < t̄
)

= P
(

−β̂j + βj > βj −
(

β̄j + t̄
)

)

≤
σ2
βj

σ2
βj

+ (βj − β̄j − t̄)2

= ϕC(σβj
, βj − β̄j − t̄)

which is point 2. Point 3 is immediate.

A.3. Bhattacharyya

Consider a random variable Z with EZ = 0. Let σ2 = Var(Z), γ1 = EZ3

σ3 , and

γ2 =
EZ4

σ4 . Bhattacharyya (1987)’s inequality states that if k2 − kγ1 − 1 > 0 then

P (Z ≥ kσ) ≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1) (1 + k2) + (k2 − kγ1 − 1)2

.

Relying on this inequality we derive:

Proposition 2 1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕBh(σβj
, t̄, τ j).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕBh(σβj
, βj − β̄j − t̄, τ j).

3. ϕBh is increasing in σ and decreasing in t.
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Before applying Bhattacharyya’s inequality to Z = β̂j − βj we bound the corre-

sponding values of γ1 =
E(β̂j−βj)

3

σ3

βj

and γ2 =
E(β̂j−βj)

4

σ4

βj

.

Lemma 2

E
(

β̂j − βj

)3

σ3
βj

≤ ‖τ j‖∞
σβj

(3)

and

E
(

β̂j − βj

)4

σ4
βj

≤ 4. (4)

Proof. Using the polynomial expansion, and E (εi) = 0 for every i, we obtain

E
(

β̂j − βj

)3

= E

(

∑

i

τ ji (Yi −Xiβ)

)3

=
∑

i

τ 3jiE
(

ε3i
)

.

Since |εi| ≤ 1, we have

γ1 =
E
(

β̂j − βj

)3

σ3
βj

=

∑

i τ
3
jiE (ε3i )

σ3
βj

≤ ‖τ j‖∞
∑

i τ
2
jiE (ε2i )

σ3
βj

=
‖τ j‖∞
σβj

.

Using the polynomial expansion again, we get

E
(

β̂j − βj

)4

=
∑

i

τ 4
jiE
(

ε4i
)

+ 3
∑

i 6=k

τ 2jiE
(

ε2i
)

τ 2jkE
(

ε2k
)

and
(

∑

i

τ 2
jiE
(

ε2i
)

)2

=
∑

i

τ 4
jiE
(

ε2i
)2

+
∑

i 6=k

τ 2jiE
(

ε2i
)

τ 2jkE
(

ε2k
)

.

From this we derive

E
(

β̂j − βj

)4

= 3

(

∑

i

τ 2
jiE
(

ε2i
)

)2

+
∑

i

τ 4
jiE
(

ε4i
)

− 3
∑

i

τ 4
jiE
(

ε2i
)2

.
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Using the Cauchy-Schwarz inequality twice we obtain

∑

i

τ 4
jiE
(

ε4i
)

=

∫

∑

i

τ 4
jiε

4
idP ≤

∫

(

∑

i

τ 2jiε
2
i

)2

dP

≤
(

∫

(

∑

i

τ 2jiε
2
i

)

dP

)2

=

(

∑

i

τ 2
jiEε

2
i

)2

and hence

γ2 =
E
(

β̂j − βj

)4

σ4
βj

≤ 4 .

Proof of Proposition 2. For the proof of point 1, we need only to consider the

case where t̄2

σ2

βj

− t̄‖τ j‖
∞

σ2

βj

− 1 > 0, in which we can apply Bhattacharyya’s inequality to

β̂j − βj and use (4):

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1)

(

1 +
(

t̄
σβj

)2
)

+

(

(

t̄
σβj

)2

−
(

t̄
σβj

)

γ1 − 1

)2

≤ 3− γ2
1

(3− γ2
1)

(

1 + t̄2

σ2

βj

)

+

(

t̄2

σ2

βj

− t̄
σβj

γ1 − 1

)2 . (5)

We then obtain point 1 by maximizing (5), which is concave in γ1 over all γ1 ≤
‖τ j‖

∞

σβj

, holding σβj
and ‖τ j‖∞ fixed using (3). The proof of point 2 is similar, and

point 3 comes from the fact that both functionals defining ϕBh when
t2

σ2− t‖τ j‖
∞

σ2 −1 > 0

are increasing in σ and decreasing in t.
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A.4. Hoeffding

We recall an inequality due to Hoeffding (1963, Theorem 2). Let (Zi)
n
i=1 be indepen-

dent random variables with Zi ∈ [ai, bi], and Z̄ = 1
n

∑n
i=1 Zi. For t̄ > 0,

P
(

Z̄ − EZ̄ ≥ t̄
)

≤ exp

(

− 2n2t̄2
∑n

i=1 (bi − ai)
2

)

.

Relying on Hoeffding’s inequality we show:

Proposition 3 1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕH(t̄, τ j).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕH(βj − β̄j − t̄, τ j).

3. For t > 0, ϕH is decreasing in t.

Proof. We apply Hoeffding’s inequality to (Zi)i where Zi = nτ jiYi. So Zi ∈ [0, nτ ji]

for τ ji ≥ 0 and Zi ∈ [nτ ji, 0] for τ ji < 0. For βj ≤ β̄j :

P (β̂j − β̄j ≥ t̄) ≤ P (τ ′jY − βj ≥ t̄) ≤ exp

(

− 2n2t̄2
∑

i(nτ ji)
2

)

= exp

(

− 2t̄2

‖τ j‖2

)

which is point 1. The proof of point 2 is similar, and point 3 is immediate.

A.5. Berry-Esseen

We recall the Berry-Esseen inequality (Berry, 1941; Esseen, 1942) with the constant

as derived by Shevtsova (2010). Let (Zi)1≤i≤N be a family of independent random

variables with Var(Zi) = σ2
i . For ū ∈ R,

∣

∣

∣

∣

∣

∣

P





∑N
i=1 (Zi − EZi)
√

∑N
i=1 σ

2
i

≤ ū



− Φ (ū)

∣

∣

∣

∣

∣

∣

≤ A
(

∑N
i=1 σ

2
i

)3/2

N
∑

i=1

E |Zi − EZi|3 (6)

where A = 0.56. Using the Berry-Esseen inequality, we show the following proposition:
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Proposition 4 1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕBE(σβj
, t̄).

2. For t̄ such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

3. For σ, t > 0, ϕBE is increasing in σ and decreasing in t.

The idea of the proof of Proposition 4 is to apply Berry-Esseen’s inequality to the

random variables Zi = τ jiYi. However, a difficulty arises from the fact that the right

hand side of Berry-Esseen’s inequality is unbounded as a there is no lower bound on
∑n

i=1 σ
2
i = σ2

βj
. Our solution to this is to add additional random variables with known

distribution to the family (Zi)1≤i≤N to guarantee such a lower bound. We eliminate

this noise in a later step.

Lemma 3 Let w > 0, ū ∈ R. With Z ∼ N (0, w2) independent of (Yi)i, and

R (w) =

∑

i |τ ji|3E |Yi −EYi|3
(
∑

i τ
2
jiσ

2
i + w2

)3/2
,

we have

P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ ū



 ≤ 1− Φ (ū) + AR (w) .

Proof. We apply Berry-Esseen’s inequality to the family of independent random

variables Z1, ..., Zn+N where Zi = τ jiYi for i ≤ n and Zi ∼ N
(

0, w2

N

)

for n+ 1 ≤ i ≤
n+N . We note that Z has the same distribution as

∑n+N
t=1 Zi. Let δ ∼ N (0, 1). The

Berry-Esseen inequality applied to
∑n+N

t=1 Zi shows:

P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ ū



 = 1− P





∑n+N
i=1 (Zi −EZi)
√

∑n+N
i=1 σ2

Zi

≤ ū





≤ 1− Φ(ū) + A

∑n
i=1 |τ ji|

3
E |Yi − EZi|3 +N

(

w√
N

)3

E |δ|3
(
∑n

i=1 τ
2
jiσ

2
i + w2

)3/2
.
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As N → ∞ the right term decreases and converges to 1 − Φ(ū) + AR(w), and the

claim follows.

Next we use Lemma 3 to obtain a bound on the upper tail of β̂j − βj .

Lemma 4

P
(

β̂j − βj ≥ t̄
)

≤
1− Φ

(

t̄−b1
√

σ2

βj
+w2

)

+ AR (w)

Φ (b1/w)
.

Proof. We use the fact that P (W1 +W2 ≥ ū) ≥ P (W1 ≥ −b1)P (W2 ≥ ū+ b1) holds

for all b1, ū and independent random variables W1 and W2. In our case, we write:

P
(

β̂j − βj + Z ≥ ū
√

σ2
βj

+ w2
)

= P
(

β̂j − βj ≥ ū
√

σ2
βj

+ w2 + b1

)

Φ (b1/w) .

Applying this to ū = t̄−b1
√

σ2

βj
+w2

and combining with Lemma 3 yields the result.

Our next task is to provide an upper bound on R(w).

Lemma 5

R(w) ≤ 2 ‖τ j‖∞√
27w

.

Proof. Using E |Yi − EZi|3 ≤ σ2
i , |τ ji|3 ≤ ‖τ j‖∞ τ 2

ji, and that for x ≥ 0,

x

(x+ w2)3/2
≤ 2√

27w
,

we derive

R(w) =

∑

i |τ ji|3E |Yi −EYi|3
(
∑

i τ
2
jiE (Yi − EYi)

2 + w2
)3/2

≤ ‖τ j‖∞
∑

i |τ ji|2E (Yi −EZi)
2

(
∑

i τ
2
jiE (Yi − EZi)

2 + w2
)3/2

≤ 2 ‖τ j‖∞√
27w

.

Proof of Proposition 4. Using Lemmata 4 and 5, we obtain that for βj ≤ β̄j :

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤ inf
w>0,b1∈R

1− Φ

(

t̄−b1
√

σ2

βj
+w2

)

+ A
2‖τ j‖

∞√
27w

Φ (b1/w)
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which is point 1. For point 2, we apply point 1 to Y ′ = (ω+ 1)1n − Y where 1n ∈ R
n

is such that 1n,i = 1 for every i. For βj such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ P
(

τ ′
jY − β̄j ≤ t̄

)

= P
(

τTj ((ω + 1)1n − Y )−
(

τT
j (ω + 1)1n − βj

)

≥ βj − β̄j − t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

Point 3 is immediate.

Appendix B: Proofs for Section 4

Proposition 5 1. If βj ≤ β̄j then λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≤ θα.

2. If pβj
> k̄/n then

λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≥ λB(k̄ − 1, pβj
)− (1− λ)B(k̄, pβj

).

The interpretation of the proposition is as follows: Consider a randomized test

that rejects the null hypothesis with probability equal to 1 if nW̄ ≥ k̄, equal to λ

if nW̄ = k̄ − 1, and equal to 0 if nW̄ < k − 1. Point 1 shows that the type I error

probability of this test is bounded by θα. A bound on the type II error probability

is given by point 2. Note that this randomized test is the uniformly most powerful

test (see, e.g., Lehmann and Romano, 2005, Example 3.4.2) for testing p ≤ p̄ against

p > p̄ at level θα given n i.i.d. observations.

Proof of Proposition 5. Theorem 5 in Hoeffding (1956) shows that, if k ≥ nEW̄ ,

then P (nW̄ ≥ k) ≤ B(k,EW̄ ). Similarly, if k < nEW̄ , then P (nW̄ ≥ k) ≥
B(k,EW̄ ). Since k̄ − 1 > np̄ ≥ nEW̄ , we have

λP (nW̄ ≥ k − 1) + (1− λ)P (nW̄ ≥ k) ≤ λB(k̄ − 1,EW̄ ) + (1− λ)B(k̄,EW̄ )

≤ λB(k̄ − 1, p̄) + (1− λ)B(k̄, p̄)

= θα,
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where the first inequality comes from Hoeffding (1956)’s result, and the second one

from the fact that B(k, p̄) is increasing in p. Hence point 1. Since EW̄ > k̄/n, we also

have

λP (nW̄ ≥ k − 1) + (1− λ)P (nW̄ ≥ k) ≥ λB(k̄ − 1,EW̄ ) + (1− λ)B(k̄,EW̄ ),

which is point 2.

Proof of Theorem 2. Let βj ≤ β̄j . From point 1 of Proposition 5, the expectation

of the non-negative random variable R = λ1nW̄≥k−1 + (1 − λ)1nW̄≥k is bounded by

θα. Markov’s inequality shows

λP (nW̄ ≥ k − 1) + (1− λ)P (nW̄ ≥ k) = P (R ≥ θ) ≤ ER

θ
≤ α,

which is the desired bound on the type I error probability. We now apply Markov’s

inequality to 1−R:

P (R < θ) = P (1−R > 1− θ) ≤ 1− ER

1− θ
,

which together with point 2 of Proposition 5 implies the stated bound on type II error

probabilities.


