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Abstract

This is the first paper on consumer search where the cost of go-
ing back to stores already searched is explicitly taken into account.
We show that the optimal sequential search rule under costly second
visits is very different from the traditional reservation price rule in
that it is nonstationary and not independent of previously sampled
prices. We explore the implications of costly second visits on market
equilibrium in two celebrated search models. In the Wolinsky model
some consumers search beyond the first firm and in this class of mod-
els costly second visits do make a substantive difference: equilibrium
prices under costly second visits can both be higher and lower than
their perfect recall analogues. In the oligopoly search model of Stahl
where consumers do not search beyond the first firm, there remains
a unique symmetric equilibrium that has firms use pricing strategies
that are identical to the perfect recall case.
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1 Introduction

The main focus of consumer search theory is to analyze how market outcomes
are affected if the cost consumers have to make to get information about the
prices and/or qualities firms offer is explicitly taken into account. One of the
basic results of the extensive literature is that firms have some market power
that they can exploit even if there are many firms in the market and that
price dispersion emerges as a consequence of the fact that some firms aim at
selling to many consumers at low prices, while others make higher margins
over fewer customers (see, e.g., Stigler (1961) and Reinganum (1979)).

Most, if not all, of the consumer literature implicitly or explicitly makes
the assumption of perfect or free recall: consumers can always come back
to previously sampled firms without making a cost.1 One of the important
consequences of this assumption is that consumer search behavior is charac-
terized by one reservation price that is constant over time (Kohn and Shavell
(1974)): for any observed price sequence, consumers stop searching and buy
at the firm from which they received a price quote if that price is not larger
than this reservation price; otherwise they continue searching.2

The assumption of perfect recall is, so we argue in this paper, at odds with
the general philosophy of the consumer search literature which has search
frictions at its core. If consumers have to make a cost to go to a shop
in the first place, then in almost any natural environment it is also costly
(in terms of time, effort, or money) to go back to that shop. Even while
searching on the internet, where the costs of search are arguably lower than
in nonelectronic markets, it takes some mouse clicks and time to go back to
previously visited websites. In other words, in consumer search it is not only
important to remember the offers previously received, but one also has to
make a cost to activate these offers again.

In this paper we replace the perfect recall assumption by the more natu-
ral assumption of costly second visits, where the cost of going back to stores
previously sampled is explicitly modeled. In doing so we concentrate on the
implications for both the optimal consumer sequential search strategy and

1See, e.g., Reinganum (1979), Morgan and Manning (1985) , Stahl (1989) and Stahl
(1996) for early papers and Janssen et al. (2005), Tse (2006) and Waldeck (2008) for more
recent papers explicitly using the perfect recall assumption.

2An alternative setting is studied by Weitzman (1979). He considers the interesting
case where alternatives differ in the cost of inspection as well as in the distribution of
revenues and he asks the question in which order the alternatives should be explored.
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the equilibrium pricing strategies of firms. Under costly second visits, we
show that consumer search is no longer characterized by a reservation price
that is constant over time. Instead, the reservation price at any moment in
time depends on (i) the number of firms that are not yet sampled and (ii)
the lowest price sampled so far. In particular, for a given lowest price in the
sample the reservation price is (weakly) decreasing in the number of firms
that are not yet sampled (increasing over time) and increasing in the mini-
mum price in the sample if this minimum price is not too large. Of course, if
no prices are sampled yet, the reservation price is just a constant (depending
on the number of firms that quote prices). Only when there are infinitely
many prices to sample (in a perfectly competitive market), stationarity re-
appears and the reservation price in that case coincides with the reservation
price under perfect recall. Thus, one conclusion is that competitive search
models are robust to introducing costly second visits.

These two differences in the characterization of reservation prices have
important consequences for the actual search behaviour of consumers. Under
costly second visits it may very well happen that if consumers observe as
part of a price sequence two prices pt and pt+1, with pt < pt+1, they will
rationally decide to accept to buy at pt+1 and not at pt. This behaviour is
not possible under perfect recall and rational consumer behaviour. The main
reason for the fact that different behaviours are possible is that under costly
second visits, no matter how small the cost of retrieving previously sampled
information, the search process is no longer stationary. In addition, the fewer
the number of firms not yet sampled, the worse the chance of observing a
low price if one continues searching. Together, this implies that the class of
search behaviours that are consistent with rational behaviour on the part of
consumers becomes much richer.

In contrast to the assumption of perfect recall commonly employed in the
literature on consumer search, many papers in the literature on job search
assume that only current offers can be accepted as previous offers that are not
accepted are foregone. Karni and Schwartz (1977) have interpreted these two
applications of search theory as making specific assumptions on the probabil-
ity with which past observations can be successfully retrieved: in consumer
search, the probability of successful retrieval is one, in job market search,
this probability is zero. They then go on to study situations with ”uncer-
tain recall”, where the probability that past observations can be successfully
retrieved is less than one but greater than zero (see also Landsberger and
Peleg (1977)). We interpret the difference between consumer search and job
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market search differently, namely in terms of the cost one has to make to
retrieve information. This cost is either zero or prohibitively high. We study
the intermediate case where the cost is positive, but not too high to make
it uninteresting to consider the option of going back to previously sampled
firms.3

Our next (main) question is how these changes in the optimal search
strategy impact on the optimal pricing behaviour of firms.4 Is the assump-
tion of perfect recall crucial for the analysis of search markets? The answer
to this question may depend on the particular industry setup considered. To
answer this question, we divide the class of sequential search models in two
subclasses: (i) models ”with true search”, i.e. models where in equilibrium
some consumers search beyond the first firms, and (ii) models ”without true
search”, i.e. models where in equilibrium consumers stop at the first alter-
native they observe. We first analyze the implications of costly second visits
in the Wolinsky model as a celebrated example of the first class of search
models distinguished. We show that in this model, the equilibrium pricing
behaviour of firms is affected when we go beyond perfect recall. Since con-
sumers do search in these models, there are some options which are worse
than the reservation option value. Costly second visits do matter here as they
affect the reservation prices and thus the expected demand from searching
consumers.

As an important example of the second class of search models, we use a
conventional model of oligopolistic competition with homogeneous goods and
sequential consumer search, which was pioneered by Stahl (1989). The distin-
guishing feature of the Stahl model is that there are two types of consumers,
informed and uninformed consumers. Informed consumers have zero search
cost and always buy the product at the lowest price in the market. Unin-
formed consumers have positive search cost and engage in optimal sequential
search. In the Stahl model N firms set prices simultaneously to maximize

3As far as we are aware, there is no paper studying this most relevant case. Kohn and
Shavell (1974) say that some of their results continue to hold if there is no possibility of
recall, but they also do not analyze the situation of costly recall. Some of the results of
Landsberger and Peleg (1977) are similar in nature to ours. Most notably that for every
search there is a time-dependent reservation price and that this price is constant in case of
perfect recall and infinitely many firms. In the operations research literature Kang (1999)
studies an optimal stopping problem where the cost of a second visit is a percentage of the
utility derived from previous observations and arrives at a technical analysis that resembles
our analysis of the optimal search rule. See Section 2 for a more detailed comparison.

4An extensive overview of this literature has recently been given by Baye et al. (2006).
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profits, where demand potentially comes from both types of consumers.
The surprising result we obtain for the Stahl (1989) model is that even

though the consumer’s search strategy is different and more complicated, the
market equilibrium does not involve firms choosing different pricing strate-
gies. We have two types of results that underline this general conclusion.
First, the symmetric equilibrium that is found by Stahl (1989) remains an
equilibrium. In this equilibrium firms choose a price from a price distribution
that is such that consumers with a positive search cost buy immediately in
the first store they visit. Even the definition of the reservation price does
not need to be adjusted. This first result is quite intuitive: at the reserva-
tion price (which is the upper bound of the price distribution) consumers are
indifferent between buying immediately and continuing to search and buy
(with probability one) at the next store and thus consumers never consider
seriously to go back to previously visited stores. The second result is less
intuitive: we show there are no other types of symmetric equilibria. Thus,
the Stahl equilibrium remains the unique symmetric equilibrium if we allow
for costly second visits. With costly second visits in principle firms may ben-
efit from setting prices above the reservation price of the first search round.
The standard argument why firms will not set such prices is that a firm
that charges a price equal to the upper bound of the price distribution will
not sell to any consumer as even the uninformed consumers will continue
to search after observing such a price and have then at least two prices to
compare where the other price(s) are strictly smaller with probability one.
This argument does not hold with costly second visits as competitors that
are visited first may have prices that are lower than the upper bound, but
not so much lower that it pays for consumers to pay the cost of going back to
these previously visited stores. At first look one might think that if the val-
uation of the good is sufficiently high firms can always compensate the low
probability of such event with sufficiently high prices. We show, however,
that the structure of the profit function is such that if firms charge prices
above first round reservation prices, they can never compensate the loss of
demand with higher revenue per consumer.

Armstrong and Zhou (2010) give a particular interpretation of costly sec-
ond visits. They show that costly second visits can be re-interpreted as
buy-now discounts, i.e. as discounts consumers only get when they visit a
firm for the first time: as soon as they walk out of the store without buying
the possibility to receive the discount disappears. The main difference be-
tween their paper and ours is that the buy-now discount in Armstrong and
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Zhou (2010) is a strategic variable chosen by firms, whereas in our model the
cost of a second visit to a firm is an exogenous feature of the search technol-
ogy. This means that our analysis may have various other applications, such
as in a search theoretic explanation for the existence of shopping malls (see
Non (2010)).

The structure of the rest of the paper is as follows. Section 2 analyzes the
optimal sequential search behavior of consumers in a setting where they have
a finite number of objects to discover. Section 3 then investigates the impli-
cations of this optimal search rule for the Wolinsky (1986) model and Section
4 presents the results for the model of Stahl (1989). Section 5 concludes. All
technical proofs can be found in the appendix.

2 Optimal Sequential Consumer Search

The environment we discuss in this section and that will be relevant in the
market setting discussed in the next two Sections is one where consumers
have a choice whether or not to buy one alternative out of a finite number
of alternatives. The utility each alternative delivers is unknown before con-
sumers investigates the properties of the alternative. Before inspection all
alternatives look the same, but ex post they are likely to be different. The
notation we use in this Section is based on the idea that the alternatives only
differ in price p, but this is not in anyway essential. Thus, we concentrate
on an environment where the alternative i has a price p that is distributed
according to the distribution function Fi(p) and Fi(p) = F (p) for all i. We
assume that F (p) is a continuous function and has a finite support. We define
p to be the lower bound of the support of the distribution and p be the upper
bound. Consumers engage in sequential search and get their first price quo-
tation for free (following most of the literature),5 but any subsequent price
quotation comes at a search cost c. Consumers have unit demand and an
identical valuation for the good which we denote by v and v > c. If the con-
sumer decides to go back to the store she already visited before she incurs
costs b where 0 ≤ b ≤ c.

The main issue we are interested in in this section is how the presence
of costly second visits (b > 0) affects the optimal search rule when F (p) is
known. Since the expected value of continuing to search depends on future

5Alternatively, we can easily incorporate the case where the first search comes at a cost
as well.
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period expected values we use backward induction to analyze the optimal
stopping rule. To this end, define ps

k−1 as the smallest price in a sample of
k−1 prices previously sampled. We will argue that for each value of ps

k−1 there
is a unique value of pk such that an individual consumer is indifferent between
buying at pk and either going back to one of the previously sampled firms
and buying there or continue searching. We denote this price by ρk(p

s
k−1). If

pk ≤ ρk(p
s
k−1), the consumer decides to buy at pk. Otherwise, he either buys

at ps
k−1 (if this price is relatively small) or continues to search.
The proof is by induction starting at the last firm. The following lemma

introduces the base of induction.

Lemma 2.1. Let F (p) be a distribution of prices. Then for k = N − 1 the
reservation price ρN−1 is uniquely defined as a function of ps

N−2 ∈ [p, p] by

ρN−1(p
s
N−2) = min

(
ps

N−2 + b, c+ ps
N−2 + b−

∫ ps
N−2+b

p

F (p)dp, p∗N−1

)

where p∗N−1 satisfies the equation

p∗N−1 = c+E(pN |pN < p∗N−1 + b)F (p∗N−1 + b) + (1−F (p∗N−1 + b))(p∗N−1 + b).

Moreover, if the consumer decides to continue searching, the continuation
cost of search, defined as the additional net expected cost of continuing to
search conditional on optimal behaviour after the search is made, is given by

CN−1(p
s
N−1) = c+ ps

N−1 + b−
∫ ps

N−1+b

p

F (p)dp.

The following picture illustrates the lemma.
The reservation price as a function of ps

N−2 is presented by the bold curves.
It is easy to see that this line consists of three parts:

(i) for ps
N−2 < p̃6 the best alternative to buying at pN−1 is to go back to

the lowest-priced firm in the sample so far. Thus, the reservation price is
determined by ρN−1 = ps

N−2 + b.

6We give a formal definition of p̃ later.
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Figure 1: Reservation Price ρN−1 as a function of ps
N−2

ps
N−2

pN−1

CN−1

p∗N−1p̃

b

A

B

C

(ii) for p̃ ≤ ps
N−2 < p∗N−1 the option to continue searching is always

preferred to the option of going back to the lowest-priced firm in the sample
so far. Thus, the consumer’s optimal choice is based on a comparison between
the current price and the expected continuation costs of continuing to search;

(iii) for the region ps
N−2 ≥ p∗N−1 the situation is similar to the previous

case, except that the current price is always the lowest price in the sample so
far, implying that the continuation cost does not depend on ps

N−2. Therefore,
the reservation price is independent of ps

N−2 in this case.
Along the bold curve the consumer is indifferent between buying now at

the shop he is currently visiting or either continuing to search or to go back
to the lowest-priced firm in the sample so far.

Since optimal search behaviour is completely determined by the pair
(pN−1, p

s
N−2) we can characterize it in the same figure. Indeed, in region

A, which is bounded from below by ρN−1 and from the right by p̃, the con-
sumer always goes back and buys at the lowest-priced firm in the sample
so far. In region B, which is bounded from above by the reservation price,
the consumer always buys at the current shop. Finally in region C, which
is bounded from below by the reservation price and for which ps

N−2 > p̃, the
consumer always continues to search.
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Next we show that on any step 1 < k < N − 1 the reservation price
as a function of the lowest price in the sample is uniquely defined and has
essentially the same shape as in Figure 3.1. The proof is by induction. Before
we give the formal statement of the result and the proof, we have to provide a
technical result that turns out to be useful in making the induction step. To
this end, assume that y is a random variable with a continuous distribution
function F (y). Let for a given search and return cost c and b, the following
function be defined

C∗(x) = P(y < min(x+ b, C(min(x, y))))·
· E(y|y < min(x+ b, C(min(x, y))))+

+ P(y ≥ min(x+ b, C(min(x, y))))·
· E(min(x+ b, C(min(x, y)))|y > min(x+ b, C(min(x, y)))) + c.

.

(2.1)

The function C∗(x) can be interpreted as a generalized continuation cost of
additional search given continuation cost on the next step.

For any function f(x) let us define

f−(x) = lim inf
∆x→0

f(x+ ∆x)− f(x)

∆x

f+(x) = lim sup
∆x→0

f(x+ ∆x)− f(x)

∆x

Then the following lemma holds.

Lemma 2.2. If C(z) is a continuous function and for any z in he support
of F (·) 0 ≤ C−(z) ≤ C+(z) < 1 and C(y) > b, where y is the lower bound
of the support of F (y), then C∗(x) is a continuous function and for any x in
the support of F (·) except the lower bound, 0 ≤ C∗−(x) ≤ C∗+(x) < 1.7

Given these two lemmas, we are now ready to state and prove the main
result of the chapter. The result says that the reservation price as a function
of ps

k−1 is well-defined and unique and a monotone function of ps
k−1. In later

7The result of Kang (1999) for the case where the costs of going back are a percentage
of utility observed is similar in nature to this lemma. His proof relies on convexity of the
value function, while we focus on the slope.
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results, we prove that the time- and history-dependency of these reservation
prices cannot be neglected, unlike the case of costless recall.

Theorem 2.3. The reservation price ρk(p
s
k−1) is uniquely defined for any k

and any ps
k−1 from the support of F (p). Moreover, the time- and history-

dependent reservation prices ρk(p
s
k−1) are nondecreasing in ps

k−1.

Proof. The proof is by induction using Lemma 2.1 as induction base and
Lemma 2.2 for the induction step. See the Appendix for details.

The proof of the theorem basically shows that the function ρk+1(p
s
k) is

defined over three separate intervals and essentially looks like the reserva-
tion price for the last step (see Figure 3.1). When ps

k−1 is relatively small
ρk(p

s
k−1) = ps

k−1+b. Then for intermediate values of ps
k−1, ρk(p

s
k−1) = Ck(p

s
k−1)

and for higher values ρk(p
s
k−1) is independent of ps

k−1. One can thus, define
a price p̃k as the price such that on step k the consumer is indifferent be-
tween going back to the shop charging this price and continuing to search,
i.e., p̃k + b = Ck(p̃k).

We are now in the position to prove some special properties of the reser-
vation price function that turn out useful in the next section. To this end,
define ρpr as the reservation price under perfect recall, i.e., as noted, e.g., by
Stahl (1989),

c =

∫ ρpr

p

F (p)dp.

By considering the limiting case where the cost of recall is zero we provide
more insight into the reason why the cases of perfect recall and costly second
visits are so different from one another. Moreover, the reservation price under
perfect recall turns out to play an important role in further characterizing
the optimal search behaviour under costly second visits.

Proposition 2.4. 8 Let b = 0. Then for any k the reservation price is
defined by:

ρk = min(ps
k−1, ρ

pr).

8As this fact is intuitively obvious the proof is available upon request.
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Under perfect recall, the search rule is stationary, but (interestingly)
slightly different from what is commonly thought as in any period the reser-
vation price is still dependent on the lowest of previously sampled prices.
When the current price is smaller than any of the previously sampled prices,
then the consumer simply compares the current price with ρpr and decides
whether or not to buy. If the current price is larger, the consumer simply
forgets about the current price. Because of stationarity, previously sampled
prices are in a full model including price setting behaviour of the firms, ir-
relevant. Either these previously sampled prices are below ρpr, but then the
consumer simply does not continue to search, or they are above ρpr, but then
the consumer never considers buying there unless he has visited all the stores
and knows for sure that there are no lower prices in the sample.9

To further characterize the optimal search rule, under costly second visits
we show that the price p̃k is intimately related to the price ρpr under perfect
recall.

Proposition 2.5. For all k, p̃k ≡ p̃ = ρpr − b.

Next, we show that rational consumers never use the option of going back
to previously sampled stores, unless they have visited every store available.
This result is especially useful in the context of the analysis of the Wolinsky
model with costly second visits in the next section.

Corollary 2.6. Assume the consumer behaved optimally on all steps 1 ≤
k ≤ K. Then if K < N, it is never optimal for this consumer to go back.

Next, we show that reservation prices are non-decreasing over time. In
particular, if a price smaller than p̃ = ρpr − b is sampled before, then the
reservation price is simply ρk(p

s
k−1) = ps

k−1 + b and therefore if ps
k = ps

k−1,
then ρk+1(p

s
k) = ρk(p

s
k−1). However, if a price strictly larger than p̃ = ρpr−b is

the lowest price in the sample so far, then ρk+1(p
s
k) > ρk(p

s
k−1). Thus, under

costly second visits reservation prices are essentially nonstationary.

9However, in equilibrium even this could not be the case with b = 0 as then the
traditional argument kicks in that no firm wants to charge the highest price above ρpr as
no consumer will ever buy at this price, implying that no firm will want to choose a price
above ρpr.
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Proposition 2.7. If ps
k = ps

k−1, then ρk+1(p
s
k) ≥ ρk(p

s
k−1), i.e., reservation

prices are non-decreasing over time. Moreover, ρk+1(p
s
k) > ρk(p

s
k−1) for all

ps
k and ps

k−1 such that ps
k = ps

k−1 > p̃ = ρpr − b .

Knowing that reservation prices are non-decreasing in the search round,
we next establish a relationship between the highest and the lowest reserva-
tion prices implying that they cannot be more than a factor 2 apart.

Lemma 2.8. For any p in the support of F (p) ρN−1(p)+b

ρpr < 2.

Since, using Proposition 2.7, ρk(p) ≤ ρN−1(p) and ρ1 ≥ ρpr we have

ρk(p) + b

ρ1

<
ρN−1(p) + b

ρpr

and thus

Corollary 2.9. ∀k ∈ (2, N) : ρk(p)+b
ρ1

< 2

We finally consider the limiting case (of perfect competition) where there
are potentially infinitely many prices to sample. As the time dependency of
the reservation prices disappears due to the fact that now the cost of contin-
uing to search is independent of time, i.e., ρk(p

s
k−1) = ρk+1(p

s
k). For prices be-

low p̃, we knew already that this equality holds. Interestingly, with infinitely
many firms and previously sampled prices above p̃, the reservation prices be-
comes independent of previously sampled prices and equal to the reservation
price under perfect recall. Thus, the cost of going back to previously sampled
firms does not play an important role under perfect competition.

Proposition 2.10. Let K ∈ N. Then for any p ≥ p̃ limN→∞ ρK(p) = ρpr.

Thus, under perfect competition the reservation price under costly second
visits is exactly identical to the case where consumers have perfect recall.

We end this Section by providing a numerical example to illustrate some
features of the reservation prices. The example clearly shows that it can be
rational to accept a price in a future period even if a lower price has been
observed in the past.

Consider the uniform distribution of prices on [0, 100]. Assume there are
4 firms in the market, search costs c are equal to 5 and the costs of going back
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to a previously sampled firm b equals 3. The reservation prices after visiting
no, one and two firms as well as the reservation price under perfect recall
are presented in Figure 2. In this case, the reservation price under perfect
recall equals approximately 31.62, while the reservation price before visiting
any shop under costly second visits equals 32.90. Thus, if a consumer faces,
say, a price of 33 in the first period he decides to continue searching. From
Figure 2 it is clear, however, that if the third price the consumer encounters
is say 34 it is optimal for him to stop.

Figure 2: Simulation Results for Uniform Distribution .

Parameters of simulation: N = 4, b = 3, c = 5.

The figure also illustrates most of the results we proved in the previous
section. In particular, it is easy to observe that all reservation price functions
are non-decreasing in ps

k (Theorem 2.3) , and that the sequence of reservation
prices is non-decreasing in the number of firms left, and strictly increasing
for all prices above p̃ (Proposition 2.7).

3 A Wolinsky-type Model with Costly Sec-

ond Visits

After we have defined the optimal search behaviour of consumers it is natural
to look at the equilibrium implications of such a behaviour and ask whether
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costly second visits imply different firm behaviour in equilibrium. In this
Section we study the Wolinsky (1986) model as a prominent example of a
model with true search where some consumers search beyond the first option.
the next Section deals with the Stahl model as an example of a search model
where no consumer with positive search cost searches beyond the first firm.

We make a few innocuous simplifications to the Model of Wolinsky (1986)
in order to focus on our main point – the influence of costly second visits on
equilibrium outcomes. Each of N firms can produce a single distinct brand.
All the firms have identical cost functions C(x) = F + C · x, where x is the
quantity of goods sold. There is a unit mass of consumers and each consumer
is interested in buying one unit of the product and also derives utility from
consuming the numeraire good x0. The utility function of consumers is given
by u(x0, i) = x0 + vi, where vi is a value attached by a consumer to brand i.
The vi’s are realizations of independent and identically distributed variables
with distribution function G with finite support [v, v]. Given the utility
function it is clear that consumers are interested in maximizing the surplus
vi − pi. Consumers are not informed about the prices and values vi before
they search a particular firm. The search process is costly with cost c. We
supplement this assumption with the assumption of costly second visits: in
order to return to a previously sampled firm consumers have to pay b. We
look for the symmetric equilibrium of the model, where all firms charge price
p∗.

Though our search results are formulated in terms of costs and prices, they
can be easily interpreted in terms of values and utilities. From Theorem 2.3 it
follows that the optimal stopping rule is characterized by a set of reservation
utility functions ωi(v

b
i−1−p∗), where vb

i is the best utility so far. Each moment
a consumer compares the current option (vi− pi) with the reservation utility
ωi(v

b
i−1 − p∗) and makes her decision. We denote the reservation utility in

the first search round by ω1 without arguments, since there is no history on
which to condition the decision.

Now we construct the demand function for a firm and show that it differs
from the demand function of the original model. Note, that Corollary 2.6
simplifies the solution a lot: we do not need to consider the possibility a
consumer returns to previously visited firms until all firms are visited.

Demand for a firm that charges a price p given the equilibrium price p∗

comes from four different sources. First, some consumers (randomly) come to
the firm in their first search round and immediately buy (if the match value
is below their reservation utility). The demand from this source is given by
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I1 =
1

N
[1−G(w1 + p)] .

Second, other consumers come to the firm for the first time after the first
search round but before the last search round and then buy immediately
when they have first visited this particular firm:

I2 =
1

N

N−1∑
j=2

∫ v

ωj(vb
j−1−p∗)+p

∫ ωj−1(vb
j−2−p∗)

v

. . .

∫ ω1

v

dG(v1) . . . dG(vj).

This expression represents the fact that along the search path each of
the utilities of consuming the good provided by a firm before visiting the
particular firm in question was smaller than the corresponding (step and
history dependent) reservation utility, while the current utility level is larger
than the appropriate optimal stopping level.

Third, some consumers come to the firm in the last search round. Here
the following conditions have to be satisfied. First, the offer is acceptable and,
second, not more than b worse than any other offer. These two conditions
determine the lower limit of the first integral as, first, vi must be larger than
p and, second, the current offer must be more attractive than going back to
any previous offer, i.e., vb

N−1 − p∗ − b < vi − p, or vi > vb
N−1 − p∗ − b + p.

Thirdly, all other offers along the search path have to be rejected yielding
the remaining N − 1 integrals.

I3 =
1

N

∫ v

max{vb
N−1−p∗−b+p,p}

∫ ωN−1(vb
N−2−p∗)

v

. . .

∫ ω1

v

dG(v1) . . . dG(vN).

Fourth, some consumers were at the firm but left it and decided to return
back later. Let us denote si = maxj<i(vj − pj), s1 = 0. Assuming that the
firm we are interested in was visited on search round i this implies that the
following three conditions are satisfied. Firstly, all other firms except the
last one provide worse alternatives and were rejected on the previous search
rounds: vj < min(ωj(sj), vi − pi + p∗) for all j 6= i and j 6= N . Secondly, firm
i was rejected on round i (vi < ωi(si)), but the offer is in principle acceptable
(vi ≥ p). Thirdly, the last firm gives an offer which is worse than the offer of
firm i by more than b: vN < vi − p+ p∗ − b. Thus, summing over all search
paths:
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I4 =
1

N

N−1∑
i=1

∫ ωi(si)

p

∫ vi−p+p∗−b

v

∫ min(ωN−1(sN−1),vi−pi+p∗)

v

. . .

. . .

∫ min(ω1(s1),vi−pi+p∗)

v

dG(v1) . . . dGi−1dGi+1 . . . dG(vN)dGi.

The resulting expression for a firm’s demand is

D(p, p∗) = I1 + I2 + I3 + I4.

Obviously the resulting demand function is quite different from the result
obtained by Wolinsky (1986) (see formula 5 in that paper): the result by
Wolinsky can be obtained by substituting b = 0 and a stationary reservation
price in the demand function. In particular the demand is higher for any
given pair (p, p∗), however the equilibrium price is not necessarily higher.
With or without costly second visits, the equilibrium price is determined by

p∗ = C − D(p∗, p∗)

D′
p(p

∗, p∗)

and so the slope of the demand function together with the demand itself
determine the equilibrium prices.10 Inspection of the above expressions re-
veals that it is extremely difficult to get analytical results for the Wolinsky
model with costly second visits. To show that the equilibrium prices under
costly second visits are indeed different from the Wolinsky paper (i.e. it is
not just that the formula looks different) we have performed a numerical
analysis for the case where the utilities are uniformly distributed over [a0, 1]
and N = 2.11 The table below shows for different values of the search cost
parameter c the equilibrium prices for the Wolinsky model (where b = 0) and
our model for different values of b.

The table reveals a few interesting facts. First, it confirms the overall
result that equilibrium prices are increasing in search cost, i.e., even at pos-
itive cost of second visits, equilibrium prices are clearly increasing in search
cost (whether it is measured keeping the ratio of b to c fixed, or whether
only b is fixed and the impact of the cost of the first visit is investigated).

10We thank Jidong Zhou for pointing out and illustrating this fact.
11The model can be solved numerically for higher values of N , but for each higher value

of N even the numerical solution becomes harder to calculate and requires to set up a
different algorithm for each N .
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Table 1: The equilibrium price as a function of c, b

c/b 0 0.2c 0.4c 0.6c 0.8c 1.0c
0.05 0.429900 0.431155 0.432282 0.433290 0.434186 0.434978
0.10 0.443128 0.444777 0.446062 0.447014 0.447655 0.448005
0.15 0.454977 0.456583 0.457524 0.457852 0.457609 0.456828
0.20 0.465919 0.467188 0.467426 0.466709 0.465098 0.462639
0.25 0.476211 0.476915 0.476157 0.474039 0.470640 0.466018

Second, and more surprising, the impact of costly second visits the equilib-
rium price as a function of b can be both increasing (for small values of c),
and non-monotone (for larger values of c) with equilibrium prices becoming
decreasing in b when b becomes relatively large.

We conclude that the introduction of costly second visits changes the
equilibrium outcomes in the model with true search and these models are
therefore not robust to the introduction of costly second visits.

4 The Stahl model with costly second visits

In this section we analyse the question whether costly second visits imply
different equilibrium behaviour of firms in models where under perfect recall
consumers do not search beyond the first firm. To do so, we focus on the
celebrated model by Stahl (1989).

Recall that Stahl (1989) considers a market where N firms produce a
homogenous good and have identical production costs, which we normalize
to zero. Each firm decides upon the price at which it is going to sell the good
in the market. There are two types of consumers in the market. A fraction
λ of all consumers are “shoppers”, i.e. these consumers like shopping or
have zero search costs for other reasons. We assume that these consumers
know all prices in the market and buy at the firm with the lowest price.
The remaining fraction 1− λ of consumers is uninformed. These consumers
engage in sequential search and get their first price quotation for free. They
will search optimally in the way analyzed in Section 2. The timing in the
model is simple: first, firms simultaneously decide on their prices, where
the strategy of firm i is described by Fi(p). Stahl (and we) concentrate on
symmetric equilibria where Fi(p) = F (p) for all i.

We start with the question whether a “Stahl-type” of pricing strategy, i.e.
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where all firms play mixed strategies with the support up to first round reser-
vation price is indeed an equilibrium in the model with costly second visits.
Then we proceed with the investigation whether other types of equilibria are
possible.

Our first result states that the “Stahl-type” of equilibrium is also an
equilibrium in the model with costly second visits.

Proposition 4.1. There is a mixed strategy equilibrium where all firms
charge prices below the first-round reservation price, which equals the reser-
vation price under perfect recall ρpr.

We can explain this result as follows. Since nobody searched with per-
fect recall, the upper bound of the price distribution (the worst option for
consumers) was not worse than the reservation price (value) under perfect
recall. Thus, provided that firms stick to the same strategy, all the reser-
vation prices under costly second visits are equal to the reservation price
with perfect recall. Therefore, none of the firms individually has a profitable
deviation.

Now, using the results from section 2 we can formally prove the idea
that there are no other symmetric equilibria than the Stahl equilibrium. For
such an equilibrium to exist it must be the case that the upper bound of the
price distribution is strictly larger ρpr. To simplify notation we introduce the
following definition.

Definition 4.2. Let’s denote rk to be the maximum possible reservation price
in the k-th search round, i.e., rk = maxp ρk(p).

The claim that there are no other symmetric equilibria is now proved
in three consecutive steps. Lemma 4.3 shows that there are no equilibria
where the upper bound of the support is smaller than to rN−1. Lemma 4.4
shows that there are no equilibria where the upper bound of the support is
in between rN−1 and rN−1 + b). Finally, Lemma 4.5 shows that there are no
equilibria where the upper bound of the support is above rN−1 + b.

Lemma 4.3. There is no equilibrium price distribution with r1 < p < rN−1.

Now we analyze the “intermediate” case where the upper bound would
be p ∈ [rN−1, rN−1 + b]. The proof of this Lemma is based on the fact that
in order to compensate firms for the loss in demand resulting from charging
above rN−1, the upper bound of the distribution has to be above 2r1−b, which

18



contradicts the relationship between reservation prices that is consistent with
the search perspective as established Lemma 2.8.

Lemma 4.4. There is no equilibrium price distribution with p ∈ [rN−1, rN−1+
b].

Finally, we analyze the case where the upper bound is quite well above
the highest reservation price. This part of the overall proof is the most
complicated part. The idea of the proof is that if the upper bound of the
support is larger that the highest reservation price, it is anyway bounded from
above due to the structure of the upper part of the support of an equilibrium
price distribution. This gives an upper bound on the profits firms receive
from choosing a price equal to the upper bound. On the other hand, we
argue that a price equal to the first-round reservation price should also be
charged in equilibrium. Moreover, we show that this first-round reservation
price should be larger than some lower bound, creating some lower bound
on equilibrium profits. The last part of the proof shows that the upper
bound we construct is smaller than the constructed lower bound yielding an
inconsistency.

Lemma 4.5. There is no equilibrium price distribution with p > rN−1 + b.

These three Lemmas together allow us to state that the “Stahl” equilib-
rium is the unique symmetric equilibrium in the model.

Theorem 4.6. The unique symmetric equilibrium in the model with costly
second visits is the equilibrium characterized in Proposition 4.1.

5 Conclusions

Consumer search models have assumed that consumers have costless access
to prices in stores they already visited, but have to pay a search cost to
visit the store in the first place. We have argued that this assumption is
often not justified and that when there are search cost for visiting a store in
the first place, there are also (smaller) costs of going back to a store (second
visits). We have shown that without the assumption of costless second visits,
the optimal sequential search rule is no longer characterized by a unique,
stationary reservation price. Instead, the reservation price in a particular
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search round is a function of the number of firms that are still not-visited
and the lowest price sampled so far.

We have studied the implications of costly second visits for two strands
of literature, one where -under perfect recall- in the market equilibrium firms
price in such a way that some consumers do search beyond the first firm
and another class where no consumer does so. In the first class of search
models, inspired by Wolinsky (1983), costly second visits imply a change in
the equilibrium behavior of firms where costly second visits may imply both
higher and lower equilibrium prices.

In the class of models ”without true search” we have shown for the cele-
brated paper by Stahl (1989) that the equilibrium analysis is robust to the
assumption of costly second visits. Our analysis shows that the equilibrium
analyzed by Stahl remains an equilibrium under the alternative assumption
of costly second visits and that, in addition, there do not exist other possible
symmetric equilibrium outcomes in the oligopolistic competition setup. Even
though the optimal search behaviour of the consumers can be very compli-
cated, firms behave in such a way that they do not charge prices above the
first search round reservation price. The main reason for this finding is that
if a firm charges a price above this first search round reservation price, it
loses relatively so many consumers that this loss in demand can never be
sufficiently compensated by the increase in price.
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Appendix: Proofs

Lemma 2.1. Let F (p) be a distribution of prices. Then for k = N − 1 the
reservation price ρN−1 is uniquely defined as a function of ps

N−2 ∈ [p, p] by

ρN−1(p
s
N−2) = min

(
ps

N−2 + b, c+ ps
N−2 + b−

∫ ps
N−2+b

p

F (p)dp, p∗N−1

)

where p∗N−1 satisfies the equation

p∗N−1 = c+E(pN |pN < p∗N−1 + b)F (p∗N−1 + b) + (1−F (p∗N−1 + b))(p∗N−1 + b).

Moreover, if the consumer decides to continue searching, the continuation
cost of search, defined as the additional net expected cost of continuing to
search conditional on optimal behaviour after the search is made, is given by

CN−1(p
s
N−1) = c+ ps

N−1 + b−
∫ ps

N−1+b

p

F (p)dp.

Proof. We consider the situation where N − 2 firms have been sampled and
the consumer has decided to make one more search. In this case, the con-
sumer has three options: to buy now at the newly observed price pN−1, to
buy now at lowest price among the previously sampled prices ps

N−2, or to
continue searching. Knowing the value of min(pN−1, p

s
N−2), the last option

gives an expected value of

v − c− E(pN |pN < min((pN−1, p
s
N−2) + b)F (min(pN−1, p

s
N−2) + b)−

(1− F (min(pN−1, p
s
N−2) + b))(min(pN−1, p

s
N−2) + b).

Let us first concentrate on the case where pN−1 ≥ ps
N−2. In this case the pay-

off of continuing to search does not depend on pN−1 so that the reservation
price is given by the point where the consumer is either (i) indifferent between
buying now at pN−1 or buying at ps

N−2 (and paying the additional cost of
going back b) or (ii) indifferent between buying now at pN−1 and continue
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searching. In the first case ρN−1(p
s
N−2) = ps

N−2 + b; in the second case

ρN−1(p
s
N−2) = c+ E(pN |pN < ps

N−2 + b)F (ps
N−2 + b) +

+ (1− F (ps
N−2 + b))(ps

N−2 + b) =

= c+

∫ ps
N−2+b

p

pdF (p) + (1− F (ps
N−2 + b))(ps

N−2 + b) =

= c+ ps
N−2 + b−

∫ ps
N−2+b

p

F (p)dp.

It is easily seen that the first-order derivative of this expression w.r.t. ps
N−2

is positive and strictly smaller than 1. Moreover, it is easily seen that at
ps

N−2 = p, this expression equals ps
N−2+c > ps

N−2+b. Hence, by continuity, for
small values of ps

N−2 the reservation price is given by ρN−1(p
s
N−2) = ps

N−2 + b.

For larger values of ps
N−2 it is ρN−1(p

s
N−2) = c+ ps

N−2 + b−
∫ ps

N−2+b

p
F (p)dp,

at least when ρN−1(p
s
N−2) is still larger than ps

N−2.
Let us next concentrate on the case where pN−1 ≤ ps

N−2. In this case
the consumer will never go back to previously sampled prices and thus the
reservation price is implicitly characterized by the price that solves

pN−1 = c+E(pN |pN < pN−1 + b)F (pN−1 + b) + (1−F (pN−1 + b))(pN−1 + b).

Because of continuity at pN−1 = ps
N−2, the fact that when ps

N−2 < ρN−1(p
s
N−2) <

ps
N−2 +b, the derivative of the reservation price is strictly smaller than 1, and

the fact that left differentiability holds at pN−1 = ps
N−2, we should have that

there is exactly one pN−1 that solves the above equation. This implies that
in the region where pN−1 ≤ ps

N−2, ρN−1(p
s
N−2) is independent of ps

N−2. Thus,
also in this case ρN−1(p

s
N−2) is uniquely defined and non-decreasing in ps

N−2.
Once price pN−1 is observed the continuation costs of search are defined

by

CN−1(p
s
N−1) = c+ E(pN |pN < ps

N−1 + b)F (ps
N−1 + b) +

+ (1− F (ps
N−1 + b))(ps

N−1 + b) =

= c+

∫ ps
N−1+b

p

pdF (p) + (1− F (ps
N−1 + b))(ps

N−1 + b) =

= c+ ps
N−1 + b−

∫ ps
N−1+b

p

F (p)dp.
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Lemma 2.2. If C(z) is a continuous function and for any z in he support
of F (·) 0 ≤ C−(z) ≤ C+(z) < 1 and C(y) > b, where y is the lower bound
of the support of F (y), then C∗(x) is a continuous function and for any x in
the support of F (·) except the lower bound, 0 ≤ C∗−(x) ≤ C∗+(x) < 1.

Proof. Continuity follows immediately from the definition of C∗.
Consider the following inequality: y < min(x + b, C(min(x, y))). Since

C+(z) < 1, this inequality can be rewritten in the form y < g(x) = min(x+
b, C(x), a), where a satisfies equation a = C(a). It is clear that g+(x) ≤ 1.

Thus, we can rewrite C∗ in the following form:

C∗(x) = P(y < g(x))E[y|y < g(x)]+

+ P(y ≥ g(x))E[min(x+ b, C(min(x, y)))|y ≥ g(x)] + c

Now note, that if x ≤ a then given that y ≥ g(x) we get min(x +
b, C(min(x, y)) = min(x+ b, C(x)) which is just g(x) for x < a. Then we get

C∗(x) = P(y < g(x))E[y|y < g(x)] + P(y ≥ g(x))E[g(x)|y ≥ g(x)] + c

and therefore

C∗+(x) =

(
F (g(x))

F (g(x))

∫ g(x)

y

yf(y)dy + (1− F (g(x)))g(x)

)+

=

= [g(x)f(g(x)) + (1− F (g(x)))− g(x)f(g(x))] g+(x) = [1− F (g(x))]g+(x) < 1.

with the second equality coming from the continuity of g(x). It is also
clear that C∗− ≥ 0.

Another case is if x > a. Here, given y ≥ g(x)we get min(x+b, C(min(x, y)) =
C(min(x, y)). Then we get

C∗(x) = P(y < g(x))E[y|y < g(x)]+P(y ≥ g(x))E[C(min(x, y))|y ≥ g(x)]+c

Or
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C∗(x) =

∫ g(x)

y

yf(y)dy +

∫ x

g(x)

C(y)f(y)d(y) +

∫ ∞

x

C(x)f(y)d(y) + c

Now, because of the continuity of g(x) and C(x) again we get

C∗+(x) = [g(x)f(g(x))− C(g(x))f(g(x))]g+(x) + C+(x)(1− F (x))

Now note, that for x > a we have g(x) = a and therefore C(g(x)) = a.
Thus,

C∗+ = C+(x)(1− F (x)) < 1

In the same way

C∗− = C−(x)(1− F (x)) < 1

which completes the proof since C−(x) ≥ 0, 1− F (x) ≥ 0.

Theorem 2.3. The reservation price ρk(p
s
k−1) is uniquely defined for any k

and any ps
k−1 from the support of F (p). Moreover, the time- and history-

dependent reservation prices ρk(p
s
k−1) are nondecreasing in ps

k−1.

Proof. Let Ck(p
s
k) be a continuation cost of additional search on the k-th step

given realizations of (ps
k−1, pk) (recall that ps

k = min(ps
k−1, pk)). Then, given

the optimal search behaviour of the consumer, Ck(p
s
k) is the expected payoff

of two events: either the consumer buys at the next firm to be searched (first
event) or he continues to search onwards or goes back (second event). Thus,
we get that

Ck(p
s
k) = c+ P(pk+1 < min(ps

k + b, Ck+1(p
s
k+1)))·

· E(pk+1|pk+1 < min(ps
k + b, Ck+1(p

s
k+1)))+

+ P(pk+1 ≥ min(ps
k + b, Ck+1(p

s
k+1)))·

· E(min(ps
k + b, Ck+1(p

s
k+1))|pk+1 ≥ min(ps

k + b, Ck+1(p
s
k+1)))

.

We prove that 0 ≤ C−
k (ps

k) ≤ C+
k (ps

k) < 1. The proof is by back-
ward induction. From lemma 2.1 it is easy to see that 0 ≤ C−

N−1(p
s
N−1) ≤
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C+
N−1(p

s
N−1) < 1, thus the base of induction is proven. We will now argue

that this property also holds for any other period. For proving the induction
step we can apply lemma 2.2 by substituting in the equation (2.1) x = ps

k,
y = pk+1, C

∗(x) = Ck(p
s
k), C(min(x, y)) = Ck+1(p

s
k+1). Therefore, from

0 ≤ C−
k+1(p

s
k+1) ≤ C+

k+1(p
s
k+1) < 1 it follows that 0 ≤ C−

k (ps
k) ≤ C+

k (ps
k) < 1

and thus, by induction it follows that for any k it holds that 0 ≤ C−
k (ps

k) ≤
C+

k (ps
k) < 1.

The rest of the proof is straightforward. If pk ≥ ps
k−1, then ρk(p

s
k−1) =

min(ps
k−1 + b, Ck(p

s
k−1)), which is well-defined and unique. Moreover, it is

non-decreasing in ps
k−1 since both ps

k−1 + b and Ck(p
s
k) are non-decreasing in

ps
k−1. If, on the other hand, pk < ps

k−1, then the reservation price is a solution
to the equation pk = Ck(pk), which is unique since Ck(pk) has a slope strictly
smaller than 1. In this case, the reservation price does not depend on ps

k−1

and is thus nondecreasing in ps
k−1.

Proposition 2.5. For all k, p̃k = p̃ = ρpr − b.

Proof. Note that the price p̃k is defined such that after visiting k stores, the
consumer is indifferent between continuing searching and going back to the
lowest-priced store in the sample so far. Therefore, at p̃k the reservation price
ρk(p̃k) = p̃k + b. The expected costs of continuing to search are:

c+ F (p̃k + b)E(pk+1|pk+1 < p̃k + b) + (1− F (p̃k + b))(p̃k + b)

By equating it to the best current option (p̃k +b) and some simplifications
we have also used in previous proofs, we get

c =

∫ p̃k+b

p

F (p)dp.

It follows therefore that p̃k does not depend on k and that (by comparing
this equation to the definition of ρpr) it is actually just equal to ρpr − b.

Corollary 2.6. Assume the consumer behaved optimally on all steps 1 ≤
k ≤ K. Then if K < N, it is never optimal for this consumer to go back.
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Proof. Note, that the option of going back is preferred to continue searching
or stopping only if ps

K < p̃. On the first step any price p1 ≤ ρpr would be
accepted immediately. So, if the consumer continued his search it must be
the case that p1 > ρpr. Given ps

1 > ρpr on the second step any price p2 ≤ ρpr

also would be accepted immediately. Thus, if consumer continued his search
it must be the case that p2 > ρpr. Then by induction if customer reached
step K it must be the case that for any 1 ≤ k ≤ K it was the case that
pk > ρpr. Therefore ps

K > ρpr > p̃ and it is never optimal to go back, except
possibly at the last step.

Proposition 2.7. If ps
k = ps

k−1, then ρk+1(p
s
k) ≥ ρk(p

s
k−1), i.e., reservation

prices are non-decreasing over time. Moreover, ρk+1(p
s
k) > ρk(p

s
k−1) for all

ps
k and ps

k−1 such that ps
k = ps

k−1 > p̃ = ρpr − b .

Proof. Note, that the reservation price essentially represents the cost of the
next-best available alternative to buying now at the shop the consumer is
currently visiting. If the next-best available alternative is to go back to the
lowest-priced firm in the sample before visiting this shop, i.e., ps

k−1 < p̃ the
reservation price is simply independent of the periods, i.e., ρk+1(p

s
k−1) =

ρk(p
s
k−1) = ps

k−1 + b.
Now consider the case where the next-best available alternative is to

continue searching. Let {ρk(p
s
k−1)}N

k=1 be the sequence of the reservation
price functions. Consider the following suboptimal strategy. If on step k the
consumer makes a decision to visit one more firm he either buys at the firm
he visits at step k+1 or continues his search but forgets about this firm later
on (thus, he never comes back to that firm). Let us denote a reservation
price under this suboptimal strategy by ρ′k(p

s
k−1). Then ρk(p

s
k−1) ≤ ρ′k(p

s
k−1).

On the other hand for any ps
k−1 > p̃ we get

ρ′k(p
s
k−1) = F (ρk+1(p

s
k−1))E(pk+1|pk+1 < ρk+1(p

s
k−1) +

+ (1− F (ρk+1(p
s
k−1)))ρk+1(p

s
k−1) < ρk+1(p

s
k−1)

which completes the proof.

Lemma 2.8. For any p in the support of F (p) ρN−1(p)+b

ρpr < 2.
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Proof. Lemma 2.1 states that

ρN−1(p) = min

(
p+ b, c+ p+ b−

∫ p+b

p

F (p)dp, p∗N−1

)
,

where p∗N−1 satisfies the equation

p∗N−1 = c+E(pN |pN < p∗N−1 + b)F (p∗N−1 + b) + (1−F (p∗N−1 + b))(p∗N−1 + b).

Note, that first, ρN−1(p) ≤ p∗N−1, and, second, p∗N−1 satisfies the equation

c+ b =

∫ p∗N−1+b

p

F (p)dp. (5.1)

The reservation price under perfect recall is defined by:

c =

∫ ρpr

p

F (p)dp. (5.2)

From (5.1) and (5.2) it follows that p∗N−1 + b < 2ρpr. Indeed, if this were
not true, by subtracting one equation from the other we get:

b =

∫ p∗N−1+b

ρpr

F (p)dp >

∫ 2ρpr

ρpr

F (p)dp ≥
∫ ρpr

0

F (p)dp > c, (5.3)

which contradicts the assumption b < c. The second inequality stems
from the fact that F (p) in a non-decreasing function, the last form the defi-
nition of ρpr. Therefore p∗N−1+b < 2ρpr and since ρN−1(p) ≤ p∗N−1 the lemma
is proved.

Proposition 2.10. Let K ∈ N. Then for any p ≥ p̃ limN→∞ ρK(p) = ρpr.

Proof. Note, that for any p ≥ p̃, CN−1(p) is fixed and does not depend on
N . On the other hand for any p ≥ p̃ we have

Ck(p) = F (ρk+1(p))E(pk+1|pk+1 < ρk+1(p)) +

+ (1− F (ρk+1(p))E(Ck+1(pk+1)|pk+1 ≥ ρk+1(p)) ≤
≤ C ′

k(p) = F (ρk+1(p))E(pk+1|pk+1 < ρk+1(p)) + (1− F (ρk+1(p))ρk+1(p)
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Note, that C ′
k(p) can be rewritten in the form:

C ′
k(p) = ρk+1(p) + c−

∫ ρk+1(p)

p

F (p)dp

Therefore, following our notation

C
′+
k (p) = ρ+

k+1(p)(1− F (ρk+1(p))) ≤ C
′+
k+1(p)(1− F (ρk+1(p)))

Then

C
′+
K (p) ≤

N−1∏
i=K

C
′+
i+1(p)(1− F (ρi+1(p)))

As 1 − F (ρi+1(p)) < 1 for any p > p̃ and i > K (note, that ρi+1(p) <
ρi+2(p) ⇒ 1− F (ρi+1(p)) > 1− F (ρi+2(p))) we get

lim
N→∞

C
′+
K (p) = 0.

.
Now note that from proposition 3.5 it follows that ρK(p̃) = ρpr and there-

fore CK(p̃) = ρpr. Therefore, since C ′
K(p) is a continuous function we get

that for any p ≥ p̃,

lim
N→∞

C ′
K(p) = ρpr.

Therefore

lim
N→∞

CK(p) = ρpr.

Proposition 4.1. There is a mixed strategy equilibrium where all firms
charge prices below the first-round reservation price, which equals the reser-
vation price under perfect recall ρpr.

Proof. If the upper bound of the support p = ρ1, then maxp ρ1(p) = . . . =
maxp ρN−1(p) = ρpr. Therefore, the equilibrium defined in Stahl (1989) is
an equilibrium if none of the firms has a profitable deviation. The only
(potentially profitable) way for firms to deviate is to charge prices above
ρ1. However, then this firm has a zero demand both from informed and
uninformed consumers. Therefore, a profitable deviation does not exist, and
the Stahl type of equilibrium is indeed an equilibrium.
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Lemma 4.3. There is no equilibrium price distribution with r1 < p < rN−1.

Proof. It is easy to see that given the optimal search behavior all reserva-
tion prices are below or equal to the upper bound of the support of the
distribution. Indeed, suppose p < rN−1. Recall, that

c+ b =

∫ rN−1+b

p

F (p)dp

then

c =

∫ rN−1

p

F (p)dp

and therefore rN−1 = ρpr, which is not possible.

Lemma 4.4. There is no equilibrium price distribution with p ∈ [rN−1, rN−1+
b].

Proof. First, consider profits at r1 and at p:

π(r1) = λ(1− F (r1))
N−1r1 +

1− λ

N
Sr1

and

π(p) = Y p

It is clear, that S ≥ 2−F (r1). If firm charges p > rN−1 it only sells some-
thing, if all other firms set prices at least above r1 (otherwise all consumers
stop on the first step). Therefore, Y < (1− F (r1))

N−1 < (1− F (r1)). Then
it should be that

1− λ

N
(2− F (r1))r1 <

1− λ

N
(1− F (r1))p ≤

1− λ

N
(1− F (r1))(rN−1 + b)

and therefore rN−1+b

r1
> 2 which contradicts Corollary 2.9.

Thus, the proposition is proved.

Lemma 4.5. There is no equilibrium price distribution with p > rN−1 + b.
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Proof. Let π0 be the equilibrium profits. First, consider the profits of a firm
that charges p. As, by construction, p is in the support of the equilibrium
price distribution, equilibrium profits are given by:

π0 =
1− λ

N
(1− F (p− b))N−1p (5.4)

As p > rN−1 + b, a firm charging p does not get any informed consumers
and only those uninformed consumers who have first visited all other firms,
have observed these firms charge prices above rN−1 and then do not want to
go back to these stores because of the cost of a second visit b. If a firm would
charge p− b instead, its profits would be at least equal to(

λ(1− F (p− b))N−1 +
1− λ

N
(1− F (p− 2b))N−1

)
(p− b)

which is larger than or equal to(
λ(1− F (p− b))N−1 +

1− λ

N
(1− F (p− b))N−1

)
(p− b).

Whether or not p−b is in the support of the equilibrium price distribution,
it should be the case that π0 is larger than or equal to this expression, yielding

p ≤ 1− λ+ λN

λN
b (5.5)

Therefore,

π0 < φ(λ,N) ≡ (1− λ)
1− λ+ λN

λN2
b (5.6)

this is the upper bound on the equilibrium profit. Next, we will construct
a lower bound on the equilibrium profit. To this end, consider profits at
r1. It is easy to see that r1 should be in the support of the equilibrium
price distribution. Firstly, by definition of r1 it cannot be the case that the
whole price distribution lies above r1. Secondly, if there is part (or whole) of
probability distribution which lies below r1, then there is proftable deviation
from the largest price in this part of the support to r1, since demand does
not change between this to points. To simplify notation, let F (r1) = m. We
then have that

π0 = λ(1−m)N−1r1 +
1− λ

N
Sr1,
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where S ≥ 1 is the total probability that a consumer buys from the firm,
arising form all possible search paths of consumers. The firm charging r1
gets at least 1/N consumers who randomly arrive at its store in the first
search round and N−1

N
1

N−1
(1−m) of consumers who first visit another store,

observe a price strictly larger than r1 and then randomly visits the store
under consideration. thus, it follows that S ≥ 2 − m. Therefore, for any
p ≤ r0 in the equilibrium support:

π0 = λ(1− F (p))N−1p+
1− λ

N
Sp,

which gives,

F (p) = 1−
(
π0

pλ
− 1− λ

Nλ
S

) 1
N−1

and

p(r1) =
Nλ(1−m)N−1 + (1− λ)S

Nλ+ (1− λ)S
r1.

Now consider a family of probability distributions:

F (p;K) = 1−
(
π0

pλ
− 1− λ

Nλ
S

) 1
K−1

Then for M ≥ K F (p,M) ≤ F (p,K) for every p. Moreover, if we define
r1(K) as ∫ r1(K)+b

p(r1(K))

F (p;K)dp = c+ b,

then we get that the solution of this equation r1(K) is an increasing
function of K, because p(r1(K)) is linearly increasing in r1(K) with slope less
than 1 and F (p,K) is decreasing in K. Therefore, r1(2) ≤ r1(K) for any K.
It is also clear that r1(K) is increasing in c, therefore, r1(2)|c=b ≤ r1(2)|c>b.
Let’s denote r∗ = r1(2)|c=b. It follows that r∗ is implicitly defined by∫ r∗+b

p(r∗)

F (p, 2)dp = 2b

and therefore
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∫ r∗

p(r∗)

F (p, 2)dp ≥ b

or

∫ r∗

p(r∗)

(
1− π0

pλ
+

1− λ

Nλ
S

)
dp =

(
1 +

1− λ

Nλ
S

)
(r∗−p(r∗))− π0

λ
ln

r∗

p(r∗)
≥ b.

As r∗ ≤ r1 for any N, b, c and fixed S,m it follows that

π0 ≥ λ(1−m)N−1r∗ +
1− λ

N
Sr∗. (5.7)

By plugging in the expressions for p(r∗) and this lower bound on π0 we
get

(
1 +

1− λ

Nλ
S

)
(r∗−p(r∗)) =

λN + (1− λ)S

λN

Nλ(1− (1−m)N−1)

λN + (1− λ)S
r∗ = (1−(1−m)N−1)r∗

π0

λ
ln

r∗

p(r∗)
≥ r∗

λ

(
λ(1−m)N−1 +

1− λ

N
S

)
ln

Nλ+ (1− λ)S

(1−m)N−1Nλ+ (1− λ)S

which gives a lower bound for r∗:

r∗ ≥ λb

λ(1− (1−m)N−1)−
(
λ(1−m)N−1 + 1−λ

N
S
)
ln Nλ+(1−λ)S

(1−m)N−1Nλ+(1−λ)S

.

Therefore π0 ≥ ψ0(λ,m,N, S) where

ψ0(λ,m,N, S) ≡
λ
(
λ(1−m)N−1 + 1−λ

N
S
)
b

λ(1− (1−m)N−1)−
(
λ(1−m)N−1 + 1−λ

N
S
)
ln Nλ+(1−λ)S

(1−m)N−1Nλ+(1−λ)S

.

This is the lower bound on equilibrium profits. It is straightforward to verify
that ∂

∂S
ψ0(λ,m,N, S) > 0 and because S ≥ 2−m we get that

π0 ≥ ψ0(λ,m,N, S) > ψ(λ,m,N) ≡ ψ0(λ,m,N, 2−m).
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Now, since π0 < φ(λ,N) and π0 > ψ(λ,m,N) the equilibrium can only
exist if the lower bound on profits is smaller than the upper bound, or
ξ(λ,m,N) ≡ φ(λ,N)− ψ(λ,m,N) > 0.

It is possible to verify that ψ(λ,m,N) is decreasing function of m and
that

lim
m→1

1

(1− λ)b
· ξ(λ,m,N) =

1− λ+ λN

λN2
− λ

Nλ− (1− λ) ln 1−λ+Nλ
1−λ

. (5.8)

Therefore ξ(λ,m,N) > 0 only if the denominator of the second fraction
in (5.8) is negative, which is equivalent to

ln
Nλ+ 1− λ

1− λ
>

λN

1− λ
, (5.9)

or, the denominator is positive, but the expression still holds, which is equiv-
alent to

ln
Nλ+ 1− λ

1− λ
<

λN

1− λ+Nλ
. (5.10)

Let us start with (5.9). It is clear that at λ = 0 both the right hand side
and the left hand side of (5.9) are equal to 0. However,

∂
∂λ

(
ln Nλ+1−λ

1−λ
− λN

1−λ

)
=

− λN2

(1−λ)2(1−λ+Nλ)
< 0

Thus, the left hand side of (5.9) increases slower than the right hand side,
and thus (5.9) can never hold.

Now we proceed with (5.10). Again, at λ = 0 both the right hand side
and the left hand side of (5.10) equal to 0. If we take the derivative of the
difference again we get

∂
∂λ

(
ln Nλ+1−λ

1−λ
− λN

1−λ+Nλ

)
=

λN2

(1−λ)(1−λ+Nλ)2
> 0.

Therefore, the left hand side of (5.10) increases faster than the right hand
side, and so (5.10) cannot hold either. Therefore, there is no equilibrium with
p > rN−1.
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