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Abstract
This papers studies the co-evolution of networks and play in the

context of finite population potential games. Action revision, link
creation and link destruction are combined in a continuous-time
Markov process. I derive the unique invariant distribution of this
process in closed form, as well as the marginal distribution over ac-
tion profiles and the conditional distribution over networks. It is
shown that the equilibrium interaction topology is an inhomoge-
neous random graph. Furthermore, a characterization of the set of
stochastically stable states is provided, generalizing existing results
to models with endogenous interaction structures.
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Network co-evolution, Random graphs
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1 Introduction

The analysis of social networks has recently gained interest in various

fields in the sciences and social sciences. By now there is a rich literature
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on social networks in economics; the textbooks by Jackson (2008) and

Vega-Redondo (2007) give a concise overview on this emerging field. Re-

cently, tools from evolutionary game theory have been used to study the

co-evolution of networks and play. Models in this vein are Jackson and

Watts (2002), Goyal and Vega-Redondo (2005), and Hojman and Szeidl

(2006). Another type of model, which is more in the tradition of statis-

tical physics, puts more weight on modelling the evolution of the net-

work, without paying too much attention to the role of strategic inter-

actions. Prominent examples are Ehrhardt et al. (2006; 2008a;b). This

paper aims to combine these two streams of literature in a very simplis-

tic model. I present a stochastic co-evolutionary model which includes

three sub-processes: action adjustment, link creation, or link destruc-

tion. These three sub-processes are combined into one continuous-time

Markov process called a co-evolutionary model with noise. For posi-

tive noise levels the process is ergodic. For the class of potential games

(Monderer and Shapley, 1996) many fundamental characteristics of the

system are explicitly computable. Key to all the results in this paper is

the closed-form expression of the invariant distribution. This probability

distribution describes the long-run behavior of the system in two com-

plementary ways. First, it gives us complete information on the joint

probability distribution over action profiles and networks which governs

the “equilibrium” of the stochastic dynamics. Second, by virtue of ergod-

icity, it gives us complete information which states are more frequently

observed over time compared to others. From the invariant distribution

one can deduce the conditional probability distribution over networks

for a fixed profile of actions. In the parlance of random graph theory

this gives us the ensemble of random graphs. The interesting result is

that the model generates so-called inhomogeneous random graphs. Inhomo-

geneous random graphs are a straightforward extension of the classical

random graph model proposed by Erdös and Rényi (1960), where the

probability with which two vertices are linked depend in some way on
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the characteristics of the vertices. Söderberg (2002) and Bollobás et al.

(2007) are models in this direction. These papers fix the edge success

probability at the outset. On the contrary, in the present model the edge

success probability is derived from the long-run equilibrium of the sys-

tem, hence is explained endogenously. To the best of my knowledge, this

is a new result, which opens the way to interesting linkages between evo-

lutionary game theory and the theory of random graph dynamics. This

relationship is further explored in the companion article Staudigl (2009b).

Next, I provide an expression for the marginal distribution over action

profiles in the population. This measure is interesting if one is not in-

terested in the effects of the interaction structure. Finally, we explore

the well-known relationship between potential maximizers and stochas-

tic stability (for early work in this direction see for instance Blume, 1993,

Young, 1998, ch. 6). A fairly general argument is provided, showing

that as noise vanishes the invariant distribution concentrates on the set of

potential maximizers. At first sight, this might not be a too surprising re-

sult. However, former models were only concerned with fixed interaction

structures, so the conclusion of our theorem extends the previous ones.

Moreover, the argument presented in this paper is much more general

than the proofs in the just mentioned literature. This technique allows

to study the low-noise behavior of the invariant distribution also in more

complicated models, as for instance Staudigl (2009a). Since the class of

potential games is rather narrow, I also sketch briefly how the results ob-

tained extend if the potential game assumption is dropped. In Staudigl

(2009b) a rather general class of co-evolutionary dynamics is presented,

and I refer to this paper for further details. However, many games arising

in economic applications have this special structure. The most prominent

class of potential games are congestion games (Rosenthal, 1973). They

also arise in Cournot oligopoly models with linear inverse demand func-

tions (Monderer and Shapley, 1996). Recently, Sandholm (2007) studies

a mechanism design problem where the planner can construct a pricing
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scheme, so that the transformed game is a potential game, which leads,

in his model, to the long-run selection of socially efficient outcomes. Ui

(2000) has shown interesting interconnections between the Shapley value

and potential functions, and Morris and Ui (2005) use potential methods

to study equilibria which are robust to incomplete information.

Closest to the present work is a recent paper by Ehrhardt et al. (2008b),

who study a similar dynamic process. Their link formation mechanism is

designed in such a way that only players who play the same action form

a link. This is interpreted as a pure homophily based linking process.

They also characterize the induced ensemble of random graphs, and find

that the network consists of disjoint components, each following the dis-

tribution of an Erdös-Rényi ensemble. This paper extends their result

by allowing for much more general behavioral rules, both in the action

adjustment and the link creation process, which results in a richer inter-

action structure.

The rest of the paper is organized as follows. In Section 2, the model

framework is explained in detail. In sections 3 and 4, I derive the asymp-

totic characteristics of the model. Sections 5 and 6 present an analysis

of the joint distribution of action profiles and social networks as well as

the induced marginal distributions. Section 7 characterizes stochastically

stable states. Section 8 sketches a general class of stochastic processes on

the co-evolution of networks and play. A, found at the end of the paper,

collects lengthy and technical proofs.

2 The model

Consider a finite population of individuals i, j, k ∈ I = {1, 2, . . . , N},

members of which are called players or agents. Each player can choose

one out of q different pure actions from the set A = {a1, a2, . . . , aq}. I

will also say “playing action r” with the understanding that this is action

ar. An action profile (configuration) is a tuple α = (αi)i∈I ∈ AI . When

4



individual i meets individual j, they engage in a 2-player game defined

by the payoff function u : A2 → R. We assume that this function is

symmetric in the following sense:

Assumption 1.

(∀a, a′ ∈ A) : u(a, a′) = u(a′, a) (2.1)

Games with this special property are known as (exact) potential games

(Monderer and Shapley, 1996). This defines the base game Γb := (A, u).

The interaction structure is modeled as an undirected graph (network).

Let I (2) denote the set of unordered pairs of players. There are N(N −
1)/2 such pairs. A graph is a pair G = (I , E), where we interpret I as

the set of vertices (nodes) and E = E(G) ⊆ I (2) the set of edges (links). An

edge is an unordered pair of players (i, j) ≡ (j, i) with the interpretation

that if (i, j) ∈ E , then players i and j play against each other. If E = I (2)

we obtain the complete graph on I , denoted by Gc. In this graph each indi-

vidual is connected to everybody else and we obtain the standard global

matching model. If E = ∅ then we speak of the empty graph Ge. A graph

G′ = (I ′, E ′) is a subgraph of G = (I , E) if I ′ ⊆ I and E ′ ⊆ E . For

two disjoint subsets of players V ,V ′ ⊂ I denote the set of edges that join

players from V with players belonging to V ′ (and vice-versa) as E(V ,V ′).

All graphs on I differ only in terms of their edge set E . Let G[I ] de-

note the set of graphs that can be formed on the vertex set I . It is of-

ten more convenient to work with networks via the function g : I (2) ×
G[I ] → {0, 1}, assigning to each pair (i, j) ∈ I (2) the value g((i, j), G) ≡
g((j, i), G) ≡ gi

j(G) ∈ {0, 1}. If gi
j(G) = 1 then players i and j are linked

under the graph G and play against each other. Thus, we have the iden-

tity E(G) = {(i, j) ∈ I (2)|gi
j(G) = 1} for all graphs G ∈ G[I ]. It follows

that every graph G ∈ G[I ] can be identified through the realization of

links g(G) = (gi
j(G))1≤i<j≤N ∈ {0, 1}I (2)

. In view of this equivalence, we

will identify the space G[I ] ≡ G as the set of all possible edge realizations

{0, 1}I (2)
, members of which are vectors g = (gi

j)1≤i≤j≤N. The number of

edges of the graph g is e(g) := ∑N
i=1 ∑j>i gi

j.

5



A population state is the pair ω = (α, g) ∈ Ω ≡ AI × G. It contains

an action profile and a network. Let αav
i := (α1, . . . , αi−1, av, αi, . . . , αN).

Let g ⊕ (i, j) denote the network that we obtain if the (previously non-

existing) edge connecting players i and j is created, and g	 (i, j) be the

network resulting from the deletion of the edge connecting players i and

j.

Given a population state ω, define for every player i ∈ I the (open) inter-

action neighborhood

N i(ω) =
q⋃

r=1

{j ∈ I|gi
j = 1 & αj = ar}.

The set N i ∪ {i} ≡ N̄ i defines the closed interaction neighborhood of a

player. There are κi
r(ω) := |{j ∈ I|gi

j = 1 & αj = ar}| r-players against

which player i has to play. The total number of games in which player

i is involved is given by his degree κi(ω) = ∑
q
r=1 κi

r(ω). From all these

interactions, player i receives the total payoff

π(α, g) ≡ πi(ω) := ∑
j∈N i(ω)

u(αi, αj) =
q

∑
r=1

u(αi, ar)κi
r(ω). (2.2)

In analogy with standard population games, I will call the collection of

payoff functions π = (πi)i∈I the structured population game.

3 Co-evolution with noise

Consider the family of perturbed Markov processes

Mβ = (Ω,F , P, (Yβ(t))t≥0, β ∈ R+,

where Ω is the finite state space of pairs ω = (α, g), F a suitably chosen

σ-algebra (e.g. 2Ω), P : F → [0, 1] a probability measure, and (Yβ(t))t≥0 a

family of Ω-valued random variables indexed by a noise parameter β ≥ 0

and a continuous time parameter t. Mβ will define a co-evolutionary
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model with noise. The time evolution of this process can be studied by

its infinitesimal generator. Define the operator ηβ :=
[
ηβ(ω → ω′)

]
ω,ω′∈Ω

whose components are mappings ηβ : Ω×Ω → R satisfying 0 ≤ ηβ(ω →
ω̂) < ∞ for all ω̂ 6= ω, and ∑ω̂ ηβ(ω → ω̂) = 0 for all ω ∈ Ω. The value

ηβ(ω → ω̂) is interpreted as the rate with which the process moves from

state ω to some other state ω̂.1 The generator is defined by the following

sub-processes.

Action update: The way how players update their actions is modeled as

in Blume (2003) or Hofbauer and Sandholm (2007). Players are en-

dowed with independent Poisson alarm clocks, ringing at the com-

mon rate ν > 0. The total rate of this subprocess is thus Nν. Con-

ditional on the event of a revision opportunity, player i receives the

chance to adjust his action with probability 1/N. When player i gets

a revision opportunity he calculates the current expected payoff of

all of his pure actions, given the set of neighbors, but his computa-

tions are perturbed by some random shock εi = (εi
a)a∈A. Assume

that these perturbations are i.i.d. type 1 extreme value distributed,2

and that i selects action ar ∈ A with probability

bi(ar|ω) := P

(
ar ∈ arg max

av∈A
(πi(αav

i , g) + εi
av)|ω

)
. (3.1)

Computing this probability explicitly leads to

bi,β(ar|ω) =
exp(πi(αar

i , g)/β)

∑
q
v=1 exp(πi(αav

i , g)/β)
. (3.2)

1In a very small time interval [t, t + h), the probability that the process moves from

ω to ω̂ is then approximately ηβ(ω → ω̂)h.
2This formulation of stochastically perturbed payoffs has a very long tradition in the

theory of discrete choice, see e.g. Anderson et al. (1992). For a more recent treatise and

alternative interpretation see van Damme and Weibull (2002). The cumulative distrib-

ution function of a doubly exponential distributed random variable with mean 0 and

variance β2π2

6 is F(x) = exp [− exp(−x/β− γ)]. Beside its importance in theoretical

economics, it has also been used in experimental studies, see for instance McKelvey and

Palfrey (1995), where it is known as the “quantal response function”.
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The transition ω = (α, g) → ω̂ = (αar
i , g) 6= ω proceeds therefore at

a rate

ηβ(ω → ω̂) = νbi(ar|ω). (3.3)

Link creation: Here ideas of the stochastic-actor model, developed in Sni-

jders (2001), are used. The key-ingredients of this model are a rate

function, governing the pace at which individuals update their con-

nections, and an objective function, capturing the preferences of the

individuals concerning link creation. For the rate function, I make

the following assumption:

Assumption 2. The rate functions of individuals take the form

(∀i ∈ I)(∀ω ∈ Ω) : λi,β(ω) = ∑
k/∈N̄ i(ω)

exp(u(αi, αk)/β). (3.4)

This formulation reflects the intuitive idea that players, who expect

a large profit from interactions with currently unknown players,

should be relatively fast in creating their network. Let

λ̄β(ω) := ∑
i∈I

λi,β(ω) = 2 ∑
i,j>i

exp(u(αi, αj)/β)(1− gi
j),

so that the conditional probability that player i receives a link cre-

ation opportunity is simply λi,β(ω)/λ̄β(ω). Conditional on this

event, player i screens the set of unknown players (i.e. those player

who are not neighbors yet) and picks one player from this set who

yields the highest per-interaction payoff, perturbed by a noisy signal

ζ i = (ζ i
k)k/∈N̄ i(ω). Hence, the conditional probability that i selects j

for a linking partner is

wi
j(ω) := P

(
u(αi, αj) + ζ i

j ≥ u(αi, αk) + ζ i
k ∀k /∈ N̄ i|ω

)
. (3.5)

If we assume that the random perturbation follows the same dis-

tributional law as in the action adjustment process one obtains the

logit formula

(∀i ∈ I)(∀j /∈ N̄ i(ω)) : wi,β
j (ω) =

exp(u(αi, αj)/β)
∑k/∈N̄ i(ω) exp(u(αi, αk)/β)

. (3.6)
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For general link creation probabilities (3.5), the rate of transiting

from state ω = (α, g) to state ω̂ = (α, g⊕ (i, j)) is

ηβ(ω → ω̂) = λi(ω)wi
j(ω) + λj(ω)wj

i(ω). (3.7)

Using Assumption 2 and (3.6) gives us

ηβ(ω → ω̂) = 2 exp(u(αi, αj)/β). (3.8)

Link destruction: To make the dynamic interesting, we need a process

that counteracts the creation of links. Following recent papers by

Ehrhardt et al. (2006; 2008b), I assume that there exists an exogenous

random shock removing any of these links. This unguided drift

term models the phenomenon of environmental volatility, and is a key

ingredient of the model. It captures the idea that connections are not

everlasting, but as time goes by and players change their behavior,

the profitability of links will also change, making some connections

obsolete. The rate at which the link (i, j) disappears is given by

ξ > 0.3 Hence, in a very small time interval [t, t + h) the probability of

survival of a currently existing edge (i, j) is ξh + o(h). The expected

life time of an edge is 1/ξ. Hence, starting from ω = (α, g), the

transition rate to ω̂ = (α, g	 (i, j)) is

ηβ(ω → ω̂) = ξ. (3.9)

The last case we have to consider is a “phantom switch”, i.e. the transition

rate ηβ(ω → ω). Define the rate of such an event as

ηβ(ω → ω) = −Λ(β,ξ)(ω), (3.10)

3The assumption of constant link decay rates is less restrictive as it may seem. Since

link creation probabilities are payoff driven, players will be more likely to establish

links which are associate with higher per-interaction payoff. Hence, if a highly valu-

able link disappears, ceteris paribus, there is a relatively high probability that it will be

re-established in future periods. Extending to heterogeneous link destruction rates is

straightforward. See Staudigl (2009a).
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where

Λ(β,ξ)(ω) := ν
N

∑
i=1

∑
a∈A\{αi}

bi,β(a|ω) + ξe(g) + λ̄β(ω). (3.11)

To summarize, the infinitesimal generator of the co-evolutionary model

with noise Mβ is defined as

ηβ(ω → ω̂) =



νbi,β(a|ω) if ω̂ = (αa
i , g) 6= ω,

2 exp(u(αi, αj)/β) if ω̂ = (α, g⊕ (i, j)),

ξ if ω̂ = (α, g⊕ (i, j)),

−Λ(β,ξ)(ω) if ω̂ = ω,

0 otherwise.

(3.12)

It is easily verified that ∑ω̂∈Ω ηβ(ω → ω̂) = 0 for all ω ∈ Ω. For β > 0

we observe that ηβ(ω → ω′) > 0 for ω 6= ω′, meaning that there can be

no single state that is absorbing. Irreducibility of the generator follows

from this easily. Furthermore, in view of the finiteness of the state space,

positive recurrence of the process follows. Hence, the Markov process is

ergodic.

4 The invariant distribution

By ergodicity, the co-evolutionary model with noise admits a unique

invariant distribution µ(β,ξ) = (µ(β,ξ)(ω))ω∈Ω. In terms of the genera-

tor ηβ, this probability distribution satisfies the global balance equation

µ(β,ξ)ηβ = 0. Determining this probability vector is facilitated in the spe-

cial class of reversible Markov processes. Given the model Mβ with gen-

erator ηβ, we can define for a given T > 0 its time reversal as the process

(Ŷβ(t))0≤t≤T, with Ŷβ(t) = Yβ(T − t). A Markov process (Yβ(t))t≥0 is

said to be reversible, if its time reversal has the same distribution as the

original process (see Stroock, 2005, ch. 5). In our case, reversibility will

appear as an equilibrium phenomenon (i.e. (Y(t)β)t≥0 is reversible in equi-

librium). The detailed balance condition, relative to the infinitesimal gener-
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ator ηβ, gives a sufficient condition for µ(β,ξ) being an invariant distrib-

ution. The measure µ(β,ξ) is in detailed balance with the generator ηβ if

(∀ω, ω̂ ∈ Ω) : µ(β,ξ)(ω)ηβ(ω → ω̂) = µ(β,ξ)(ω̂)ηβ(ω̂ → ω). (4.1)

A probability distribution satisfying the detailed balance condition (4.1)

must be an invariant distribution. Conversely, a probability distribu-

tion satisfying condition (4.1) implies reversibility of the corresponding

Markov process.

Theorem 4.1. Given (β, ξ) � (0, 0), the unique invariant distribution of the

co-evolutionary model with noise Mβ equals

(∀ω ∈ Ω) : µ(β,ξ)(ω) =
1

Z(β,ξ)

N

∏
i=1

∏
j>i

[
2
ξ

exp
(

u(αi, αj)
β

)]gi
j

, (4.2)

where Z(β,ξ) ≡ ∑ω∈Ω ∏N
i=1 ∏j>i

[
2
ξ exp

(
u(αi,αj)

β

)]gi
j

is the the partition func-

tion.

Proof. See Appendix A.

A consequence of ergodicity is the convergence of long-run averages of

sample paths to the invariant distribution. Formally, this means

P

(
lim
t→∞

1
t

∫ t

0
1{Yβ(s)=ω} d s = µ(β,ξ)(ω)

)
= 1,

where 1A is the indicator function of a measurable set A ⊆ Ω, and for

any integrable function f : Ω → R

P

(
lim
t→∞

1
t

∫ t

0
f (Yβ(s)) d s = Eµ(β,ξ) [ f ]

)
= 1,

where Eµ(β,ξ) [ f ] = ∑
ω∈Ω

f (ω)µ(β,ξ)(ω) is the expected value of the function

f under the invariant distribution µ(β,ξ).

Observe that for β > 0 µ(β,ξ) is a full support distribution on Ω. Thus,

the only thing one may be able to deduce from it is to classify a subset of
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states which receive more mass than others. The subsequent chapters are

devoted to this exercise.

Define an aggregate utility index as the sum of individual utilities,

(∀ω ∈ Ω) : U(ω) =
N

∑
i=1

πi(ω) = 2
N

∑
i=1

∑
j>i

u(αi, αj)gi
j (4.3)

Efficiency, in terms of this index, is a state in the argmax set of (4.3).

Lemma 4.1 shows that one can construct from eq. (4.3) a real-valued

function, which captures the effects of individual utilities due to a single

change in the state variable ω. In game theory such a function is known

as an exact potential (Monderer and Shapley, 1996). Since the state variable

encompasses the connections among the players, but these are not part

of the strategy of a single player, a potential function for π = (πi)i∈I is

not a potential function in its game-theoretic sense. However, it fulfills

the same role in the dynamic analysis to come as a conventional potential

function in the sense of Monderer and Shapley (1996), and so we will still

call such a function a potential function for the structured population

game, having in mind that this does not conform with its established use

in game theory.

Lemma 4.1. The structured population game (πi)i∈I is a potential game with

exact potential function

(∀ω ∈ Ω) : P(ω) =
1
2

N

∑
i=1

πi(ω) =
N

∑
i=1

∑
j>i

u(αi, αj)gi
j. (4.4)

Proof. We have to show that

P(αav
i , g)− P(α, g) = πi(αav

i , g)− πi(α, g), and

P(α, g⊕ (i, j))− P(α, g) = u(αi, αj)

Let us start with the event of a link creation between players i and j. The

destruction of such a link has the same consequences. A direct computa-

tion shows that

P(α, g⊕ (i, j))− P(α, g) =
1
2
(u(αi, αj) + u(αj, αi)) = u(αi, αj),
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by symmetry of the payoff function u. Now, concerning a change in action

of player i, we now have to take care of the environment of this player.

All players in the set I \ N̄ i(ω) are not affected by the change in player

i’s action. Fix the state ω and suppose player i switches to action av. The

new state is therefore ωav
i , and we can write

U(αav
i , g) =

N

∑
k=1

∑
j:gk

j =1

u(αk, αj)

= U(α, g) + ∑
j:gi

j=1

[u(av, αj)− u(αi, αj)] + ∑
`:g`

i =1

[u(α`, av)− u(α`, αi)]

= U(α, g) + 2 ∑
j:gi

j=1

[u(av, αj)− u(αi, αj)]

Now consider the function H : Ω×R+ ×R++ → R, defined as

H(ω, β, ξ) := P(ω) + βe(ω) log
(

2
ξ

)
(4.5)

This function acts as a a graph Hamiltonian for the invariant distribution.4

One sees that there are two components combined in the graph Hamil-

tonian. The first component is the potential function of the game, which

measures (up to a linear scaling) the aggregate utility of the population.

The second part is a size measure of the interaction graph, weighted by

the volatility parameter ξ. If ξ > 2 then too large graphs (measured by

the number of edges) lead to a reduction in the value of the Hamiltonian.

This effect is in turn weighted by the noise level β. Proposition 4.1 shows

that it contains all the information one needs to determine the invariant

distribution of the process Mβ. Its proof is straightforward and therefore

omitted.
4For a general discussion of this concept see Park and Newman (2004). In statistical

mechanics a Hamiltonian is, roughly, a measure of the energy of a system. In the

simplest case it is the sum of the potential energy and kinetic energy. This description

fits also perfectly to the form of the Hamiltonian (4.5).
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Proposition 4.1. The stationary distribution of the co-evolutionary model with

noise Mβ is the Gibbs measure

µ(β,ξ)(ω) =
e

1
β H(ω,β,ξ)

∑ω̂∈Ω e
1
β H(ω̂,β,ξ)

. (4.6)

From the definition of the Hamiltonian (4.5), one can see that a large value

of β, combined with ξ > 2, implies that too large graphs will not receive

too much weight in the long run. A small value of β means in turn that,

for any given volatility level ξ, the penalty of densely connected societies

has a small influence on the invariant distribution. It is exactly this trade-

off between β and volatility ξ which makes the form of the invariant

distribution interesting. High environmental volatility, accompanied with

moderate noise will lead to a sparsely connected society.

5 The ensemble of random graphs

Given ω = (α, g) ∈ Ω, define the set of r-players as Ir(ω) := {i ∈ I|αi =
ar}. Sets of this form will be called action classes. Every state assigns

each player to a single action class. Hence, the family {Ir}1≤r≤q defines

a partition on the set I . Fix a partition I ≡ {Ir}1≤r≤q and define the

subspace

Ω(I) := {ω ∈ Ω|Ir(ω) = Ir, 1 ≤ r ≤ q}.

We say that state ω agrees with the action partition I , if it is contained

in Ω(I). Note that the definition of the set Ω(I) does not say anything

about network structures. Once we condition on an action partition, we

fix a strategy configuration α ∈ AI , but allow for all potential networks.

In other words, µ(β,ξ)(ω|I) ≡ µ(β,ξ)(g|α).

Given a partition I , the product operator ∏N
i=1 ∏j>i has the same mean-

ing as the product operator ∏
q
r=1 ∏i∈Ir(ω) ∏v≥r ∏j∈Iv(ω);j>i. This implies

that we are able to re-formulate the stationary distribution in terms of
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action classes, so that for all ω ∈ Ω

µ(β,ξ)(ω|I) ∝
q

∏
r=1

∏
i∈Ir

{
∏
v≥r

∏
j∈Iv;j>i

[
2
ξ

exp
(

u(ar, av)
β

)]gi
j
}
1{ω∈Ω(I)}.

(5.1)

For proper normalization of this measure one has to compute the total

mass received by the set Ω(I), which is

µ(β,ξ)(Ω(I)) = ∑
g∈G

µ(β,ξ)(α, g).

Let er|v(ω) := ∑i∈Ir(ω) ∑j∈Iv(ω),j>i gi
j, denote the number of edges con-

necting r-players with v-players at state ω, and define for all (i, j) ∈ I (2)

p(β,ξ)
i,j (ω) :=

2 exp(u(αi, αj)/β)
2 exp(u(αi, αj)/β) + ξ

, θ
(β,ξ)
i,j (ω) := log

 p(β,ξ)
i,j (ω)

1− p(β,ξ)
i,j (ω)

 .

Setting θ(β,ξ)(ω) := (θ
(β,ξ)
i,j (ω))(i,j)∈I (2) , we get

1
β

H(ω; β, ξ) =
1
β

N

∑
i=1,j>i

u(αi, αj)gi
j + log(2/ξ)

N

∑
i=1,j>i

gi
j

=
N

∑
i=1,j>i

[
log(exp(u(αi, αj)/β) + log(2/ξ)

]
gi

j

=
N

∑
i=1,j>i

θ
(β,ξ)
i,j (ω)gi

j =: h[ω, θ(β,ξ)(ω)]

Given an action partition I , consider the subgraph Gr|v := (Ir ∪ Iv, Er|v),

where Er|v = E(Ir, Iv). For all (i, j) ∈ [Ir ∪Iv](2), the numbers p(β,ξ)
i,j , θ

(β,ξ)
i,j

are constant, so that we may write p(β,ξ)
r|v and θ

(β,ξ)
r|v . Lemma A.1 in Ap-

pendix A shows that

µ(β,ξ)(Ω(I)) ∝
q

∏
r=1

∏
v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)
1+δr,v (5.2)

where δx,y = 1 if, and only if, x = y, and 0 otherwise. The main result of

this section is then the following result.
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Theorem 5.1 (The Erdös-Rényi Decomposition). Fix an action partition I
and (β, ξ) � (0, 0).

(a) The measure (5.1) is the conditional distribution over graphs g ∈ G and

factorizes to

µ(β,ξ)(ω|I) = ∏
r=1,v≥r

[
p(β,ξ)

r|v

]er|v(ω) [
1− p(β,ξ)

r|v

] |Ir |(|Iv |−δr,v)
1+δr,v −er|v(ω)

.

(5.3)

(b) The statistical ensemble of subgraphs G[Ir ∪ Iv] is an Erdös-Rényi graph

with edge success probability

p(β,ξ)
r|v =

2 exp(u(ar, av)/β)
2 exp(u(ar, av)/β) + ξ

.

Proof. See Appendix A.

Part (a) of the Theorem shows that the equilibrium ensemble of graphs

boils down to an inhomogeneous random graph (Söderberg, 2002, Bollobás

et al., 2007). For an arbitrary action profile eq. (5.3) gives us complete in-

formation about the probability with which an r-strategist interacts with

players from other action classes. Thus, if one wants to make a prob-

abilistic prediction about the interaction pattern between r-players and

v-players, all one has to do is to look at the factor

[p(β,ξ)
r|v ]er|v(ω)

[
1− p(β,ξ)

r|v

] |Ir |(|Iv |−δr,v)
1+δr,v −er|v(ω)

what is exactly the probability measure of the random graph model of

Erdös and Rényi (1960). Since this the interactions among r and v-players

follow a Bernoulli distribution, the expected number of interactions, given

the profile α, is determined by the formula

Eµ(β,ξ) [er|v|I ] =
|Ir|(|Iv| − δr,v)

1 + δr,v
p(β,ξ)

r|v .
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For the covariances we see that

Covµ(β,ξ) [er|v, er|l|I ] =

{
0 if v 6= l,

|Ir|(|Iv|−δr,v)
1+δr,v

p(β,ξ)
r|v (1− p(β,ξ)

r|v ) if v = l.

The fact that the total graph can be regarded as a collection of inde-

pendent Erdös-Rényi graphs (with different edge success probabilities)

makes it possible to derive a probability distribution for the degree of a

randomly selected individual i ∈ Ir. Since κi = ∑
q
v=1 κi

v, we first have

to determine the distribution of the random variables κi
v, 1 ≤ v ≤ q.

Theorem 5.1 tells us that κi
v has a Binomial distribution with parameters

(|Iv| − δr,v, p(β,ξ)
r|v ) (see e.g. Bollobás, 1998).

Proposition 5.1. Given an action partition I pick a player i ∈ Ir and let

nv := |Iv|, 1 ≤ v ≤ q. The degree of player i is distributed according to the

mass function

fr,κ(k|I) :=
1

R(β,ξ)(I) ∑
k1+...+kq=k

k!
k1! · · · kq!

q

∏
v=1

[
f (β,ξ)
r|v (kv)

]kv
, (5.4)

f (β,ξ)
r|v (kv) :=

(
nv − δr,v

kv

)1/kv
 p(β,ξ)

r|v

1− p(β,ξ)
r|v

 . (5.5)

where R(β,ξ)(I) is the normalizing factor.

Proof. See Appendix A.

Observe that for the degree distribution it suffices to know the number of

players in the various action classes, not their identity. Hence, all action

partitions I that put the same number of players into the various classes

are equivalent in terms of the connectivity structure of the network. Thus,

instead of looking at a specific action partition I , it is sufficient to work

with less information contained in a tuple n = (n1, . . . , nq) such that nv =
|Iv| for all v and ∑

q
v=1 nv = N.
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Example 1. Consider the coordination game

a1 a2

a1 (3, 3) (0, 0)

a2 (0, 0) (1, 1)

We will examine the degree distribution for 1-players under various parameter

constellations (β, ξ) for the frequency vector n = (80, 20). Figure 1 shows

the degree distribution for a typical 1-player under the parameter constellation

(β, ξ) = (0.5, 70). The mean degree of 1-players is seen to be 78. However, we

Figure 1: Degree distributions for 1-players under various parameter con-

stellations. The triple at the top of each plot is (β, ξ, k̄), i.e. the noise and

volatility rate and the resulting average degree for this action class. The

point marks the position of the mean of this distribution.

cannot say to which action class most of this links lead to since we only look at

the distribution of the total degree κ. Applying Theorem 5.1, we get complete

information about the inter-group connectivity pattern by inspecting the two

numbers

p1|1 =
2 exp(3/β)

2 exp(3/β) + ξ
, p1|2 =

2
2 + ξ

Note that p1|1 → 1 as β → 0, implying that in this limit only links within the

same action class exist with probability 1. Consequently, for small noise levels

the majority of the 78 neighbors will be 1-players as well. For larger levels of

noise (the right figure with β = 1.5) we observe a drastically smaller average
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degree. This implies that the effect of the parameter values β and ξ goes into the

same direction. Increasing β with constant ξ will have qualitatively the same

effect as increasing ξ with constant β.

6 An invariant distribution over action profiles

Having derived a probability distribution on the set of networks, we will

now derive a probability distribution on the set of action frequency vec-

tors n = (n1, . . . , nq). Let D := {n ∈ Nq|∑q
r=1 nr = N} denote the

set of admissible action frequency vectors and define the correspondence

Ψ : D → 2Ω as Ψ(n) = {ω ∈ Ω|(∀r = 1, 2, . . . , q) : |Ir(ω)| = nr}.

Proposition 6.1. The invariant distribution over action frequency vectors n ∈
D is given by the mapping ρ(β,ξ) = µ(β,ξ) ◦Ψ : D → [0, 1], defined as

ρ(β,ξ)(n) := K−1 N!

∏
q
r=1 nr!

q

∏
r=1

[
z(β,ξ)

r (n)
]nr

, (6.1)

where

z(β,ξ)
r (n) := ∏

v≥r

[
1 +

2
ξ

exp
(

u(ar, av)
β

)] nv−δr,v
1+δr,v

, 1 ≤ r ≤ q (6.2)

K = ∑
n∈D

N!

∏
q
r=1 nr!

q

∏
r=1

∏
v≥r

[
1 +

2
ξ

exp
(

u(ar, av)
β

)] nr(nv−δr,v)
1+δr,v

. (6.3)

Proof. The proof starts from the distribution over action classes I (5.2).

The rest is a simple combinatorial exercise. The population consists of

N distinct elements. There are q different boxes over which we want to

distribute the N elements, and in each box r = 1, . . . , q there should be nr

elements at the end of the day, and all N elements must be in one box, so

that ∑
q
r=1 nr = N holds. There are N!

n1!...nq! different ways of solving this

allocation problem. Counting all states ω that agree with a given action

class size profile n leads to a probability distribution having the form

µ(β,ξ)(Ψ(n)) ∝
N!

∏
q
r=1 nr!

q

∏
r=1

∏
v≥r

[
1 +

2
ξ

exp
(

u(ar, av)
β

)] nr(nv−δr,v)
1+δr,v

. (6.4)
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Using the respective definitions of the maps ρ(β,ξ) and z(β,ξ)
r (n) yields the

desired result.

7 Stochastic stability

Stochastic game dynamics have become important due to their power

concerning equilibrium selection. The concept of stochastic stability, in-

troduced by Foster and Young (1990), Young (1993) and Kandori et al.

(1993) into game theory, gives a selection criterion based on the underly-

ing dynamic process.

Definition 1. A state ω ∈ Ω is a stochastically stable state if

lim
β→0

µ(β,ξ)(ω) > 0.

The set of stochastically stable states is denoted as Ω∗.

It has been shown by Blume (1993; 1997) and Young (1998) that the logit

dynamics concentrates on the set of potential maximizers as the noise

level goes to zero. However, their results are not directly applicable in the

current context, since the graph is itself part of the state variable.

7.1 Selection of Potential maximizers

The following Theorem, the proof of which is based on the general dis-

cussion in Catoni (1999), is the main result of this section.

Theorem 7.1. The Gibbs distribution (4.6) concentrates on the set P := arg maxω∈Ω P(ω)
as β → 0.

Proof. See Appendix A.

This shows that in the limit of vanishingly small noise the process will

spend almost all of its time in the vicinity of potential maximizers. In

view of the relation between the potential function and aggregate utility,
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this gives an efficiency result for long run behavior. Furthermore, in view

of the ergodic theorem, which has been mentioned briefly in Section 4,

we know that long run averages of the potential function converge to the

expected value under the invariant distribution µ(β,ξ). Since this expected

value converges to maxω∈Ω P(ω) as β → 0, we get the following corollary.

Corollary 7.1. Let U := arg max
ω∈Ω

U(ω) = P . Then

lim
β→0

µ(β,ξ)(U ) = 1 (7.1)

Almost surely therefore the process arrives at states where social welfare

is maximized.

7.2 Efficiency in pure coordination games

Consider the class of games with payoff function u(a, a′) := φ(a, a′)− c,

that satisfies condition (2.1), as well as

(∀r = 1, 2, . . . , q) : max
1≤v≤q

φ(av, ar) = φ(ar, ar),

φ(a1, a1) ≤ φ(a2, a2) ≤ . . . ≤ φ(aq, aq).
(7.2)

The first condition states that matching the action chosen by the opponent

is always a best reply. The second condition imposes an ordering on the

payoffs of actions, where aq denotes the payoff dominant action. From the

symmetry of the payoff function, eq. (2.1), it follows that there are q strict

Nash equilibria in the base game where the two players choose the same

action. The constant c ≥ 0 has no strategic effect, and can be interpreted

as the costs of a link.5 To keep notation simple, suppose that all strict

Nash equilibria have different payoffs. Let ge = g(Ge), gc = g(Gc) denote

the empty and the complete graph, respectively.

5Jackson and Watts (2002), Goyal and Vega-Redondo (2005) consider symmetric 2× 2

coordination games, which are potential games, having this payoff structure.
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Proposition 7.1. Let P : Ω → R be the potential function (4.4), and suppose

that the payoff function of the base game Gb satisfies eq. (7.2). Then

P =


{(aq, . . . , aq)} × {gc} , if u(aq, aq) > 0

(AI × {ge}) ∪ {ω ∈ Ω|α = (aq, . . . , aq)} , if u(aq, aq) = 0

AI × {ge} , if u(aq, aq) < 0

Proof. It is straightforward to see that the potential function (4.4) can be

written as

P(ω) =
q

∑
r=1

∑
v≥r

u(ar, av)

 ∑
i∈Ir(ω)

∑
j∈Iv(ω);j>i

gi
j

 .

From this one can immediately see the validity of the claim for the high-

cost scenario u(aq, aq) < 0.

Now consider the case where u(aq, aq) = 0. Clearly P(ω) ≤ 0 for all

ω ∈ Ω, with equality only at the states that are in the set described in the

text of the Proposition.

Finally, consider the case u(aq, aq) > 0. Since this is the largest payoff

obtainable from the base game, and the potential function is linear in the

links, the claim follows. This is also the unique maximizer of the potential

function.

Corollary 7.2. Consider the co-evolutionary model Mβ, with base game from

the class of pure-coordination games (7.2). Then Ω∗ = P .

8 A general class of stochastic co-evolutionary dy-

namics

The model presented so far relied on the assumptions that the base game

has an exact potential, and the rate functions of the individual players

have the particular form (3.4). These assumptions make the model very

tractable, and we were able to deduce many fundamental characteristics
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of the long-run behavior of the system. On the other hand, one may

say that these assumptions are too strict. Let me shortly discuss how

the model can be extended to a rather general class of co-evolutionary

models with noise. For a detailed discussion I refer to the companion

paper Staudigl (2009b). There a rather general class of of perturbed time-

homogeneous Markov chains, similar to Mβ, is presented, where players

may have heterogenous preferences in the base game, but choose from a

common action set.6 A general characterization of the invariant distrib-

ution of such models is provided, as well as an algorithm which identi-

fies stochastically stable states, based on tree-constructions in the spirit

of Freidlin and Wentzell (1998). The present model fits into this general

framework, and let me just sketch what the long run behavior of this

model would be, if one drops Assumptions 1 and 2. Instead of (3.4), as-

sume that the players’ rate function equals λi(ω) = λ1{κi(ω)<N−1}, and λ

is a positive constant. For sake of illustration suppose the base game is a

symmetric 2× 2 coordination game with one Pareto efficient equilibrium

(a1, a1), and one risk-dominant equilibrium (a2, a2). The specific payoffs

are not important.7 I claim that these small alterations of the model lead

to a non-selection result. Any pair of players, which use the same action,

may be connected in the long-run equilibrium; putting it differently, as β

goes to zero we do not obtain a point prediction as in Section 7, but the

limit distribution will (in general) put positive weight on a proper subset

of Ω. The heuristic explanation of this “negative” result is the following.

• Since the rate function of players is uncoupled with the noise pa-

rameter, the speed of the link creation process is unaffected by the

level of noise. Looking back at (3.4), we see that as β goes to 0 the

link creation process becomes arbitrary fast.

• The link destruction process deletes any edge with the constant rate

6An extension to different action sets is possible, but does not give more insights in

the model.
7Of course, this is still a potential game.
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ξ. This process is pure drift, i.e. it is not depending on the base

game, and in particular is independent of the noise level β. In the

terminology of stochastic stability calculus, this implies that link

destructions are zero cost events. However, it turns out that the

rate-ratio λ/ξ determines the number of links the system can carry

in the long run.

• The logit choice function of the action adjustment process (3.2) puts

equal probability on all actions a loner may choose. However, if a

player has at least one neighbor and if β goes to zero, this player

will play a best response against the neighbors’ behavior with prob-

ability arbitrary close to 1.

• Suppose the system is currently in a full coordination state, say the

population coordinates on the efficient equilibrium (a1, . . . , a1). The

network will not be complete in general, but one can derive a dis-

tribution over networks, given this action configuration. If there are

some loners in the current state, let them switch to a2, and give

them a link creation opportunity. These steps can be made with

zero costs. Now, by definition of the coordination game, an optimal

decision in the link creation process is to connect the a2 players. We

are then already in a state where a1 and a2 co-exist. At this state no

player has an incentive to change his action, so we will not return

to the state we were coming from. If there are no loners, we can

construct a sequence of link destruction, action adjustment and link

creation events, all causing no costs, which leads to a state where

two coordination equilibria co-exist, as follows: Destroy the links

of player i. Give him an action adjustment opportunity where he

chooses a2. Since a loner may choose any action with equal prob-

ability without making an error, this causes no costs. Do the same

thing with player j 6= i. Then give them a link creation opportunity.

Since i and j are the only agents playing a2, an optimal decision
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in the link creation process is to create the link (i, j). Now we are

in a co-existence state and no player has an incentive to change his

action.

• In the same vein we can walk through the set

Ω∗ = {ω ∈ Ω|gi
j = 1 ⇒ αi = αj}

without any costs, in the sense of stochastic stability analysis. As a

result, all states contained in this set are stochastically stable.

A similar result, but with admittedly sharper limit predictions, is ob-

tained in the model of Jackson and Watts (2002). These authors add to

the drift term ξ a direction, by assuming that only links where at least

one player is better off after the destruction of the link, are very likely to

become destroyed. For a fairly large set of parameters (such as linking

costs as in Section 7) they also get a co-existence result. However, due to

this directionality in the link destruction process, they get sharper limit

results in the network dimension under the assumptions that the costs

per link are constant. The framework presented in Staudigl (2009b) is

sufficiently flexible to capture the model of Jackson and Watts (2002).

9 Conclusion

This paper presented a stylized model on the co-evolution of networks

and play in the class of potential games. Assumption 2 was crucial to

derive a closed-form solution of the unique invariant distribution and to

obtain sharp predictions as the noise in the players’ decision rules goes

to zero. A general selection theorem of potential maximizers applies in

this case. Without Assumption 2 the invariant distribution can still be

completely characterized, but the model loses its predictive power in the

low-noise limit. It seems therefore that some assumptions in this direc-

tion are needed if one wants to obtain sharp limiting predictions.
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There are many possible routes for extensions. In a companion work

(Staudigl, 2009a) I analyze the current model with Assumption 2, but

assuming an inverse relationship in the rate function with the size of

the population. The intuition is that a larger population should make it

less likely that a single agent receives the chance to create a link. In the

infinitely large population limit and small positive noise the generated

networks do not converge to complete graphs anymore. Hence, nicer as-

ymptotic results are obtained without losing much in analytical power.

A more fundamental question is, however, which class of networks (in the

sense of random graph theory) such co-evolutionary models are capable

to create. One first step in this direction is the companion work Staudigl

(2009b). There I propose a rather general model of co-evolutionary mod-

els with noise, which is rich enough to incorporate the just presented

model, as well as the “volatility” models of Ehrhardt et al. (2008b) and

Jackson and Watts (2002). A first result is that such models seem to

generate, under fairly mild assumptions on the structure of the random

process, so-called inhomogeneous random graphs (see e.g. the nice sur-

vey by Newman, 2003). These models are straightforward extensions of

the classical Erdös-Rényi model, where the edge-success probabilities de-

pend on the attributes of the individual vertices. It would be interesting

to see how deep this connection indeed is.

A Proofs of Selected Theorems and Propositions

Proof of Theorem 4.1. Uniqueness follows from irreducibility and recurrence of

ηβ.

By construction of the dynamics, we know that changes occur in the process

only in one “coordinate”: either a single change in the links of the network takes

place, or one, and almost surely only one, player switches to another action.

By statistical independence of these two processes we can treat them separately.

Start with a change in the network structure. It suffices to consider the creation

of a fresh link. Let ω = (α, g), ω̂ = (α, g⊕ (i, j)) ∈ Ω. The rate of link creation
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between players i and j is given by eq. (3.8). The rate with which one returns to

the state ω is eq. (3.9). Detailed balance (4.1) demands that

µ(β,ξ)(ω̂)
µ(β,ξ)(ω)

=
2
ξ

exp(u(αi, αj)/β). (A.1)

It is easy to see that the measure (4.2) satisfies this condition.

Now consider the event of action adjustment. Let player k be the one who

receives such an opportunity and suppose she switches to action av ∈ A. Let

ω, ω̂ = (αav
k , g) ∈ Ω be the states involved in this transition. The associated rate

ratio is

ηβ(ω → ω̂)
ηβ(ω̂ → ω)

=
νbk,β(av|ω)
νbk,β(αk|ω)

= exp

 1
β

 ∑
j:gk

j =1

[u(av, αj)− u(αk, αj)]

 (A.2)

Rewrite the invariant distribution as

µ(β,ξ)(ω) ∝
k

∏
i=1

∏
j>i

[
2
ξ

exp(u(αi, αj)/β)
]gi

j

×
N

∏
i=k+1

∏
j>i

[
2
ξ

exp(u(αi, αj)/β)
]gi

j

.

Note that the second term on the right-hand side does not depend on player k,

and thus the change in the action of this player does have no effect on this term.

Hence, we see that the probability ratio boils down to

µ(β,ξ)(ω̂)
µ(β,ξ)(ω)

=
k

∏
i=1

∏
j>i

[
exp

(
u(α̂i, α̂j)− u(αi, αj)

β

)]gi
j

.

Since α̂i = αi for all i 6= k, α̂k = av, and payoffs as well as the indicators gi
j are

symmetric, we see that

µ(β,ξ)(ω̂)
µ(β,ξ)(ω)

=
N

∏
j=1

[
exp

(
u(av, αj)− u(αk, αj)

β

)]gk
j

= exp

 1
β

 ∑
j:gk

j =1

[u(av, αj)− u(αk, αj)]


This is the rate ratio (A.2).
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Lemma A.1. Fix an action partition I and let ω ∈ Ω(I). Define

m(β,ξ)(ω|I) =
q

∏
r=1

∏
i∈Ir

{
∏
v≥r

∏
j∈Iv;j>i

[
2
ξ

exp
(

u(ar, av)
β

)]gi
j
}
1{ω∈Ω(I)} (A.3)

the mass of state ω, conditional on the event that the action partition I is realized. Then

the mass received by the set Ω(I) in the long run is given by

m(β,ξ)(Ω(I)) =
q

∏
r=1,v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)
1+δr,v . (A.4)

Proof. We have to compute ∑ω∈Ω m(β,ξ)(ω|I). On Ω(I) the action profile is

fixed, and all states differ only in the number of edges. We can write

m(β,ξ)(ω|I) =
q

∏
r=1,v≥r

 p(β,ξ)
r|v

1− p(β,ξ)
r|v

er|v(ω)

.

Hence

m(β,ξ)(Ω(I)) = ∑
ω∈Ω(I)

m(β,ξ)(ω)

=
q

∏
r=1,v≥r

|Ir |(|Iv |−δr,v)
1+δr,v

∑
k=0

( |Ir |(|Iv|−δr,v)
1+δr,v

k

) p(β,ξ)
r|v

1− p(β,ξ)
r|v

k

=
q

∏
r=1,v≥r

(
1− p(β,ξ)

r|v

)− |Ir |(|Iv |−δr,v)
1+δr,v

Proof of Theorem 5.1. (a) Lemma A.1 shows that (5.1) is given by

µ(β,ξ)(ω|I) =
m(β,ξ)(ω|I)

m(β,ξ)(Ω(I))
.

A direct calculation of this ratio gives Eq. (5.3).

(b) This follows directly from the product measure (5.3) and the definition of

the Erdös-Rényi-model.

28



Proof of Proposition 5.1. For ease of notation I skip again the parameters (β, ξ).

κi
1, . . . , κi

q are independent Binomially distributed random variables with respec-

tive parameters (nv − δr,v, pr|v), 1 ≤ v ≤ q. Thus

P(κi = k1, . . . , κi
q = kq|I , i ∈ Ir) =

q

∏
v=1

P(κi
v = kv|I , i ∈ Ir),

where for 1 ≤ v ≤ q

P(κi
v = kv|I , i ∈ Ir) =

(
nv − δr,v

kv

)
pkv

r|v(1− pr|v)
nv−δr,v−kv

=
[

fr|v(kv)
]kv (1− pr|v)

nv−δr,v .

The function fr|v(·) has been defined in the text of the Proposition. There are
k!

k1!···kq ! ways to construct a list (k1, . . . , kq) whose sum equals k. Hence

P(κi = k|I , i ∈ Ir) ∝ ∑
k1+...+kq=k

k!
k1! · · · kq!

q

∏
v=1

P(κi = kv|I , i ∈ Ir).

In each of the products on the right hand side, the factor (1 − pr|v)nv−δr,v is a

constant and so cancels out after normalization. Hence, define the normalization

factor

R(I) =
N−1

∑
k=0

P(κi = k|I , i ∈ Ir),

and call fr,κ(k|I) := P(κi = k|I , i ∈ Ir) to get the desired result.

Proof of Theorem 7.1. For any ε > 0 consider the set Aε := {ω ∈ Ω|P(ω) <

maxω′∈Ω P(ω′)− ε}. I will show that lim
β→0

µ(β,ξ)(Aε) = 0. Let P∗ := maxω′∈Ω P(ω′)

the global maximum value of the potential function, and P = arg maxω∈Ω P(ω)

the set of maximizers. Define the measure µ
ξ
0 : G → [0, ∞], g 7→ µ

ξ
0(g) :=

(2/ξ)e(g). Since the Hamiltonian of the Gibbs measure is additive separable in

the measure µ
ξ
0 and the potential function P, we get for all ω = (α, g)

µ(β,ξ)(α, g) ∝ e
1
β H(ω,β,ξ) = e

1
β P(ω)

µ
ξ
0(g).

The set Aε can be written as

Aε = {ω ∈ Ω|e−
1
β P(ω) > e−

1
β (P∗−ε)}.
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Markov’s inequality8 gives us

µ(β,ξ)(Aε) ≤ e
1
β (P∗−ε)

Eµ(β,ξ)

[
e−

1
β P
]

,

where

Eµ(β,ξ) [e−
1
β P] = ∑

ω=(α,g)∈Ω
µ(β,ξ)(ω)e−

1
β P(ω) =

1
Z ∑

ω=(α,g)∈Ω
µ

ξ
0(g)

with Z = ∑ω∈Ω e
1
β H(ω,β,ξ) ≥ |P|e

1
β H∗

, and H∗ := minω∈P H(ω, β, ξ). Let K :=

min
ω=(α,g)∈P

µ
ξ
0(g) > 0 be the minimum value of the graph measure on the set of

potential maximizers. Thus, H∗ ≤ P∗ + β log K, and so Z ≥ |P|Ke
1
β P∗ > 0. Next,

we compute

∑
ω=(α,g)∈Ω

µ
ξ
0(g) = ∑

n∈D

N!
n1! · · · nq!

q

∏
r=1

∏
v≥r

∑
i∈Ir ,j∈Iv :gi

j∈{0,1}
(2/ξ)gi

j

= ∑
n∈D

N!
n1! · · · nq!

q

∏
r=1

∏
v≥r

(1 + 2/ξ)
nr(nv−δr,v)

1+δr,v

= qN(1 + 2/ξ)
N(N−1)

2 .

where in the last step we have made use of the Multinomial Theorem. It follows

that

µ(β,ξ)(Aε) ≤
1
Z

qN(1 + 2/ξ)
N(N−1)

2 e
1
β (P∗−ε) ≤ qN(1 + 2/ξ)

N(N−1)
2

K|P|e
1
β P∗

e
1
β (P∗−ε)

= K1e−
ε
β .

where K1 := qN(1+2/ξ)
N(N−1)

2

|P|K > 0 a factor independent of β and ε. For β → 0 the

upper bound goes to zero, establishing the result.
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