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Abstract

This paper presents a unified framework to study the co-evolution
of networks and play, using the language of evolutionary game the-
ory. We show by examples that the set-up is rich enough to en-
compass many recent models discussed by the literature. We com-
pletely characterize the invariant distribution of such processes and
show how to calculate stochastically stable states by means of a tree-
characterization algorithm. Moreover, specializing the process a bit
further allows us to completely characterize the generated random
graph ensemble. This new result demonstrates a new and rather
general relation between random graph theory and evolutionary
models with endogenous interaction structures.

Keywords: Evolutionary game theory, Network co-evolution, Ran-
dom graphs
JEL Classification Numbers: C02, C73, C45, D85

1 Introduction

Recently there has been an attempt to apply stochastic evolutionary game

dynamics to models on the co-evolution of networks and play. Broadly

speaking, one may divide these models in two classes. There is one

∗Department of Economics, University of Vienna, Hohenstaufengasse 9, A-1010 Vi-
enna (Austria). E-mail: mathias.staudigl@univie.ac.at
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branch of literature which extends the mistakes model of Kandori et al.

(1993) and Young (1993) to a random process of action adjustment and

link creation/destruction. Jackson and Watts (2002), Goyal and Vega-

Redondo (2005), Hojman and Szeidl (2006) are models in this direction,

and we call them, due to their ancestry, “classical” models. Another type

of models assume that the network is under a recurrent attack of un-

guided drift, which is interpreted as environmental volatility. Marsili

et al. (2004), Ehrhardt et al. (2006; 2008a) are models in this direction,

which we will call “volatility” models. The aim of this paper is to present

an unified framework, that is rich enough to incorporate classical, as well

as volatility models. We do so by presenting a rather general class of

co-evolutionary models, called Mβ. In essence Mβ is a family of per-

turbed Markov chains taking values on some finite state space Ω, which

consists of all pairs of action profiles (α) and networks (g). We give an

“axiomatic“ definition of processes Mβ which models the co-evolution

of networks and play in an integrated way. At a heuristic level, the algo-

rithm works as follows:

Suppose the system starts from some point ω = (α, g). Departing from

this state, the system may evolve via three possible routes. With some

probability a randomly chosen individual gets the opportunity to change

his action. This causes a change in the action profile α. With complemen-

tary probability the network changes, resulting in the creation of a new

edge, or the destruction of an existing edge. The characterizing feature

of the process is that the behavioral rules, describing how agents change

their action, or how they create or delete links depend, in general, on the

benefits of the bilateral interaction, which, in turn, is modeled by a game

in normal form. This produces an interesting coupling between the evo-

lution of the action profile α and the evolution of the network g. After

one of these events, the process arrives at a new state, and the algorithm

repeats these steps infinitely often.
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The objective of this paper is to investigate the asymptotic properties of

this stochastic algorithm. We assume that the rules defining the tran-

sition probabilities of Mβ are governed by a noise parameter β ∈ R+,

as is by now standard in stochastic evolutionary models.1 For β > 0

the process will be ergodic, and the long-run predictions are given by

its unique invariant distribution µβ ∈ ∆(Ω). In principle, the invariant

distribution contains all information one needs to deduce more specific

information about the long-run behavior of the system, such as the mar-

ginal probability distribution over action configurations (the object stud-

ied in “classical” evolutionary game theory with fixed interaction struc-

ture) and the conditional probability distribution over networks.2 Partic-

ularly interesting is the behavior of the invariant distribution as noise

vanishes. This leads to the study of stochastically stable states, which is

one of the most prominent selection criteria of evolutionary game theory.

The traditional way to perform stochastic stability analysis is by view-

ing the Markov process as a weighted and directed graph and looking

for paths with least resistance. Kandori et al. (1993) and Young (1993)

pioneered this approach, by adapting tools developed by Freidlin and

Wentzell (1998). The first contribution of this paper is the presentation of

a tree-characterization algorithm to compute stochastically stable states

in general co-evolutionary models. Thereby we obtain a selection cri-

terion of recurrent classes of states consisting of profiles of actions and

architectures of interaction, extending traditional models of evolution-

ary game theory where only the action profiles are considered as state

variable. The “classical” models of Jackson and Watts (2002) and Goyal

1The term “noise” has been used by Blume (2003) to emphasize the random utility

context of probabilistic behavioral rules. Other used terms have been “mistakes” or

“mutations”.
2Due to the coupling of the behavior dimension with the network dimension it would

make no sense to study a marginal distribution over networks. Only a conditional

distribution, i.e. the probability distribution over networks for a fixed action profile,

makes sense in these models.
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and Vega-Redondo (2005) are also concerned with this task. Our general

model provides a systematic tool kit to find stochastically stable states

in a transparent way. We show by means of two examples, a “volatil-

ity” model and a “classical” model based on Jackson and Watts (2002),

that such a stochastic stability analysis is still tractable in co-evolutionary

models.

The second, and truly original, contribution of this paper is the charac-

terization of the generated random graph ensemble, conditional on a fixed

profile of actions. For this characterization we impose 3 additional “ax-

ioms”. We show that any stochastic process, satisfying the stated as-

sumptions, will converge in the long run to the probability ensemble of

so-called inhomogeneous random graphs (Söderberg, 2002, Bollobás et al.,

2007). Inhomogeneous random graphs are a straightforward extension

of the classical Erdös-Rényi model (Erdös and Rényi, 1960), by allowing

edge success probabilities to be vertex specific. These models are very

popular in the literature on random graphs, and to the best of our knowl-

edge, this interesting connection between evolutionary game dynamics

and random graph theory is novel. A co-evolutionary model with noise

provides therefore a new and independent derivation of inhomogeneous

random graphs.

The class of Markov chains we study is known in the literature on sto-

chastic optimization as a “generalized Metropolis algorithm”, and is rig-

orously surveyed by Catoni (1999; 2001). Beggs (2005) was among the first

to recognize the close relationship between this class of random processes,

and the stochastic dynamics used in evolutionary game theory. We also

exploit this analogy and show that it provides a flexible language to study

many models on the co-evolution of networks and play. To underline this,

we devote a whole section to show that the models of Staudigl (2009b;a)

fit perfectly into our framework. A minor modification of the process also

allows us to study the model of Jackson and Watts (2002).
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Related to our work is also the recent paper by Alós-Ferrer and Netzer

(2007). However, these authors fix the behavioral rules of the agents at the

outset, by assuming that strategy revisions are governed by a log-linear

process, introduced by Blume (1993) into game theory. Moreover, their

paper assumes an exogenously fixed interaction structure.

The rest of the paper is organized as follows. Section 2 introduces our the-

oretical framework. In Section 2.2 we derive a general form of the invari-

ant distribution, and an algorithm to detect stochastically stable states.

Section 3 presents a “classical model” and a “volatility” model. The char-

acterization of the generated random graph ensemble is presented in Sec-

tion 4. Section 5 concludes. Appendix B collect some well-known facts

on stochastic stability analysis in a self-contained way.

2 A class of Markov processes

We consider a finite population of individuals I = {1, 2, . . . , N}. Mem-

bers of this set are also called agents or players. The set of all unordered

pairs of individuals will be denoted by I (2). The set of ordered pairs of a

finite set Ω is denoted as Ω×Ω = Ω2. In this paper we identify networks

with simple and undirected graphs on the vertex set I . Let us call G[I ]
the set of all such graphs, members of which are pairs G = (I , E), where

E = E(G) ⊆ I (2) is the set of edges (links). Another convenient represen-

tation of a network is via a tuple g = (gij)1≤i<j≤N ∈ {0, 1}I (2) ≡ G[I ]. If

gij = 1 we say that individual i is connected to individual j, or j is a neigh-

bor of i (and vice versa). Another terminology for connectedness will be

that the edge (i, j) is active. If gij = 0 then i and j are not connected,

or edge (i, j) is neutral. The neighbors of player i are contained in the

set N i(g) := {j ∈ I|gij = 1}. Call N̄ i(g) := N i(g) ∪ {i}. The number of

neighbors of player i defines his degree κi(g) := |N i(g)|. Given a network

g and a subset of players V ⊆ I denote the restriction of g on V as g[V ],
which is an element of G[V ]. The complete network on the subset V is
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denoted by gc[V ]. Hence, for every g ∈ G[I ] and a partition of I into sets

V1,V2, we can write g = g[V1]⊕ g[V2], where ⊕ is interpreted as the con-

catenation of two lists of binary valued functions (after possibly relabeling

the players). In this notation g′ = g⊕ gc[{(i, j)}] ≡ g⊕ (i, j) is the network

obtained by adding the edge (i, j) to g. Analogously, g′ = g	 (i, j) is the

network obtained from g by deleting edge (i, j). Denote by e = ∑i,j>i gij

the number of edges in the network.

Each individual possesses a utility function ui, describing her preferences

over some finite set of common actions A = {a1, . . . , aq}.3 This defines a

base game Γ = (I ,A, (ui)i∈I).

The utility player i gets from choosing one of these actions depends on

the behavior of his neighboring players. Let α = (αi)i∈I ∈ AI de-

note an action profile of the population. A population state is a pair

ω = (α, g) ∈ AI ×G[I ] ≡ Ω. Given an action profile α, let αa
i = (a, α−i) =

(α1, . . . , αi−1, a, αi+1, . . . , αN). Utility of player i at state ω is defined as

πi(α, g) ≡ πi(ω) = ∑
j∈N i(g)

ui(αi, αj). (2.1)

2.1 Co-evolution with noise

In the spirit of Young (1993) and Ellison (2000), we call a co-evolutionary

model with noise a family of perturbed time-homogeneous Markov chains

Mβ =
(

Ω,F , P, (Xβ
n)n∈N0

)
, β ∈ R+,

where

• Ω is some finite or countable infinite set describing the state space

of the system,

• Xβ = (Xβ
n)n∈N0 is a family of Ω-valued random variables, indexed

by a discrete time parameter n and a noise parameter β,

3In principle every individual could have his own action set. This would require

more notation, and does not contribute anything to this paper.
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• F is a σ-algebra on Ω (e.g. F = 2Ω the set of all subsets of Ω if the

state space is finite),

• P : F → [0, 1] a probability measure.

A realization {Xβ
n = ω} defines an action profile α and a network g. The

Markov property states that for any history An−1 = {Xβ
0 , . . . , Xβ

n−1} on

which {Xβ
n−1 = ω} holds, the probability that the process visits state ω′

in the next period depends only on ω, i.e.

P(Xβ
n = ω′|An−1) = P(Xβ

n = ω′|Xβ
n−1 = ω) ≡ Kβ(ω, ω′), (2.2)

where Kβ : Ω2 → [0, 1] is the transition probability function of the sto-

chastic process Xβ. Denote by Kβ := [Kβ(ω, ω′)](ω,ω′)∈Ω2 the transition

matrix of the process Xβ. Assume that these probabilities vary continu-

ously with the noise parameter β. For β → 0 we obtain the unperturbed

Markov chain M = (Ω,F , P, (Xn)n∈N0), with corresponding transition

matrix K. Denote by L1, . . . ,Lk the k-recurrent classes of the unperturbed

process M, and < =
⋃k

σ=1 Lσ the union of the recurrent classes of M. By

the decomposition theorem Ω = Q∪<, where Q is the class of transient

states in the unperturbed process.

Given the current state {Xβ
n = ω}, the following 3 events may take place:

Action adjustment: With probability q1(ω) ∈ [0, 1] the action profile α

changes. Let ν ≥ 0 denote the rate with which player i receives an

action revision opportunity.4 Define the volume of the action adjust-

ment process as Nν. The probability that player i gets a revision

opportunity is defined as 1/N. Denote by bi,β(·|ω) a probabilistic

behavioral rule describing how player i selects an action, given the

population state ω. Specifically, assume that this behavioral rule

satisfies the two “axioms”:
4Assuming that this rate is heterogeneous is possible, but this is the basic assumption

made in the literature.
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(A1) For all i ∈ I and β > 0, bi,β(·|ω) is a full support distribution

on A.

(A2) For all i ∈ I there exists a cost function ci
1 : Ω2 → R+, satisfying

− lim
β→0

β log bi,β(a|ω) = ci
1(ω, (αa

i , g)). (2.3)

This can be alternatively written as

bi,β(a|ω) = exp
[
− 1

β
(ci

1(ω, (αa
i , g) + o(1))

]
where o(1) represents terms that go to 0 as β → 0.

As β → 0 the probability that player i makes a costly decision con-

verges to 0 at exponential rate. A costless transition will be made

even in the zero noise limit. Observe that the revision processes

of Kandori et al. (1993) and Blume (1993), or adaptive learning of

Young (1998) satisfies all these assumptions.5

Link creation: With unconditional probability q2(ω) the process allows

the network to expand. For all i ∈ I define a rate function λi : Ω →
R+, satisfying κi(ω) = N − 1 ⇒ λi(ω) = 0. The volume of the link

creation process is defined as the sum of all rate functions λ̄(ω) :=

∑i∈I λi(ω). The conditional probability that player i receives the

chance to form a link is λi(ω)/λ̄(ω). Conditional on this event,

player i computes a tuple wi,β(ω) := (wi,β
j (ω))j∈I , satisfying:

(L1) If gij = 0 and β > 0, then min{wi,β
j (ω), wj,β

i (ω)} > 0. If gij = 1

or i = j, then wi,β
j (ω) = wj,β

i (ω) = 0 for all β,

5(A1) and (A2) are the most basic assumptions. An appealing additional requirement

would be

(A3) (∀i ∈ I) : ci
1(ω, (αa

i , g)) > 0 iff a /∈ arg max
a′∈A

πi(αa
i , g).

which says that only suboptimal choices have positive transition costs. In this sense,

players use noisy best response rules (see Sandholm, 2009). However, for the general

discussion such an assumption is not necessary.
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(L2) (∀i ∈ I)(∀ω ∈ Ω) : ∑j∈I wi,β
j (ω) = 1

(L3) (∀i, j ∈ I)(∀ω ∈ Ω) : − lim
β→0

β log wi,β
j (ω) = ci

2(ω, (α, g⊕ (i, j))).

ci
2 : Ω2 → R+ is again a cost function for player i. Condition (L1)

says that all neutral edges have a positive probability of becoming

created for β > 0. This is an irreducibility assumption. (L3) is a

large deviation assumption on the link creation probability.

Let Wβ(ω) = λ̄(ω)−1 diag[λ1(ω), . . . , λN(ω)][wi,β
j ]i,j∈I denote the

matrix of link creation probabilities at state ω.6 The i-th row of

this matrix is
(
λi(ω)/λ̄(ω)

)
wi,β(ω).7 Next, define the symmetric

matrix W̄β(ω) := [w̄β
ij(ω)]i,j∈I = Wβ(ω) + Wβ(ω)>.8 The scalar

w̄β
ij(ω) is the conditional probability that the passive edge (i, j) is

formed, starting from ω.

Link destruction: With unconditional probability q3(ω) a link becomes

destroyed. Let ξ ≥ 0 denote the constant rate of link destruction.9

A positive level of volatility will imply that, independent of β, there

is always a chance that a link becomes destroyed. Additionally to

this drift term, let us assign to each edge (i, j) a weight vβ
ij(ω). The

higher the weight of an active edge, the larger will be the conditional

probability that it becomes destroyed. Let Vβ(ω) = [vβ
ij(ω)]1≤i,j≤N

the N × N matrix of edge weights, satisfying:

(D1) Vβ(ω) is a symmetric matrix, and, for β > 0, vβ
ij(ω) > 0 if

gij = 1, and vβ
ij(ω) = 0 for gij = 0,

6diag[x1, . . . , xn] is the n× n diagonal matrix having xi as entry in its i-th principal

diagonal and 0 off the principal diagonal.
7Note that the above conditions on the distribution wi,β requires that a completely

connected individual puts weight 1 one himself. This causes no trouble because such

players do not get a link creation opportunity by default. Hence the algorithm produces

simple graphs, i.e. graphs that have no multiple connections and self-loops, as desired.
8W> is the transposition of W.
9This is exactly the volatility parameter of Marsili et al. (2004), Ehrhardt et al. (2006;

2008a;b).
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(D2) ∑i,j>i vβ
ij(ω) = 1,

(D3) (∀i ∈ I)(∀ω ∈ Ω) : − lim
β→0

β log vβ
ij(ω) = c(i,j)

3 (ω, (α, g	 (i, j))).

(D1) says that edges (i, j) and (j, i) are treated symmetrically. This

is a natural assumption for undirected graphs. Moreover, it requires

that all currently active edges are destroyed with positive probabil-

ity if β > 0. (D2) requires that, conditional on the event of link

destruction, the expected number of destroyed edges is 1. (D3) is

our large deviation assumption. The volume of the link destruction

process is defined as ξ̄(ω) := ξ f (ω, Vβ), where f (·, ·) is a bounded

non-negative function, normalized by the condition f (ω, Vβ) = 0 if

the network is the empty graph at ω.10

Let ω = (α, g) be the current population state. Define

Λ(ω) = Nν + λ̄(ω) + ξ̄(ω). (2.4)

By the frequency interpretation of probabilities, one can interpret the

number Nν =: τa as the time scale of action adjustment events, and

λ̄(ω) + ξ̄(ω) =: τg as the time scale of network evolution. The ratio

τ = τg/τa measures how fast network evolution is, relative to action ad-

justment. If τ is much larger than 1, network evolution will proceed at

a faster time scale than action adjustment. If τ is much smaller than 1

then action adjustment opportunities arrive much more frequently to the

population. The probabilities qσ(ω), σ = 1, 2, 3, specifying the timing of

evolution, are defined as

q1(ω) =
Nν

Λ(ω)
, q2(ω) =

λ̄(ω)
Λ(ω)

, q3(ω) = 1− q1(ω)− q2(ω). (2.5)

10The reason why a positive rate of link destruction is needed is to exclude trivial

stationary states where all players are completely connected. Of course, assuming ξ > 0

does not exclude the complete graph of being a stationary state. Henceforth assume that

ξ > 0 and fixed, so that β is the only varying parameter.
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The elements of the transition matrix Kβ are then given by

Kβ(ω, ω′) =


q1(ω) 1

N bi,β(a|ω) if ω′ = (αa
i , g),

q2(ω)w̄β
i,j(ω) if ω′ = (α, g⊕ (i, j)),

q3(ω)vβ
ij(ω) if ω′ = (α, g	 (i, j)),

0 otherwise.

(2.6)

It is easy to verify that ∑ω′∈Ω Kβ(ω, ω′) = q1(ω) + q2(ω) + q3(ω) = 1

for all ω ∈ Ω. By the irreducibility assumptions (A1), (L1) and (D1),

the matrix Kβ is irreducible for (β, ξ) � (0, 0). Further, it is easy to

see that the chain is aperiodic. Since Ω is a finite set, ergodicity of the

process Xβ is guaranteed. Hence, provided β > 0, there exists a unique

invariant distribution µβ ∈ ∆(Ω). It is well known that for β → 0 the

process concentrates on a subset of <. To classify such states, we use the

following definition of stochastic stability. 11

Definition 1 (Sandholm (2009)). Given a co-evolutionary model with noise

Mβ, we call a state ω ∈ Ω stochastically stable if

lim
β→0

β log µβ(ω) = 0. (2.7)

Let Ω∗ denote the set of stochastically stable states.

2.2 On trees, graphs and stochastic stability

At every point of time the process may undertake one of three differ-

ent transitions. The most appealing way to think about the stochastic

dynamic is in terms of directed graphs, as done by Kandori et al. (1993),

Young (1993), building on the work of Freidlin and Wentzell (1998). Every

11Most models using stochastic evolutionary dynamics call a state stochastically stable

if it receives positive weight in the limit distribution. Definition 1 says that ω is stochas-

tically stable if log µβ(ω) → a < 0 as β ↓ 0. This is a weaker requirement than the

conventional stochastic stability criterion, since it may well be that the mass converges

to 0 at a sub-exponential rate. See Sandholm (2009, ch. 12), for a detailed discussion.
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co-evolutionary model with noiseMβ can be analyzed via directed graphs

of the form T = (Ω, ~E). The vertex set of such graphs is the state space

and the edge set is a subset of Ω2. A graph T will be called a revision

graph, and we will henceforth identify every revision graph with its edge

set ~E(T) by taking the vertex set always to be Ω.

Definition 2. Given a co-evolutionary model with noise Mβ and a revision

graph T, define the reach of state ω ∈ Ω under T as the set

RT(ω) := {ω′ ∈ Ω|(∃~e ∈ ~E(T)) : ~e = (ω, ω′)}.

The reach of a state is thus the collection of states that the process may

visit after one step under the revision graph T, starting from ω. The reach

of a state ω can be subdivided as follows; call RT,1(ω) the set of states in

the reach of ω that differ in the action configuration, RT,2(ω) the set of

states that are reachable from ω by creation of a single link, and finally

RT,3(ω) the set of states reachable from ω by deleting a single link. 12

We will work with the following special class of revision graphs. Their

role has also been emphasized by Samuelson (1997), Catoni (1999), Beggs

(2005) and Alós-Ferrer and Netzer (2007).

Definition 3. Consider a non-empty set X ⊂ Ω. A revision graph T is called a

X -revision graph if it is an element of the class of graphs T (X ), satisfying

(i) (∀ω ∈ Ω) : |RT(ω)| = 1{ω/∈X},

(ii) T does not contain a cycle.

A labeled ω-revision tree (Tω, `) is a {ω}-revision graph Tω ∈ T ({ω}) ≡ Tω

together with a labeling function ` : ~E(Tω) → I (2) satisfying

(iii) for all edges ~e, `(~e) returns the pair of players (i, j) involved in the tran-

sition modeled by the edge ~e ∈ ~E(Tω). If j = i then we interpret the pair

(i, i) as i.

12Obviously RT(ω) = RT,1(ω) ∪RT,2(ω) ∪RT,3(ω).
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A X -revision graph T ∈ T (X ) joins every point in Ω \ X to X , without

loops. In the main text of the paper we will only need the concept of

labeled revision trees. The more general concept of and X -revision graph

will be used in Appendix B. For this class of revision graphs, conditions

(i) and (ii) are a version of the standard graph-constructs of Freidlin and

Wentzell (1998), and merely assert that Tω is a tree with root ω. The

distinguishing point in the definition of a labeled revision tree is exactly

the labeling function, whose purpose will become clear later on.13 For a

given ω-revision tree (Tω, `) ∈ Tω, define the set

STω ,σ := {~e = (ω′, ω′′) ∈ ~E(Tω)|ω′′ ∈ RTω ,σ(ω′)}, σ ∈ {1, 2, 3},

which is the collection of all edges used on a transition of type σ ∈
{1, 2, 3}. By definition we have ~E(Tω) =

⋃3
σ=1 STω ,σ.

Following Freidlin and Wentzell (1998) we can now completely character-

ize the invariant distribution of the co-evolutionary process. With a slight

abuse of notation define the numbers

Kβ(Tω) : = ∏
~e∈~E(Tω)

Kβ(~e) =
3

∏
σ=1

∏
~e∈STω ,σ

Kβ(~e),

ρβ(ω) : = ∑
(Tω ,`)∈Tω

Kβ(Tω).

Theorem 2.1 (The Markov chain tree theorem). For β > 0, the unique

invariant distribution of the co-evolutionary model with noise Mβ is given by

(∀ω ∈ Ω) : µβ(ω) =
ρβ(ω)

∑ω′∈Ω ρβ(ω′)
. (2.8)

Proof. See Section B in the appendix. This follows immediately from Frei-

dlin and Wentzell (1998) (Lemma 3.1, Chapter 6). This representation

holds for every irreducible Markov chain, and is not restricted to the cur-

rent model. See Young (1998) or Sandholm (2009) for alternative elegant

proofs of this fact.
13For the current type of stochastic process, the labeling function is uniquely defined

for a given revision tree Tω. See Alós-Ferrer and Netzer (2007) for a process where this

need not be the case.
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Consider a state ω ∈ Ω with revision tree (Tω, `). By construction of the

transition probabilities, for every edge ~e ∈ STω ,σ, σ = 1, 2, 3 there exists a

derived cost function ĉσ : Ω2 → R+ ∪ {+∞}, such that

Kβ(~e) = exp
[
− 1

β
(ĉσ(~e) + o(1))

]
, σ ∈ {1, 2, 3},

depending on the type of transition under the edge ~e.14 If the transition

~e ∈ STω ,σ is not possible for β > 0, then set ĉσ(~e) = ∞. Define the derived

costs of a revision tree (Tω, `) as

Ĉ(Tω) =
3

∑
σ=1

∑
~e∈STω ,σ

ĉσ(~e), (2.9)

so that Kβ(Tω) = exp
[

1
β (Ĉ(Tω) + o(1))

]
. The stochastic potential of state

ω is the lowest cost of reaching it, i.e.

γ(ω) := min
(Tω ,`)∈Tω

Ĉ(Tω). (2.10)

We are now ready to present a fairly general result characterizing the low-

noise behavior of the invariant distribution (see also Catoni, 1999, Beggs,

2005).

Proposition 2.1. Consider a co-evolutionary model with noise Mβ with derived

cost functions ĉ = (ĉ1, ĉ2, ĉ3) and invariant distribution µβ. Let γ : Ω → R+

be the potential function defined in eq. (2.10). For all ω ∈ Ω we have

− lim
β→0

β log µβ(ω) = γ(ω)− min
ω′∈Ω

γ(ω′). (2.11)

Before proving this proposition we need some additional facts. Order the

factors in the invariant measure ρβ according to their leading terms as

14Derived cost functions will be used in this paper only for the link creation process.

In the action revision process one would also need a derived cost function to account for

the unlikelihood of a transition when one would apply the learning model of Alós-Ferrer

and Netzer (2007) (see their concept of the waste of a labeled revision tree).
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β → 0. This leads to the low-noise expression

ρβ(ω) = ∑
(Tω ,`)∈Tω

exp
[
− 1

β

(
Ĉ(Tω) + o(1)

)]
= Bω exp(−γ(ω)/β)(1 + o(1))

where Bω is a real constant. For sufficiently small β, the invariant distri-

bution can therefore be written as

µβ(ω) =
Bω exp(−γ(ω)/β)(1 + o(1))

∑
ω′∈Ω

Bω′ exp(−γ(ω′)/β)(1 + o(1))
. (2.12)

The following simple fact is a useful intermediate result, as it identifies

the leading term of the denominator in (2.12).

Lemma 2.1. Given two finite sequences ( f (1), . . . , f (n)), (B1, . . . , Bn) of non-

negative real numbers, then

lim
β→0

log

(
n

∑
i=1

Bi exp(− f (i)/β)

)
n

max
i=1

log(Bi exp(− f (i)/β))
= 1. (2.13)

Proof. Without loss of generality, let f (n) =
n

min
i=1

f (i). By absorbing states

with equal values of f (i) in the constant Bi we can, without loss of gen-

erality, assume that all values are different. The denominator is thus

log(Bn exp(− f (n)/β)). Write the polynomial inside log(·) in the numer-

ator by collecting the terms of highest order, i.e.

n

∑
i=1

Bi exp(− f (i)/β) = Bn exp(− f (n)/β)

(
1 +

n−1

∑
i=1

Bi

Bn
exp(−( f (i)− f (n))/β)

)
= Bn exp(− f (n)/β)r(β)

and β log r(β) → 0 as β → 0. Hence, the ratio (2.13) can be written as

β log Bn + β log r(β)− f (n)
β log Bn − f (n)

→ 1, as β → 0.
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Proof of Proposition 2.1. Start from eq. (2.12). Take logarithms and multi-

ply both sides by −β to arrive at

−β log µβ(ω) = −β log(Bω exp(−γ(ω)/β))

+ β log

(
∑

ω′∈Ω
Bω′ exp(−γ(ω′)/β)

)
+ O(β).

The claim now follows from Lemma 2.1.

This shows that a state is stochastically stable according to Definition 1 iff

it is a state with minimal stochastic potential.

Corollary 2.1. Ω∗ = {ω ∈ Ω|γ(ω) = minω′∈Ω γ(ω′)}.

We see that the main difference between a co-evolutionary model with

noise and a classical evolutionary model is the addition of two further

cost functions, corresponding to the two added processes modeling the

evolution of the network. Departing from here it is easy to see that all

well-known results on stochastic stability are applicable. Referring to

Appendix B for proofs of these facts, we just introduce some concepts in

order to fix the notation.15 Let X ,X ′ be some non-empty subsets of Ω.

A (ω, ω′)-path is a directed graph whose vertex set is a non-repeating

sequence of states {ω1, . . . , ωl} such that ω1 = ω, ωl = ω′, ωt /∈ X ′, ∀t ∈
[2, l − 1], and whose edges are the transitions (ωi, ωi+1), 1 ≤ i ≤ l − 1.

Denote by Pω,ω′(X ,X ′) the set of paths connecting ω to ω′, and P one

such path. To each ω, ω′-path there corresponds a labeling function `, as

in Definition 3. For P ∈ Pω,ω′(X ,X ′) let (P, `) denote a (ω, ω′)-revision

path. Let L,L′ be two recurrent classes of the process M, and denote the

cost of transition from recurrent class L to L′ by C(L,L′). The cost of a

transition from recurrent class L to L′ is

C(L,L′) = min
ω∈L

min
ω′∈L′

min
(P,`):P∈Pω,ω′ (L,L′)

Ĉ(P), (2.14)

15See also Samuelson (1997), Young (1998) or Sandholm (2009) for textbook treatments

of this, or Ellison (2000).
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where Ĉ(P) is defined as in (2.9), applied to a (ω, ω′)-revision path. In

Appendix B we show that all states within one recurrent class are con-

nected by a null cost path. This allows one to study revision graphs

between recurrent classes. Therefore, we introduce the class of revision

graphs T̂ = ({L1, . . . ,Lk}, ~E), where ~E(T̂) ⊆ {L1, . . . ,Lk}2. A L-revision

tree T̂ ∈ T̂ (L) is a revision graph in the sense of Definition 3, but acting

on the recurrent sets of the unperturbed co-evolutionary process M.16

The costs of such a revision tree are defined as C(T̂) = ∑~e∈~E(T̂) C(~e), with

~e = (L′,L′′). Letting γ̂ : < → R+ be a potential function on the set of

recurrent classes, one can show (see Appendix B) that for all ω ∈ L

γ(ω) = γ̂(L) = min
T̂∈T̂ (L)

C(T̂). (2.15)

3 Applications

In this section we apply the above general framework to some recent

models. In both models we consider the base game Γ = (I , {a1, a2}, u),

with normal form

a1 a2

a1 (e− φ, e− φ) ( f − φ, g− φ)

a2 (g− φ, f − φ) (h− φ, h− φ)

(3.1)

Assume that h > e > f > g but e + f > h + g. This means that (a1, a1)
is a risk-dominant strict Nash equilibrium, while (a2, a2) is a Pareto ef-

ficient strict Nash equilibrium. The number φ ≥ 0 is a fee two incident

players have to pay in order to play the game. It does not alter the nature

of the game, but possibly affects the way how players form their social

network. There is also a mixed strategy equilibrium where a1 is played

with probability x = h− f
e−g+h− f < 1/2.

16This method of reducing the process to recurrent classes and monitoring transitions

only between them has been proposed by Young (1993).
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3.1 A volatility model

In Staudigl (2009b) a volatility model for general potential games is pre-

sented. Here we study a version of this model in the context of the sym-

metric coordination game (3.1) with φ = 0. The co-evolutionary model

with noise Mβ is the following;

Action adjustment: Assume that

bi,β(aσ|ω) =
exp(πi(αaσ

i , g)/β)

∑2
r=1 exp(πi(αar

i , g)/β)
, σ = 1, 2. (3.2)

This behavioral rule satisfies (A2) with cost function

ĉ1(ω, (αa
i , g)) = ci

1(ω, (αa
1, g)) = max

a′∈A
πi(αa′

i , g)− πi(αa
i , g). (3.3)

Link creation: Assume that λi(ω) = λ1{κi(ω)<N−1}, so that every incom-

pletely connected player receives a link creation opportunity with

rate λ ≥ 0. Conditional on this event player i samples player j with

probability

wi,β
j (ω) =

exp(u(αi, αj)/β)
∑k/∈N̄ i(ω) exp(u(αi, αk)/β)

.

(L4) is satisfied with cost function

ci
2(ω, (α, g⊕ (i, j)) = max

k/∈N̄ i(ω)
u(αi, αk)− u(αi, αj).

Link destruction: Once a link is selected by the process (an event with

rate ξ) it becomes destroyed at rate 1. Hence vβ
ij(ω) = gij

e(ω) . (D3) is

satisfied with

ĉ3(ω, (α, g	 (i, j))) = c(i,j)
3 (ω, (α, g	 (i, j))) ≡ 0.

The volume of this subprocess is given by ξ̄ = ξe(ω), so that f (ω, Vβ) =
e(ω).17

17In Staudigl (2009a) the agents have idiosyncratic preferences over the actions, which
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It remains to determine the derived cost function ĉ2. When a link be-

comes created, a pair of players (i, j) is involved with j > i. Suppose

this event is on the ω-revision tree (Tω, `), and call the edge of transition

corresponding to this event ~e. The labeling function returns the pair of

players `(~e) = (i, j). Let `(~e)− be the player with the lower index involved

in the transition ~e, i.e. i, and `(~e)+ the player with the higher index, i.e.

j.18

Lemma 3.1. For every ω ∈ Ω and (Tω, `) ∈ Tω, the derived cost of a transition

~e ∈ STω ,2 is

ĉ2(~e) = min{c`(~e) −
2 (~e), c`(~e) +

2 (~e)}. (3.4)

Proof. The probability that edge (i, j) becomes created is

w̄β
ij =

λ

λ̄(ω)
(wi,β

j (ω) + wj,β
i (ω)).

By the large deviation principle (L4), for small β we have

wi,β
j (ω) + wj,β

i (ω) = exp
[
− 1

β
(ci

2(ω, (α, g⊕ (i, j))) + o(1))
]

+ exp
[
− 1

β
(cj

2(ω, (α, g⊕ (i, j))) + o(1))
]

,

and so we can apply Lemma 2.1, which gives us the desired result.

Thus, for every ω ∈ Ω the cost of a revision tree (Tω, `) ∈ Tω is Ĉ(Tω) =

∑2
σ=1 ∑~e∈STω ,σ

ĉσ(~e).

is interpreted as the “type” of the agent. Link decay probabilities are then func-

tions of the types of the involved players. Particularly, it is assumed that vβ
ij(ω) =

ξ̂
β
ij/ ∑k>l ξ̂

β
kl gkl , for given functions {ξ̂

β
ij}, which depend on the realized types of the

agents and on β > 0. The corresponding volume is now ξ̄(ω) = ∑j>i ξ̂
β
ijgij.

18I thank Stefano DeMichelis for giving me the right hint for the following proof of

the following Lemma.
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3.1.1 Recurrent classes and stochastic stability

Define the set

Ω̃ = {ω ∈ Ω|gij = 1 ⇒ αi = αj}.

A network in this set has only edges between two coordinated players. It

may have several connected components and, in particular, it may not be

completely connected. Distinguished classes of states in Ω̃ are the global

conformity sets

Lσ = {ω ∈ Ω̃|(∀i ∈ I) : αi = aσ}, σ = 1, 2.

Let L1,2 = Ω̃ \ (L1 ∪ L2), the co-existence set. The following Lemma char-

acterizes the recurrent classes < of the unperturbed process.

Lemma 3.2. Consider the unperturbed co-evolutionary model M of Staudigl

(2009b). We have < = Ω̃.

Proof. The proof proceeds by a fairly general constructive argument, which

is presented in Appendix A.

We see that the process allows for global heterogeneity, since there may

be multiple connected components displaying different types of conven-

tions. However, within every connected component we must have local

conformity. Due to this large number of equilibria, we hope that the con-

cept of stochastic stability gives us some hint which states are more likely

to be observed in the long-run. The following proposition shows that this

is not the case.

Proposition 3.1. Consider the coordination game (3.1) with φ = 0, and the

co-evolutionary model with noise Mβ of Staudigl (2009b). We have Ω∗ = <.

Proof. Fix ω ∈ L1, ω′ ∈ L2. We will construct a zero cost path P ∈
Pω,ω′(L1,L2), which implies C(L1,L2) = 0. A symmetric argument

shows that C(L2,L1) = 0, so that γ(ω) = γ(ω′) = 0. From this it follows

that γ(ω′′) = 0 for all ω′′ ∈ L1,2, since all paths from ω to ω′ must pass

through some state ω′′ ∈ L1,2.
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Step 1: From ω apply a sequence of link destruction events. All this has

zero costs and in finitely many steps we arrive at state ω̂ ∈ L1 with

the empty network.

Step 2: Give two randomly chosen players sequentially an action adjust-

ment opportunity where they switch to a2. This has zero costs, since

a loner selects both actions with equal probability.

Step 3: Give one of the two players a link creation opportunity. Under K

a link between them will be established. We are now at a state in

L1,2.

Step 4: Give the remaining players action adjustment opportunities where

they switch to a2, and then a link creation opportunity. Iterate this

until the process arrives at the desired state ω′ ∈ L2.

Steps 1-4 defines a path from ω to ω′ having zero costs. Clearly all steps

are reversible, i.e. steps 4-1 define a path from ω′ to ω having zero costs.

This demonstrates γ(ω) = γ(ω′) = 0.

3.2 A classical model

We discuss a slight variation of Jackson and Watts (2002). To get the

most interesting scenario, we reduce the set of admissible parameters in

requiring that x > 1
N−1 and φ ∈ (g, e). This paper takes the mistakes

model of Kandori et al. (1993) and Young (1993) as universal behavioral

rule. Parameterizing noise as ε = exp(−1/β), and henceforth calling

ε the noise parameter, allows us to study this behavioral rule. The co-

evolutionary model with noise Mε is as follows:

Action adjustment: Assume that each player receives with uniform prob-

ability 1/N the opportunity to change his action. Conditional on
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this event he selects action a ∈ A with probability

bi,ε(a|ω) =


1− ε

2 if αi 6= a and {a} = arg maxa′∈A πi(αa′
i , g),

1− ε
2 if αi = a and {αi} = arg maxa′∈A πi(αa′

i , g),
ε
2 otherwise.

This behavioral rule says that a player abandons his currently used

action with relatively high probability, if there exists a strictly better

action. Otherwise he sticks to his action and switches only with the

relatively small probability ε. This behavioral rule satisfies condition

(A2) with cost function

ĉ1(ω, (αa
i , g)) = ci

1(ω, (αa
i , g)) =


0 if αi 6= a and {a} = arg maxa′∈A πi(αa′

i , g),

0 if αi = a and {αi} = arg maxa′∈A πi(αa′
i , g),

1 otherwise.

Link creation: Jackson and Watts (2002) introduce a cooperative element

into the link creation process. To capture this, we have to make a

slight modification in the construction of our co-evolutionary model

with noise. Let D(ω) denote the set of neutral links at ω and d(ω)
its cardinality. Instead of the individual players’ rate functions, as-

sume that the event of link creation arrives to the society at the

constant rate λ̄(ω) := λd(ω), where λ is a positive constant. Define

the events

(1 ≤ i, j ≤ N) : Ai
j(φ) := {ω ∈ Ω|u(αi, αj) ≥ φ}.

If ω ∈ Ai
j(φ) then the edge (i, j) is profitable from the point of view

of player i at ω. The number of mutually profitable neutral links is

m(ω) = ∑
(i,j)∈D(ω)

1
Ai

j(φ)∩Aj
i(φ)

(ω).

Following the spirit of pairwise stability (Jackson and Wolinsky,

1996), assume that a neutral link is set to be active with probability

1− ε if both players mutually agree. With the small probability ε
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assume that all links have a chance to be formed. The (conditional)

probability that a neutral edge (i, j) will be added is

(∀(i, j) ∈ D(ω)) : w̄ε
ij(ω) :=


1−ε

m(ω) + ε
d(ω) if 1

Ai
j(φ)∩Aj

i(φ)
(ω) = 1,

ε
d(ω) otherwise.

(3.5)

The term ε/d(ω) is the “background noise” of the system, and gives

the uniform probability that a link will be formed. If edge (i, j) is

neutral at ω, but both players are not hurt by the creation of the

link, then they will independently agree to form it with the high

probability 1 − ε, which increases their chance of being formed.19

Let Ā denote the complementary set of A. The cost function of this

sub-process is

ĉ2(ω, (α, g⊕ (i, j))) = 1
Āi

j(φ)∪Āj
i(φ)

(ω).

Link destruction: With rate ξ > 0 links become destroyed. Conditional

on this event, pick one edge (i, j) ∈ E(ω) with uniform probability,

and allow the incident players to re-evaluate the benefits arising

from this connection. This leads to ξ̄(ω) := ξe(ω). Denote by

m̄(ω) = ∑
(i,j)∈E(ω)

1
Āi

j(φ)∪Āj
i(φ)

(ω)

the number of active links where at least one player benefits from

the deletion of the link. If (i, j) is a link where at least one player

is better off after its destruction, suppose that with large probability

19Jackson and Watts (2002) assume that a link is created with probability 1− ε iff it is a

strict Pareto improvement, i.e. at least one player is strictly better off after the connection

has been established and no player is hurt from the creation of the link. We assume that

a link is already formed if it is a weak Pareto improvement, i.e. no party is hurt by the

formation of the link. Additionally, they assume that the error probability ε is not the

same in the action evolution process as it is in the graph evolution process. However, it

is required that the error probabilities go to zero at the same rate so not to get “twisted”

equilibrium selection results, as argued by Bergin and Lipman (1996).
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1− ε it will be destroyed. With the small probability ε every link can

be destroyed once it has been selected. This leads to the following

version of link destruction probabilities

(∀(i, j) ∈ E(ω)) : vε
i,j(ω) =


1−ε

m̄(ω) + ε
e(ω) if 1

Āi
j(φ)∪Āj

i(φ)
(ω) = 1,

ε
e(ω) otherwise.

The cost function of this process is given by

ĉ3(ω, (α, g	 (i, j))) = 1
Ai

j(φ)∩Aj
i(φ)

(ω).

3.2.1 Recurrent classes and stochastically stable states

Define I1(ω) = {i ∈ I|αi = a1 on ω}, and for every 2 ≤ n ≤ N − 2,

Ln
1,2 = {ω ∈ Ω|g = gc[I1(ω)]⊕ gc[I2(ω)] & |I1(ω)| = n},

L1,2 =
N−2⋃
n=2

Ln
1,2.

Let

Lσ = {ω ∈ Ω|(∀i ∈ I) : αi = aσ & g = gc[I ]}, σ = 1, 2.

Lemma 3.3. Let M be the unperturbed co-evolutionary process of Jackson and

Watts (2002) with φ ∈ (g, e). Then

< = L1 ∪ L2 ∪ L1,2.

Proof. The algorithm in appendix A shows that in finite time there are no

links between agents playing different actions. Call ωm the state at which

the algorithm stops. In the unperturbed model, with probability 1, only

links which are mutually profitable are formed and links which harm at

least one player are destroyed. At ωm no player has an incentive to change

his action. If a link creation event takes place, with conditional probability

1 only an edge is formed if the selected pair is in the same action class

Iσ(ωm), σ = 1, 2. Moreover, these links never become destroyed. A link
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destruction event at ωm leaves the state invariant with probability 1, since

at this state no edges between players from different action classes exist.

For the same reason, an action adjutment event leaves ωm invariant, with

probability 1.If Iσ(ωm) = ∅ for a σ = 1, 2, then the process arrives at a

state where global conformity prevails. Otherwise the process leads to a

state in the co-existence set L1,2.

To select among the recurrent sets, we now perform an analysis via sto-

chastic stability.

Proposition 3.2. Let Mβ be the co-evolutionary model with noise of Jackson

and Watts (2002). Then for φ ∈ (g, e) and x ≥ 1
N−1

Ω∗ = L1 ∪ L2.

Proof. We will explicitly calculate the potentials of the three recurrent

classes and show that, under the stated parameter assumptions, γ̂(L1) =
γ̂(L2) < γ̂(Ln

1,2) for all 2 ≤ n ≤ N − 2.

Let ω ∈ L1, ω′ ∈ L2. Observe that, under the assumption x ≥ 1
N−1 , at

least two agents must change their action to enter L1,2 via an unperturbed

move, i.e. C(Lσ,L1,2) = 2, σ = 1, 2.20 Further observe that for 3 ≤ j ≤
N− 3, C(Lj

1,2,Lj±1
1,2 ) = 1, since a single deviator reduces/increases the set

of a1 players, and applying then link creation/destruction leads to some

20To see this, note that C(L1,L2
1,2) = 2 by definition of risk dominance. To get

C(L2,LN−2
1,2 ) = 2 suppose that one player deviates from ω′ ∈ L2 and plays a1. The

network remains unchanged. Apply the action adjustment process in the next period

to a current a2 player. This player will switch to a1 iff e + (N − 2) f − φ(N − 1) >

g + (N − 2)h + φ(N − 1), or iff x < 1/(N − 1). Since we assume that x ≥ 1/(N − 1)
another tremble is needed to make a1 a best response.
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state in the desired recurrent class. It follows that

γ̂(L1) = C(L2,LN−2
1,2 ) +

N−3

∑
j=2

C(Lj+1
1,2 ,Lj

1,2) + C(L2
1,2,L1)

= 2 + (N − 3− 2 + 1) = N − 2

γ̂(L2) = C(L1,L2
1,2) +

N−3

∑
j=2

C(Lj
1,2,Lj+1

1,2 ) + C(LN−2
1,2 ,L2)

= N − 2

γ̂(Ln
1,2) = C(L1,L2

1,2) + C(L2,LN−2
1,2 )

+
n−1

∑
j=2

C(Lj
1,2,Lj+1

1,2 ) +
N−n−1

∑
j=2

C(LN−j
1,2 ,LN−j−1

1,2 )

= 2 + 2 + (n− 1− 2 + 1) + (N − n− 1− 2 + 1) = N

4 A micro-founded model for inhomogeneous ran-

dom graphs.

The theory of random graphs provides in essence 2 classes of models;

the “randomly grown graphs”, mostly using a version of preferential at-

tachment (Barabási and Albert, 1999), and generalized random graphs

(Newman, 2003). Under some additional assumptions on the structure of

the Markov chain (2.6), we are able to characterize the induced ensemble

of random graphs for general behavioral rules.

Let us add the following two assumptions on the structure of the transi-

tion probabilities:

(L4) (∀i ∈ I) : λi(ω) = λ1{κi(ω)<N−1};

(L5) (∀i.j ∈ I) : wi,β
j (ω) = ŵi,β

j (α)(1− gij), where ŵi,β
j (·) satisfies (L1)-

(L3).
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(L4) defines the volume of the link creation subprocess as λ̄(ω) = λ ∑i∈I 1{κi(ω)<N−1}.

In the link destruction process we demand additionally

(D4) (∀i, j ∈ I) : vβ
ij(ω) =

v̂β
ij(α)gij

f (ω,Vβ) .

(D2) tells us that f (ω, Vβ) = ∑j>i v̂β
ij(α)gij.

Using these additional assumptions we will derive a random graph process,

modeling the evolution of the network for a fixed action profile α.21 Let

(G̃β
n)∞

n=0 denote the random graph process with transition probabilities

Kβ
2,3 : G[I ]× G[I ] → [0, 1], defined as

Kβ
2,3(g, g′) = P(G̃β

n+1 = g′|G̃β
n = g)

= P(Xβ
n+1 = (α, g′)|Xβ

n = (α, g), Network evolution)

=
1

P(Network evolution|Xβ
n = (α, g))

P(Xβ
n+1 = (α, g′)|Xβ

n = (α, g))

=
1

q2(α, g) + q3(α, g)
Kβ((α, g), (α, g′))

Using (2.5), (2.6) and (L4), (L5), (D4), the transition probabilities are given

by

Kβ
2,3(g, g′) =

1
q2(α, g) + q3(α, g)


λ(ŵi,β

j (α) + ŵj,β
i (α)) if g′ = g⊕ (i, j),

ξv̂β
ij(α) if g′ = g	 (i, j),

0 otherwise.

This chain is irreducible but no longer aperiodic. It serves as a jump chain

of the continuous-time random graph process (G̃β(t))t≥0 with generator22

η
β
2,3(g → g′) = (q2(α, g) + q3(α, g))(Kβ

2,3(g, g′)− δg,g′) (4.1)

where δg,g′ = 1 iff g = g′, and 0 otherwise. This continuous time

process allows us to identify the invariant distribution of the original
21An interpretation of such a process can be given by assuming that action adjustment

is a relatively fast process compared to network evolution. In this case, it makes sense

to assume that the profile α reaches a temporary stationary state for a given network g,

and when evolution shapes the network the profile α is fixed.
22See Norris (1997).
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Markov chain in a simple way. Let Id denote the identity matrix on

G[I ], and define the matrix η
β
2,3 :=

[
η

β
2,3(g → g′)

]
g,g′∈G[I ]

. Additionally,

call q̂(g) := q2(α, g) + q3(α, g), and q̂ := [q̂2(g)]g∈G[I ]. The generator of

the continuous-time process (G̃β(t))t≥0 is defined by η
β
2,3 = q̂(Kβ

2,3 − Id).

A measure ν on G[I ] is said to be invariant under the generator η
β
2,3 if

νη
β
2,3 = 0.

Lemma 4.1. The following are equivalent:

(a) ν is invariant under η
β
2,3,

(b) µKβ
2,3 = µ where µ(g) = ν(g)q̂(g).

Proof. Define the measure µ(g) := ν(g)q̂(g) for all g ∈ G[I ]. For all g, g′

we have η
β
2,3(g → g′) = q̂(g)(Kβ

2,3(g, g′)− δg,g′). Thus,

∑
g∈G[I ]

µ(g)(Kβ
2,3(g, g′)− δg,g′) = ∑

g∈G[I ]
ν(g)q̂(g)(Kβ

2,3(g, g′)− δg,g′)

= ∑
g∈G[I ]

ν(g)η
β
2,3(g → g′).

The next proposition characterizes the invariant distribution of the continuous-

time random graph process.

Proposition 4.1. Consider the random graph process (G̃β(t))t≥0 with generator

(4.1). Its unique invariant distribution is the product measure

µ̂
β
2,3(g|α) =

N

∏
i=1

∏
j>i

pβ
ij(α)gij(1− pβ

ij(α))1−gij (4.2)

with the edge-success probability

(∀i, j ∈ I) : pβ
ij(α) =

λ(ŵi,β
j (α) + ŵj,β

i (α))

λ(ŵi,β
j (α) + ŵj,β

i (α)) + ξv̂β
ij(α)

. (4.3)
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Proof. The Markov process (G̃β(t))t≥0 is irreducible for β > 0 and re-

versible by the symmetry assumption (D1). Solving the detailed balance

conditions

µ̂
β
2 (g|α)η

β
2,3(g → g⊕ (i, j)) = µ̂

β
2,3(g⊕ (i, j)|α)η

β
2,3(g⊕ (i, j) → g)

for all g ∈ G[I ] gives us

µ̂
β
2,3(g|α) =

1

Zβ
2,3(α)

N

∏
i=1

∏
j>i

λ

ξ

ŵi,β
j (α) + ŵj,β

i (α)

v̂β
ij(α)

gij

.

Let ¯̂wβ
ij(α) := ŵi,β

j (α) + ŵj,β
i (α) and define θ

β
ij(α) := log

(
λ
ξ

¯̂wβ
ij(α)

v̂β
ij(α)

)
. Fur-

ther, define the Hamiltonian Hβ(g|α) := ∑i,j>i θ
β
ij(α)gij, so that µ̂

β
2,3(g|α) =

exp(Hβ(g|α))
∑g′∈G[I ] exp(Hβ(g′|α)) . The constant of normalization can then be written as

Zβ
2,3(α) = ∑

g′∈G[I ]
exp(Hβ(g′|α)) = ∑

i,j>i

1

∑
gij=0

(
∏
i,j>i

exp(θ
β
ij(α)gij)

)
= ∏

i,j>i
(1 + exp(θ

β
ij)).

The probability that edge (i, j) is active in the long run is

pβ
ij(α) = ∑

g′∈G[I ]:g′ij=1
µ̂

β
2,3(g′|α) = ∑

g′∈G[I ]
g′ijµ̂

β
2 (g′|α) =

∂ log Zβ
2,3(α)

∂θ
β
ij(α)

=
exp(θ

β
ij(α))

1 + exp(θ
β
ij(α))

=
λ ¯̂wβ

ij(α)

λ ¯̂wβ
ij(α) + ξ v̂β

ij(α)
.

Collecting terms and doing some simple manipulations gives the desired

result.

This strong result gives a full characterization of the induced ensem-

ble of random graphs for volatility models such as Marsili et al. (2004),

Ehrhardt et al. (2008a;b). It further establishes an interesting and surpris-

ing connection with the inhomogeneous random graph models proposed

by Söderberg (2002), Park and Newman (2004) or Bollobás et al. (2007).
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Any co-evolutionary model with noise, satisfying the set of assumptions

(A1)-(A2), (L1)-(L5) and (D1-D4) will generate an inhomogeneous ran-

dom graph, with edge-success probabilities (4.3).

Corollary 4.1. The unique invariant distribution of the discrete-time random

graph process (Gβ
n)n≥0 is

q̂(g)νβ(g|α)
∑g′∈G[I ] q̂(g′)νβ(g′|α)

with

νβ(g|α) :=
N

∏
i=1

∏
j>i

λ

ξ

ŵi,β
j (α) + ŵj,β

i (α)

v̂β
ij(α)

gij

.

Proof. This follows form Lemma 4.1.

5 Conclusion

This paper presented a general framework for studying co-evolutionary

models with noise. We gave a complete characterization of the invariant

distribution of such a model, which is a joint probability distribution on

the set of action profiles and the set of networks. By means of two exam-

ples, a volatility model akin to Ehrhardt et al. (2008b), Staudigl (2009b)

and a classical model based on Jackson and Watts (2002), we have shown

how the unified approach is useful to make a systematic investigation of

co-evolutionary models. Beside presenting a unified formalism to per-

form the by now important equilibrium selection technique of stochastic

stability, we have demonstrated that a co-evolutionary model with noise

generates an inhomogeneous random graph ensemble for the long run

interaction structure of the population. The main result in this direction

provides a closed form solution for the probability measure of this graph

ensemble, and presents the general form for edge-success probabilities.

Based on this novel insight, there are many new questions arise.

First, the edge success probabilities depend only on the behavioral rules
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the agents are assumed to employ. It would be interesting to see what

differences between networks of this ensemble arise by assuming differ-

ent behavioral rules. For instance, do best-responding agents tempt to

self-organize in more structured and efficient network topologies as imi-

tative agents? What role plays the underlying noise structure of the model

(meant here as the interplay between behavioral noise β and overall net-

work volatility ξ)? Second, the literature on social and epidemic diffu-

sion (see e.g. Morris, 2000, Alós-Ferrer and Weidenholzer, 2008, Pastor-

Satorras and Vespignani, 2001) have emphasized the importance of the

network architecture in order to understand the phenomenon of con-

tagion. In particular, notions of network clustering and cohesiveness

have turned out to be important. We do not yet know the statistics

produced by a co-evolutionary model. Third, in the context of volatil-

ity models Ehrhardt et al. (2008a) find three interesting dynamic effects;

Resilience, Equilibrium co-existence and phase transitions (i.e. a discon-

tinuous switch in the connectivity of the network by a slight change of

the parameters affecting the edge success probability). Under what para-

meter configurations are these phenomena reproduced in the framework

of a co-evolutionary model? The recent work by Bollobás et al. (2007)

studies inhomogeneous random graphs and detects also a phase transi-

tion in network connectivity by exploring the size of components with a

branching process approximation.

A Proof of Lemma 3.2

We first show that if ω ∈ <, then there is no positive probability path under K

that leads out of this set. Under ω every connected pair of players is coordinated.

Let i be a current a1 player. Every player in the component to which i belongs

must then also play a1.23 Hence, every graph corresponding to ω ∈ Ω∗ must

consist of finitely many components, each characterized by behavioral confor-

23If j would be a player in the component who plays a2 he cannot be linked with a

player who is path connected with i.
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mity. By definition, applying K to such a state will not lead to a state outside

Ω∗.

Now consider a state ω /∈ <. To show that such a state is transient under K, we

have to find a positive probability path under K that leads to some state ω′ ∈ <,

but no path from < can be constructed that goes to ω. It is easy to see that

once the unperturbed process is in < there is no positive probability path that

leads the process out of it, so one direction of the proof is already shown. For

the other direction, the following algorithm constructs an (ω, ω′)-path in finitely

many steps;

Let ω0 = ω be our initial state. The set of uncoordinated edges E(I1(ω0), I2(ω0)) 6=
∅, by hypothesis.24 Let t = 0, 1, 2, . . . , m measure the number of iterations of the

algorithm. Start from t = 0. The algorithm generates a sequence {ωt}m
t=0, where

the transition from ωt to ωt+1 proceeds as follows:

Step 1: Pick the first edge from this set. Let one of the two involved players

receive an action adjustment opportunity where he switches only to an

action that gives him a strictly larger payoff compared to ωt.25 If this

player changes his action, delete the edge from the list of uncoordinated

edges, and call the resulting state ωt+1. Then repeat Step 1. If the player

does not change his action, go to Step 2.

Step 2: Give the other player an action adjustment opportunity as in Step 1. If

he changes his action, delete the edge from the list of uncoordinated edges

and call the resulting state ωt+1. Then repeat Step 1. If the player does not

change his action, go to Step 3.

Step 3: Delete the edge by a targeted link destruction event.26 Call the resulting

state ωt+1 and note that the set of uncoordinated edges decreased by 1. Go

to Step 4.27

24This is the set of links that connect players from I1(ω) to players in I2(ω). Iσ(ω) is

the set of aσ-players at ω.
25In 2× 2 games with finite populations this choice rule is generically equivalent to

demanding that a play switches to a best-response.
26Note that this is always a zero-cost step.
27An intermediate stage could be added to the algorithm, where we apply K to ωt+1

by letting the involved players create a link. This will lead to the creation of maximally
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Step 4: Order the edges in E(I1(ωt+1), I2(ωt+1)) in some way. If this set is

empty exit the algorithm. Otherwise, go to Step 1.

B The Markov chain tree theorem and set-valued

cost functions

To prove (2.8) we will make use of some general results from the theory of

Markov chains and simulated annealing. Norris (1997) and Grimmett and Stirza-

ker (2001) are good references for the theory of finite Markov chains, and Catoni

(1999; 2001) collects the relevant results from simulated annealing. Let ω ∈
Ω, x, y, z ∈ Ω \ {ω} and X ⊂ Ω a nonempty set. Denote by Kβ,n the n-fold

Matrix product of Kβ. The interpretation of this operation is that Kβ,n(x, y) =

P(Xβ
n = y|Xβ

0 = x). Let ω ∈ Ω be an arbitrary fixed state and define its first

passage time as the random variable

τ(ω) := inf{n ≥ 1|Xβ
n = ω}.

Since ω is recurrent we have P(τ(ω) < ∞|Xβ
0 = z) = 1 for all z. Hence, the

process returns to state ω almost surely, independent from where it takes off.

Suppose we start the process from y and want to keep track of the number of

times the chain visits x before it returns to ω. Phrased in probabilistic terms this

amounts to calculate

E

[
∞

∑
n=0

1{Xβ
n=x}∩{τ(ω)≥n}|X

β
0 = y

]
. (B.1)

The graph description of finite Markov chains is useful to calculate this seem-

ingly complicated expression. Recall that a X -revision graph is an element of

the set of graphs T (X ), connecting every point in Ω \X to a point in X , without

loops. If X = {ω, x} then T ({ω, x}) contains all graphs which connect points

from Ω \ {ω, x} in a unique way either to ω or x. Denote by Ty,x(X ) the set

of X -graphs which contain a path {ω1, . . . , ωl} such that ω1 = y, ωl = x and

ωt /∈ X , for all 2 ≤ t ≤ l − 1. If y = x define Tx,x(X ) = T (X ). If y ∈ X set

Ty,x(X ) = ∅. It is intuitive that (B.1) should be proportional to the probability

2 coordinated links.
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of graphs T ∈ Ty,x({ω, x}). However, we also require to return to ω, so not all

possible paths are allowed. We have to condition on the ω-trees, since these are

the paths that lead in a unique way to ω. This heuristic argument suggests that

(B.1) can be calculated as

∑T∈Ty,x({ω,x}) Kβ(T)

∑Tω∈Tω
Kβ(Tω)

=
1

ρβ(ω) ∑
T∈Ty,x({ω,x})

Kβ(T). (B.2)

Lemma 3.1 of Catoni (1999) gives a rigorous proof of this heuristic.28

Lemma B.1 (Lemma 3.1, Catoni (1999)). Let K̄β denote the matrix Kβ restricted to

the set Ω \ {ω}. Then

∞

∑
n=0

K̄β,n(y, x) = E

[
∞

∑
n=0

1{Xβ
n=x}∩{τ(ω)>n}|X

β
0 = y

]

=
∑T∈Ty,x({ω,x}) Kβ(T)

ρβ(ω)
.

Before proving this result, we need the following simple observation.

Lemma B.2. For all y, x 6= ω, we have lim
n→∞

K̄β,n(y, x) = 0.

Proof.

lim
n→∞

K̄β,n(y, x) ≤ P(τ(ω) = ∞|Xβ
0 = y) = 0

since ω is a recurrent state.

As a consequence we see that (Id−K̄β) is invertible. This is interesting, because

for all y, x 6= ω

(Id−K̄β)−1(y, x) =
∞

∑
n=0

K̄β,n(y, x)

=
∞

∑
n=0

E
(
1{Xβ

n=x}∩{τ(ω)>n}|X
β
0 = y

)
.

Hence, this gives us the expected number of times the process visits x before

hitting ω, which is the quantity we want to compute in Lemma B.1.

28The proof, which is taken from Catoni (1999), extends literally to the case where the

singleton is replaced by a non-empty subset X .
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Proof of Lemma B.1. For all y, x 6= ω, let us define

M(y, x) :=
1

ρβ(ω) ∑
T∈Ty,x({ω,x})

Kβ(T).

Define the Kronecker-delta function as δy,x = 1 if y = x and 0 otherwise. We

have to show that for all y, x 6= ω

∑
z 6=ω

(δy,z − K̄β(y, z))M(z, x) = δy,x.

This can be written as

∑
z 6=y

Kβ(y, z)M(y, x) = δy,x + ∑
z∈Ω\{ω,y}

Kβ(y, z)M(z, x)

⇔ ∑
z 6=y

Kβ(y, z) ∑
T∈Ty,x({ω,x})

Kβ(T) = δy,xρβ(ω) + ∑
z∈Ω\{ω,y}

Kβ(y, z) ∑
T∈Tz,x({ω,x})

Kβ(T)

Define the sets C1 := {(z, T)|z 6= y, T ∈ Ty,x({ω, x})} and C2 := {(z, T)|z ∈
Ω \ {ω, y}, T ∈ Tz,x({ω, x})}, so that we can equivalently write

∑
(z,T)∈C1

Kβ(y, z)Kβ(T) = δy,xρβ(ω) + ∑
(z,T)∈C2

Kβ(y, z)Kβ(T). (B.3)

Let us consider the case y = x first, so that C1 is defined by the revision graphs

in T ({ω, x}). Then C2 ⊂ C1, since every {ω, x}-revision tree that contains an

(z, x)-path is a {ω, x}-revision graph. The converse, of course, need not apply.

Define the map

ϕ : C1 \ C2 → Tω, (z, T) 7→ ϕ(z, T) = (Ω, ~E(T) ∪ {(x, z)}).

This operation takes an {ω, x}-revision tree, not containing a (z, x)-path, and

adds the edge (x, z). Thus, from the point z we have to arrive at ω in a unique

way. By adding the edge (x, z) we create an ω-revision tree. If we can show

that ϕ is bijective, then we can move between C1 \ C2 and Tω without losing any

information. For T′ = ϕ(z, T) ∈ Tω, the inverse mapping is

ϕ−1(T′) = (ϕ−1
1 (T′), ϕ−1

2 (T′)) = (RT′(x), ~E(T′) \ {(x,RT′(x))}) = (z, ~E(T′) \ {(x, z)}).
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The left-hand side of eq. (B.3) turns then to29

∑
(z,T)∈C1

Kβ(x, z)Kβ(T) = ∑
(z,T)∈C1\C2

Kβ(x, z)Kβ(T) + ∑
(z,T)∈C2

Kβ(x, z)Kβ(T)

= ∑
T′∈Tω

Kβ(x, ϕ−1
1 (T′))Kβ(ϕ−1

2 (T′)) + ∑
(z,T)∈C2

Kβ(x, z)Kβ(T)

= ∑
T′∈Tω

Kβ(x,RT′(x))
Kβ(T′)

Kβ(x,RT′(x))
+ ∑

(z,T)∈C2

Kβ(x, z)Kβ(T)

= ρβ(ω) + ∑
(z,T)∈C2

Kβ(x, z)Kβ(T)

what coincides with the right-hand side of this equation.

Now, consider the case y 6= x. Define the map ϕ : C1 → C2 by

ϕ(z, T) =

{
(z, T) , if T ∈ Tz,x({ω, x})
(RT(y), (~E(T) ∪ {(y, z)}) \ {(y,RT(y))}) , if T /∈ Tz,x({ω, x}).

ϕ maps the pair (z, T) onto itself if T contains an (z, x)-path. If such a path does

not exist, then it connects y with z, deletes the (unique) outgoing edge from y,

and shifts the initial vertex of the path from y to its unique neighbor under T,

RT(y). Since there exists a path connecting y with x, the (unique) neighbor of

y on T is also connected with x. Hence, we have constructed a revision tree

T′ ∈ TRT(y),x({ω, x}), with RT(y) ∈ Ω \ {ω, y}.30 If we can show that ϕ is

bijective, then C1 = C2 follows and we are done. We claim

ϕ−1(z, T) =

{
(z, T) if T ∈ Ty,x({ω, x}),

(RT(y), (~E(T) ∪ {(y, z)}) \ {(y,RT(y))}) if T /∈ Ty,x({ω, x}).

Then ϕ−1(ϕ(z, T)) = (z, T) for all (z, T) ∈ C1. To see this, start with (z, T) ∈
Tz,x({ω, x}). Then ϕ(z, T) = (z, T) ∈ C2 and T ∈ Ty,x({ω, x}), hence ϕ−1(ϕ(z, T)) =

(z, T). In the case where T /∈ Tz,x({ω, x}), let us call ϕ(z, T) = (z′, T′) ∈ C2. Then

T′ /∈ Ty,x({ω, x}), and consequently

ϕ(z′, T′) = (RT′(y), (~E(T′) ∪ {(y, z′)}) \ {(y,RT′(y))})

= (z, (~E(T′) ∪ {(y,RT(y))}) \ {(y, z)})

= (z, T).

29Define 0 ·∞ = 0.
30If RT(y) = x then we get the pair (x, T) with T ∈ T ({ω, x}) which lies in C2 for

z = x.
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The expected time spent in some state x before the system returns to ω is given

by

vx(ω) = E

(
∞

∑
n=0

1{Xβ
n=x}∩{τ(ω)≥n+1}|X

β
0 = ω

)
. (B.4)

Intuitively, this is the average length of ω-cycles on which x is visited.

Lemma B.3. Let v(ω) denote the vector whose elements are defined by (B.4). Then

(i) vω(ω) = 1;

(ii) v(ω)Kβ = v(ω);

(iii) v(ω) is bounded and positive.

Proof. (i) By definition.

(ii) By the Markov property and time-homogeneity,

vx(ω) =
∞

∑
n=1

P(Xβ
n = x, τ(ω) ≥ n|Xβ

0 = ω)

=
∞

∑
n=1

∑
ω′∈Ω

P(Xβ
n−1 = ω′, Xβ

n = x, τ(ω) ≥ n|Xβ
0 = ω)

=
∞

∑
n=1

∑
ω′∈Ω

P(Xβ
n−1 = ω′, τ(ω) ≥ n|Xβ

0 = ω)Kβ(ω′, x)

=
∞

∑
n=0

∑
ω′∈Ω

P(Xβ
n = ω′, τ(ω)− 1 ≥ n|Xβ

0 = ω)Kβ(ω′, x)

= ∑
ω′∈Ω

vω′(ω)Kβ(ω′, x)

(iii) Suppose there exists a state x such that vx(ω) = 0. Then, for all n ≥ 1,

0 = ∑
ω′∈Ω

vω′(ω)Kβ,n(ω′, x) = Kβ,n(ω, x) + ∑
y 6=ω

vy(ω)Kβ,n(y, x)

and so Kβ,n(ω, x) = 0, contradicting irreducibility. Essentially the same

argument can be used to see that vx(ω) < ∞ for all x.
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The expected return time to ω is v̄(ω) = ∑ω′∈Ω vω′(ω). This is a measure of the

average length of ω-cycles. A state ω is called positive recurrent if v̄(ω) < ∞.

Lemma B.4. Let Kβ be irreducible and recurrent. Then Kβ has an invariant distribution

µβ such that µβ({ω}) = µβ(ω) = 1/v̄(ω).

Proof. Since Ω is finite, there exists a positive recurrent state ω ∈ Ω. Now,

since the process is irreducible, all states are positive recurrent. Then v̄(ω) =

∑ω′∈Ω vω′(ω) < ∞. Since v(ω) defines an invariant measure for Kβ, µβ =

(1/v̄(ω))v(ω) is an invariant distribution for Kβ, satisfying µβ(ω) = 1/v̄(ω).

Using this Lemma, observe that

µβ(ω) =

(
∑

ω′∈Ω
vω′(ω)

)−1

=

(
1 + ∑

x 6=ω

vx(ω)

)−1

=

[
1 +

∞

∑
n=1

P(Xβ
n 6= ω, τ(ω) ≥ n + 1|Xβ

0 = ω)

]−1

=

[
1 +

∞

∑
n=1

∑
y 6=ω

P(Xβ
1 = y, τ(ω) ≥ n + 1|Xβ

0 = ω)

]−1

=

[
1 + ∑

y 6=ω

Kβ(ω, y)
∞

∑
n=1

P(τ(ω) ≥ n|Xβ
0 = y)

]−1

=

[
1 + ∑

y 6=ω

Kβ(ω, y)E(τ(ω)|Xβ
0 = y)

]−1

.

We have for all y 6= ω the identity

E(τ(ω)|Xβ
0 = y) = E

(
∞

∑
n=0

1{Xβ
n 6=ω}∩{τ(ω)>n}|X

β
0 = y

)

= E

(
∑

x 6=ω

∞

∑
n=0

1{Xβ
n=x}∩{τ(ω)>n}|X

β
0 = y

)

= ∑
x 6=ω

∞

∑
n=0

K̄β,n(y, x).
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The last equality follows from Lemma B.1. Using this identity gives

µβ(ω) =

1 +
1

ρβ(ω) ∑
y,x 6=ω

Kβ(ω, y) ∑
T∈Ty,x({ω,x})

Kβ(T)

−1

.

=
ρβ(ω)

ρβ(ω) + ∑x 6=ω ∑y 6=ω Kβ(ω, y) ∑T∈Ty,x({ω,x}) Kβ(T)

=
ρβ(ω)

ρβ(ω) + ∑x 6=ω ∑Tx∈Tx
Kβ(Tx)

which is eq. (2.8).

We now provide some justifications for the cost functions (2.14). The results

presented here are due to Beggs (2005), who in turn builds on the work of Catoni

(1999). The clue is to consider a modified Markov chain, which monitors only

transitions in a suitably chosen subset X ⊂ Ω. Therefore, for m ∈ N0, define the

stopping times of successive visitations of the set X as τ−1(X ) ≡ 0, τm(X ) :=

inf{n ≥ τm−1(X ) + 1|Xβ
n ∈ X}. The Markov chain Zβ

m := Xβ

τm(X ) records all

visitations of Xβ to the set X .

Lemma B.5. Let X ⊂ Ω be a non-empty set. (Zβ
m)m≥0 is an irreducible, recurrent

and time-homogenous Markov chain on X . Its unique invariant distribution is given by

µβ(·|X ) and its transition probabilities are for all y, x ∈ X

P(Zβ
m+1 = x|Zβ

m = y) = Kβ(y, x) + ∑
z∈Ω\X

Kβ(y, z)Qβ

Ω\X (y → x|z) (B.5)

where

Qβ

Ω\X (y → x|z) :=
∑T∈Tz,x(X ) Kβ(T)

∑T∈T (X ) Kβ(T)
.

is the expected number of visitations to z before the restricted process reaches x.

Proof. That the restricted process is a Markov chain with these properties can be

proved quite easily. See Proposition 7.2.1 in Catoni (2001). For the second claim,

note that the strong Markov property (see Norris, 1997), applied to the stopping
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times τm(X ), implies that

P(Zβ
m+1 = x|Zβ

m = y) = P(Xβ

τm+1(X ) = x|Xβ

τm(X ) = y) = P(Xβ

τ1(X ) = x|Xβ
0 = y)

= Kβ(y, x) +
∞

∑
n=2

∑
z/∈X

P(Xβ
1 = z, Xβ

s /∈ X ∀s ∈ (1, n− 1], Xβ
n = x|Xβ

0 = y)

= Kβ(y, x)

+
∞

∑
n=1

∑
z,ω/∈X

Kβ(y, z)P(Xβ
n = ω, τ(X ) ≥ n|Xβ

0 = z)Kβ(ω, x)

= Kβ(y, x) + ∑
z,ω/∈X

Kβ(y, z)
∑T∈Tz,ω(X∪{ω}) Kβ(T)

∑T∈T (X ) Kβ(T)
Kβ(ω, x)

= Kβ(y, x) + ∑
z/∈X

Kβ(y, z)
∑T∈Tz,x(X ) Kβ(T)

∑T∈T (X ) Kβ(T)

= Kβ(y, x) + ∑
z∈Ω\X

Kβ(y, z)Qβ

Ω\X (y → x|z)

where we have used in the fourth line an extended version of Lemma B.1.

We will apply this result to derive the set-valued cost functions (2.14). Let

L1, . . . ,Lk denote the recurrent classes of the unperturbed model M and < =⋃k
i=1 Li the union of recurrent classes. The literature often refers to the sets Li as

limit sets. From each limit set we make an arbitrary selection xi ∈ Li, 1 ≤ i ≤ k,

and define X := {x1, . . . , xk}. Note that X contains the absorbing states (i.e. the

singleton recurrent sets). For y, x ∈ X , let

ĈX (y, x) := − lim
β→0

β log P(Zβ
m+1 = x|Zβ

m = y)

be the cost function of the restricted process (Zβ
m)m≥0. Further, define ĉ∗(ω) :=

miny∈Ω\{ω} ĉ(ω, y) the least cost transition from some state ω ∈ Ω (omitting the

type of transition).

Lemma B.6. Let X = {x1, . . . , xk}, xi ∈ Li, 1 ≤ i ≤ k. Then, for all y, x ∈ X , the

costs of transiting from y to x are given by

cX (y, x) = min
P∈Py,x(X̄ ∪{y},X )

Ĉ(P), (B.6)

where for any path P, Ĉ(P) := ∑~e∈~E(P) ĉ(~e), and X̄ = Ω \ X .
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Proof. The proof is based on Lemma 2.1 and the transition probability of the re-

stricted process (Zβ
m) found in Lemma B.5. We know that Kβ(y, x) = exp

[
− 1

β (ĉ(y, x) + o(1))
]
.

For a given point z ∈ Ω \X , we have to find an asymptotic bound for Kβ(y, z)Qβ

Ω\X (y →
x|z). For sufficiently small β this probability can be written as

exp
[
− 1

β
(ĉ(y, z) + o(1))

] ∑T∈Tz,x(X ) exp
[
− 1

β (Ĉ(T) + o(1))
]

∑T∈T (X ) exp
[
− 1

β (Ĉ(T) + o(1))
] .

Taking logarithms, and multiplying by −β gives us

ĉ(y, z)− β log[Qβ

Ω\X (y → x|z)]. (B.7)

The second terms is governed by

log

[
∑

T∈Tz,x(X )
exp

(
− 1

β
(Ĉ(T) + o(1))

)]
− log

[
∑

T∈T (X )
exp

(
− 1

β
(Ĉ(T) + o(1))

)]
.

Lemma 2.1 tells us that for β ↓ 0 this number is asymptotically equivalent to

max
T∈Tz,x(X )

exp(−Ĉ(T)/β)− max
T∈T (X )

exp(−Ĉ(T)/β).

(B.7) boils then down to

ĉ(y, z) + min
T∈Tz,x(X )

Ĉ(T)− min
T∈T (X )

Ĉ(T). (B.8)

Call T∗z,x ∈ Tz,x(X ) a least cost X -graph containing an (z, x)-path, and T∗X ∈
T (X ) a least cost X -revision graph. Call P∗ the (z, x) path used on T∗z,x. We

claim that all edges in T∗z,x, which are not on the path P∗, are also used under

T∗X . This follows from the fact that Tz,x(X ) ⊂ T (X ). The only difference between

the graphs T∗z,x and T∗X are the edges on the path P∗ = {ω1, . . . , ωl}, ω1 = z, ωl =

x, ωt /∈ X , ∀t = 2, . . . , l − 1. The edge (ωt−1, ωt) need not be globally optimal,

so that this edge causes supplementary costs ĉ(ωt−1, ωt)− ĉ∗(ωt−1). The term

ĉ∗(ωt−1) is the cost of the edge leaving ωt−1 under T∗X . Hence, for any z /∈ X we

can pin down the costs of a transition from y to x, via z, as

ĉ(y, z)+ min
P

{
l

∑
t=2

[ĉ(ωt−1, ωt)− ĉ∗(ωt−1)] : P = {ω1, . . . , ωl} ∈ Pz,x(Ω \ X ,X )

}
.
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Call this ĈX (y → x|z). It follows that

cX (y, x) = min
{

ĉ(y, x), min
z∈Ω\X

ĈX (y → x|z)
}

.

Next, we claim that if ω is used on the optimal path P∗, then ĉ∗(ω) = 0. To see

this, observe that by definition of such paths, ω is either a transient state, or it is

a recurrent state, not contained in the selection X . In the first case, ĉ∗(ω) = 0,

since any transient state can be appended to a zero-cost path leading to some

recurrent state. In the second case we also have ĉ∗(ω) = 0, since ω cannot be

absorbing, hence communicates with another state in the same recurrent class.

Hence, if ω1 is the first state on the optimal path P∗ then ĉ∗(ω1) = 0, and

iteration gives ĉ∗(ωt−1) = 0 for all 2 ≤ t ≤ l − 1. Consequently

cX (y, x) = min
{

ĉ(y, x), min
z∈Ω\X

min
P∈Pz,x(Ω\X ,X )

(
ĉ(y, z) + Ĉ(P)

)}
= min

P∈Py,x(X̄ ∪{y},X )
Ĉ(P).

This Lemma gives us the costs of a transition between two recurrent states y, x.

If y ∈ L and x ∈ L′, then we can extend the above argument to a setwise

cost functions, measuring the difficulty of a transition from recurrent class L to

recurrent class L′. Let ω ∈ L, ω′ ∈ L′. There is a zero-cost path connecting

y with ω, and a zero-cost path connecting x with ω′. Hence, the least cost of

moving from L to L′ is exactly (2.14). This in turn shows that the least cost of

reaching a state ω ∈ L coincides with the minimal cost needed to reach the limit

set L from all other limit sets, justfying eq. (2.15). Hence, if ω is stochastically

stable, so must all states in the same recurrent class.

Corollary B.1.

Ω∗ =
⋃
{L|(∃ω ∈ L) : γ(ω) = min

ω′∈Ω
γ(ω′)}. (B.9)

One can also use the argument in Lemma B.6 to establish a connection with the

radius/co-radius formulas of Ellison (2000). I refer to Beggs (2005) for further

discussion.
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