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Abstract

We apply range unit-root tests to OECD unemployment rates and
compare the results to conventional tests. By simulations, we find that
unemployment is represented adequately by a new nonlinear transforma-
tion of a serially-correlated I(1) process.
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1 Introduction

We test for the null hypothesis of a unit root in unemployment of 13 countries.
Unemployment rates are unlikely to fit the maintained models of traditional

1



unit-root tests, such as the (augmented) Dickey-Fuller or (A)DF tests. There-
fore, such tests may yield unreliable conclusions concerning the hypotheses of
hysteresis and of the natural rate, which are often identified with the statistical
null and alternative, respectively. Definitionally bounded, unemployment rates
may rather correspond to nonlinear transformations of I(0) or I(1) processes, a
class introduced by Granger and Hallman (1991). Unemployment additionally
faces a lower bound due to limited employability of workers in prosperity and
an upper bound representing the level of minimum employment maintained in
recession. We contrast parametric unit-root tests with range unit-root (RUR)
tests introduced by Aparicio et al. (2006), which are robust to nonlinear trans-
formations, and we find that their results conflict with DF-type tests: RUR
tests reject more often, although they have less power in linear models and
Granger and Hallman (1991) point out size distortions and the danger of DF
overrejection in the presence of nonlinearity. Gustavsson and Österholm (2006)
conduct a comparable study that provides evidence supporting the natural rate
hypothesis. Their maintained model class, however, is a special class of smooth-
transition models where they allow for nonlinearity under the alternative only.
We propose a nonlinear transformation of the unemployment rate that can ex-
plain the observed features, and we support this claim by some Monte Carlo
evidence. A nonlinearly transformed I(1) process can reproduce the observed
patterns best, hence our results tend to support the hysteresis hypothesis.

In Section 2, we describe the data and compare the results of the RUR tests to
the results of DF and ADF test. To evaluate the results, we run some size and
power simulations in Section 4. A new nonlinear transformation is introduced
in Section 3. That is, in our simulations we test for a unit root against a
stationary alternative where the series are transformed adequately to fit the
real data according to the minimum sum of squared errors. Finally, we may
draw some conclusions.

2 Data and Unit-Root Tests

We use survey-based, seasonally-adjusted, monthly data on unemployment rates
of 13 countries provided by the OECD: Australia, Brazil, Canada, Finland,
France, Ireland, Japan, Korea, Mexico, Netherlands, Sweden, UK, and US.

Table 1 reports the results of four tests with the unit root assumed under the
null hypothesis. We apply the range unit-root (RUR) and the forward-backward
range unit-root (FB-RUR) test by Aparicio et al. (2006) where the test statistics
are equal to

J
(n)
0 =

1√
n

n∑
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1
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t > 0
)
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Country Period Obs. RUR FB-RUR DF ADF
Australia 02/78–01/08 360 1.897 2.907 -0.748 -0.690 (14)
Brazil 01/81–01/08 325 1.775 2.550 -0.924 -1.091 (4)
Canada 01/55–02/08 638 1.386* 2.715 -0.265 -0.525 (5)
Finland 01/59–01/08 589 2.349 4.458 0.067 -0.880 (14)
France 01/78–07/07 355 2.813 4.353 1.031 -0.186 (10)
Ireland 01/83–01/08 301 4.381 6.440 -2.493** -1.386 (5)
Japan 01/55–12/07 636 1.467* 2.075* 0.071 0.018 (12)
Korea 01/90–01/08 217 1.154** 2.304 -0.302 -0.778 (7)
Mexico 01/87–12/07 252 1.323* 2.094 -0.774 -0.591 (4)
Netherlands 01/01–09/07 81 2.556 3.693 0.280 0.037 (2)
Sweden 01/70–12/07 456 1.218** 2.252 -0.242 -0.535 (7)
UK 02/71–11/07 442 2.949 4.473 0.243 -0.762 (6)
US 01/55–02/08 638 1.109*** 2.044* -0.414 -0.506 (12)
*, **, *** denotes significance at a 10%, 5%, 1% level, respectively.

Table 1: Unit-root tests.

and
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respectively. ∆R(x)
t denotes the first differences of the running ranges of the re-

alization xt, t = 1, . . . , n and ∆R(x′)
t those of the reversed series xt, t = n, . . . , 1.

1 is the indicator function. Running ranges are formed by the differences of the
ith extremes, maxt=1,...,i xt and mint=1,...,i xt, for each i = 1, . . . , n. J (n)

0 counts
the number of increases of the sequence of ranges, and the forward-backward
version J (n)

∗ also considers the range increases in the reversed series. Critical val-
ues for each sample size are calculated from 10000 replications of the null model
of a random walk with normal increments. Columns 6 and 7 contain the test
statistics corresponding to the conventional DF test (Dickey and Fuller, 1979)
and the ADF test (Said and Dickey, 1984), respectively. The optimum num-
ber of lags given in parentheses is selected by AIC with the maximum number
determined according to Schwert (1989).

The RUR test rejects the null hypothesis for six countries at least at a 10%
level of significance whereas the FB-RUR test, which is supposed to be more
powerful (Aparicio et al., 2006), rejects the null only twice. In contrast, the DF
test rejects the null of a unit root only for Ireland which may be due to serial
correlation as the ADF test does not even reject for that country.

3



3 Nonlinear Transformations

To assess the results of the unit-root tests, we implement some size and power
experiments where we generate artificial unemployment data. For this purpose,
we fit an autoregressive model to the Canadian data where we have the largest
number of observations available. Canadian unemployment rates exhibit several
characteristics of unemployment rates in general. Particularly, autocorrelation
and partial autocorrelation functions as well as the near-unit-root behavior are
quite representative. The original series is linearized by a new transformation
function. Autocorrelation and partial autocorrelation functions of most unem-
ployment series indicate AR(1) models. We first demean the data and estimate
AR(1) by least squares without intercept. The demeaned unemployment rate
u is not bounded between 0 and 1 any more, rather between −(n − 1)/n and
(n−1)/n1. We introduce the following two-parts nonlinear transformation func-
tion

f(u) =
[
ln
(
n− 1
n

)
− ln

(
n− 1
n
− u
)]1/α

· β if u ≥ 0 (3)

and

f(u) = −
[
ln
(
n− 1
n

)
− ln

(
n− 1
n

+ u

)]1/α
· β if u < 0 (4)

where α ∈ (0, 1] and β > 0. The function defined by (3) and (4) forms a sigmoid
curve over the first and the third quadrant, bounded between −(n − 1)/n and
(n−1)/n for n ≥ 2. A lower value α corresponds to higher nonlinearity whereas a
higher α comes close to linearity in the relevant range. The demeaned Canadian
data ranges from –0.045 to 0.057. The parameter β allows for scaling.

4 Size and Power Simulations

By running RUR, FB-RUR, and DF test on nonlinear series generated according
to the suggested transformation, we elaborate differences in size and power
performance. We simulate 10000 series of a stationary AR(1) process to obtain
power estimates. That is, we apply transformations (3) and (4) to the Canadian
data, estimate an AR(1) model and save the autoregressive coefficient. Starting
with the first observation of the Canadian series, we generate 638 observations.
The errors variance is calibrated to match the sample variance. The resulting
series are transformed by the inverse functions of transformations (3) and (4).
As the nonlinear transformation also scales the variance, the scaling parameter
β becomes redundant after applying the inverse functions and is set equal to

1This corresponds to the situations where either one rate is equal to one and the other rates
are equal to zero or one rate is equal to zero and the other rates are equal to one, respectively.
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one. Correspondingly, size estimates are calculated from 10000 replications of a
random walk where the variance of disturbances is calibrated as before.

Tables 2 and 3 present size and power estimates, respectively, corresponding to
different degrees of nonlinearity where we assume a nominal size of 5%. We use
the minimum mean sum of squared errors over all 10000 series as a measure of fit.
The best fit of the random-walk model occurs at α = 0.6. There, RUR and FB-
RUR test yield a higher probability of correctly accepting the null hypothesis
than the DF test. The size of the RUR and the FB-RUR test seems to be
definitely robust to nonlinear transformations whereas the size of the DF test
is not. That is, the tests by Aparicio et al. (2006) are close to the nominal size
whereas the DF test overrejects as already reported in Granger and Hallman
(1991) for various nonlinear transformations. Including five lagged differences
shifts the size close to the 5% level. However, in case of sufficient nonlinearity,
augmenting cannot preserve the size. For α = 0.2, ADF size is equal to 20.61%
whereas RUR and FB-RUR size are equal to 5.72% and 5.48%, respectively. In
contrast, the DF test applied to untransformed simulated data achieves a size
equal to 4.82%. To obtain size estimates located nearby the empirical rejection
frequency of 23% corresponding to the 5% level of significance in Table 1, we may
allow for serial correlation which is supported by the autocorrelation function
of the residuals. Negative MA coefficients result in different size increases of DF
test and RUR test.

α RUR FB-RUR DF
0.1 no results due to collinearity
0.2 5.59 5.22 50.62
0.3 5.50 5.29 32.02
0.4 5.72 5.48 18.79
0.5 5.66 5.41 11.39
0.6 5.50 5.29 7.47
0.7 5.35 5.26 5.60
0.8 5.61 5.59 4.63
0.9 5.59 5.22 4.79
1 5.71 5.34 4.75

Table 2: Size estimates in %.

The best fit of the stationary model is obtained at α = 0.9 which is associated
with near-linear behavior and thus comes close to the fit of the untransformed
process. Both tests experience strong power losses with increasing α. However,
RUR and FB-RUR test suffer from even higher declines than the conventional
DF test at all levels of nonlinearity. Applying the ADF test with 5 lagged
differences seems natural, but does not result in higher power. By using a
simulated ARMA(1,1) process at α = 0.9, we obtain similar power estimates
for RUR and FB-RUR test and a small power decrease for DF test.
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α RUR FB-RUR DF
0.1 no results due to collinearity
0.2 90.03 96.72 100
0.3 65.24 73.48 99.92
0.4 41.58 46.26 95.17
0.5 28.93 31.27 74.57
0.6 22.14 22.10 50.82
0.7 16.95 16.84 33.89
0.8 14.20 14.37 27.41
0.9 12.53 12.41 24.84
1 11.96 11.90 24.55

Table 3: Power estimates in %.

5 Conclusions

The RUR test seems to reject the null hypothesis of a unit root in unemployment
rather easily. However, it achieves only half of the power of the conventional DF
test. In contrast, the DF and the ADF test tend to accept the null hypothesis
of a random walk. As the DF test exhibits serious size problems in presence
of nonlinearities, its prospects of correctly identifying a transformed random
walk are poor. In presence of serial correlation, all tests face strong power
declines. Augmentations in the DF test improve the size performance but do
not countervail increases caused by nonlinearity. The Aparicio et al. (2006)
tests still lack a sufficient solution concerning serial correlation. In summary,
our simulations support the conjecture that a nonlinearly-transformed serially-
correlated I(1) process has generated the Canadian data.

We note that Aparicio et al. (2006) report higher power and smaller size esti-
mates for the RUR test than for the DF test in case of near-unit-root stationary
processes. Moreover, they claim the FB-RUR test to have more power than the
simple RUR test. These results conflict with the present work.
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Gustavsson, M. and P. Österholm, 2006, Hysteresis and non-linearities in un-
employment rates, Applied Economics Letters 13, 445–448.

Said, S. E. and D. A. Dickey, 1984, Testing for unit roots in autoregressive-
moving average models of unknown order, Biometrika 71, 599–607.

Schwert, G. W., 1989, Tests for unit roots: A Monte Carlo investigation, Journal
of Business & Economic Statistics 7, 147–159.

7


