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Michael Greinecker†
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Abstract

Maskin and Tirole have defined payoff-relevant states in discrete
time dynamic games with observable actions in terms of a partition of
the set of histories. Their proof that this partition is unique cannot be
applied, when action spaces are infinite or when players are unable
to condition on calendar time. This note provides a unified proof
of existence and uniqueness for these cases. The method of proof is
useful for problems other than the one treated here. To illustrate this,
a well known characterization of common knowledge is generalized.

JEL Classification: C72, C73, D83

1 Introduction

Markov perfect equilibrium and stationary Markov perfect equilibrium are
among the most popular solution concepts for dynamic games in applied
work. Such strategies depend only on time and states in the case of Markov
perfect equilibrium or on states alone in the case of stationary Markov per-
fect equilibrium. Players do not condition on general histories or on ex-
trinsic variables like the number of sunspots. The underlying philosophy is
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The usual disclaimer applies.
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that only payoff relevant states should matter. Payoffs depend only on the
actions taken by all players, possibly including nature. So states are a de-
rived concept in terms of payoff relevance. Maskin and Tirole (2001) have
therefore given a definition of the payoff relevant states (Markov states)
as cells in a partition of histories. Histories that do neither differ in a pay-
off relevant way nor are of different length belong to the same partition
cell. The relevant partitions are those that are maximally coarse (there is
no coarser partition satisfying a certain consistency condition). They show
that such a partition exists and is unique as long as all action spaces are fi-
nite. Their proof for uniqueness in the case of finite action spaces depends
on the fact that only a finite number of different histories of a given length
is possible. Therefore, their proof does not generalize to the case of infi-
nite action spaces. If we allow for histories of different length to be in the
same partition cell (the appropriate state space for stationary Markov per-
fect equilibria), the same problem emerges. In this note, a unified proof for
existence and uniqueness of the set of payoff-relevant states for arbitrary
action spaces with or without dependence on calendar time is given. The
proof is based on a result from the theory of partition lattices, originally
due to Ore (1942), and allows one to use arguments for the finite case di-
rectly. Our proofs are for a deterministic framework. In a short section,
we explain how one can extend them to a framework with mixed strate-
gies and stochastic payoffs. At the end we discuss a further application
of the method and illustrate its usefulness by generalizing a well-known
characterization of common knowledge.

2 The Framework

There are n players. There is either a finite or countably infinite number
of periods. The final period is T ∈ Z+ ∪ {∞}. Let A be the set of actions
that can be played by any player at some time. In period 0, agent i has
the action space Ai(0) ⊂ A and the initial set of histories is H(0) = {∅}. For
t > 0 feasible actions for player i are given by a function Ai(t) : H(t) → 2A,
where Ai(ht) is the set of actions available to player i at t given the history
ht ∈ H(t). Define H(1) = A(0) and for t > 1 define H(t) to be the
set of all finite sequences (a(0), . . . , a(t − 1)) such that (a(0), . . . , a(t −

2)) ∈ H(t − 1) and ai(t − 1) ∈ Ai(t − 1)(a(0), . . . , a(t − 2)) for all i. A
play is a sequence (a(0), . . . , a(T)) such that (a(0), . . . , a(t)) ∈ H(t + 1)
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for all t < T . A (pure) strategy si for player i maps each history ht ∈
H(t) to an element of Ai(t)(ht). A continuation strategy for history ht,
written si|ht, is the restriction of a strategy si to the set of all histories of
the form (ht, a1, . . . , am) for some finite sequence1 a1, . . . , am such that
(ht, a1, . . . , am) ∈ H(t + m). A continuation strategy tells a player what
to do for every history that extends history ht. Finally, each player i has a
complete and transitive preference ordering on the set of plays.

Let X be a nonempty set. Denote the set of all partitions (disjoint covers)
on X by Π(X). The elements of a partition are called cells. For Π1, Π2 ∈
Π(X), say that Π1 is coarser than Π2, or Π2 finer than Π1, if every cell in Π2

is the subset of a cell in Π1 and write Π2 ⊑ Π1 in that case.
Let H =

∪
t H(t) be the set of all histories. The set of payoff-relevant

states will be a maximally coarse partition of H satisfying a certain con-
sistency requirement. Since what is payoff relevant may be different for
different players, different players will in general have different partitions.
So we will work with lists of partions of H.2 A function with domain H is
measurable with respect to a partition of H if it is constant on all partition
cells. A collection H = {H1, ..., Hn} is an element of Π(H)n. Say that one
such collection is coarser than another if each agent’s partition in the for-
mer is coarser than the corresponding partition in the latter. Say that the
collection (H1, . . . , Hn) is consistent if (i) for any player i and any two histo-
ries ht, ht ′ in the same cell of Hi and any finite sequence (a1, . . . , am) one
has that (ht, a1, . . . , am) ∈ H(t+m) and (ht ′, a1, . . . , am) ∈ H(t ′+m) imply
Ai(t + m)(ht, a1, . . . , am) = Ai(t

′ + m)(ht ′ , a1, . . . , am) and (ii) whenever
all other players j ̸= i play strategies measurable with respect to Hj, and ht

and ht ′ are in the same cell of Hi(t), then player i is indifferent between
continuation strategies si|ht and s ′

i|ht ′ such that si|ht(ht, a1, . . . , am) =

s ′
i|ht ′(h ′

t ′ , a1, . . . , am) for every finite sequence of action profiles a1, . . . , am

satisfying (ht, a1, . . . , am) ∈ H(t + m). Since, given the strategies of all
other players, any continuation strategy determines a play, preferences
over continuation strategies are well defined. A consistent collection is
time-dependent if for every agent all elements in the same partition cell are
of the same length. This means that every agent knows calendar time.
Markov states are the cells in a maximally coarse time-dependent consis-
tent collection. Stationary Markov states are the cells in a maximally coarse

1Finite sequences include sequences of zero length.
2Maskin and Tirole give conditions under which the partitions of all players coincide.
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consistent collection. That these collections actually exist and are unique is
established in the next section.

3 Existence and Uniqueness of Markov States
and Stationary Markov States

A complete lattice is a partially odered set such that each subset S has a least
upper bound, the join

∨
S, and a greatest lower bound, the meet

∧
S. The

following useful theorem is from Ore (1942):

Theorem 1 Let A be a nonempty set. Then (Π(A),⊑) is a complete lattice.
Let S ⊂ Π(A). Two elements in A are in the same cell of

∧
S if they are

in the same cell for every partition in S. Two elements a, a ′ ∈ A are in the
same cell of

∨
S if and only if there are elements a1, . . . , an+1 ∈ A with

a1 = a, an+1 = a ′ and partitions Π1, . . . , Πn ∈ S such that ai, ai+1 are in
the same cell of Πi for i = 1, . . . , n.

A relatively straightforward proof can be found in Roman (2008). The basic
idea is that there is an order isomorphism between (Π(A),⊑) and the set
of all equivalence relations on A ordered by set inclusion. For that space
it is easy to show that the meet of a family of equivalence relations is its
intersection and its join is the transitive closure of its union. No finiteness
assumption is needed. With Theorem 1 proving existence and uniqueness
of Markov states and stationary Markov states is easy.

Theorem 2 The set of Markov states and the set of stationary Markov states
exist and are unique.

Proof: Let M the set of all time-dependent and consistent collections and
MS be the set of all consistent collections. Markov states will be the cells
in

∨
M and stationary Markov states the cells in

∨
MS. If these are Marko-

vian or respectively stationary Markovian collections, they are obviously
maximally coarse. They exist by Theorem 1. It remains to show that

∨
M

is Markovian (the proof that
∨

MS is stationary Markovian is completely
analogous).

Define Mi = {Hi : (H1, . . . , Hi, . . . , Hn) ∈ M}. Let h, h ′ be in the
same cell of agent i’s partition in

∨
M. By Theorem 1, there are histo-

ries h1, . . . , hm+1 with h1 = h and h ′ = hm+1 and partitions Π1, . . . , Πm for
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agent i in Mi so that hl, hl+1 are in the same cell of Πl for l = 1, . . . , m+1.
Hence h, h ′ have the same length, allow for the same continuation strate-
gies and induce the same payoffs over continuation strategies, since for
j ̸= i, a strategy is

∨
Mj-measurable only if it is measurable for each parti-

tion in Mj. �

4 Randomized strategies

The argument above depends in no way on allowing only pure strategies.
What is necessary to apply it to expected utility (or a variant thereof) and
mixed strategies is that all strategies induce a distribution on plays, so that
expected utilities are associated to every outcome.3 The definition of mixed
strategies for uncountable action spaces poses some subtle difficulties in
general. Aumann (1964) has shown that when action spaces are Borel
subsets of some Euclidean space, mixed and behavior strategies can be
well defined as certain random variables for a large class of extensive form
games including the games treated here. Aumann has also given a version
of Kuhns theorem on the equivalence of mixed and behavior strategies for
games with perfect recall. Behavior strategies are the appropriate strategies
for applying the present method, for they allow a comparison of continu-
ation strategies. When we allow for mixed strategies, introducing nature
as a player allows us to introduce stochastic payoffs. Most of the discrete
time4 dynamic games with observable actions arising in applied work are
covered by this framework.

5 Discussion

Partitions or the closely related equivalence relations plays an important
role in economics. Partitions are used for representing knowledge and in-
formation, or for symmetries that a solution has to satisfy. In classical game

3When this is the case has been characterized by Alós-Ferrer and Ritzberger (2008) for
general extensive form games.

4Strategy profiles in differential games may fail to induce plays (see the discussion by
Alós-Ferrer and Ritzberger (2008)). For this reason, the payoff-relevant states cannot be
defined for differential games using the present method.
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theory, we want solutions not to change when strategically irrelevant pa-
rameters, like the specific extensive form representation of a given strategic
situation, change. This may be done by requiring a solution concept to be
constant on the cells of a partition of the set of extensive forms. In nor-
mative social choice theory, one may want to exclude morally irrelevant
information such as the names of agents or alternatives. This can be done
by requiring social choice rules to be constant on the cells of a partition of
all preference profiles.

Theorem 1 allows one to reason with the partitions of an infinite set for
many purposes as if the set were finite. What follows is an application to a
different problem.

Let Ω be a nonempty set of states of the world. The knowledge possi-
bilities of an agent are modelled by a partition of Ω. If the state ω occurs,
agent i with knowledge partition Πi only knows that some state in the cell
of Πi that includes ω has occured. Denote this cell by πi(ω). Agent i knows
an event (a subset of Ω) E at ω ∈ Ω if πi(ω) ⊆ E. Aumann (1976) defined
the partition ΠK corresponding to common knowledge as the meet of the
individuals partitions. To see that this coincides with the intuitive notion of
common knowledge (that everyone knows that everyone knows that. . . ),
he proved the following theorem for a finite set of states of the world Ω

and a finite set of agents I.

Theorem 3 An event E is common knowledge at ω for all agents in I if and
only if for any state ω ′ such that there are m agents 1, . . . , m and m+1 states
ω1, . . . , ωm+1 with ω1 = ω and ωm+1 = ω ′ satisfying ω,ωi+1 ∈ πi(ωi) for
i = 1, . . . , m one has ω ′ ∈ E.

This is a trivial consequence of the join characterization from Theorem 1.
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