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1 Introduction

Over the last fifteen years, a new mode of governance has emerged within the European

Union (EU). Since the European Council summit in Lisbon (March 2000), it has been

coined as the Open Method of Coordination (OMC). Initially designed for, and applied in,

social policy (social inclusion, health care, pensions and long-term care), various European

Councils approved of the extension of the OMC to a broad spectrum of policy areas,

encompassing for example migration, technology, environment, and R&D.

The Presidency Conclusions of the Lisbon European Council define the OMC as “a means

of spreading best practice and achieving greater convergence towards the main EU goals”

(European Council, 2000). The OMC is best described as an iterative process of bench-

marking and mutual learning among the EU member states.1

Roughly, the OMC proceeds as follows (see Figure 1 for a sketch): Having agreed on

EU-wide common objectives and indicators, EU member states individually design and

implement their national policies. After a certain period, these national strategies are

jointly evaluated and compared within the EU. Best practices are identified and member

states are encouraged (but not forced) to adopt them. The process is then iterated.

The OMC induces member states to systematically compare themselves to one another

in terms of their policy performance. It promotes the imitation of successful policies,

thus aiming at policy convergence (Trubek and Mosher, 2001). Diversity, though, is not

disallowed (Zeitlin, 2005; Daly, 2007). The OMC is a soft-law method that leaves to

member states control of their policies (Pochet, 2005) in an attempt to keep agency costs

and losses in national sovereignty minimal (Borrás and Jacobsson, 2004). The rationale

behind the OMC is the hope that the quality of policy decisions improves and that policy-

learning through benchmarking is enhanced.

In this paper, we provide a theoretical model of the OMC and an assessment of its perfor-

mance in a social policy (redistribution) setting. Following the design depicted in Figure 1,

we model the OMC as an iterative process with an emphasis on mimicking best practices

1While the OMC still lacks a unique and precise definition, there seems to be a consensus among

its commentators that “learning” and “imitation of best practise” are core ingredients of the method.

Detailed information on the OMC in the area of European social policy is provided by EU Commission

(2005, 2008).
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Figure 1: The iterative OMC process.

that, at the same time, allows for country-specific deviations. The resulting political pro-

cess exhibits evolutionary learning with imitation and experimentation. This allows us to

use concepts and results from evolutionary game theory and stochastic learning in games.

More specifically, we embed the OMC into a standard game of redistribution from rich

to poor in a multi-country setting with labour mobility. As a stylized example of social

policy, this application seems reasonably close to the contexts for which the OMC was

originally designed. In our model, the poor beneficiaries of transfers are internationally

mobile and settle where the welfare state is most generous. Governments are inequality-

averse utilitarians and, thus, have a preference for redistribution. With decentralization,

transfer policies are best responses to the policies of other jurisdictions. The decentralized

redistribution game has a large set of Nash equilibria. With the OMC, however, govern-

ments follow an imitative behavioral rule, choosing policies that perform best relative to

what other governments do. As we show, this leads them to evolutionarily stable strate-

gies (ESS). An ESS is a strategy which, once chosen by all players, cannot be invaded by

any competing alternative strategy. ESS are also the outcome of imitative learning. For

an iterated process like the OMC with its emphasis on copying best practices evolutionary

stability, thus, appears to be the appropriate solution concept.
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We want to stress the importance of the strategic effects arising in a setting with a finite

number of players. In our analysis we compare the ESS resulting from the OMC to Nash

equilibria and co-operative solutions of the policy competition game. These two solution

concepts represent the traditional modes of governance in the EU: they are the outcomes

when, respectively, policies remain fully decentralized (fiscal competition) or are fully

coordinated (integration or community method). In general, all these concepts differ in

the presence of payoff externalities (in our model: fiscal externalities). It therefore makes

sense to put the OMC into an explicitly game-theoretic context, even though the literature

on the OMC hardly ever mentions strategic interdependencies as a relevant impact factor

on the method’s performance.2

In Section 3 we find that the ESS coming out of the OMC are a strict subset of the set of

Nash equilibrium strategies of the decentralized redistribution game. Hence, in our model

the OMC cannot achieve anything that could not be obtained also via a decentralized

approach. However, the OMC avoids some extreme outcomes that are possible under

decentralization.

As our main contribution, we provide in Section 4 a dynamic approach that reflects the

iterative and imitative gist of the OMC. For commonly agreed-upon objectives (repre-

sented in the model by a social welfare function), governments choose policies mimicking

what was observed to be successful in previous periods; this captures the idea of learning

from other’s experience. The “open” nature of the OMC process is modeled as exper-

imentation: there is no binding commitment to adopt best practices and countries are

free to implement policies as they wish. We show that this process of imitation and

experimentation leads to the emergence of ESS, although not all ESS will be equally

robust to experimentation. In particular, we show that long-run equilibria emerge from

the “medium” range of ESS, resulting in a convergence towards moderate redistribution

policies where transfers to the poor are neither extremely low nor overly generous. As we

illustrate in Section 5 long-run equilibria are not necessarily related to efficient outcomes

and the OMC may result in underprovision as well as in overprovision of redistribution.

2A few exceptions should be mentioned: Pestieau (2005) and Coelli et al. (2008) relate the OMC

to yardstick competition and its idea that information spill-overs would enable citizens to compare the

performance of their governments with that of goverments elsewhere and then to punish and reward

politicians. However, no formal analysis is provided. Büchs (2008) informally analyzes the OMC as

a “two-level” (more precisely: two-stage) game where governments first agree on objectives and then

implement policies to meet these objectives.
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Empirically, a trend of convergence of social policies and the absence of a race-to-the-

bottom have been observed for OMC participants by Coelli et al. (2008). This fits well

to our theoretical observations. Formally, our analysis of the OMC is closely related to

that of price competition in an oligopolistic market for a homogeneous good with convex

costs. Akin to consumers in such markets, poor individuals in our model settle down in the

country with most generous transfer policies. Alós-Ferrer et al. (2000) show that imitative

learning perturbed by occasional price experimentation results in coordination on central

prices which correspond to our predicted intermediate subsidy levels. Technically, our

analysis follows the work on stochastic learning models proposed by Foster and Young

(1990), Young (1993), Kandori et al. (1993), and Samuelson (1994). In the proofs we use

the radius-coradius technique developed by Ellison (2000).

Implicit in our analysis is the assumption that OMC participants have a symmetric payoff

function. Taken literally, this assumption implies that those countries are identical, which

is clearly unrealistic in view of the large diversity among EU member states. Yet it makes

sense in an analysis of the OMC. Recall that the OMC postulates that countries agree

on common objectives. Moreover, it operates under the premise that successful policy

measures adopted in one country also work in a favorable way when adopted in another

country. Without the assumptions of common objectives and identical effects of policy

measures the idea of imitating best practises is called into question. Our assumptions of

identical countries and a symmetric game, thus, capture an essential feature of the OMC.

To summarize, our paper makes the following points. Models of learning and evolution in

games provide a suitable framework for an analysis of the OMC. Evolutionary stability

captures both the static (relative performance) and the dynamic features (learning pro-

cess) of the OMC. The imitative process of the OMC converges and settles at intermediate

transfer levels. Finally, the OMC does not necessarily lead to efficient outcomes, although

the degree of inefficiency may be greatly reduced thanks to the strong refinement result

that enables countries to coordinate in a small subset of policies relative to the great

number of coordination possibilities that are compatible with complete descentralization.

The rest of the paper is organized as follows. Section 2 sets up a game of decentralized

redistribution. Section 3 derives Nash equilibria and ESS for that game (static analysis).

Section 4 presents a formal analysis of the imitation dynamics induced by the OMC.

Section 5 discusses efficiency issues and some basic extensions of the model. Section 6

concludes. All proofs are relegated to the Appendix.
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2 The Model

2.1 Mobility and redistribution

There are n ≥ 2 identical countries that form an integrated economic area with free

mobility. Countries, indexed by i = 1, . . . , n, decide on whether and, if so, to what

degree to engage in redistribution among their residents. In each country there is one

very rich and immobile resident earning wR; this normalization to one rich per country

is innocuous in our framework. A large population of poor individuals, each earning

wP < wR, can benefit from redistribution. Poor individuals are perfectly mobile and

decide where to establish their residence based on the generosity of social policy. Let

ν ≥ n be the total size of the population of poor individuals in the economic area. Each

individual inelastically supplies one unit of labor. Thus, labor supply and basic earnings

do not depend on social policy; this guarantees that the total size of the population of

individuals affected by redistribution is constant.

We denote by `i (with 0 ≤ `i ≤ ν) the amount of mobile poor living in country i.

Redistribution from rich to poor is organized as follows. Each country i implements

a non-negative lump-sum transfer, si, payable to each poor within its jurisdiction and

financed by a lump-sum tax ti on its rich resident. Government budgets are required to

balance; i.e., the sum of transfers equals the amount of revenues raised:

si · `i = ti.

With such a redistribution scheme, consumption levels of the poor and the rich residing

in country i, respectively, amount to

cP
i = wP + si and cR

i = wR − ti = wR − `i · si.

The set of possible subsidies is restricted to the interval S = [0, wR]. We henceforth

write s = (s1, . . . , sn) ∈ Sn for vectors of redistributive policies. It is convenient to use

notation s = (si| s−i), where si is the subsidy chosen by country i and (with some abuse

of notation) s−i is the vector of subsidies chosen by countries other than country i or any

permutation thereof. Finally, denote si = maxj 6=i sj; for any given i, si is the maximum

subsidy chosen by any country other than i.

Individuals care only about their consumption. Thus, mobile individuals establish their

residence in the country with the most generous redistribution policy. Given s = (si| s−i),
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denote by Mi(s−i) = {j 6= i|sj = si} the set of countries offering the highest subsidy when

we exclude i and let mi(s−i) = |Mi(s−i)| be its cardinality. Given a vector s of subsidies,

we denote the distribution of mobile poor by (`1(s), . . . , `n(s)), where `i(s) denotes the

amount of poor residing in country i. Assume that whenever two countries, i and j,

choose the same transfer level, they attract the same amount of poor; i.e.

si = sj =⇒ `i(s) = `j(s).

As the mobile poor settle only in the most generous countries, their distribution across

countries follows the pattern in (1):

`i(s) = `(si| s−i) :=





0 if si < si

ν
1+mi(s−i)

if si = si

ν if si > si.

(1)

Clearly, 0 ≤ `i(s) ≤ ν and
∑n

i=1 `i(s) = ν. Two observations about (1) will become

important later on. First, the fraction of the poor residing in country i is invariant to

permutations of other countries’ subsidies. Second, so expressed, `(si| s−i) is also the

amount of poor that would reside in any country (not only i) choosing s = si when all

other countries choose subsidies according to s−i.

We postulate our model in terms of governments choosing subsidies that attract mobile

poor. This is in line with models by Wildasin (1991, 1994), Cremer and Pestieau (2003),

and many others. Alternatively, we could have chosen to make poor individuals immobile,

let rich individuals be mobile, and governments choose taxes instead of subsidies. This

would not change the essence of our analysis.3 A potentially more critical modeling choice

is the assumption that all poor are mobile. In Section 5 we discuss the robustness of our

results to the introduction of some immobile poor. Due to costless mobility, migration

responses in our model are extremely sensitive and discontinuous: a slight change in

transfers might cause a complete reshuffling of the population in the economic area. This

assumption, which is similarly made in other papers (see, e.g., Cremer and Pestieau, 2003;

Kolmar, 2007), gives our approach a Bertrand-type flavor. In a companion paper, Ania

and Wagener (2009) consider a model with smooth migration flows.

3It is well-known, however, that results for decentralized redistribution change if both tax payers and

welfare recipients are mobile. See e.g. Leite-Monteiro (1997).
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2.2 Policy objectives

At least since Mansoorian and Myers (1997), it is well-known that government objective

functions play an important role in decentralized redistribution games where population

sizes are endogenous (also see Cremer and Pestieau, 2004). We consider here utilitarian

governments that evaluate individuals’ utility derived from consumption by some utility

function, u(c), which is twice continuously differentiable and such that u′(c) > 0 > u′′(c)

for all c ≥ 0. We assume that u(wP ) ≥ 0, and there exists K ≥ 0 such that u(0) < −K.

The government of any country i = 1, . . . , n assesses different policies by comparing the

sum of the utilities of those currently living in i under such policies; i.e.

πi(s) = `i(s) · u(cP
i ) + u(cR

i ) = `i(s) · u(wP + si) + u(wR − `i(s) · si). (2)

The fact that `i(s) is invariant to permutations of other countries’ subsidies allows to

write payoffs also as:

πi(s) = π(si| s−i) = `(si| s−i) · u(wP + si) + u(wR − `(si| s−i) · si), (3)

where now π(si| s−i) is the payoff to any country choosing s = si when all other countries

choose subsidies according to the vector s−i.

If all governments set identical transfers, the poor will be equally distributed across coun-

tries (i.e., `i(s) = ν/n). Then, the optimal subsidy is given by4

s0 := arg max
s∈S

{ν

n
· u(wP + s) + u(wR − ν/n · s)

}
=

wR − wP

1 + ν/n
.

We refer to s0 as the efficient symmetric solution; transfers s0 lead to an egalitarian

income distribution.

The objective function (2) is called generalized utilitarianism. In settings with variable

population sizes, it is one out of many utilitarian-type social welfare functions (Blackorby

et al., 2009). A serious flaw of generalized utilitarianism is that it gives rise to the so

called repugnant conclusion (Parfit, 1982; Blackorby et al., 2009) – for every population

4To see this, first observe that s0 is strictly positive since the objective function is strictly increasing

at s = 0 by strict concavity of u(c) and the fact that wP < wR. Moreover, s0 must satisfy the first order

condition u′(wP + s0) = u′(wR − ν/n · s0) which gives the expression in the second line of (4); clearly

s0 < n/ν · wR, so that the rich is not completely expropriated in the symmetric efficient allocation.
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of arbitrary well-offs, there exists another, suitably larger population of paupers such that

utilitarians will strictly prefer the latter to the former. This substitutability of population

size for quality of life is ethically questionable. Obviously, the set of Nash equilibria, and

our results, depend crucially on the choice of objectives. Our focus here is on the workings

of the OMC given a particular type of objective function, which is meant to reflect the

common objectives and target indicators that member states agreed upon.

3 Static Analysis: Nash equilibria vs. ESS

The model presented in Section 2 defines a game where the players (countries i = 1, . . . , n)

simultaneously choose subsidies out of a common strategy set given by the feasible set

of subsidies S = [0, wR]. Migration decisions as summarized by expression (1) determine

payoffs πi : Sn → R given by expression (2). The game is symmetric, since payoffs can

be written as πi(s) = π(si| s−i), shown in (3). Before proceeding with the analysis, let

us recall here the definitions of a symmetric Nash equilibrium and a finite-population

evolutionarily stable strategy and shortly comment on the difference between the two

concepts. By focusing directly on symmetric equilibria we can write both definitions

using the same notation.

Definition 1 A strategy sN is played in a symmetric Nash equilibrium if

π(sN | sN , sN , . . . , sN) ≥ π(s| sN , sN , . . . , sN) for all s ∈ S.

A strategy sE ∈ S is said to be an evolutionarily stable strategy (ESS) if

π(sE| s, sE, . . . , sE) ≥ π(s| sE, sE, . . . , sE) for all s ∈ S.

We say that a Nash equilibrium or an ESS is strict if the corresponding inequality holds

strictly for all s′ 6= s.

Schaffer (1988) gives a definition of evolutionary stability for a finite population of N

individuals who are randomly matched to play an n-person game. We take here Schaffer’s

definition for the case of n = N .5

5See also Vega-Redondo (1996, pp. 31-33) for a discussion of this concept. See Crawford (1991) and

Tanaka (2000) for closely related concepts. See Nowak et al. (2004) for a recent dynamic concept of

evolutionary stability for finite populations.

9



In a Nash equilibrium no player would strictly benefit from a deviation, given what other

players are doing. In an evolutionarily stable profile no player would be able to gain a

strict relative advantage by deviating. Note that for a Nash equilibrium we compare the

deviator’s payoffs before and after deviation. In an evolutionarily stable profile, instead,

we compare payoffs to the deviator, choosing s, with payoffs to the non-deviators, choosing

sE, after a unilateral deviation. For this reason, when the population is finite and each

player has a non-negligible impact on the payoffs of all other players, it may pay in relative

terms to deviate from a Nash equilibrium, if the loss imposed on non-deviators is bigger

than the loss suffered by the deviators themselves. This is referred to as spiteful behavior

(Hamilton, 1970).6

Before we characterize the Nash equilibria and the ESS of the game, let us introduce the

following family of auxiliary functions.

f(k, s) =
ν

k
· u(wP + s) + u

(
wR − ν

k
· s

)

where k ∈ {1, . . . , n}. The value of f(k, s) can be interpreted as the payoff to any

of k countries equally sharing all the poor at subsidy level s, of course provided they

attract the poor with that subsidy (i.e. s is currently the maximum subsidy). Note that

f(k, 0) ≥ u(wR). By the strict concavity of u(c) and since wP < wR, we get that f(k, s)

is strictly increasing at s = 0. Moreover, for every k, f(k, s) is strictly concave in s. Let

s∗(k) = arg max
s≥0

f(k, s).

The properties of f guarantee that s∗(k) is strictly positive for all k and it must satisfy

the first order condition

u′(wP + s∗(k)) = u′(wR − ν/k · s∗(k)),

which yields

s∗(k) =
wR − wP

1 + ν
k

.

Given that k countries share the burden of redistribution, they maximize social welfare

by choosing s = s∗(k). Clearly, 0 < s∗(k) < k/ν · wR is increasing in k; i.e., social policy

should optimally be more generous as more countries engage in redistribution.

6Such considerations would not play a role in a continuum population, since each player has a negligible

impact on the payoffs of others in that case. It is well known that ESS are always Nash equilibrium

strategies in a continuum population. See, e.g., Fudenberg and Levine (1998, p. 59).

10



u(wR)

f(1, s)

f(2, s)

f(n, s)

s∗(1) s(n) ŝ(1) ŝ(2) ŝ( n

2
) ŝ(n − 2) ŝ(n − 1) ŝ(n)

Figure 2: Properties of auxiliary welfare functions f(k, s).

Given any k ∈ {1, . . . , n}, define ŝ(k) as the strictly positive value of s that solves

f(k, ŝ(k)) = u(wR),

and s̄(k) as the strictly positive value that solves

f(k, s̄(k)) = f(1, s̄(k)).

At ŝ(k), a country is indifferent between paying transfers ŝ(k) to ν/k poor and not at-

tracting any poor at all. At s̄(k), a country is indifferent between paying transfers s̄(k)

to ν/k poor and, at the same transfer, hosting all poor. In Appendix A we show that the

family of functions {f(k, s)}k=1,...,n and the corresponding values of ŝ(k) and s̄(k) have

the properties depicted in Figure 2. In particular, we show that

s∗(1) < s̄(2) < s̄(3) < . . . < s̄(n) < ŝ(1) < ŝ(2) < . . . < ŝ(n). (4)

This observation allows an easy characterization of Nash equilibria and ESS.7 We first

show that our game has a large set of symmetric, pure-strategy Nash equilibria:

7Our game has a structure akin to that of an oligopolistic market of the type analyzed by Dastidar

(1995), where firms have decreasing returns to scale and compete in prices.
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Proposition 1 Under generalized utilitarianism the set of pure-strategy Nash equilibria

is given by

ΣN = {s = (s, . . . , s) | s̄(n) ≤ s ≤ ŝ(n)}.

Observe that transfer levels at Nash equilibria are quite generous; even overprovision of

transfers (i.e., values of sN larger than s0 = s∗(n)) is possible in a Nash equilibrium.

This is in contrast with the widespread fear of an erosion of the welfare state due to

migration pressures (Cremer and Pestieau, 2004). It is a consequence of the government

objective which entails a strong preference for large population sizes (recall the repugnant

conclusion). Hence, the widely feared demise of the welfare state does not occur in our

model (see Secton 5 for modifications).

Our next proposition characterizes the set of ESS. It shows that ESS are a strict subset

of the set of Nash equilibrium strategies found in Proposition 1:

Proposition 2 Under generalized utilitarianism the set of ESS is the interval

SE = [ŝ(1), ŝ(n− 1)].

Proposition 2 conveys that whatever can be achieved at an ESS could also be achieved

through decentralization at a Nash equilibrium. The set of ESS, however, is a strict subset

of the set of Nash equilibria, precluding some extremely low and extremely high subsidies

that can be rationalized as a Nash equilibrium. In particular, for s ∈ [s̄(n), ŝ(1)), subsidies

are still too low and a single country could still achieve a relative advantage through more

redistribution even if it attracted all poor. The situation with s ∈ (ŝ(n− 1), ŝ(n)] is also

too unstable; if a single country were to lower its subsidy, all others would be left with

too high subsidies given the number of countries sharing the burden of redistribution.

It is worth pointing out the special feature of the upper bound in the interval SE. Starting

at the symmetric profile where all countries set s = ŝ(n − 1), a deviation downwards to

some s′ < s = ŝ(n− 1) would result in a relocation of all poor among the remaining n− 1

non-deviating countries; their payoff, however, would be exactly u(wR) by definition of

ŝ(n − 1) and the deviator would have no strict disadvantage. This cannot happen with

any other ESS in the interval SE — from any other ESS a deviator would suffer a strict

disadvantage. All ESS in the interval are strict except the upper bound ŝ(n − 1). This

will make a subtle difference in the dynamics analysis below.
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4 The OMC as a Dynamic Imitative Process

In the present section we come to what we consider is the spirit of the OMC. We now

explicitly take a dynamic approach, allowing countries to observe each others’ subsidies

and welfare levels and to make sequential decisions based on this information. We assume

that countries tend to adopt subsidy levels associated with the highest welfare levels cur-

rently observed. Occasionally, countries can experiment with random subsidies. However,

such experiments are followed by other countries only when they prove to be successful

compared to other currently observed subsidy levels and will not persist otherwise. The

model intends to capture the main features of the OMC as stated by the European Com-

mission (see Figure 1 again). In our model, the (symmetric) welfare function stands for

the commonly agreed-upon objectives; subsidies are the policy instrument and each pe-

riod welfare levels constitute the target indicator that is reported by each country. Our

imitation dynamics intends to capture the iterative loop by which countries learn from

each other’s experience. Finally, experimentation captures the open nature of the process;

namely, the most successful policies observed and the recommendations of the Commis-

sion are not binding – countries are allowed to adopt other policies based on their own

motivations to do so, which may range from mistakes to national political interests. We

now proceed to introduce and analyze the dynamic model.

The analysis is applied to a discretized version of the model presented in Section 3.

Specifically, we assume that countries choose subsidies from a finite set Γ ⊂ S. For

simplicity of exposition, we assume that Γ contains the values ŝ(k) for all k = 1, . . . , n.8

The state space of the process is Γn, the state at t = 1, 2, . . . is given by the vector of

subsidies chosen by all countries at t denoted

s(t) = (s1(t), . . . , sn(t)) .

Subsidies at t determine welfare levels given by the vector

π (s(t)) = (π1 (s(t)) , . . . , πn (s(t))) ,

where πi (s(t)) is the welfare attained by country i in state s(t) and is defined as in

expression (2) in Section 3. In any period t = 1, 2, . . . all countries observe s(t) and the

vector π (s(t)). Given any s(t), define the set

B̂(s(t)) = {s ∈ Γ | s = si(t) for some i and πi(s(t)) ≥ πj(s(t)) for all j} .

8Note that this assumption may preclude Γ from being a regular grid.
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B̂(s(t)) contains all subsidy levels that earned highest welfare in period t. Following the

OMC guideline to adopt best practices, only subsidies in B̂(s(t)) should be followed with

positive probability. This gives a clear policy guideline whenever B̂(s(t)) is a singleton.

For the case that there is more than one best-performing policy in t, it is, however, unclear

what further motives should determine policy choice. To the end of reaching a unique

policy recommendation, let s(t) = maxj sj(t) and define

B(s(t)) = B̂(s(t)) ∩ {s(t)}.
The set B(s(t)) singles out the highest subsidy in t whenever this was also a best-

performing policy. However, B(s(t)) is empty when countries that offered the highest

subsidies in t were not among the most successful then.9 Let us now describe the imita-

tive behavioral rule that we propose as a model of the OMC.

Iterative OMC process

Strategy revision takes place according to the following imitative behavioral rule. With

probability 0 < λ < 1 a country may be called to revise its subsidy for the next period.

A revising country chooses the policy recommendation contained in B(s(t)), whenever

this set is not empty. I.e., a revising country will choose the most generous subsidy level

of the previous period, provided that this level was among the best-performing policies

then. If B(s(t)) = ∅, i.e., if the most generous subsidy level was not among the most

successful ones in period t, we assume that best-performing countries (i.e., those with

subsidies in B̂(s(t))) keep their strategies unchanged while all other countries choose any

of the subsidies in B̂(s(t)) with positive probability. With probability 1 − λ a country

does not get a revision opportunity.

To formalize the open, non-binding character of the OMC, we allow countries to engage

in experimentation as follows. At the end of each period t, each country has probability

1−ε to follow the imitative rule just described and no experimentation takes place. With

probability ε, however, the country gets an experimentation draw and it may choose any

subsidy s ∈ Γ at random.

Both, imitation and experimentation opportunities, are drawn independently across coun-

tries and across periods. A country keeps its subsidy unchanged if no imitation or exper-

imentation opportunity arrives at t.

9For example, that would be the case if only a few EU member states actively engaged in sufficiently

generous redistribution policies. This would trigger too much immigration into those countries, rendering

their social policies unprofitable. In the model this occurs when less than k countries set subsidy s ≥ ŝ(k)

and s = maxj sj .
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A few comments on the behavioral rule that we postulate are in order. First, our imitative

rule incorporates a certain predilection for transfer generosity. If high subsidies do not

cause harm to social welfare, then countries will grant them. Out of several policies

that give identical levels of overall welfare, countries are recommended to choose the

one with highest transfers to the poor. Such behavior appears plausible when the OMC

is applied in the context of social policy. Our imitative rule also incorporates some

conservative upholding. If countries with less generous transfer policies are performing

best, in particular better than countries with the highest subsidies, then they will keep

their policies.

The inertia incorporated by λ in our behavioral rule captures asynchronous evaluation

and policy adoption in the different countries which may be due for example to restrictions

in the administrative or political decision-making process that are left out of the model.

Finally, experimentation captures the soft-low features of the OMC. It enables countries

to ignore the policy guidelines without an explicit punishment and opens the door to

the implementation of tailor-made policies that respond exclusively to individual national

interests. It also captures errors and true trial and error experimentation. We are now

ready to proceed with the analysis.

The iterative OMC process described by the imitative behavioral rule with experimenta-

tion defines a stationary Markov process. Given λ and ε, let P λ,ε
s,s′ be the probability of

a direct transition of the process from state s to state s′. The transition matrix of the

process is given by

P λ,ε =
(
P λ,ε

s,s′

)
s,s′∈Γn

.

We refer to the process with ε = 0 as the unperturbed imitation dynamics. A state s is

called absorbing if P λ,0
ss = 1; i.e. absorbing states are the steady states of the unperturbed

dynamics. An obvious property of imitation is that it leads to monomorphic states in our

setup, states where all countries choose the same subsidy level, defined by

M = {s ∈ Γn | s = (s, . . . , s), s ∈ Γ}.

From any state s(t) 6∈ M , imitation alone cannot increase the number of different strate-

gies chosen. Eventually, a unique subsidy will be singled out as the best performing policy

and will be adopted by all countries. Once a monomorphic state is reached, imitation

alone cannot lead the system away. This gives us the following lemma.
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Lemma 1 The set M of monomorphic states is the set of absorbing states of the unper-

turbed imitation dynamics P λ,0.

With experimentation, ε > 0, there is positive probability to exit every state. We refer

to the Markov process with experimentation as the perturbed imitation dynamics. This

process is ergodic since there is positive probability that any subset of countries experiment

simultaneously with any subsidy so that P λ,ε
ss′ > 0 for all s, s′ ∈ Γn. Moreover, the process

is aperiodic, since at any time there is positive probability that no country revises its

subsidy due to inertia and the process stays at the same state for one period which gives

P λ,ε
ss > 0 for all s. For every λ and ε, this guarantees convergence to a unique invariant

distribution denoted

µλ,ε =
(
µλ,ε (s)

)
s∈Γn ,

which satisfies µλ,ε = µλ,εP λ,ε, where µλ,ε (s) gives both, the average frequency with which

the process visits any state s ∈ Γn along any sample path (Ergodic Theorem) as well as

the probability that the system is at any state s ∈ Γn in the long run (Fundamental

Theorem of Markov Chains).

Following the literature on stochastic evolutionary learning models, the analysis in this

paper focusses on the limit invariant distribution, µλ = limε→0 µλ,ε. States with positive

probability in µλ are called stochastically stable (alternatively, long-run equilibria). These

are the states that are observe almost always as the probability of experimentation goes

to zero. The limit invariant distribution exists and it only gives positive probability

to absorbing states of the unperturbed dynamics, the monomorphic states in M from

Lemma 110. We now provide an intuitive explanation of our main result which appears

in Proposition 4 at the end of this section. Formal proofs are relegated to Appendix C.

Define the set E as the subset of monomorphic states where all countries choose an ESS,

E = {s ∈ M | ŝ(1) ≤ s ≤ ŝ(n− 1)}.

E corresponds essentially to the interval SE from Proposition 2. By definition, from states

in E a single deviating country would perform worse than non-deviators and would not be

followed by imitation. The disadvantage of a single deviator is strict everywhere except

at the upper bound of the interval SE (cf. Section 3). If all countries currently choose

ŝ(n − 1) and a single country lowers its subsidy, both the deviator and non-deviators

10See e.g. Young (1993, Theorem 2), or Fudenberg and Levine (1998, Chapter 5)
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attain payoff u(wR), but non-deviators offer highest subsidy ŝ(n − 1), which is still the

single element of B(s(t)); thus, the deviating country will not be followed.

All other states in M can be abandoned after a single deviation in favor of some state

in E. To see this, suppose the process is currently at a monomorphic state with s < ŝ(1)

and, in period t, one of the countries deviates to ŝ(1). The deviating country is the only

one actively performing redistribution and attains welfare level exactly equal to u(wR).

Thus, B(s(t)) = {ŝ(1)} and the deviator will be followed at the next revision opportunity.

The case of high subsidies is analogous. Suppose the process is currently at a state where

all countries set subsidy s > ŝ(n − 1). If at t a single country lowers its subsidy (e.g. to

any subsidy in the interval SE), the welfare of the remaining n−1 non-deviating countries

falls strictly below u(wR). In this case B(s(t)) is empty and B̂(s(t)) = {s}; the deviator

would not change its subsidy, if it was called to review its strategy again, while all other

countries will follow the deviator at the next revision opportunity. These arguments show

that E can be reached from outside if a single country experiments with a subsidy that is

ESS, but E cannot be abandoned with a single deviation. This makes it more likely for

the process to move in than out of the set E.Recall from Section 3 that the interval SE

is itself a subset of the set of strategies played in any Nash equilibrium. Our prediction,

summarized in the following proposition, is that the process eventually moves into the set

E and, thus, some Nash equilibrium is always observed in the long run.

Proposition 3 If s∗ is stochastically stable, then s∗ ∈ E ⊂ ΣN .

By definition of ESS, single experiments are not enough to move the process from one

state to another within the set E. Yet it is possible to abandon states in E after the

simultaneous deviation of several experimenting countries. We will argue that the number

of simultaneous experiments needed to disturb states in E increases as we move towards

intermediate levels of the subsidy. In our construction, it will be enough to argue with

simultaneous deviations to the same alternative subsidy level. It is easy to see that if a

transition between two monomorphic states is possible after the simultaneous deviation

of at least two countries experimenting with different subsidies, then the same transition

is possible with the same number of deviations to the same subsidy.11

11Intuitively, this is due to ŝ(k) being increasing with k, so that subsidies that can be successfully

sustained by k deviators would have always be successful if more deviators had originally chosen them.
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We now proceed to refine our prediction within the set E. To that purpose, define the

collection of sets

Ek = {s ∈ M | ŝ(k − 1) ≤ s ≤ ŝ(k)}, k = 2, . . . , n− 1.

States in Ek are monomorphic states with subsidies in the interval [ŝ(k − 1), ŝ(k)] and we

have that E =
⋃n−1

k=2 Ek. It is also convenient to introduce some notation for monomorphic

states with subsidy equal to ŝ(k); often this boundary states of the sets Ek have to be

treated separately in our analysis. We denote

sk = (ŝ(k), . . . , ŝ(k)).

Note that Ek ∩ Ek+1 = {sk} for k = 2, . . . , n − 2. Subsidies in the states of Ek can be

profitably sustained with at least k countries, where profitably hear means with welfare

higher than or equal to u(wR). Instead, if strictly less than k countries actively engaging

in redistribution set a subsidy in (ŝ(k − 1), ŝ(k)], welfare will fall strictly below u(wR).

We want to understand what it takes for the process to abandon states in E. Moving

to higher subsidies requires that enough countries coordinate to sustain this profitably.

Moving to lower subsidies requires that too few countries are left to sustain high subsidies

profitably. We now argue this in more detail.

• Moving from lower to higher subsidies.

The process moves away from any state in E2 \ {s2} if two countries simultaneously

deviate to the same higher subsidy in the interval (ŝ(1), ŝ(2)], so that two simul-

taneous deviations suffice to move the process from any state in E2 \ {s2} to any

other state in E2 with a strictly higher subsidy and, in particular, to the boundary

state s2. Analogously, the process moves from any state in E3 \ {s3} to any other

state in E3 with strictly higher subsidy if three countries simultaneously deviate

to the same higher subsidy in (ŝ(2), ŝ(3)], and so on. In general, given any pair

s, s′ ∈ Ek with s < s′, state s′ can be reached from s if k countries simultaneously

deviate to s′. Moreover, for all k, state sk can be reached from any monomorphic

state with lower subsidy either directly with k simultaneous deviations to ŝ(k) or

through a chain of single transitions going through all Ek′ with k′ < k. It is also

important to note that less than k deviators are not enough to move the process

to some s ∈ Ek \ {sk−1} from lower states. Coordinating on higher and higher

subsidies, thus, requires more and more countries and, hence, transitions upwards

become less likely for higher k. Moreover, the most likely upward transitions are

stepwise transitions from any subsidy level to the next one in Γ.
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• Moving from higher to lower subsidies.

Since migration takes place to countries with the highest subsidies, experimenting

with lower subsidies means losing all poor and giving up active redistribution policy.

At the same time, if countries currently choosing different subsidies attain (the same)

highest welfare level, then our decision rule prescribes to mimic the most generous

subsidy. It follows that, deviations to lower subsidies can only be successful if non-

deviators are left with welfare strictly lower than u(wR). Note that all subsidies

associated to states in En−1 can be sustained by n− 1 countries with welfare higher

than or equal to u(wR). Therefore, we need at least two countries simultaneously

lowering their subsidies in order to move downwards from states in En−1 \ {sn−2}.
Analogously, we need three countries simultaneously lowering their subsidies to move

downwards from states in En−2\{sn−3}, and so on. In general, the process will move

downwards from any state in Ek \ {sk−1} if n− k +1 countries lower their subsidies.

Note that, since the number of deviations needed for a downward transition is

independent of the state we intent to reach, there is no particular advantage of

step-by-step transitions in this case. In general, lowering subsidies further requires

more simultaneous deviations the lower subsidies already are and, hence, transitions

downwards become less likely for lower k. Analogously, reaching any state s ∈ Ek

from any higher state s′ ∈ Ek′ with k′ ≥ k requires more simultaneous deviations

the lower k′ is.

These findings can be roughly summarized as follows. From states in Ek with low k the

process is more likely to move upwards; for high k the process is more likely to move

downwards. In the intermediate states these probabilities are balanced and the process

is likely to stay. Detailed accounting of transition probabilities has to be done carefully

depending also on whether n is odd or even and, in particular, for values of k around n/2.

This is done in the proof in Appendix C.

In Figure 3 we illustrate the case of n odd, the relevant case for the current EU-27. Our

prediction for n odd is the set Edn
2
e (e.g. E5 with n = 9). The lower and the upper bounds

of the interval associated with this set can be reached from outside the set with at most

dn
2
e − 1 deviations. The most likely way to exit the set is downwards, which requires at

least dn
2
e deviations. Within Edn

2
e it is then possible to move up and down with exactly

dn
2
e deviations. A typical path of the process is likely to move into Edn

2
e eventually and

then stay bouncing up and down in this set.
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Figure 3: Most likely transition paths. The case of n odd.

Detailed counting gives a slight difference between the odd and even cases. If n is even,

the central state, s
n
2 , can be sustained profitably by exactly half of the countries. This

state can be reached from both, states with higher and with lower subsidies, with at most
n
2

simultaneous deviations to ŝ(n
2
). Instead, it would take at least ŝ(n

2
) + 1 simultaneous

deviations to exit the central state in favor of any lower or higher subsidy.12 Therefore, for

n even our prediction concentrates on s
n
2 . Our results are summarized in next proposition.

Proposition 4 The set of stochastically stable states is Edn
2 e if n is odd and {sn

2 } if n

is even.

Proposition 4 shows that the most likely outcomes of the OMC applied to decentralized

redistribution lie in the intermediate range of the ESS. Intuitively, low subsidy levels can

be easily destabilized by a small number of countries coordinating on the same higher

subsidy; high subsidy levels become unprofitable if only a small number of countries cut

their subsidies. Only the intermediate subsidies, which correspond to intermediate values

of the ESS are robust to such small-group experimentation. The learning process of the

OMC, thus, eschews ESS with very low or overly generous support for the poor. A fortiori,

since ESS are a subset of the set of Nash equilibria in our model, the OMC also avoids

potentially extreme states that could emerge in the traditional setting of decentralized

choice of redistribution policies. In that sense, the learning process in the OMC can be

viewed as a moderating device.

12Higher subsidies cannot be profitably sustained with less than ŝ(n
2 ) + 1 countries, while if only half

of the countries lower their subsidies, ŝ(n
2 ) would still be the highest, most profitable policy.
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5 Discussion of the results

5.1 Speed of convergence

Our main result in Proposition 4 implies that member states in the EU adopting the

OMC as a mode of governance in the area of social policy when policy beneficiaries

are mobile will succeed in coordinating their policies at “intermediate” transfer values,

where intermediate means that these transfer values require the coordiantion of half of

the participating states in order to be sustainable. The discussion and proof of our

main result reveals that moving from extreme to intermediate transfer values requires

simultaneous experimentation of additional member states, up to n/2 for transfers in

the central interval. Our prediction should be interpreted as follows. Along any sample

path of our stochastic learning process, the fraction of periods in which subsidies in the

central interval are observed converges to one as ε → 0; i.e., if we observe the process

long enough, we will essentially only observe intermediate subsidies. A natural question

to ask is how long we would have to wait to actually observe these subsidies. We can

use Ellison (2000, Theorem 2) to give an estimate for the expected waiting time until the

process hits our prediction for the first time (cf. Lemma 2 in the Appendix). Note that

the set E, containing symmetric profiles where all countries choose some evolutionarily

stable subsidy, can be reached from everywhere else with a single deviation; in Ellison’s

terminology the coradius of E equals 1. This implies that the expected waiting time to

reach E is of order ε−1. Analogously, the modified coradius13 of the intermediate interval

is [n/2] and, thus, the expected waiting time to reach intermediate subsidies is of order

ε−[n/2], which increases as the number of member states participating in the OMC becomes

larger. In general, the process will lead quickly to ESS values of the transfers and stay

there most of the time. Coordination in states closer to the central interval, respectively

in central values of the transfers may require a long time, depending on the number of

countries that decide to follow the OMC.

13Note that intermediate transfer values in our model can be reached through step-by-step evolution

moving gradually toward the central interval. The cost of these intermediate transitions is subtracted

when computing the value of the modified coradius.
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5.2 Efficiency

Given that, in general, an important motivation for policy coordination is the avoidance of

externality-induced efficiency failures of decentralization, it seems natural to ask whether

the learning process of the OMC indeed leads to efficient policy outcomes. Formally, we

have to check for the relationship between the symmetric efficient solution, s0, and the set

of stochastically stable states characterized in Proposition 4. Intuitively, s0 = s∗(n) max-

imizes the joint welfare function f(n, s), whereas the values of ŝ
(⌈

n
2

⌉− 1
)

and ŝ
(⌈

n
2

⌉)
,

relevant to define Edn
2 e, refer to properties of the functions f(n−1

2
, s) and f(n

2
, s). Tech-

nically, there is no good reason why s0 should be related to our prediction in the set

Edn
2 e. Indeed, it is possible to construct examples where the efficient outcome is in our

prediction. In general, however, the predictions of our model entail subsidies which could

be higher or lower than the efficient outcome. This is illustrated in Example 1 bellow. It

should still be stressed that the convergence to “intermediate” subsidy levels precludes the

more extreme outcomes that could emerge under decentralization in a Nash equilibrium.

Example 1 Consider a utility function of the form u(x) =
√

x − 1. Take wP = 1 and

assume that wR ≤ 4. We have that

ŝ(k) =
4
(√

wR − 1
) (

ν
k

+
√

wR

)
(

ν
k

+ 1
)2

Take n = 9, in which case our prediction is always the interval [ŝ(4), ŝ(5)]. Table 1

summarizes our results for different values of wR and ν. We see that the efficient outcome,

s0, may be lower than ŝ(4), in which case we would predict inefficiently high redistribution;

s0 may be higher that ŝ(5), in which case we would predict inefficiently low redistribution;

finally, s0 may be contained in our prediction.

wR ν s0 ŝ(4) ŝ(5)

2 12 0.43 0.46 0.55

2 21 0.30 0.28 0.34

4 27 0.75 0.58 0.72

Table 1: Efficiency results
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5.3 Mobility of the poor

Let us now briefly discuss the implications of our assumption on perfect mobility of the

poor. We will argue that our qualitative results are robust to the introduction of a small

fraction of immobile poor in each country. Consider a small variation of our model, where

all countries have some fixed amount β of immobile (native) poor. The parameter β

measures the relative mass of immobile poor to rich in any given country. Symmetry is

preserved if β is the same for all countries. Assume ν > nβ; that is the total amount

of immobile poor is smaller than the amount of mobile poor. All other features of our

model are as before. The total amount of poor living in country i is now given by

˜̀
i(s) := β + `i(s), where `i(s) is determined as in (1). Governments are still assumed to

adhere to generalized utilitarianism. Thus, payoffs can be written as in expression (2) by

replacing `i(s) with ˜̀
i(s). Countries now always have an incentive to actively pursue some

transfer policy, at least for their native poor. If no mobile poor moves to country i; i.e., if

˜̀
i = β, its government would set the transfer to maximize the following welfare function

g(β, s) = β · u(wP + s) + u(wR − βs).

Note that g(β, s) is a strictly concave function of s with g(β, 0) > u(wR) and g′(β, 0) > 0.

The optimal transfer in the absence of mobile poor is then given by

s̃0 =
wR − wP

1 + β
.

Our assumptions guarantee that g(β, s) has the same properties as our auxiliary functions

f(k, s), derived in Appendix A. Thus, for β < ν/n, we have that s̃0 > s∗(n) = s0.

Intuitively, when the fraction of immobile poor is not too large, optimal transfer policy

can be more generous when a country only has to provide social policy for the native

immobile. Moreover, define s̃ as the value of the subsidy that satisfies g(β, s̃) = u(wR).

This is the analogous to our previous ŝ(k), which we proved to be strictly increasing in k.

Again, since β < ν/n, we have that s̃ > ŝ(n). An intuitive picture can be obtained from

Figure 2 by replacing the horizontal line at the value u(wR) by a humped g curve with the

same features as the f curves and cutting through u(wR) further to the right. The points

at which g(β, s) cuts trough f(1, k) and f(n − 1, s) will now be the boundaries of the

ESS interval. Note finally that g(β, ŝ(n− 1)) > u(wR) = f(n− 1, ŝ(n− 1)); analogously,

g(β, ŝ(1)) > u(wR) = f(1, ŝ(1)). This indicates that the bounds of the ESS interval will

be lower than for the case without immobile poor. All other elements of the analysis are

as before.
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5.4 Average utilitarianism

Finally, we turn our attention to the welfare function. Obviously, payoffs and, thus, the

equilibria of our game depend crucially on the choice of welfare function (Mansoorian

and Myers, 1997). We discussed at the end of Section 2 that generalized utilitarianism,

given in expression (2), as a government objective has the drawback of allowing for the

repugnant conclusion. With decentralized redistribution, this strong predilection for large

population sizes leads to quite generous subsidies to the mobile poor – an observation that

is at odds with the widespread fear of a decline of the welfare state in the presence of labor

mobility. There exist social welfare functions that avoid the repugnant conclusion (for a

survey, see Blackorby et al., 2009). One alternative that has captured some attention is

average utilitarianism. As the name suggests, government payoffs given by

πAU
i (s) =

1

`i(s) + 1
· [`i(s) · u(wP + si) + u(wR − `i(s) · si)] . (5)

It can be easily checked that the symmetric efficient solution under average utilitarianism

coincides with the one obtained for generalized utilitarianism, s0, given by expression (4).

However, average utilitarianism gives a large welfare weight to well-off people, providing

strong incentives to cut back transfers to the poor. This actually results in a remarkable

efficiency failure both in a Nash equilibrium and in an ESS.

To see this, note first that for `i = 0, we have πAU
i = u(wR). Denote λi = `i

1+`i
. By strict

monotonicity and strict concavity of u we have that, for any `i > 0,

πAU
i = λiu(wP + si) + (1− λi)u(wR − `isi) <

u(λi(wP + si) + (1− λi)(wR − `isi)) = u

(
wR + `iwP

1 + `i

)
< u(wR). (6)

This implies that at any profile with a subset of countries sharing the burden of redistri-

bution at some strictly positive subsidy level, there is an incentive to cut down transfers

(leading to `i = 0). The only Nash equilibrium will have all countries setting si = 0.

Expression (6) also shows that s = 0 is the only ESS of the game, since at any symmetric

profile with s > 0 a relative advantage can be obtained by cutting down s; alternatively,

starting at the symmetric profile with si = 0 for all i, any increase in s results in a rel-

ative disadvantage. Clearly, the imitative process of the OMC will also not deliver any

improvement over the inefficient Nash equilibrium.
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6 Conclusions

We propose to analyse the Open Method of Coordination (OMC), which the EU has

adopted since its Lisbon Summit in 2000 for social policy and elsewhere, as a dynamic

stochastic learning process of the type studied in evolutionary game theory. The OMC is

based on the idea that, for certain commonly agreed policy objectives, national policies

emerge from a process where governments compare themselves to one another in terms

of policy performance, learn from each other, and imitate what they perceive as best

practices. If convergence occurs under the OMC, then not due to express legislation but

by the force of example.

We formalize and explore the workings of OMC for the particular case of income redistri-

bution in an integrated economic area with perfectly mobile social welfare beneficiaries.

Our main observation is that the OMC strongly favors coordination on a subset of Nash

equilibria. In a dynamic interpretation, the OMC results in a powerful equilibrium refine-

ment. In particular, intermediate values of subsidies that can be sustained by coordination

of approximately half of the countries are the most likely ones to be observed in the long

run.

To our knowledge, this is the first paper that provides a formal, game theoretic analysis

of the OMC. Both opponents and advocates of the OMC will, with good reason, argue

that our stylized analysis ignores many of the OMC’s advantages (e.g., the higher degree

of legitimacy), defines away a number of problems (e.g., the definition and measurement

of performance indicators, communication procedures etc.) and discusses the OMC in

an artificial setting (decentralized redistribution) to which it may not at all be suited.

Notwithstanding these concerns, our analysis entails important messages for policy-makers

and mechanism designers in the EU where welfare and redistribution policies are still in

the domain of national governments. The hope that the OMC will “recalibrate” European

welfare states (Ferrera et al., 2000) seems justified. On a first pass, the OMC does indeed

provide a successful way to attain policy coordination and to avoid extreme, undesirable

outcomes. This appears to be in line with preliminary empirical evidence compiled in

Coelli et al. (2008).
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A Properties of the payoff function

We show here the main properties of the family of functions {f(k, s)}k=1,...,n that are used

in the proofs of our results. Recall

f(k, s) =
ν

k
· u(wP + s) + u(wR − ν/k · s) k = 1, . . . , n.

Notice f(k, 0) ≥ u(wR) and fs(k, 0) = ν/k · (u′(wP ) − u′(wR)) > 0, since u′′ < 0 and

wP < wR implies u′(wP ) > u′(wR). Moreover, fss(k, s) < 0.14

Recall s∗(k) = arg maxs≥0 f(k, s) = wR−wP

1+ ν
k

satisfies

fs(k, s∗(k)) =
ν

k
(u′(wP + s∗(k))− u′ (wR − ν/k · s∗(k))) = 0.

Clearly, s∗(k) < k
ν
wR and s∗(k) is strictly increasing with k.

Given k ∈ {1, . . . , n}, let ŝ(k) be a strictly positive value of s such that f(k, ŝ(k)) = u(wR).

The properties of f imply that f(k, s) > u(wR) for all s ∈ (0, s∗(k)]. By definition of s∗(k)

and fss < 0, f is strictly decreasing for all s > s∗(k). Moreover, for s = k
ν
wR we have that

f(k,
k

ν
wR) =

ν

k
u(wP +

k

ν
wR) + u(0) < u(wR)

for u(0) sufficiently low. In particular, ν
k
u(wP + k

ν
wR) is strictly decreasing with k.15 Let

u(0) < −K := u(wR)− ν · u(wP + 1/ν ·wR) to obtain the desired inequality. This implies

existence and uniqueness of ŝ(k) for all k and it shows that s∗(k) < ŝ(k) < k
ν
wR. Finally,

we have that ŝ(k′) > ŝ(k) for all k, k′ ∈ {1, . . . , n} and k′ > k. To see this, note that, by

definition, ŝ(k) satisfies

Γ(k, s) :=
k

ν
·
[
u(wR)− u

(
wR − ν

k
s
)]

= u(wP + s). (7)

The right hand side of expressions (7) is strictly increasing and strictly concave with s

and it equals u(wP ) for s = 0. For any k, Γ(k, 0) = 0 ≤ u(wP ) and Γ(k, s) is strictly

increasing and strictly convex in s with

Γs(k, s) = u′
(
wR − ν

k
s
)

> 0.

14We adopt the conventional notation fi(k, s) = ∂f(k,s)
∂i and fij(k, s) = ∂fi(k,s)

∂j∂i with i, j = k, s.
15Define F (x) = ν/x · u(wP + x/ν · wR) with x ∈ R++. We have that

F ′(x) = − ν

x2
u(wP +

x

ν
wR) +

wR

x
u′(wP +

x

ν
wR) < 0,

since, by strict concavity of u(c), u(wP + y)− yu′(wP + y) > u(wP ) ≥ 0 for all y > 0.
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Furthermore, u′′ < 0 implies that Γs(k
′, s) < Γs(k, s) for all s > 0 and k′ > k; i.e. the Γ

functions become flatter with s as we increase k. Thus, Γ(k, s) > Γ(k′, s) for s > 0 and

k′ > k. It follows that ŝ(k′) > ŝ(k) for all k, k′ ∈ {1, . . . , n} and k′ > k.

Given k ∈ {1, . . . , n}, let s̄(k) be a strictly positive s such that f(k, s̄(k)) = f(1, s̄(k)).

We now proceed to show existence and uniqueness of s̄(k). To this purpose define

∆(k, s) := f(1, s)− f(k, s)

= ν

(
1− 1

k

)
· u(wP + s) + u(wR − νs)− u

(
wR − ν

k
s
)

. (8)

Clearly, ∆(k, 0) ≥ 0. Moreover, strict concavity of u implies that16

∆(k, s) > ν

(
1− 1

k

)
{u(wP + s)− s · u′(wR − ν · s)} . (9)

For s ≤ s∗(1) we have wP +s ≤ wR−ν ·s and, by u′′ < 0, then u′(wP +s) ≥ u′(wR−ν ·s).
For s ≤ s∗(1), we can then replace the right hand side of expression (9) by the following

smaller expression

∆(k, s) > ν

(
1− 1

k

)
{u(wP + s)− s · u′(wP + s)} > ν

(
1− 1

k

)
u(wP ) ≥ 0. (10)

The second inequality in (10) follows again from strict concavity of u (cf. Footnote 15).

This shows that ∆(k, s) > 0 for s ∈ (0, s∗(1)] and thus, if s̄(k) exists, we must have

s̄(k) > s∗(1). Furthermore,

∆s(k, s) = ν

(
1− 1

k

)
· u′(wP + s)− ν · u′(wR − νs) +

ν

k
· u′

(
wR − ν

k
s
)

= ν

(
1− 1

k

)
· [u′(wP + s)− u′(wR − νs)] +

ν

k
·
[
u′

(
wR − ν

k
s
)
− u′(wR − νs)

]

< ν

(
1− 1

k

)
· [u′(wP + s)− u′(wR − νs)] .

The inequality follows from u′
(
wR − ν

k
s
) − u′(wR − νs) < 0 by u′′ < 0. Recall that

u′(wP + s)− u′(wR − νs) ≤ 0 for s ≥ s∗(1). Thus, ∆s(k, s) < 0 for all s ≥ s∗(1). Finally,

take s = ŝ(1). We know that s∗(1) < ŝ(1) < ŝ(k) for k > 1 and we have that

∆(k, ŝ(1)) = f(1, ŝ(1))− f(k, ŝ(1)) = u(wR)− f(k, ŝ(1)) < 0. (11)

Existence and uniqueness of s̄(k) for all k > 1 follows. Furthermore, (10) and (11) also

imply that s∗(1) < s̄(k) < ŝ(1) for all k. Finally, re-writing (8), we have that s̄(k) must

16By strict concavity u(wR − ν/k · s) < u(wR − ν · s) +
(
1− 1

k

)
ν · s · u′(wR − ν · s).
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satisfy

Ω(k, s) :=
k

ν(k − 1)
·
[
u

(
wR − ν

k
s
)
− u(wR − νs)

]
= u(wP + s).

It is easy to check that strict concavity of u implies Ω(k, s) is strictly decreasing with k

and, thus, s̄(k) increases with k.

B Proofs of Section 3

Proof of Proposition 1. We proceed in two steps.

Step 1: All Nash equilibria are symmetric.

Consider any non-symmetric profile (s1, . . . , sn) with si 6= sj for some i 6= j. Without loss

of generality suppose si < sj. Country i attracts currently no poor and gets payoff u(wR).

The payoff to all countries currently choosing maximum subsidy can be expressed as

f(m, s̄), where s̄ = maxk=1,...,n sk and m is the number of countries currently choosing

maximum subsidy. If s̄ > ŝ(m), then f(m, s̄) < u(wR). This cannot be an equilibrium,

since any of the countries currently choosing maximum subsidy could strictly increase its

payoffs by lowering the subsidy. If, alternatively, s̄ ≤ ŝ(m), then f(m, s̄) ≥ u(wR). Since

ŝ(m) < ŝ(m + 1), we have that f(m + 1, s̄) > u(wR). Thus, if country i would deviate

from si and choose s̄, it would strictly improve its payoffs.

Step 2: Characterization of Nash equilibria

Consider any symmetric profile s = (s, . . . , s). Payoffs to all countries at s can be ex-

pressed as f(n, s).

(i) Suppose s < s̄(n). By definition of s̄(n), f(1, s) > f(n, s); i.e. a single country

offering subsidy s would attain strictly greater payoffs. By continuity, there exists s′

with s < s′ < s̄(n) and f(1, s′) > f(n, s). Thus, there are incentives to deviate.

(ii) Suppose s > ŝ(n). By definition of ŝ(n), f(n, s) < u(wR); i.e. the subsidy is

unprofitable and countries could strictly improve by any s′ < s.

(iii) Suppose now that s̄(n) ≤ s ≤ ŝ(n). By definition of s̄(n) we have f(n, s) ≥ f(1, s)

and by definition of ŝ(n) we have f(n, s) ≥ u(wR). Any country reducing the
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subsidy would get payoff u(wR) with no strict improvement. Any country increasing

the subsidy to s′ > s would get payoff f(1, s′). Recall s̄(n) > s∗(1) and, thus,

f(1, s′) < f(1, s) ≤ f(n, s). Therefore, there are no incentives to deviate.

It follows from (i)-(iii) that [s̄(n), ŝ(n)] is the interval of equilibrium subsidies.

Proof of Proposition 2. Consider any symmetric profile s = (s, . . . , s). Suppose a

single country deviates to some subsidy s′ 6= s. The relevant payoffs to characterize ESS

are now the payoffs obtained after deviation.

(i) Suppose first s < ŝ(1). A deviation upwards with s < s′ < ŝ(1) gives payoff

f(1, s′) > u(wR) for the deviator while all others get u(wR) after deviation. Thus,

it is possible to obtain a strict relative advantage and s < ŝ(1) is not ESS.

(ii) Consider now s > ŝ(n−1). A deviation downwards to any s′ < s gives the deviating

country payoff u(wR). After deviation, non-deviators get payoff f(n−1, s) < u(wR)

by definition of ŝ(n−1). Thus, the deviator has a strict advantage and s > ŝ(n−1)

is not ESS.

(iii) Let now s ∈ [ŝ(1), ŝ(n − 1)]. Deviations to s′ < s ≤ ŝ(n − 1) will earn payoff

u(wR) while those countries sticking to s obtain f(n − 1, s) ≥ u(wR). Deviations

to s′ > s ≥ ŝ(1) will earn the deviator a payoff f(1, s′) < u(wR) while all others

get u(wR). Thus, it is not possible to attain a strict relative advantage through

deviation.

It follows from (i)-(iii) that only s ∈ [ŝ(1), ŝ(n− 1)] are ESS.

C Proofs of Section 4

Proof of Lemma 1. At any s(t) 6∈ M , B(s(t)) is either a singleton, or it is empty. If it

is a singleton, there is positive probability that all countries simultaneously revise their

subsidies, reaching a monomorphic state. If it is empty, then there is positive probability

that all countries with subsidies that are not in B̂(s(t)) get a revision opportunity choosing

some subsidy in B̂(s(t)) and, thus, reducing the number of different subsidies chosen. We

can repeat this argument until B(s(t)) is a singleton. At any s(t) = (s, . . . , s) ∈ M ,

B(s(t)) = {s} and imitation alone is not enough to move the process away from s(t).

Let us now briefly review the main technical results we use to characterize the support of

the limit invariant distribution (see Ellison (2000) for details). The support of the limit
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invariant distribution is contained in the set M of absorbing states of P λ,0. Henceforth,

we restrict analysis to this set. Given any two absorbing states s, s′ ∈ M , define the

transition cost from s to s′, c(s, s′), as the minimum number of simultaneous deviations

needed for a transition from s to s′. Let Ω ⊂ M be a collection of absorbing states.

The basin of attraction of Ω, D(Ω), is the set of states in Γn from which the process P λ,0

converges to Ω with probability one. Define a path from a set X ⊂ Γn to a set Y ⊂ Γn as a

finite sequence of distinct states (s1, s2, . . . , sT ) with s1 ∈ X, st 6= Y for all 2 ≤ t ≤ T − 1,

and sT ∈ Y . Let S(X,Y ) be the set of all paths from X to Y . The cost of a path is given

by c(s1, s2, . . . , sT ) =
∑T−1

t=1 c(st, st+1). Define

C(X, Y ) = min
(s1,...,sT )∈S(X,Y )

c(s1, s2, . . . , sT )

Then we define the radius of Ω as R(Ω) = C(Ω, Γn \ D(Ω)); i.e. the minimum cost

from Ω out of D(Ω) or, alternatively, the minimum number of deviations needed for the

process to leave Ω. The coradius of Ω is defined as CR(Ω) = maxs6∈D(Ω) C(s, D(Ω));

roughly, the coradius puts a bound on the cost of reaching Ω from every other state.

A tighter bound can be obtained using the following alternative definition of costs over

paths. Given any path (s1, s2, . . . , sT ) from some state s ∈ Γn to a subset of absorbing

states Ω, let {r1, r2, . . . , rk} ⊂ M be a sequence of absorbing states through which the

path passes consecutively. Note that s could be r1, ri 6∈ Ω for i < k, and rk ∈ Ω.

Define the modified cost function as c∗(s1, s2, . . . , sT ) = c(s1, s2, . . . , sT )−∑k−1
i=2 R(ri). For

a transition that goes through a chain of absorbing states, the modified cost counts the

number of deviations needed to set the transition in motion, discounting the costs of

leaving the intermediate absorbing states. Accordingly, let

C∗(s, Ω) = min
(s1,...,sT )∈S(s,Ω)

c∗(s1, s2, . . . , sT ).

The modified coradius of Ω is defined as CR∗(Ω) = maxs6∈D(Ω) C∗(s, D(Ω)). Note that

CR(Ω) ≥ CR∗(Ω).

Lemma 2 If for some set Ω which is a collection of absorbing states R(Ω) > CR∗(Ω),

then the set of stochastically stable states is contained in Ω and the expected waiting time

to reach Ω from any other state is of order ε−CR∗(Ω). If for some absorbing state s and

some s′ 6= s we have that R(s) > C∗(s′, s) then µλ(s′) = 0. If R(s) = C∗(s′, s) then

µλ(s′) > 0 implies µλ(s) > 0. If R(s) ≥ CR∗(s), then s is stochastically stable.
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Proof. The lemma follows from Theorems 2 and 3 in Ellison (2000). To see the last part

note that by definition of modified coradius C∗(s′, s) ≤ CR∗(s) for all s′ 6= s. Thus, for

any absorbing state s if R(s) > CR∗(s), then µλ(s′) = 0 for all s′ and s must be the only

stochastically stable state. Finally, let X be a set of stochastically stable states, which

always exist. If for any s′ ∈ X we have that R(s) = CR∗(s) = C∗(s′, s), then s is also

stochastically stable.

Proof of Proposition 3. Consider the set E = {s ∈ M | ŝ(1) ≤ s ≤ ŝ(n− 1)}. Denote

sk = (ŝ(k), . . . , ŝ(k)) with k = 1, . . . , n. Let s = (s, . . . , s) ∈ M be a monomorphic state

at which the process starts in any period t and call s′ ∈ Γn the resulting state when one

of the countries deviates to subsidy s′ ∈ Γ in period t + 1 while the remaining n − 1

countries still choose s. Consider the following cases separately:

(i) Suppose s < ŝ(1) and s′ = ŝ(1). The deviating country attracts all poor and gets

payoff u (wR) by definition of ŝ(1). Non-deviating countries with lower subsidies

attract no poor and also get u (wR). Only the country with highest best-performing

policy is imitated. Thus, B(s′(t + 1)) = {s′}.

(ii) Suppose s > ŝ(n−1) and s′ ∈ [ŝ(1), ŝ(n−1)]∩Γ. The deviating country with lower

subsidy attracts no poor and gets payoff u (wR). The remaining n−1 non-deviating

countries must now share all the poor at s > ŝ(n − 1) which results in payoff

f(n− 1, s) < u (wR) by definition of ŝ(n− 1). It follows that B(s′(t + 1)) = {s′}.

Both in (i) and (ii) there is positive probability that all countries revise their subsidies

and choose s′ at the end of t + 1. This shows that from any state s 6∈ E a state in E can

be reached after a single deviation, so that CR(E) = CR∗(E) = 1.

(iii) Suppose ŝ(1) ≤ s ≤ ŝ(n−1). If s′ < s (deviation downwards), the deviating country

gets u (wR), while the remaining n−1 non-deviating countries with s ≤ ŝ(n−1) get

payoffs f(n− 1, s) ≥ u (wR) by definition of ŝ(n− 1) and offer maximum subsidy s.

Alternatively, if s′ > s (deviation upwards), the deviating country with s′ > s ≥ ŝ(1)

attracts all poor and gets payoffs f(1, s′) < u (wR), while the non-deviating countries

get u (wR). In both cases B(s′(t + 1)) = {s} and the deviation is not followed.

By (iii) states in E cannot be abandoned with a single deviation and R(E) > CR∗(E) = 1.

By Lemma 2, the set of stochastically stable states must be contained in E.
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Proof of Proposition 4. By definition, states in E cannot be abandoned with a single

deviation. We will show, however, that it is possible to abandon states in E with an

ever increasing number of simultaneous deviations as we move to intermediate states. In

a first step we show that it is sufficient to consider simultaneous deviations to the same

alternative subsidy. To see this, take any two states s, s′ ∈ E and suppose that the process

moves from s to s′ after multiple deviations with at least two different subsidies s′ and

s′′. This transition requires that the process visits some intermediate state of the form

s̃ = (s, . . . , s, s′, . . . , s′, s′′, . . . , s′′). If the process is to reach the monomorphic state s′

eventually from state s̃, we must have that s′ ∈ B̂(s̃) so that s′ survives revision. Two

cases are possible. Either s′ = max{s, s′, s′′} and then B(s̃) = {s′}, or else B(s̃) is empty.

In both cases the number of countries choosing s′ after revision is at least as high as in

state s̃. If B(s̃) = {s′}, this is because enough deviators had chosen s′ so as to sustain

this subsidy profitably. Since ŝ(k) is increasing with k, as more countries choose s′ welfare

cannot fall bellow u(wR) and s′ will still be the unique best-performing policy. If, instead,

B(s̃) is empty, then countries currently choosing s′ will continue to do so after revision

and all other revising countries have positive probability to choose s′, resulting in a state

analogous to s̃ where we can repeat the same arguments as long as there are some countries

still choosing s′′. In any case, the state resulting after revision from s̃ could have been

reached directly with all deviating and revising countries choosing s′ in the first place.

Henceforth, we focus on simultaneous deviations of at least two countries choosing the

same alternative subsidy. To compute transition costs between states in E, we first define

the following collection of sets:

Ek = {s ∈ M | ŝ(k − 1) ≤ s ≤ ŝ(k)}, k = 2, . . . , n− 1.

We let the process start at some s = (s, . . . , s) ∈ Ek at any period t and denote s′ ∈ Γn

the resulting state after deviation. We now consider the following cases separately:

(i) Suppose s′ has k′ countries choosing s′ > s with ŝ(k′ − 1) < s′ ≤ ŝ(k′) and k′ ≥ k.

Deviating countries get payoff f(k′, s′) ≥ u (wR) by definition of ŝ(k′) and offer

the highest subsidies. The remaining non-deviating countries are inactive and get

u (wR). It follows that B(s′(t + 1)) = {s′}.

(ii) Suppose s′ has n− k + 1 deviating countries choosing s′ < s 6= ŝ(k − 1). Deviating

countries get payoff u (wR). The remaining k− 1 non-deviating countries get payoff

f(k − 1, s) < u (wR). It follows that B(s′(t + 1)) = {s′}. If s = ŝ(k − 1) the same

conclusion holds with n− k + 2 deviations to a lower subsidy.
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Both in (i) and (ii) there is positive probability that all countries revise their subsidies

and choose s′ at the end of t + 1 reaching state s′.

(iii) If k̃ < k′ countries coordinate on s′ > s with s′ ∈ (ŝ(k′ − 1), ŝ(k′)], their payoff

is f(k̃, s′) < u(wR), implying B̂(s′) = {s} and B(s′) is empty. Non-deviators keep

their strategies if they are called to revise. Deviators go back to s at the first revision

opportunity. The process will not exit state s. Analogously, let k̃ < n − k + 1

countries choose s′ < s. Deviating countries get u(wR); non-deviating countries

get payoff f(n − k̃, s) ≥ u(wr), since n − k̃ ≥ k. Since non-deviators offer highest

subsidy, we have B(s′) = {s} and the process cannot leave s. Finally, note that

n− k + 1 deviators choosing a lower subsidy are not enough to leave sk−1.

Since ŝ(k′) increases with k′, it follows from (i) and (iii) that the minimum number of

deviations needed to exit s ∈ Ek upwards is k′ = k for s < s′ ≤ ŝ(k) and the process

needs at least k + 1 deviations to exit sk upwards. From (ii) and (iii) at least n − k + 1

deviations are needed to exit states in Ek \ sk−1 downwards and at least n− k + 2 to exit

sk−1 downwards. Therefore, R(sk) = min{k +1, n−k +1} for all k. Furthermore, for any

s = (s, . . . , s) with s ∈ (ŝ(k−1), ŝ(k)), R(s) = min{k, n−k +1}. This gives the following

values for the radius of states in E:

a) For any sk = (ŝ(k), . . . , ŝ(k)), k = 1, . . . , n− 1, we have

R(sk) =

{
k + 1 if k ≤ n/2

n− k + 1 if k > n/2
(12)

b) For any s = (s, . . . , s) with ŝ(k − 1) < s < ŝ(k), k = 2, . . . , n− 1, we have

R(s) =

{
k if k ≤ n+1

2

n− k + 1 if k > n+1
2

(13)

The radius gives the minimum costs necessary to leave states in E. Observe in (12) and

(13) that this value is highest around k = dn−1
2
e. More precisely, we have that:

• If n is even, the maximum radius is n
2

+ 1 attained at s
n
2 .

• If n is odd, the maximum radius is n+1
2

attained at states in E
n+1

2 .

The case of even n: We compute the costs of reaching s
n
2 . From (i) and (iii) we have

that s
n
2 can be reached directly from states s = (s, . . . , s) with s < ŝ(n/2) with no less than
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n/2 deviations. Alternatively, from states s ∈ Ek \ {sk} with k < n/2, we can construct

a path from s to s
n
2 going through absorbing states sk, sk+1, . . . , s

n
2
−1 consecutively. By

(i) and (13), c∗(s, sk, sk+1, . . . , s
n
2
−1, s

n
2 ) = k < n/2. Also transitions to s

n
2 from s ∈ E

n
2

with ŝ(n
2
− 1) ≤ s < ŝ(n

2
) can either be done directly or through a chain of transitions

through monomorphic states s′ ∈ E
n
2 with s < s′ < ŝ(n

2
). In any case the modified costs

of these transitions is n/2. Therefore, C∗(s, s
n
2 ) = k for s ∈ Ek \ {sk} and k ≤ n/2 which

reaches a maximum at k = n/2. On the other hand, from (ii) and (iii) we have that s
n
2

can be reached directly from s ∈ Ek \ {sk−1} with k > n/2 with n − k + 1 deviations.

Alternatively, this can be done with a path through absorbing states sk−1, sk−2, . . . , s
n
2
+1

at modified cost also equal to n − k + 1 (step-by-step transitions are not more likely in

this case). Therefore, C∗(s, s
n
2 ) = n−k+1 for s ∈ Ek \{sk−1} and k > n/2 which reaches

a maximum at k = n
2

+ 1. In summary, the minimum cost of reaching s
n
2 is highest from

states in E
n
2 and from states in E

n
2
+1. In both cases, the costs of these transitions are

n/2. It follows that CR∗(s
n
2 ) = n/2. We thus have

R(s
n
2 ) =

n

2
+ 1 >

n

2
= CR∗(s

n
2 )

and by Lemma 2 s
n
2 is the only stochastically stable state in this case.

The case of odd n: In this case we speak of a set of central states given by E
n+1

2 =

Edn
2 e. We want to show that this is the set of stochastically stable states. Take state

s
n−1

2 , the ‘lower’ bound of the set. By (12) we know that R(s
n−1

2 ) = (n + 1)/2. We can

follow the same arguments that we used for state s
n
2 in the even case to show that for

all s ∈ Ek \ {sk} with k ≤ n−1
2

we have C∗(s, s
n−1

2 ) = k and for all s ∈ Ek \ {sk−1} with

k > n+1
2

we have C∗(s, s
n−1

2 ) = n− k + 1. We thus have that

R(s
n−1

2 ) =
n + 1

2
>

n− 1

2
≥ C∗(s, s

n−1
2 ) for all s 6∈ Edn

2 e,

and by Lemma 2 this implies that states s 6∈ Edn
2 e cannot be stochastically stable.

Stochastically stable states must therefore be contained in the set of central states. We

know from (12) and (13) that R(s) = (n + 1)/2 for all s ∈ Edn
2 e. Note also that for any

pair s, s′ ∈ Edn
2 e, we have c(s, s′) = (n + 1)/2. Take for example s′ > s; if the process

starts at s, we need at least (n + 1)/2 countries coordinating to sustain s′; if the process

starts at s′, we need at least (n + 1)/2 countries lowering their subsidies, so that subsidy

s′ cannot be sustained profitably anymore. Furthermore, it is not possible to reduce the

costs of a transition from s to s′ by a chain of transitions going through states out of
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the set Edn
2 e. Note that c(s, s′′) ≥ n+3

2
for all s′′ > ŝ(n+1

2
) and c(s, s′′) ≥ n+1

2
for all

s′′ < ŝ(n−1
2

). It follows that C∗(s, s′) = n+1
2

. Therefore,

R(s) = (n + 1)/2 = CR∗(s) for all s ∈ Edn
2 e.

By Lemma 2 all states in Edn
2 e are stochastically stable.
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