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Abstract

This note presents new results on existence of rich Fubini extensions.
The notion of a rich Fubini extension was recently introduced by Sun (2006)
and shown by him to provide the proper framework to obtain an exact law
of large numbers for a continuum of random variables. In contrast to the
existence results for rich Fubini extensions established by Sun (2006), the
arguments in this note don’t use constructions from nonstandard analysis.

Keywords: Fubini extension, exact law of large numbers.

�Thanks to Manfred Nermuth and Nicholas Yannelis for helpful discussions and suggestions.
yInstitut für Wirtschaftswissenschaften, Universität Wien, Hohenstaufengasse 9, A-1010

Wien, Austria. E-mail: konrad.podczeck@univie.ac.at



1 Introduction

In many contexts of economics, a large finite set is idealized by a continuum. The
prototype example is Aumann’s (1964) model of perfect competition, where the
set of agents is specified to be an atomless measure space. In this spirit, there
is also the desire to get, in models with individual risk, the conclusion that an
atomless measure space of agents implies that, under some independence con-
dition, individual risk exactly cancels out in non-negligible measurable sets of
agents. This amounts to the desire to get, with a continuum of random vari-
ables, an “exact version” of the classical law of large numbers. However, as was
first noted in the economic literature by Judd (1985) and Feldman and Gilles
(1985), there are mathematical difficulties with this idea. In particular, there are
problems concerning measurability of sample functions.

Nevertheless, there are results showing that one can have models where indi-
vidual risk cancels out in the aggregate. See Al-Najjar (2004), Alós-Ferrer (2002),
Anderson (1991), Green (1994), Sun (1998, 2006), and Uhlig (1996).1

One of the contributions in Sun (2006) is the result that an exact law of
large numbers indeed holds for processes that are measurable with respect to a
Fubini extension of the product measure corresponding to the index probability
space and the sample space.2 As shown by Sun (2006), this fact provides the
proper mathematical foundation for models designed to have the feature that
there is a cancellation of individual risk in the aggregate.

Existence of Fubini extensions that are “rich” in the sense of allowing for
non-trivial measurable processes to which an exact law of large numbers applies
was shown by Sun using Loeb space constructions; see Sun (1998, Theorem 6.2)
and Sun (2006, Proposition 5.6).

In this note, we present new results about the existence of rich Fubini exten-
sions. In particular, our arguments will not depend on constructions from non-
standard analysis. Thus, in view of the results in Sun (2006) on the exact law of
large numbers via general Fubini extensions, the results and arguments in our
note imply that non-trivial processes to which an exact law of large numbers
applies can be obtained without (directly or indirectly) involving nonstandard
analysis.

The rest of this paper is organized as follows. The next section contains
the basic definitions concerning the notion of a rich Fubini extension. Section 3
contains some notational conventions as well as further definitions needed for
the special purpose of this note. Section 4 contains the statements of our results,
and Section 5 the proofs. In an appendix, some mathematical terminology used
in this paper is recalled.

1We refer to Sun (2006) for a discussion where it is argued that there are interpretative
difficulties with the framework of finitely additive measures used by Al-Najjar (2004) as well as
with the model of Uhlig (1996) where the Pettis integral is used to justify an exact law of large
numbers.

2See the next section for the precise meanings.
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2 Basic definitions

We first make the following convention.

Convention. Throughout this paper, product measures are understood to be
complete product measures.

The three definitions in this section are taken from Sun (2006), but slightly
reformulated here concerning notation.

Definition 1. Let �X;�; �� and �Y ;T; �� be probability spaces, and �X � Y ;�; ��
the corresponding product probability space. Let � be a probability measure
on X � Y , and � its domain. Then � is said to be a Fubini extension of � if
(a) � � � and (b) for each H 2 �—denoting by �H the characteristic function
of H—the integrals

R R
�H�x;y�d��y�d��x� and

R R
�H�x;y�d��x�d��y� are

well-defined and
R R
�H�x;y�d��y�d��x� � ��H� �

R R
�H�x;y�d��x�d��y�.

Note that (a) and (b) in this definition imply that � must agree with � on �.
Also note that this definition implies that if f : X � Y ! R is a �-measurable
function, then for almost all x 2 X, the x-sections f�x; �� are measurable for
the �-completion of T, and similarly for the y-sections. From this it follows in
turn that an analogous statement holds for functions from X � Y to any Polish
space. The definition also implies that the conclusion of Fubini’s theorem holds
for �-integrable functions from X � Y to R.

Definition 2. Let �X;�; �� and �Y ;T; �� be probability spaces, Z a Polish space,
and f : X�Y ! Z a function such that for almost all x 2 X, f�x; �� is measurable
for the �-completion of T and the Borel sets of Z . Then the family hf�x; ��ix2X
is said to be essentially pairwise independent if there is a null set N in X such
that for each x 2 X nN the functions f�x; �� and f�x0; �� are stochastically
independent for almost all x0 2 X.

Let �X;�; ��, �Y ;T; ��, and Z be as in this latter definition, and let � be the
product measure on X � Y given by � and � . As shown by Sun (2006, Theo-
rem 2.8), if a process f : X �Y ! Z is measurable with respect to the domain of
some Fubini extension � of �, then an exact law of large numbers holds in the
sense that essentially pairwise independence of the family hf�x; ��ix2X implies
that, given any E 2 � with ��E� > 0, for almost all y 2 Y the distribution of
�f uE � Y���; y� with respect to �E is equal to the distribution of f uE � Y with
respect to �E�Y , where f uE�Y is the restriction of f to E�Y , and �E and �E�Y
are the probability measures obtained be renormalizing the subspace measures
induced by � and � on E and E � Y , respectively; in particular, for almost all
y 2 Y , the distribution of f��; y� with respect to � is equal to the distribution
of f with respect to �. We remark that Theorem 2.8 of Sun (2006) also shows
that the converse of this law of large numbers is true.

Of course, the measurability and independence requirements in the law of
large numbers stated above are trivially satisfied for a constant valued process.

2



The next definition states a criterion for a Fubini extension to yield a framework
in which this law has a non-trivial meaning.

Definition 3. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure. Let � be a Fubini extension of �, and �
its domain. The Fubini extension � is called a rich Fubini extension if there is a
�-measurable function f : X � Y ! �0;1� such that the family hf�x; ��ix2X is
essentially pairwise independent and for almost every x 2 X, the distribution
of the function f�x; �� is the uniform distribution on �0;1�.

Let f be as in this definition, and let � be any Borel probability measure on
a Polish space Z . By a standard fact, � is the distribution of some measurable
function g defined on ��0;1�;B; ��, where B is the Borel � -algebra of �0;1� and
� is Lebesgue measure. Then the composition f 0 � g � f is a �-measurable
function from X � Y to Z such that the family hf 0�x; ��ix2X is essentially pair-
wise independent, and for almost every x 2 X, the distribution of f 0�x; �� is � .
In particular, by the Fubini property of �, the distribution of f 0 is equal to � .
Thus the word “rich” in Definition 3 is justified.

Finally, we remark that if a process f is as required in Definition 3, then f
cannot be measurable already for the domain of the product measure � (see Sun,
2006, Proposition 2.1). Thus a rich Fubini extension must always be a proper ex-
tension of the product measure in question, so the problem of existence of rich
Fubini extensions is non-trivial. (See also the remark at the end of Section 5.5.)

3 Notation, conventions, and further definitions

If �X;�; �� is any measure space, covN ��� denotes the least cardinal of any
family of �-null sets which covers X, provided such a family exists. We let
covN ��� be undefined if no such family exists. Thus, if � is a cardinal and
it is written, e.g., “covN ��� � �,” then this is understood to imply that X can
be covered by a family of �-null sets.

For a non-empty set I, �I denotes the usual measure on f0;1gI . In particular,
�N denotes the usual measure on f0;1gN; �BN denotes the restriction of �N to the
Borel � -algebra of f0;1gN.

If �X;�; �� is any measure space, “measurable” for a mapping f : X ! f0;1gN

always means measurable with respect to the Borel (= Baire) sets of f0;1gN.
For convenience, we will work with the following restatement of Definition 3.

(Recall for this that �0;1� with Lebesgue measure and f0;1gN with its usual
measure are isomorphic as measure spaces.)

Definition 4. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure. Let � be a Fubini extension of �, and �
its domain. The Fubini extension � is called a rich Fubini extension if there is a
�-measurable function f : X � Y ! f0;1gN such that the family hf�x; ��ix2X is
essentially pairwise independent and for almost all x 2 X, the distribution of
the function f�x; �� is equal to �BN.
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Let �X;�; ��, �Y ;T; ��, and � be as in this definition. By Sun (2006, Theorem
4.2) (see also Theorem 3 below), there can be no rich Fubini extension of � if one
of the � -algebras � and T, say �, has a non-negligible element A such that the
trace of � on A is essentially countably generated. For this reason we consider
probability spaces that satisfy the criterion in the following definition.

Definition 5. Let �X;�; �� be a probability space and �A; �̂� its measure algebra.
The measure � (or the measure space �X;�; ��) is said to be super-atomless if
each non-zero principal ideal of A has uncountable Maharam type.3 4

Examples of super-atomless probability spaces are f0;1gI with its usual mea-
sure when I is an uncountable set, the product measure space �0;1�I where
each factor is endowed with Lebesgue measure when I is uncountable, subsets
of these spaces with full outer measure when endowed with the subspace mea-
sure, atomless Loeb probability spaces. Furthermore, any atomless Borel proba-
bility measure on a Polish space can be extended to a super-atomless probability
measure5; in particular, Lebesgue measure on �0;1� can be extended to a super-
atomless probability measure.

We also need the following definition.

Definition 6. Let �X;�; �� be a probability space, with measure algebra �A; �̂�.
For an uncountable cardinal �, the measure � (or the measure space �X;�; ��)
is said to be �-super-atomless if � � minf�0 : �0 is the Maharam type of some
non-zero principal ideal of Ag.6

4 Results

Theorem 1. Given any super-atomless probability space �X;�; ��, there is prob-
ability space �Y ;T; �� (also super-atomless) such that the product measure corre-
sponding to � and � has a rich Fubini extension.

Note that in Theorem 1, for the given probability space �X;�; �� we can in
particular have that X � �0;1� and that � is any extension of Lebesgue measure

3We refer to Fremlin (2002) for terminology and facts concerning measure algebras. Some
basic terminology is recalled in the appendix.

4The name “super-atomless”, suggested to me by Erik Balder, is aimed to indicate that the
condition in this definition is a straightforward strengthening of non-atomicity, the latter being
equivalent to the property that non-zero principal ideals of the measure algebra of a probability
space in question have infinite Maharam type. We remark that the notions “saturated probabil-
ity space,” “@1-atomless probability space” and “nowhere separable probability space” which
appear in the literature state conditions that can be shown to be equivalent to the condition in
Definition 5.

5As shown in Podczeck (2008), this fact is a straightforward consequence of the fact that
there are countably separated probability spaces with uncountable Maharam type. For this latter
fact, see Fremlin (2005, 521P).

6Recall that the cardinals are well-ordered, so the definition makes sense.
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on �0;1� to a super-atomless measure. As remarked at the end of the previous
section, such extensions of Lebesgue measure do exist.

In Sun and Zhang (2008), developed simultaneously and independently from
this paper, it is also shown that there are rich Fubini extensions where one of the
factor spaces is �0;1� with an extension of Lebesgue measure (the extension be-
ing super-atomless in our terminology). In Sun and Zhang (2008) the extension
of Lebesgue measure is constructed as part of the construction of the Fubini
extension. Theorem 1 of this paper shows that actually there is no need for a
particular choice of such an extension, i.e., in order to get the conclusion of this
theorem, any extension of Lebesgue measure on �0;1� to a super-atomless mea-
sure can be taken as given. Moreover, the fact that the given space �X;�; �� in
Theorem 1 can be any super-atomless probability space shows, by the defini-
tion of “super-atomless,” that the conclusion of this theorem actually depends
only on properties of the measure algebra of �X;�; ��, so the result that there
are rich Fubini extensions where one of the factor measures is a super-atomless
extension of Lebesgue measure on �0;1� is a special case of a result at a deeper
level of abstraction.

We also note, writing c for the cardinal of the continuum:

Remark 1. In Theorem 1, if #�X� � c then the probability space �Y ;T; �� can be
chosen so that #�Y� � c. (For an argument establishing this, see subsection 5.3.)
In particular, �Y ;T; �� can be chosen with #�Y� � c if X � �0;1� and � is any
extension of Lebesgue measure on �0;1� to a super-atomless measure.

A concrete version of Theorem 1 is contained in the next result.

Theorem 2. Let �X;�; �� be any super-atomless probability space. Then there is
a probability measure � on

�
f0;1gN

�X
such that the product probability measure

on X �
�
f0;1gN

�X
corresponding to � and � has a rich Fubini extension, say

� with domain �. The measure � and the Fubini extension � can be chosen in
such a way that the coordinate projections function f : X �

�
f0;1gN

�X ! f0;1gN,
given by f�x;y� � y�x�, has the following properties: (a) f is �-measurable;
(b) the family hf�x; ��ix2X is i.i.d. for � with distribution �BN, thus, in particular,
essentially pairwise independent for the marginals � and � of �.

Theorem 2 is a generalization of Proposition 5.6 in Sun (2006) where, in
our notation, X is �0;1� but the measure � is constructed in the proof of that
proposition so that the resulting probability space ��0;1�;�; �� is isomorphic as
a measure space to an atomless Loeb probability space. We remark in this re-
gard that if a probability space ��0;1�;�; �� is isomorphic to an atomless Loeb
probability space, then � cannot be an extension of Lebesgue measure.7

7This follows from Keisler and Sun (2002) where it is shown that if �X0;�0; �0� is any atom-
less Loeb probability space, X a Polish space, f : X0 ! X a measurable mapping, and � denotes
the distribution of f on X, then for �-almost every x 2 X the inverse image f�1

�
fxg

�
has a

cardinality at least as large as that of the continuum.
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Can it be shown that, given any two super-atomless probability spaces, the
corresponding product measure has a rich Fubini extension? Unfortunately, the
answer is no. Consider f0;1g!1 with its usual measure �!1 , where!1 is the least
uncountable cardinal. It cannot be proved in ZFC that covN ��!1� �!1.8 On the
other hand, f0;1g!1 is Maharam-type-homogeneous with Maharam type!1. But
this implies that if covN ��!1� > !1, then the product measure corresponding
to two copies of f0;1g!1 cannot have a rich Fubini extension. In fact, the next
theorem states necessary conditions for rich Fubini extensions to exist.

Theorem 3. Let �X;�; �� and �Y ;T; �� be probability spaces. If the product prob-
ability measure on X � Y corresponding to � and � has a rich Fubini extension,
then the following hold.

(a) Each non-zero principal ideal of the measure algebra of � has Maharam type
� covN ���.

(b) Each non-zero principal ideal of the measure algebra of � has Maharam type
� covN ���.

Theorem 3 implies, in particular, the fact already noted in Section 3 that,
given probability spaces �X;�; �� and �Y ;T; ��, in order for the corresponding
product measure to have a rich Fubini extension, it is necessary that the measure
algebras of both � and � do not contain non-zero principal ideals with countable
Maharam type, or, in other words, that both � and � be super-atomless. But
note that Theorem 3 shows that actually more than this is needed to get a rich
Fubini extension. The proof of Theorem 3 will also show, as a byproduct, that
a rich Fubini extension of a product measure in question must be a proper
extension (see the remark at the end of Section 5.5).

The following result provides sufficient conditions in order that the prod-
uct measure corresponding to two given probability spaces have a rich Fubini
extension.

Theorem 4. Let �X;�; �� and �Y ;T; �� be probability spaces, and � the corre-
sponding product probability measure on X �Y . Suppose that for some uncount-
able cardinals � and �, � is �-super-atomless and � is �-super-atomless. Further
suppose that for some cardinal �, with � � minf�;�g, there is a non-decreasing
family hM�i�<� of null sets in X with

S
�<�M� � X and a non-decreasing family

hN�i�<� of null sets in Y with
S
�<� N� � Y . Then � has a rich Fubini extension.

The hypotheses in Theorem 4 can be satisfied as shown in the following
example.

8Recall that Martin’s axiom implies that covN ��!1� � c (see Fremlin, 2005, 523Y(f)(ii) and
517O(b) and (d)), and that it is (relatively) consistent with ZFC that Martin’s axiom holds and
!1 < c. For this latter fact as well as for a statement of Martin’s axiom, see e.g. Ciesielski (1997,
Chapter 8.2).
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Example. Let � be any cardinal with uncountable cofinality, and consider f0;1g�
with its usual measure �� . Fix any x 2 f0;1g� and for each � < �, let

N� �
�
x 2 f0;1g� : x��� � x��� for all � < � with � � �

	
:

Set X �
S
�<� N� , let � be the subspace measure on X induced by �� , and � the

domain of �. As � has uncountable cofinality, X intersects every non-empty sub-
set of f0;1g� that is determined by coordinates in some countably subset of �.
Thus X has full outer measure for �� . This implies that � is a probability mea-
sure and that the measure algebra of � can be identified with that of �� . Accord-
ing to a standard fact, �� is Maharam-type-homogeneous with Maharam type �,
and it follows that � has the same property. In our terminology, this means �
is �-super-atomless. Note that for any � < �, N� is a �� -null set in f0;1g� since
all of its elements agree on some infinite subset of �. Hence for any � < �,
N� is a �-null set in X. Evidently the family hN�i�<� is non-decreasing. Thus,
a pair of two copies of the probability space �X;�; �� just constructed provides
an example as desired. (If � � c, where c is the cardinal of the continuum, the
argument can be refined to yield an X with #�X� � c; c.f. the proof of Theorem 5.)

Recall that if �X;�; �� is any complete atomless probability space, there is a
mapping f : X ! �0;1� which is inverse-measure-preserving for � and Lebesgue
measure on �0;1�. Hence, if �0;1� can be covered by a non-deceasing family
hN�i�<� of Lebesgue null sets, for some cardinal �, then any atomless proba-
bility space �X;�; �� has the property that the set X can be covered by a non-
deceasing family hM�i�<� of �-null sets (with the same �). Thus we have the
following corollary of Theorem 4.

Corollary 1. Let � be a cardinal and suppose that �0;1� can be covered by a non-
decreasing family hN�i�<� of Lebesgue null sets. Then given any two probability
spaces �X;�; �� and �Y ;T; �� such that � is �-super-atomless with � � �, and
� is �-super-atomless with � � �, the product measure on X � Y corresponding
to � and � has a rich Fubini extension.

If the continuum hypothesis is true then �0;1� can be covered by !1 many
Lebesgue null sets, denoting by !1 the least uncountable cardinal. Therefore
Corollary 1 implies:

Corollary 2. If the continuum hypothesis holds then given any two super-atomless
probability spaces �X;�; �� and �Y ;T; ��, the product measure on X � Y corre-
sponding to � and � has a rich Fubini extension.

Recall that a weakening of the continuum hypothesis is given by Martin’s
axiom, but that Martin’s axiom still implies that the union of fewer than c many
Lebesgue null sets in �0;1� is a Lebesgue null set, where c is the cardinal of the
continuum.9 Thus under Martin’s axiom the hypothesis on �0;1� in Corollary 1
holds for � � c. Hence, by Corollary 1, the following result holds.

9See Ciesielski (1997, p. 145, Theorem 8.2.7).
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Corollary 3. Suppose Martin’s axiom is true. Then given any two probability
spaces �X;�; �� and �Y ;T; �� such that � is �-super-atomless with � � c, and
� is �-super-atomless with � � c, the product measure on X �Y corresponding to
� and � has a rich Fubini extension.

The final result of this note will also be derived as a consequence of Theo-
rem 4; see Section 5.7.

Theorem 5. Let X and Y be Polish spaces, � an atomless Borel probability mea-
sure on X, and � an atomless Borel probability measure on Y . Then there is
a super-atomless probability measure �0 on X which extends �, and a super-
atomless probability measure �0 on Y which extends � , such that the product
measure on X � Y corresponding to �0 and �0 has a rich Fubini extension.

Closing this section, we notice that there is an obvious gap between the suf-
ficient conditions for existence of a rich Fubini extension, as they are stated in
Theorem 4, and the necessary conditions as stated in Theorem 3. Of course, this
gap gives room for further research.

5 Proofs

Notation: If A is a subset of a product X � Y and x 2 X, then Ax denotes the
x-section of A, and if y 2 Y then Ay denotes the y-section of A. Thus, if x 2 X,
then Ax � fy 2 Y : �x;y� 2 Ag; similarly, for y 2 Y , Ay � fx 2 X : �x;y� 2 Ag.

5.1 Lemmata

Lemma 1. Let �X;�; �� and �Y ;T; �� be probability spaces, and �X � Y ;�; �� the
corresponding product probability space. Suppose there is a sequence hHiii2N of
subsets of X � Y such that:

(a) There is a null set N in X such that for each x 2 X nN and each i 2 N, the
section Hix is a member of T with ��Hix� � 1=2.

(b) There is a null set N in Y such that for each y 2 Y nN and each i 2 N, the
section Hiy is a member of � with ��Hiy� � 1=2.

(c) For each B 2 T there is null set NB in X such that for each x 2 XnNB , B and
the sections Hix , i 2 N, form a stochastically independent family in T.

(d) For each A 2 � there is null set NA in Y such that for each y 2 Y nNA, A and
the sections Hiy , i 2 N, form a stochastically independent family in �.

Then � has a rich Fubini extension � such that the domain of � contains all the
sets Hi, i 2 N, and such that a function f : X � Y ! f0;1gN which witnesses
richness of � is given by setting, for each �x;y� 2 X � Y and i 2 N,

f i�x;y� �

8<:1 if �x;y� 2 Hi

0 if �x;y� 62 Hi:
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Proof. Let F denote the set of all subsets F � X � Y such that the integralsR
X ��Fx�d��x� and

R
Y ��Fy�d��y� are well-defined and equal. Then F is a

Dynkin class (i.e. ; 2 F and F is closed against forming complements and
unions of disjoint sequences) as may easily be checked. Also, (a) to (d) imply
that whenever A1 � B1; : : : ; An � Bn are finitely many measurable rectangles in
X � Y and Hi1 ; : : : ;Him is a finite subfamily of hHiii2N, then the intersection

�A1 � B1�\ � � � \ �An � Bn�\Hi1 \ � � � \Him

belongs to F . Therefore, by the monotone class theorem, there is a � -algebra
�0 � F which contains all measurable rectangles in X � Y and all the sets Hi,
i 2 N. Define �0 : �0 ! R by setting �0�F� �

R
X ��Fx�d��x� for F 2 �0. Using the

monotone convergence theorem, it follows that �0 is a probability measure on
X � Y . Let � be its completion, and � the domain of �. Then since F contains
all measurable rectangles in X � Y , we have � � �. By construction, the Fubini
property holds for the characteristic functions of the elements of �0, which
in particular implies that if N is a �0-null set in X � Y , then for �-almost every
x 2 X, the x-section of N is a �-null set in Y , and for �-almost every y 2 Y ,
the y-section of N is a �-null set in X. Consequently, the Fubini property holds
for the characteristic functions of the elements of �. In particular, � coincides
with � on �. Thus � is a Fubini extension of � such that the domain � of �
contains all the sets Hi, i 2 N. Note that we have ��Hi� � 1=2 for all i 2 N.

Now consider the function f : X � Y ! f0;1gN defined in the statement of
the lemma. Since Hi 2 � for each i 2 N, f is measurable for � and the Borel
sets of f0;1gN.

It remains to show that the family hf�x; ��ix2X is essentially pairwise inde-
pendent, and that for almost every x 2 X, f�x; �� is inverse-measure-preserving
for � and �BN. To this end, for each x 2 X let Tx denote the � -algebra on Y
generated by the set fHix : i 2 Ng, and let N be a null set in X chosen according
to condition (a). In particular, then, for each x 2 XnN , Tx is a sub-� -algebra of T.
Also, in view of (c), we may assume that for each x 2 XnN , the family hHixii2N

is stochastically independent (applying (c) e.g. to B � Y and replacing N by a
larger null set, if necessary).

Fix any x 2 XnN . Applying (c) to each finite intersection of elements of the
family hHixii2N, we can see that there is a null set Nx in X such that for each
x 2 XnNx , the family of all the sets Hix , i 2 N, and Hix , i 2 N, is a stochastically
independent family in T. But this implies that for each x 2 XnNx , the � -algebras
Tx and Tx are stochastically independent. Now the definition of f implies that
for each x 2 X, f�x; �� is measurable for Tx and the Borel sets of f0;1gN,
and it follows that for each x 2 X nNx , f�x; �� and f�x; �� are stochastically
independent.

Since this argument applies to each fixed x 2 X nN , it follows that the
family hf�x; ��ix2X is essentially pairwise independent. Finally, note that if
x 2 X nN , then since hHixii2N is stochastically independent for such an x,

9



f�x; �� is inverse-measure-preserving for � and �BN, by the definition of f and
since ��Hix� � 1=2 for all i 2 N and all x 2 XnN . This completes the proof.

Lemma 2. Let �X;�; �� be a �-super-atomless probability space. Then there is a
family hE�i�<� in �, with ��E�� � 1=2 for each � < �, such that for each A 2 �
there is a countable set DA � � such that A and the sets E� , � 2 � nDA, form a
stochastically independent family in �.

Proof. Suppose first that � is Maharam-type-homogeneous, and let �A; �̂� denote
the measure algebra of �. Then by Maharam’s theorem, there is a measure alge-
bra isomorphism between �A; �̂� and the measure algebra of the usual measure
�� on f0;1g� . Denote this latter measure algebra by �C� ; �̂��. For each � < �
let F� � fx 2 f0;1g� : x��� � 1g. Then hF�i�<� is a stochastically independent
family in the domain of �� , with ���F�� � 1=2 for each � < �. Thus the family
hF��i�<� , where F�� is the element in C� determined by F� , is a stochastically in-
dependent family in C� , with �̂��F��� � 1=2 for each � < �. By a standard fact,
the set fF�� : � < �g completely generates C� . Consequently, since �A; �̂� and C�
are isomorphic as measure algebras, there is a stochastically independent fam-
ily ha�i�<� in A, with �̂�a�� � 1=2 for each � < �, such that the set fa� : � < �g
completely generates A. For each � < � select an element E� in � which deter-
mines a� . In particular, then, ��E�� � 1=2 for each � < �. Now pick any A 2 �.
Let A� be the element in A determined by A. Since the set fa� : � < �g completely
generates A, there is a countable set DA � � such that A� belongs to the closed
subalgebra of A generated by the set fa� : � 2 DAg.10 But this subalgebra of A
and the closed subalgebra of A generated by the set fa� : � 2 �nDAg are stochas-
tically independent, because the family ha�i�<� is stochastically independent.11

It follows that A� and the elements a� , � 2 � n DA, form a stochastically inde-
pendent family in A, whence A and the sets E� , � 2 �nDA, form a stochastically
independent family in �.

Now suppose � is not Maharam-type-homogeneous. Since � is a probability
measure, Maharam’s theorem implies that there is a countable partition hSiii2I
of X, with Si 2 � and ��Si� > 0 for each i 2 I, such that, denoting by �i the
subspace measure on Si induced by �, �i is Maharam-type-homogeneous for
each i 2 I. Let �i be the Maharam type of �i and note that � �minf�i : i 2 Ig (by
the definition of “�-super-atomless”). For each i 2 I, let �i denote the domain of
�i (i.e. �i is the trace of � on Si) and let �i denote the normalization of �i so that
�i is a probability measure. (Thus �i is the measure on Si given as �i � 1

�i�Si�
�i.)

Note that for each i 2 I, �i is again Maharam-type-homogeneous with Maharam
type �i.

Now for each i 2 I, considering the probability space �Si;�i; �i�, let hEi�i�<�i
be a family in �i, constructed according to the first paragraph of this proof.
Recalling that � � minf�i : i 2 Ig, for each i 2 I let hEi�i�<� be a subfamily of

10See Fremlin (2002, 331G(d) and 331G(e)).
11See Fremlin (2002, 325X(e) and 325X(f)).
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the family hEi�i�<�i , and then let hE�i�<� be the family in � defined by setting

E� �
S
i2I Ei� for each � < �. Note that we must have ��E�� � 1=2 for each � < �.

Consider any A 2 �. Set Ai � A\ Si for each i 2 I. By choice of the families
hEi�i�<� , for each i 2 I there is a countable set DiA � � such that Ai and the

sets Ei� , � 2 � nD
i
A, form a stochastically independent family in �i for �i. Set

DA �
S
i2I DiA and consider any finite subfamily E�1 ; : : : ; E�n of hE�i�<� with

�j 62 DA for j � 1; : : : ; n. Using the fact that hSiii2I is a partition of X, it follows
that

��A\ E�1 \ � � � \ E�n� �
X
i2I
�i�Ai \ Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si��i�Ai \ Ei�1

\ � � � \ Ei�n�

�
X
i2I
�i�Si���Ai�2�n

�
�X
i2I
�i�Ai�

�
2�n

� ��A�
nY
j�1

��E�j�:

Thus, A and the sets E� , � 2 � nDA, form a stochastically independent family
in �.

Lemma 3. Let X be an uncountable set, and let � be the product measure on�
f0;1gN

�X
obtained by giving each factor f0;1gN its usual measure �N. For each

i 2 N and each x 2 X, let

Kix �
n
y 2

�
f0;1gN�X : yi�x� � 1

o
:

Finally, let Y be a subset of
�
f0;1gN

�X
with full outer measure for � , and let � be

the subspace measure on Y induced by � . Then:

(i) Let T be the domain of � and set Hix � Kix \ Y for i 2 N and x 2 X. Then:

(1) For each i 2 N and each x 2 X, Hix 2 T and ��Hix� � 1=2.

(2) Given any B 2 T, there is countable set JB � X such that B and the sets
Hix , i 2 N, x 2 XnJB , form a stochastically independent family in T.

(ii) Let �0 be the image measure of � under the inclusion of Y into
�
f0;1gN

�X
,

and T0 its domain. Then:

(1) For each i 2 N and each x 2 X, Kix 2 T0 and �0�Kix� � 1=2.

(2) Given any B 2 T0, there is countable set JB � X such that B and the sets
Kix , i 2 N, x 2 XnJB , form a stochastically independent family in T0.
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Proof. Write T for the domain of � . Note first that the family hKixix2X;i2N is a
stochastically independent family in T with ��Kix� � 1=2 for each x 2 X and
i 2 N (which follows directly from the definition of product measure). Next note
that if E and F are elements of T such that E is determined by coordinates in
some subset J � X, and F by coordinates in the complement XnJ, then E and F
are stochastically independent.12 Also note that if C is any element of T, there is
a C0 2 T which differs from C by a null set and is determined by coordinates in
some countable J � X. Combining these three facts, we can see that given any
C 2 T, there is a countable J � X such that C and the sets Kix , i 2 N, x 2 XnJ,
form a stochastically independent family in T.

It is now straightforward to see that (i) and (ii) of the lemma hold. Indeed,
fix any x 2 X and i 2 N. Since Kix 2 T, we have Hix 2 T and therefore also
Kix 2 T0. Since ��Kix� � 1=2 and Y has full outer measure for � , it follows that
��Hix� � 1=2 and from this that �0�Kix� � 1=2. Thus (i)(1) and (ii)(1) hold.

As for (i)(2), pick any B 2 T. For some C 2 T, B � C \ Y and ��C� � ��B� (by
the definition of T and since Y has full outer measure for �). From above, there
is a countable set J � X such that C and the sets Kix , i 2 N, x 2 X nJ, form a
stochastically independent family in T. Let L be any non-empty finite subset of
N� �XnJ�. Then, using the fact that Y has full outer measure for � ,

�
�
B \

\
�i;x�2L

Hix
�
� �

��
C \

\
�i;x�2L

Kix
�
\ Y

�
� �

�
C \

\
�i;x�2L;

Kix
�

� ��C�
Y

�i;x�2L;
��Kix� because L � N� �XnJ�

� ��B�
Y

�i;x�2L
��Hix�:

It follows that B and the sets Hix , i 2 N, x 2 XnJ, form a stochastically indepen-
dent family in T. Thus (i)(2) holds.

Finally, consider any B 2 T0. By the definition of T0, B \ Y 2 T. Hence, from
the previous paragraph, there is a countable set J � X such that B \ Y and the
sets Hix , i 2 N, x 2 XnJ, form a stochastically independent family in T. Let L be
any non-empty finite subset of N� �XnJ�. Then, by definition of �0,

�0
�
B \

\
�i;x�2L

Kix
�
� �

��
B \

\
�i;x�2L

Kix
�
\ Y

�
� �

�
�B \ Y�\

\
�i;x�2L;

Hix
�

� ��B \ Y�
Y

�i;x�2L;
��Hix� � �0�B�

Y
�i;x�2L

�0�Kix�:

12This follows e.g. from the general fact that if h�Xi;�i; �i�ii2I is a family of probability spaces
and J is any subset of I then the product measure on

Q
i2I Xi can be identified with the product

of the product measures on
Q
i2J Xi and

Q
i2InJ Xi via the bijection x , �x u J;x uX nJ� where

x 2
Q
i2I Xi; for this fact, see Fremlin (2001, Theorem 254N).
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It follows that B and the sets Kix , i 2 N, x 2 X nJ, form a stochastically
independent family in T0. Thus (ii)(2) holds.

5.2 Proof of Theorem 1

Since �X;�; �� is super-atomless, and since for any infinite cardinal � there is
a bijection between � and � � N, Lemma 2 implies that we may select an un-
countable cardinal � and a family hEi�i�<�;i2N in �, with ��Ei�� � 1=2 for each
� < � and i 2 N, such that given any A 2 � there is a countable set JA � � such
that for each � < � with � 62 JA, A and the sets Ei� , i 2 N, form a stochastically
independent family in �.

For each � < �, define a function y� from X to f0;1gN by setting

yi��x� �

8<:1 if x 2 Ei�
0 if x 62 Ei�

for i 2 N and x 2 X. Attach a countably infinite subset D� � X to each � < �
in such a way that for each countably subset D � X there is a � < � such
that D \D� � ;. (Since both X and � are uncountable, this is possible. Indeed,
X being uncountable implies that we may select a disjoint family hDiii2I of
countably infinite subsets of X such that #�I� �!1. Now since � is uncountable,
there is a surjection from � onto I, say �. Let D� � D����.)

Now for each � < � let

N� �
�
y 2

�
f0;1gN

�X
: there is a null set N � X such that

y uXnN � y� uXnN and N \D� � ;
�

and then let Y �
S
�<� N� . Let � be the product measure on

�
f0;1gN

�X
, giving

each copy of f0;1gN its usual measure �N. Note that for each � < �, N� is a �-
null set, since all of its elements agree on the infinite set D� . On the other hand,
Y has full outer measure for � . Indeed, letW be any non-negligible �-measurable
subset of

�
f0;1gN

�X
. Then W � W 0 for some non-empty subset W 0 of

�
f0;1gN

�X
which is determined by coordinates in some countable subset of X, say J. By
construction, there is a � < � such that J \D� � ;. Since the countable set J is
a null set in X, it follows that, for such a �, the set�

y 2
�
f0;1gN

�X
: y uXnJ � y� uXnJ

�
is included inN� and intersects the setW 0. Thus Y intersects every non-negligible

�-measurable subset of
�
f0;1gN

�X
, i.e., Y has full outer measure for � .

Let � be the subspace measure on Y induced by � , and T its domain. Then
since Y has full outer measure for � , �Y ;T; �� is a probability space. Note also
that for each � < �, N� is a �-null set in Y . Hence for any A 2 �,

S
�2JA N� is

a �-null set in Y since JA is countable.
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For each i 2 N let

Hi � f�x;y� 2 X � Y : yi�x� � 1g:

We may assume that the � -algebra � is complete.13 Then Lemma 1 applies to
the sequence hHiii2N. Indeed, note that by construction, for any y 2 Y there is
a � < � such that for each i 2 N the section Hiy differs from Ei� by a null set. By

the choice of the family hEi�i�<�;i2N, it follows that for each y 2 Y and i 2 N,

Hiy belongs to �, with ��Hiy� � 1=2, and that given any A 2 � and any y 2 Y ,
if y does not belong to the null set

S
�2JA N� then A and the sections Hiy , i 2 N,

form a stochastically independent family in �. Thus (b) and (d) of Lemma 1 hold
for the family hHiii2N. By Lemma 3(i), (a) and (c) of Lemma 1 hold, too. Thus,
by Lemma 1, the product measure corresponding to � and � has a rich Fubini
extension. This completes the proof.

5.3 Proof of Remark 1

In the proof of Theorem 1, define the sets N� , � < �, alternatively as

N� �
�
y 2

�
f0;1gN

�X
: there is a countable D � X such that

y uXnD � y� uXnD and D \D� � ;
�
:

Observe that the arguments of the proof of Theorem 1 continue to hold with
this new definition of the sets N� . Now if #�X� � c, then the set of all countable
subsets of X nD� has cardinal c (note that X nD� is an infinite set in any case),
and it follows that #�N�� � c for each � < �, under the new definition of N� .
Clearly, we may choose � in the proof of Theorem 1 so as to have � � c. But if
� � c and #�N�� � c for each � < �, then we have #�Y� � c, by the definition
of Y as Y �

S
�<� N� .

5.4 Proof of Theorem 2

As in the proof of Theorem 1, let � denote the product measure on
�
f0;1gN

�X
when each factor f0;1gN is given its usual measure. Construct a subset Y of�
f0;1gN

�X
in the same way as in the proof of Theorem 1, and then define the

probability measure � on Y as in the proof of Theorem 1. Let �0 denote the
image measure of � under the inclusion of Y into

�
f0;1gN

�X
, and let T0 denote

the domain of �0. Observe that �0 extends the product measure � . For each i 2 N
let

Ki �
�
�x;y� 2 X �

�
f0;1gN

�X
: yi�x� � 1

�
:

As in the proof of Theorem 1, we may assume the � -algebra � on X to be com-
plete. Then Lemma 1—with

��
f0;1gN

�X ;T0; �0� in place of �Y ;T; ��—applies to

13Note that in Definition 1, only the completions of the factor spaces matter.
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the family hKiii2N. To see this, observe that the complement of Y in
�
f0;1gN

�X
and the sets N� , � < �, appearing in the construction of Y are �0-null sets and
conclude from this that (b) and (d) of Lemma 1 hold for the family hKiii2N (cf.
the last paragraph of the proof of Theorem 1). From Lemma 3(ii) it may be seen
that (a) and (c) of Lemma 1 hold for the family hKiii2N. Thus, by Lemma 1, the
product measure corresponding to � and �0 has a rich Fubini extension � whose
domain � contains the sets Ki, i 2 N. In particular, the function f defined in
the statement of the theorem is �-measurable. Finally, since �0 is an extension
of � , it is plain that (b) in the statement of the theorem holds. This completes
the proof.

5.5 Proof of Theorem 3

Suppose the product measure corresponding to � and � has a rich Fubini ex-
tension, with domain � say. We may assume that the � -algebras � and T are
complete. Then, by Definitions 1, 2, and 4, there are an element H 2 � and
null sets NX � X and NY � Y such that (a) for each x 2 X nNX the section
Hx is a member of T with ��Hx� � 1=2, (b) given any x 2 X nNX we have
��Hx \ Hx0� � 1=4 for almost all x0 2 X nNX , and (c) for each y 2 Y nNY the
section Hy is a member of �.

Then by Sun (2006, Theorem 2.8) it follows that given any A 2 �, there is a
null set NA � Y such that ��Hy\A� � �1=2���A� for all y 2 YnNA. In particular,
then, given any A 2 � and any y 2 Y nNA, there is a null set Ny;A � Y such that
��Hy0 \ �Hy \ A�� � �1=2���Hy \ A� for all y0 2 Y nNy;A. Thus, given A 2 �,
if y 2 Y nNA and y0 2 Y nNy;A, then ��Hy0 \Hy \A� � �1=4���A�.

Taking A � X, the previous paragraph shows in particular that each y 2 Y
is contained in some null set of Y , i.e. Y can be covered by some family of �-null
sets. Set � � covN ���.

Fix any A 2 � with ��A� > 0. By transfinite induction, choose a family
hy�i�<� in Y as follows. Let y0 be an arbitrarily element of Y nNA. Given that
hy�i�<� has been chosen, where � < �, let y� be chosen in Y n

�
NA[

S
�<� Ny�;A

�
.

Such a choice is possible for each � < � because � < � � covN ��� implies
Y n

�
NA [

S
�<� Ny�;A

�
6� ;.

Then for any two ordinals �, �0 < � with � 6� �0, we have

�
�
�Hy� \A�\ �Hy�0 \A�

�
� ��Hy� \Hy�0 \A�

� 1
4
��A�

� 1
2
��Hy� \A� �

1
2
��Hy�0 \A�

whence �
�
�Hy� \ A�4 �Hy�0 \ A�

�
� �1=2���A�. Thus since ��A� > 0, writing

�A; �̂� for the measure algebra of �, and AA for the principal ideal of A deter-
mined by A, AA has a subset that is discrete for the measure metric of �A; �̂�
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and has cardinal �.14 In particular, the Maharam type of � cannot be finite,
and hence by Fremlin (2002, 323A(d), and 2005, 524D) it follows, considering
�AA; �̂ u AA� as a measure algebra in its own right, that the Maharam type of AA
is, in fact, at least �. Thus (b) of the theorem holds.

As for (a), note that for each A 2 � and B 2 T we have �A� B�\H 2 � and
hence, by the Fubini property,

R
A ��Hx \ B�d��x� �

R
B ��Hy \A�d��y�. From

the second paragraph of this proof,
R
B ��Hy \ A�d��y� � �1=2���A���B� for

each A 2 � and B 2 T. Consequently, for each fixed B 2 T,Z
A
��Hx \ B�d��x� �

1
2
��B���A� for all A 2 �:

Hence, for each B 2 T there is a null set NB � X such that ��Hx\B� � �1=2���B�
for all x 2 X nNB . From this it follows that (a) of the theorem holds, using an
argument analogous to that which had led to (b) of the theorem.

Remark 2. The above proof shows in particular that a rich Fubini extension
must be a proper extension of the product measure in question. Indeed, in the
notation of that proof, for any null set N � Y let

KYnN � fa 2 A : there is a y 2 Y nN such that a is determined by Hyg:

Further, let � denote the domain of the product measure on X�Y that is given in
the context of the above proof. By a standard fact, were H an element of �, then
there would be a null set N � Y such that KYnN were a separable subset of A for
the measure metric on A (see Fremlin, 2003, 418S, and 2002, 367R). Now observe
that in the construction in the fourth paragraph of the above proof, NA may be
replaced by any null set N � Y with N � NA. But this implies that, given any null
set N � Y , the set AA in the fifth paragraph of that proof has an uncountable
subset that is discrete for the measure metric and such that each of its elements
is determined by a section Hy with y 2 Y nN . Thus, taking A � X, we can see
that for any null set N � Y , KYnN is non-separable for the measure metric on A.
We may conclude that H cannot be an element of �.

5.6 Proof of Theorem 4

As � � �, and since there is a bijection between � and � �N, using Lemma 2 we
may select a family hEi�i�<�;i2N in �, with ��Ei�� � 1=2 for each � < � and i 2 N,
such that given any A 2 � there is a countable set JA � � such that for each
� < � with � 62 JA, A and the sets Ei� , i 2 N, form a stochastically independent

family in �. Similarly, as � � �, we may select a family hF i�i�<�;i2N in T, with

��F i�� � 1=2 for each � < � and i 2 N, such that given any B 2 T there is a

14Recall that if �Z;� ; �� is a finite measure space and �C; �̂� its measure algebra, the measure
metric on C is just the metric that assigns, to every pair E�, F� of elements of C, the number
��E4 F� where E and F are any elements of � determining E� and F�, respectively.
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countable set JB � � such that for each � < � with � 62 JB , B and the sets F i� ,
i 2 N, form a stochastically independent family in T.

For each � < � setM0� � M�n
S
�<�M� and N0� � N�n

S
�<� N�. Then hM0�i�<� is

a disjoint family of null sets in X which covers X, and hN0�i�<� a disjoint family
of null sets in Y which covers Y . For each i 2 N set

Hi �
�[
�<�
M0� � �F

i
� nN��

�
[
�[
�<�
�Ei� nM���N

0
�

�
:

We want to see that Lemma 1 applies to the family hHiii2N. To this end, for
each x 2 X let �x be the least ordinal � < � such that x 2 M� . Thus �x is also
the uniquely determined ordinal � < � such that x 2 M0� . Observe that for each

x 2 X and each i 2 N the section Hix satisfies

F i�xnN�x � H
i
x � F i�x [N�x :

Thus for each x 2 X and each i 2 N, Hix differs from F i�x by a null set. We

may assume that T is complete. Then by the choice of the family hF i�i�<�;i2N, it

follows that for each x 2 X and i 2 N, Hix belongs to T, with ��Hix� � 1=2, and
that given any B 2 T and any x 2 X, if �x 62 JB—where JB is the countable subset
of � that was associated with B at the beginning of this proof—then B and the
sections Hix , i 2 N, form a stochastically independent family in T; that is, B and
the sections Hix , i 2 N, form a stochastically independent family in T whenever
x does not belong to the null set

S
�2JB M

0
� . Thus (a) and (c) of Lemma 1 hold.

Similarly it follows that (b) and (d) of Lemma 1 hold. Thus, by Lemma 1, the
product measure corresponding to � and � has a rich Fubini extension. This
completes the proof.

5.7 Proof of Theorem 5

Let c denote the cardinal of the continuum. By Theorem 4, it suffices to show
that if Z is any Polish space and � an atomless Borel probability measure on Z ,
then there is an extension of � to a measure �0 on Z such that �0 is Maharam-
type-homogeneous with Maharam type c and such that there is a non-decreasing
family hN�i�<c of �0-null sets which covers Z , i.e. such that

S
�<cN� � Z .

To this end, note first that if I is any infinite set with #�I� � c then there is
a subset A � f0;1gI , with #�A� � c, such that A has full outer measure for the
usual measure �I on f0;1gI (see Fremlin, 2005, 523B together with 523D(d)).

Now consider f0;1gc with its usual measure �c. Fix any x 2 f0;1gc. For each
� < c, let J� � f� < c : � � �g. By the fact stated in the previous paragraph, for
each � < c we may choose a set N0� � f0;1gc so that (a) x u cnJ� � x u cnJ� for
each x 2 N0� , (b) N0� intersects every non-negligible measurable subset of f0;1gc

which is determined by coordinates in J� , and (c) #�N0�� � c if � is infinite. For
each � < c, let N� �

S
��� N0�. Then hN�i�<c is a non-decreasing family of subsets

of f0;1gc such that N� is finite if � is finite, and #�N�� � c for each infinite � < c.
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Let Y �
S
�<cN� . Then #�Y� � c. Since c has uncountable cofinality, (b) implies

that Y has full outer measure for �c (because every non-negligible measurable
subset of f0;1gc includes a non-negligible measurable subset of f0;1gc which is
determined by coordinates in some countable set J � c). Finally, because of (a),
N� is a �c-null set in f0;1gc for each � < c.

Let � denote Lebesgue measure on �0;1� and let � be the product measure
on f0;1gc � �0;1� corresponding to �c and �. By Fremlin (2005, 334X(g)), � is
Maharam-type-homogeneous with Maharam type c. Now since #�Y� � c and Y
has full outer measure for �c, the arguments in the proof of Proposition 521P(b)
in Fremlin (2005) show that there is a subset C � Y � �0;1� � f0;1gc � �0;1�
such that

(1) C has full outer measure for �;

(2) the subspace measure �C on C induced by � is countably separated.

(1) implies that �C is a probability measure on C and that the measure algebra
of �C can be identified with that of �. Thus, as � is Maharam-type-homogeneous
with Maharam type c, so is �C . In particular, �C is atomless.

Observe that hN� � �0;1�i�<c is a non-decreasing family of �-null sets in
f0;1gc� �0;1� whose union is Y � �0;1�. Thus setting M� � C \ �N� � �0;1�� for
each � < c, we obtain a non-decreasing family hM�i�<c of �C -null sets which
covers C .

Now let Z be any Polish space, and � an atomless Borel probability measure
on Z . Then, since �C is atomless, (2) implies that there is an injection � : C ! Z
which is inverse-measure-preserving for �C and � . To see this, note first that
(2) means there is an injection �1 : C ! R which is measurable for the domain
of �C and the Borel sets of R. Let �1 be the Borel measure on R given by setting
�1�B� � �C���1

1 �B�� for each Borel set B in R. Since �C is atomless and �1

is an injection, �1 is zero on singletons and therefore atomless because Z is a
separable and metrizable topological space. Now by a standard fact, since both
R and Z are Polish spaces, and both �1 and � are atomless Borel measures,
there is a bijection �2 : R! Z which is inverse-measure-preserving for �1 and �
in both directions (see Fremlin, 2003, 433X(f)). Set � � �2 ��1.

Let �0 be the image measure of �C under �. Then, because � is an injection,
� induces an isomorphism between the measure algebras of �C and �0. Hence,
as �C is Maharam-type-homogeneous with Maharam type c, so is �0. Of course,
�0 is an extension of � , since � is inverse-measure-preserving for �C and � .
Finally, if we set M0� � ��M�� [ �Z n��C�� then, again by the fact that � is an
injection, hM0�i�<c is a non-decreasing family of �0-null sets which covers Z . This
completes the proof.
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Appendix

In this appendix, we recall some basic terminology concerning measure algebras.
Let �X;�; �� be a measure space, and letN ��� denote the ideal of null sets in X.

(a) The measure algebra of �X;�; �� (or, for short, of �) is the pair �A; �̂�
given as follows:
� A is the quotient Boolean algebra �=�N ��� \ ��. That is, denoting by �

the equivalence relation on � given by E � F if and only if E4 F 2 N ���,
A is the set of equivalence classes in � for �, endowed with binary opera-
tions \�, [�,n�, 4�, and a partial ordering ��, inherited from � as follows:
If E�, F� 2 A and E, F are any elements of � determining E� and F�, respec-
tively, then E� �� F� if and only if EnF 2 N ���, E� \� F� � �E \ F��, and
analogously for [�,n�, and 4�.

� �̂ : A ! �0;1� is the functional given by �̂�E�� � ��E� where E is any
element of � determining E�.

(b) A principal ideal of A is a subset of A of the form fb 2 A : b �� ag where
a 2 A; it is called a non-zero principal ideal of A if �̂�a� > 0. Observe that any
principal ideal of A, with the binary operations and the partial ordering inherited
from A, is a Boolean algebra in its own right.

(c) A subalgebra of A is a subset of A that contains X� (the element of A
determined by X) and that is closed under [� andn� (thus also under \� and4�).
A subalgebra B of A is called order-closed if, with respect to ��, any non-empty
upwards directed subset of B has its supremum in B in case the supremum is
defined in A.

(d) The Maharam type of A is the least cardinal of any subset B � A which
completely generates A, i.e. of any B � A such that the smallest order-closed
subalgebra of A containing B is A itself. Similarly, the Maharam type of a prin-
cipal ideal Aa of A is the least cardinal of any subset B � Aa which completely
generates Aa (considering Aa as a Boolean algebra in its own right).

(e) The Maharam type of the measure space �X;�; ��, or of the measure �, is
defined to be the Maharam type of A.

(f) �X;�; ��, or the measure �, is said to be Maharam-type-homogeneous if
each non-zero principal ideal of A has a Maharam type equal to that of �.
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