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Abstract

We characterize the structure of Nash equilibria in asset market games
with variable asset supply. In equilibrium, different assets have dif-
ferent returns, and (risk neutral) investors with different wealth hold
portfolios with different structures. In equilibrium, an asset’s return
is inversely related to the elasticity of its supply. The larger an in-
vestor, the more diversified is his portfolio. Smaller investors do not
hold all the assets, but achieve higher percentage returns. More gen-
erally, our results can be applied also to other “multi-market games”
in which several players compete in several arenas simultaneously, like
multi-market Cournot oligopolies, or multiple rent-seeking games.
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1. Introduction

1.1. Motivation

Several authors (e.g. Blume and Easley (1992), Hens and Schenk-Hoppé
(2005), Alós-Ferrer and Ania (2005a)) have analyzed asset markets as mar-
ket games. Investors decide how to allocate their funds over a number of
different assets, which are in constant (unit) supply. Prices are set so as to
equate demand and supply. This literature was motivated mainly by the
question which types of investment strategies will survive in the long run
in a stochastic environment. Alós-Ferrer and Ania (2005a) noted that a
certain “proportional” investment rule constitutes the unique Nash equilib-
rium of the static game, and also coincides with the unique evolutionarily
stable strategy (ESS) in the sense of Schaffer (1988). Moreover, the ESS
outcome is competitive in the sense that all assets have the same expected
return, and price-taking, risk-neutral investors would maximize their pay-
offs by using this proportional rule. While a relationship between evolu-
tionary stability and competitive outcomes has also been observed in other
contexts (Vega-Redondo (1997), Alós-Ferrer and Ania (2005b)), and thus is
not too surprising, the coincidence of competitive (resp. ESS) outcomes and
Nash equilibria is rather striking. It seems that the familiar tension (e.g.
in Cournot oligopoly) between price-taking and strategic behavior is absent
from these asset markets.1 It was this observation which originally motivated
the present paper.

The purpose of our study is not a further analysis of the dynamic properties
of asset market games, but rather an analysis of their static Nash equilib-
ria, in a slightly more general framework. The generalization consists of the
following: whereas in the asset market literature quoted above, the supply
of each asset was constant, we allow for variable supply, depending on the
asset price. This recognizes the fact that in an asset market usually only a
few investors (e.g. very large, professionally managed funds) will act strate-
gically, that is, be aware that their transactions may influence prices, and
take this influence into account for their investment decisions. Only these
large, strategic investors will act as players in our market game. Even if the
total supply of an asset is really constant, part of it will usually be held by
other, nonstrategic market participants, and these may be more or less will-

1 The salient point is the the coincidence of Nash and Walras independently of the
number of players. This is quite different from the well-known observation (at least since
Cournot) that Nash equilibria tend to Walrasian allocations in the limit, when the number
of players goes to infinity, cf. Dubey and Geanakoplos (2002) and the references given there.
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ing to sell, depending on the price. We model these traders in the simplest
possible way by assuming that their aggregate behavior is described by an
upward-sloping (possibly constant) supply function (one for each asset). The
strategic traders take these supply functions as given. For example, imagine
a group of large international investors (the strategic players) who invest,
among other assets, in the asset “real estate (office buildings) in Hongkong”.
The more money these investors invest in Hongkong, the higher will be the
price of office buildings there, but the amount of houses owned by our strate-
gic investors collectively will also go up. That is, even though the total stock
of office buildings in Hongkong is fixed (at least in the short run), the amount
(”supply”) available to our strategic investors is not. We assume that they
are aware of this fact and have an idea about the elasticity of this supply.
Similar arguments can be made for other types of assets, as long as their total
stock is not wholly owned by the group of strategic investors who are the
players of our game (this latter case of fixed supply is of course also covered
by our analysis).

We also assume that the supply of an asset depends only on its own price.
Of course, from a general equilibrium point of view, this is unsatisfactory,
as the price of housing, say, in Hongkong may also depend on the prices
of other assets, interest rates, etc. Our assumption means either that these
spillover effects are negligible, or, perhaps more realistically, that the strategic
players do not take them into account (due to limitations in their computing
and information processing abilities). The exogenous supply functions can
be seen as a simplified “theory” of the strategic investors about how the
markets work. Even if this theory is not quite accurate, they base their
decisions on it.2 While such an assumption is certainly restrictive,3 this
“partial equilibrium” approach with exogenous supply functions permits us
to obtain very detailed information about the structure of equilibrium, which
would probably be impossible in a more “general equilibrium” setting.

The formal structure developed below was motivated by asset market games,

2In a similar spirit, one could say that a trader believes in the “competitive theory”
if he assumes that he can trade arbitrary amounts at going prices. This theory under-
lies the widely acccepted paradigm of price-taking behavior, even though it is at best
approximately correct for small traders.

3 For example, it would not be appropriate for the model of Hens, Reimann, and Vogt
(2004). This model has constant supply of all assets, but features explicitly both strategic
and non-strategic (competitive) traders. The non-strategic traders optimize portfolios
consisting of the same assets as the strategic traders, the only difference being that they
take prices as given. Clearly, the non-strategic traders’ total demand for an asset depends
on all prices in an essential way, and so does the remaining “supply” left for the strategic
traders.
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and for this reason we use also the terminology of these markets to present
our results. It is worth noting, though, that the same formal structure can
also be interpreted in entirely different ways, for example as a “multimarket”
Cournot oligopoly in which the firms compete in several separated markets
(e.g. several countries) simultaneously. The exogenous supply functions are
then replaced by exogenous demand functions, and the assumption that the
demand in each country depends only on the price in this country does not
appear overly restrictive.

We note also that uncertainty plays no formal role in our analysis. Following
part of the literature which motivated this study, we assume that the players
are risk neutral, so that only expected payoffs matter. Thus we will usually
simply speak of “payoffs” rather than “expected payoffs”. Of course uncer-
tainty may play a role indirectly, in the sense that the supply of an asset -
part of it coming perhaps from risk-averse traders - may depend on the risk
characteristics of the asset (see also the discussion after Theorem 4.1).

1.2. Summary of Results

Given the exogenous supply functions (one for each asset) the strategic play-
ers decide how much of their available funds to invest in the various assets.
Prices are then set to equate supply and demand in each market, exactly as
in the classical market games with fixed supply. But note that the game is
no longer constant-sum.

The main contribution of the present paper is a detailed characterization of
the structure of the possible Nash equilibria of this asset market game. The
results can be summarized as follows: when all supply functions have the
same elasticity, then the exists a unique Nash equilibrium. It is symmet-
ric and coincides with both the “competitive” and the ESS outcomes (here
“competitive” is of course to be understood as a situation in which every
investor maximizes profits, taking prices - not supply functions - as given).
In this equilibrium, prices are proportional to expected payoffs (prices are
“fair”, or “correspond to fundamentals”) and all investors achieve the same
rate of return on their capital. This includes the constant supply situation
considered in the literature quoted above. Intuitively, when the supply of
all assets is constant, the market game is constant-sum, and a player can
increase his payoff only at the expense of the others; therefore the maximiza-
tion of absolute payoffs (Nash) coincides with the maximization of relative
payoffs (ESS).4 We show that this continues to hold for variable supply, as

4 this can be made precise, see Ania (2006).
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long as the supply conditions for all assets are essentially the same.

But the point of the paper is the case where the supply conditions for different
assets are genuinely different. Then Nash equilibria are not symmetric, and
neither ESS nor competitive. Prices are not fair, and different assets have
different return rates. More precisely, the lower the elasticity of supply of an
asset, the higher its return. This has nothing to do directly with the riskiness
of the asset (except perhaps indirectly, through the - unmodelled - influence
of risk on the supply). Larger investors are more diversified, with the largest
investor holding positive quantities of all assets, but smaller investors buy
only some of the assets (the smaller, the fewer). There is a kind of “curse
of size” in the sense that larger investors necessarily hold relatively more
low-yielding assets and achieve lower average rates of return at equilibrium.

These somewhat counterintuitive deviations from the competitive outcome,
i.e. different rates of return across assets and/or investors, have nothing to
do with market imperfections or other reasons like different degrees of risk
aversion etc., but come from the heterogeneity of supply, combined with the
strategic interplay among large and small investors: at equilibrium, every
investor equalizes the marginal, not the average, rates of return of all assets
which he holds in positive quantity. Since marginal rates differ from average
ones, and also across investors due to their different wealth, we obtain these
heterogeneous portfolios.

Equilibrium is unique in the ’symmetric’ cases (symmetry w.r.t. assets and/or
investors); in general, we can only prove that there exists at most one Nash
equilibrium at which all investors hold all assets (there may exist no such
equilibrium).

We also consider competitive and ESS outcomes separately. There always
exists a unique ESS, and a unique competitive rate of return (the same for
all assets). At the ESS, all investors achieve exactly the competitive rate.5

At any Nash equilibrium that is not ESS, they achieve strictly more.

The paper is organized as follows. Section 2 introduces the basic model, in
Section 3 we study competitive allocations and prove the existence of Nash
equilibrium, Section 4 contains the main results, and in section 5 we study
evolutionarily stable strategies. Most proofs, except very short ones, are in
the appendix.

5 A connection between evolutionary stability and competitive outcomes has also been
found in other contexts (Vega-Redondo (1997)).
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2. Notation and Definitions

We consider an asset market of the kind studied in Blume and Easley (1992),
Hens and Schenk-Hoppé (2005), and Alós-Ferrer and Ania (2005a). There
are i = 1, 2, . . . , N risk–neutral investors (N ≥ 2), and k = 1, 2, . . . , K assets
(K ≥ 2). W i > 0 is the initial endowment (with money) of investor i, and the
total money endowment ist W :=

∑
i W

i. Ek > 0 is the (expected) monetary
payoff per unit of asset k and Sk(pk) is the supply function for asset k, where
pk ≥ 0 denotes the price (per unit) of asset k. We allow arbitrary supply
functions, subject only to the condition that the price elasticity of supply be
nonincreasing. We denote the supply elasticity of asset k by

ηk = Hk(pk) =
pk.S

′
k(pk)

Sk(pk)
for pk > 0

and assume, for ∀k:

S.1. The supply function Sk(pk) is continuous and nondecreasing for pk ≥ 0,
and strictly positive for pk > 0.

S.2. The supply function Sk(pk) is twice continuously differentiable (possibly
with infinite slope at pk = 0)6.

S.3. The elasticity Hk(pk) is nonincreasing on (0,∞).

Remark: it may be that Sk(0) = 0 or Sk(0) > 0; we will show (cf.
Lemma A.2 in the appendix) that the latter case occurs if and only if supply
is constant, Sk(pk) = S̄k > 0 ∀pk ≥ 0. This is the situation considered in
the literature quoted above.7 To justify a variable supply in the strategic
N -player game among “big” investors which we are going to study, we may
imagine that the asset is also held by a large number of small, nonstrategic
market participants. These traders are simply willing to sell more of an as-
set if its price goes up; their aggregate behavior is captured by the supply
functions Sk.

Each investor i invests his whole wealth W i in the K available assets, i.e. he
chooses a vector wi = (wi

1, . . . , w
i
K) in his budget set

Bi = Bi(W i) = {wi ∈ RK
+ |

∑

k

wi
k = W i} (1)

6 For a precise statement see S.4 in the appendix.
7 Note on normalization: in the literature with fixed supply, it is frequently assumed

(w.l.o.g.) that the total supply of each asset is equal to unity: S̄k = 1 ∀k. In our context,
a possible normalization is to choose units such that the return per unit of each asset is
equal to unity: Ek = 1 ∀k. This is sometimes useful, e.g. in the context of Theorem 4.3.
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where wi
k ≥ 0 is the amount of money invested in asset k by investor i.

The set Bi is i’s strategy space; it is a nonempty, compact and convex subset
of RK

+ . The joint strategy space is B :=
∏

i B
i ⊂ RKN

+ . A strategy profile is
denoted by w = (w1, . . . wN) ∈ B. Given w, we write wk :=

∑
i w

i
k for the

total amount of money invested in asset k by all investors (wi is a vector,
but wk is a scalar!). If wk > 0 we say that market k is active (at w).

Alternatively (and equivalently), the behaviour of an investor i can be de-
scribed in percentage terms, i.e. by his portfolio αi = (αi

1, . . . α
i
K), where

αi
k = wi

k/W
i denotes the fraction of investor i’s wealth invested in asset k.

This formulation makes the game appear more symmetric and is useful in
certain contexts (e.g. to study evolutionary stability, see Section 5).

For pk > 0, we denote by rk := Ek/pk the (gross) rate of return per dollar of
asset k. In a competitive equilibrium, with price-taking risk-neutral investors,
rk must be the same for all assets (cf. Sec. 3.1).

Remark: even though, in the game to be considered below, investors are
constrained to choose wi ∈ Bi, many of the following considerations do not
depend on this restriction, but are valid for arbitrary nonnegative wi ∈ RK .
We will therefore, whenever appropriate, pay no attention to the budget
constraints and consider arbitraty strategy profiles w ∈ RKN

+ .

Given w ∈ RKN
+ , the prices pk are determined so as to clear markets, i.e. such

that ∀k
pkSk(pk) = wk (2)

It is easy to see (cf. Lemmas A.1, A.3) that this defines a unique price
pk = Pk(wk) for every wk ≥ 0; and that the price function pk = Pk(wk) is
differentiable and strictly increasing , with Pk(0) = 0, limwk→∞ Pk(wk) = ∞.
Therefore the rate of return,

rk = Rk(wk) :=
Ek

Pk(wk)
=

EkSk(Pk(wk))

wk

(3)

is also a differentiable function of wk , and strictly decreasing in wk, with
limwk→0 Rk(wk) = ∞ and limwk→∞ Rk(wk) = 0. Note in particular that if
the total investment in asset k goes to zero, wk → 0, then the expected rate
of return Rk = Rk(wk) becomes arbitrarily large. This will ensure that in
Nash equilibrium all markets are active.

We conclude this section with a formula that will be useful in the sequel.
By definition (2), Pk(wk).Sk(Pk(wk)) ≡ wk. Totally differentiating gives:
P ′

k(wk).Sk(Pk(wk)) + Pk(wk).S
′
k(Pk(wk)).P

′
k(wk) ≡ 1 ⇔ P ′

k.Sk.[1 + ηk] ≡ 1.
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Using Sk = wk/Pk we obtain:

0 <
1

1 + Hk[Pk(wk)]
≡ P ′

k(wk)wk

Pk(wk)
≤ 1 (4)

Expression (4) is the elasticity of the price pk = Pk(wk) with respect to the
total amount of money wk invested in asset k. It lies between zero and one
because ηk ≥ 0 by S.1 and is equal to one if and only if the supply elasticity
ηk = Hk[Pk(wk)] is zero (i.e. supply is constant).

3. The Market Game

Given a strategy profile w ∈ RKN
+ , the amount of asset k allocated to in-

vestor i is given by:

xi
k(w) :=

{
wi

k/Pk(wk) if wk > 0 (⇒ pk > 0)

0 if wk = 0 (market k is not active)
(5)

If market k is active we may also write

xi
k(w) =

wi
k

wk

Sk(Pk(wk)) (wk > 0) (6)

If i is the only investor who holds asset k (wi
k = wk), then

xi
k(w) =

{
Sk(Pk(wk)) if wi

k > 0 or Sk(0) = 0

0 [ 6= Sk(0)] if wi
k = 0 and Sk(0) 6= 0

(7)

with a discontinuity at wi
k = 0 if Sk(0) > 0. The payoff of investor i is then

given by

πi(w) =
∑

k

Ekx
i
k(w) =

∑

k
wk>0

wi
kRk(wk) (8)

These data define the asset market game G among the N investors, with
strategy spaces Bi and payoff functions πi.

In this formulation the strategies and payoffs of large and small investors are
not directly comparable, but we can make them so by expressing everything
in percentage terms, i.e. by dividing both the invested amounts wi

k and the
payoff πi of an investor i by his initial wealth W i. This gives a strategically
equivalent game Ḡ as follows. The strategy of investor i is his portfolio αi =

8



(αi
1, . . . , α

i
K) = (W )−1(wi

1, . . . , w
i
K), his strategy space is the K-dimensional

unit simplex ∆K , a joint strategy is written α = (α1, . . . , αN), and the payoff
of investor i in the modified game Ḡ is his return per dollar

ri = π̄i(α) =
∑

k
αi

k
>0

αi
kR̄k(α) =

πi(w)

W i
(9)

where R̄k(α) := Rk(
∑

i W
iαi

k); and
∑

i W
iαi

k =
∑

i w
i
k = wk is the total

amount invested in asset k if the investors use the joint strategy α.

This formulation of the game is quite natural. Indeed, in actual financial
markets, large investors frequently describe their strategy by stating how
many percent of their total funds they invest in various types of assets (10%
in dollar bonds, 15% in German stocks, etc.), and they describe their payoffs
by stating the percentage return on their portfolio (e.g. 4.5% p.a.), not the
absolute quantities. We will use the two equivalent formulations G and Ḡ
interchangeably, according to convenience, and refer to both G and Ḡ as the
“asset market game”.

Our main interest will be in determining the structure of the Nash equilib-
ria of this game, corresponding to strategic (fully rational) behavior of the
agents (Sec. 4). But we will also consider other solution concepts: com-
petitive outcomes corresponding to price-taking behavior, and evolutionarily
stable strategies (ESS) in the sense of Schaffer (1988), which are motivated
by certain types of boundedly rational behavior (imitation) (Sec. 5). The re-
lationships between these solution concepts will also be clarified. Moreover,
it is easy to see that the game G is constant-sum if and only if all supply
functions Sk are constant (see Lemma A.4 in the appendix).

Given a strategy profile w ∈ B, the expected payoff from asset k, EkSk =
EkSk[Pk(wk)], and the total expected payoff, E(w) :=

∑
k EkSk, are deter-

mined. We say that investor i follows the proportional investment rule if
the amount invested by him in each asset k is proportional to the expected
payoff EkSk of this asset, i.e. if there is γi > 0 such that wi

k = γiEkSk ∀k (or
αi

k = EkSk/E(w); “investing according to the fundamentals”).

3.1. Competitive Allocations

A profile w = (w1, . . . wN) (resp. the corresponding asset allocation) is called
competitive if all assets have the same rate of return, i.e. if there exists r̂ such
that for all k

Rk(wk) = r̂ (10)
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In this case pk = 1
r̂
Ek ∀k, i.e. prices are proportional to expected payoffs. We

also say that prices are fair. Clearly, in a competitive allocation, the common
rate of return r̂ is equal to the total payoff divided by the total initial money
endowment

r̂ =
E(w)

W
(11)

(to see this, use (3) to write wk = r̂−1EkSk and sum over k).

Lemma 3.1. There exists a unique competitive rate of return r̂ > 0. It
depends only on the total money endowment W , but not on the distribution
of wealth W 1, . . .WN .

Proof. For r > 0, define wk(r) > 0 by Rk[wk(r)] = r. The properties of the
return function Rk(·) imply that wk(r) is well defined and strictly decreasing
in r (from ∞ to 0); hence there exists a unique r̂ > 0 such that

∑
k wk(r̂) =

W . ¥

Define ŵk by Rk(ŵk) = r̂. In competitive equilibrium the return rate r̂, the
prices p̂k = Ek/r̂, the profits πi(w) =

∑
k wi

kRk = W ir̂, and the amounts ŵk

are uniquely determined, but not the asset allocation. Indeed, from the
viewpoint of a price-taking investor i, any strategy wi = (wi

1, . . . w
i
K) ∈ Bi

is profit maximizing, since all assets yield the same return. Thus there are
infinitely many competitive allocations, characterized by the condition that
the total amounts wk =

∑N
i wi

k invested in the various assets satisfy wk = ŵk.
Among these, a special role is played by the proportional investment rule.

Lemma 3.2. (i) There exists a unique profile ŵ ∈ B in which all investors
follow the proportional investment rule. This profile is competitive and
is given by ŵi

k = ŵk
W i

W
, where ŵk is given by Rk(ŵk) = r̂.

(ii) Let w ∈ B be a competitive profile such that all investors hold the
same portfolio αi = αj ∀i, j. Then w = ŵ and αi = α̂ ∀i, where
α̂ = (α̂1, . . . α̂K) := 1

W
(ŵ1, . . . ŵK) ∈ ∆K is the market portfolio corre-

sponding to the profile ŵ ∈ R.

Let us call a profile w = (w1, . . . wN) ∈ B symmetric8. if all investors hold the
same portfolio, i.e. if αi = αj for all i, j, where αi = (1/W i)wi. Lemma 3.2(ii)
says that ŵ is the only symmetric competitive profile. We shall see below
that this “proportional competitive profile” ŵ has certain special properties.
In particular, if a Nash equilibrium allocation w is competitive (this is not
the case in general), then it coincides with ŵ (Propostion 4.2). Moreover, ŵ is

8 The game G (or Ḡ) is not symmetric, see Sec. 5
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the unique profile that is evolutionarily stable in the sense of Schaffer (1988)
(Theorem 5.1).

3.2. Nash Equilibrium

A profile w∗ = (w∗1, . . . w∗N) ∈ B is a Nash equilibrium of the game G if for
all investors i = 1, . . . N

πi(w∗) ≥ πi(wi, w∗−i) ∀wi ∈ Bi

where (wi, w∗−i) denotes the profile w∗ with i’s strategy w∗i replaced by wi.

Theorem 3.3. (i) The asset market game G = G[(W i), (Ek, Sk)] has a Nash
equilibrium. (ii) At any equilibrium, all markets are active. (iii)Any equilib-
rium is strict.

The proof of the theorem is essentially routine, based on the observation
that the payoff functions are concave. Some care must be taken because of
possible discontinuities at the boundary of the budget sets. Details are in
the appendix.

The results on the structure of equilibrium in the next section are based on
the following observation. The marginal return to investor i from asset k can
be written as

∂πi
k(w)

∂wi
k

= rk ·
[
1− wi

k

wk

· 1

1 + ηk

]
for wk > 0 (12)

where rk = Rk(wk), ηk = Hk[Pk(wk)]. Indeed, by definition, xi
k(w) =

wi
k/Pk(wk), and by (4), 1/1 + ηk = P ′

kwk/Pk, therefore

∂xi
k(w)

∂wi
k

=
Pk − wi

k.P
′
k

(Pk)2
=

1

Pk

·
[
1− wi

k

wk

· wkP
′
k

Pk

]
=

1

Pk

·
[
1− wi

k

wk

· 1

1 + ηk

]

Formula (12) follows imediately from the definitions (8) and rk = Ek/Pk. The
“Nash term” −wi

k/wk(1 + ηk) in (12) reflects the fact that an increase of wi
k

reduces the return rate of asset k; it disappears only under the “competitive”
assumption of infinitely elastic supply (ηk = ∞).

4. Structure of Nash Equilibrium

Consider an equilibrium w = (w1, . . . wN) of G with associated prices pk =
Pk(wk), supplies Sk(pk), asset returns rk = Rk(wk) = Ek/pk, and elasticities

11



ηk = Hk(pk). Denote by E = E(w) =
∑

k Ek.Sk(pk) the aggregate payoff in
the economy, and let R = E(w)/W be the aggregate rate of return (remember
that W =

∑
i W

i is the aggregate initial wealth). If wi
k > 0 we say that

investor i holds asset k, or that he is active in market k. Denote further
by ri := π̄i(α) = πi(w)/W i the rate of return investor i gets on his capital,
and write αi = (αi

1, . . . α
i
K), where αi

k = wi
k/W

i, for the portfolio associated
with wi.

Theorem 4.1. Let w = (wi
k) be an equilibrium, with investors and assets

ordered such that W 1 ≥ W 2 ≥ · · · ≥ WN and r1 ≤ r2 ≤ · · · ≤ rK. Then

1. the largest investor ( i = 1) holds all assets: w1
k > 0 ∀k

2. the asset with the highest return ( k = K) is held by every investor:
wi

K > 0 ∀i
3. if investor i holds asset k (wi

k > 0), then

(a) i also holds all assets with higher or equal returns (wi
` > 0 for

r` ≥ rk)

(b) all larger investors j ≤ i also hold at least the same quantity of
asset k (wj

k ≥ wi
k), with strict inequality iff j is strictly larger

than i (W j > W i).

4. larger investors hold relatively more low-yielding assets in the following
sense: whenever W i ≥ W j, then the portfolios αi, αj satisfy

αi
1 + αi

2 + . . . αi
k ≥ αj

1 + αj
2 + . . . αj

k ∀k

5. the lower the elasticity of supply for an asset, the higher its return:

rk < r` ⇔ ηk > η` and rk = r` ⇔ ηk = η`

6. larger investors have lower return rates: ri ≥ rj ⇔ W i ≤ W j

Let w be an equilibrium, and denote by λi the Lagrange multiplier associated
with investor i’s budget constraint. By formula (12), the following first-order
conditions [FOC] must hold, for i = 1, . . . N :

∂πi(w)

∂wi
k

=





rk ·
[
1− wi

k

wk
· 1

1+ηk

]
= λi ∀k with wi

k > 0

rk ≤ λi ∀k with wi
k = 0

(13)
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η1 ≥ η2 ≥ . . . ≥ ηk ≥ . . . ≥ ηK

wi
k r1 ≤ r2 ≤ . . . ≤ rk ≤ . . . ≤ rK row sums

r1 λ1 w1
1 w1

2 . . . w1
k . . . w1

K W 1

≤ ≤ . . . ≥ . . . ≥ ≥
r2 λ2 0 . . . w2

k2
. . . w2

k . . . w2
K W 2

≤ ≤ . . . ≥ . . . ≥ ≥
. . . . . . . . . . . .

≤ ≤ . . . ≥ . . . ≥ ≥
ri λi 0 0 . . . wi

ki
. . . wi

K W i

≤ ≤ . . . ≥ ≥
. . . . . . . . . . . .

≤ ≤ . . . ≥ ≥
rN λN 0 0 . . . 0 . . . wN

kN
wN

K WN

column sums w1 w2 . . . wk . . . wK W

Table 1: The structure of equilibrium.
If W i = W j, then the corresponding rows are identical;
if W i > W j, then ri ≤ rj, λi < λj, and wi

k > wj
k, except

when wi
k = 0. For any two adjacent columns k and k+1,

rk = rk+1 iff ηk = ηk+1. In this case, wi
k > 0 ⇔ wi

k+1 > 0
∀i.
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The proof of the various assertions in the Theorem is based on a careful
examination of these first-order conditions. Details are in the appendix.

Table 1 summarizes the results of Th. 4.1. At a Nash equilibrium, in general,
different assets have different returns; and not every investor is active in all
markets. Larger investors are active in more markets. The more elastic the
supply of an asset, the lower its return rate at equilibrium. Larger investors
hold relatively more low-yielding assets, and achieve lower average rates of
return on their capital. Investors with the same wealth use the same strategy.

Intuitively, rk is the average return of asset k, and by (12),

∂πi(w)

∂wi
k

= rk

[
1− wi

k

wk

1

1 + ηk

]

is the marginal return of asset k for investor i. The marginal return is
always less than the average return rk (because an extra dollar invested in
an asset also pushes up its price), but it gets closer to rk when the elasticity ηk

increases. Since marginal, not average, returns must be equal at equilibrium,
we get the inverse relationship between rk and ηk asserted in the Theorem.
Moreover, the discrepancy between marginal and average return increases
with wi

k, i.e. it is larger for larger investors

Thus with variable supply, Nash equilibrium allocations are not competitive
in general (prices are not fair). Example 1 illustrates such a case. This de-
viation of asset prices from the expected return has nothing to do with risk
aversion of our investors, but results from their strategic interaction in a situ-
ation where the supply conditions of different assets differ. Of course, in our
model, for any asset k, the exogenous supply function Sk(pk) summarizes the
aggregate behavior of the (non-strategic) “”rest of the market”. This “rest”
may contain risk-averse traders (or even traders with no rational attitude to
risk at all). While we do not model these traders explicitly, it may of course
be that the elasticity of supply of some asset k depends on its riskiness; and
to the extent that this is the case, our equilibrium prices also reflect risk, at
least indirectly.

Moreover, we observe a kind of “curse of size”: larger investors achieve lower
average return rates at equilibrium. Again this has nothing to do with any
differences in the skills or preferences of investors, but results from the equal-
ization of marginal, not average, return rates at a Nash equilibrium. A typ-
ical small investors concentrates his portfolio on the highest-yielding assets,
achieving a high average return rate; and because he is small, his marginal re-
turn is also high. A large investor has a much lower marginal return and finds
it profit-maximizing to hold also the lower-yielding assets, thus depressing
his average return.

14



η1 = 1 η2 = 0

r1 = 0.5 r2 = 1

r1 = .578 λ1 = 0.25 w1
1 = 4 w1

2 = 0.75 W 1 = 4.75 π1 = 2.75

r2 = 1 λ2 = 0.75 w2
1 = 0 w2

2 = 0.25 W 2 = 0.25 π2 = 0.25

R = 0.6 w1 = 4 w2 = 1 W = 5 E = 3

Table 2: Nash equilibrium in Example 1.

Example 1. Let N = 2, K = 2, Ek = 1 ∀k, and S1(p1) = p1, S2(p2) = 1.
Then η1 = 1, P1(w1) =

√
w1, R1(w1) = 1/

√
w1 and η2 = 0, P2(w2) = w2,

R2(w2) = 1/(w2). Assume that the initial endowments are W 1 = 4.75,
W 2 = 0.25, so that W = 5. Then the unique Nash equilibrium is given
in Table 2. It is easy to check that the first-order conditions are satisfied,
with r1 < λ2, i.e. investor i = 2 does not hold asset k = 1 (w2

1 = 0).
The total payoff at equilibrium is E = π1 + π2 = 3, the average return is
R = E/W = 0.6, and the competitive rate is r̂ = 0.558.

Theorem 4.3 below shows that the deviation of Nash equilibrium prices from
their fair values is due not to the variability (as opposed to constancy) of
supply per se, but to differences in the supply conditions of different assets.
As a preliminary step, the following proposition shows that the only com-
petitive profile that can possibly be a Nash equilibrium is the “proportional
competitive” profile ŵ defined in Lemma 3.2.

Proposition 4.2. Let w be a Nash equilibrium profile. Then w is competitive
if and only if w = ŵ (i.e. all investors use the proportional investment rule,
cf. Lemma 3.2).

Proof. If the equilibrium satisfies w = ŵ, it is competitive by Lemma 3.2(i).
Conversely, assume that a Nash equilibrium w is competitive. By Lemma 3.1,
rk = r̂, wk = ŵk ∀k. By Theorem 4.1, all elasticities are equal, ηk = η̂ ∀k,
and every investor i holds all assets. Therefore the first-order condition for
an investor i takes the form

r̂[1− wi
k

ŵk

1

1 + η̂
] = λi ∀k

Thus, there is γi > 0 such that wi
k/ŵk = γi ∀k, and all investors hold the

same portfolio in percentage terms, αi = αj. By Lemma 3.2(ii), w = ŵ. ¥
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In particular, there is at most one competitive Nash equilibrium. A suffient
condition for the equilibrium to be competitive is given in the next theorem.

Theorem 4.3. Assume that there exists a common elasticity function H(·)
such that Hk(pk) = H(pk/Ek) for all assets k. Then there exists a unique
equilibrium w, and w = ŵ.

The assumption of the Theorem means that all supply functions Sk(·) have
the same elasticity function, provided units are chosen such that the payoff
per unit is the same for all assets. Such a normalization (e.g. Ek = 1) is
always possible w.l.o.g. (cf. footnote 7). In particular, the assumption of the
theorem is satisfied (with H ≡ 0) if supply is constant.

Proof. We prove that all rk are equal at equilibrium. Let r1 ≤ r2 ≤ · · · ≤ rK

as in Th. 4.1. Then H1(p1) ≥ HK(pK), hence by assumption H(p1/E1) ≥
H(pK/EK). By S.3, the function H is nonincreasing, hence p1/E1 ≤ pK/EK

or r1 = E1/p1 ≥ EK/pK = rK . Therefore rk = r̂ ∀k and the equilibrium is
competitive. By Proposition 4.2, w = ŵ uniquely. ¥

A competitive equilibrium, if it exists, is symmetric. There may exist non-
competitive symmetric equilibria (cf. Theorem 4.6), but a game can have at
most one symmetric equilibrium. In fact, more is true: a game can have at
most one equilibrium in which all investors are active in all markets:

Proposition 4.4. There is at most one Nash equilibrium in which every
investor holds all assets, wi

k > 0 ∀i,∀k.

Since in a symmetric equilibrium every investor must hold all assets, we
obtain immediately:

Corollary 4.5. There exists at most one symmetric Nash equilbrium.

Another interesting special case is when all investors have the same wealth,
W i = W 0 ∀i (but supply elasticities may differ).

Theorem 4.6. Assume that all investors have the same wealth, W i = W 0 >
0 ∀i. Then there exists a unique equlibrium, and all investors choose the
same strategy: wi = wj ∀i, j.

Proof. Consider an equilibrium and number investors and assets as in Theo-
rem 4.1. By assumption, all investors have the same wealth, and by monotonic-
ity (45) wi

k ≥ wi+1
k . This is only possible if wi

k = wj
k ∀i, j, i.e. if wi

k = 1
N

wk

∀i, k. Thus the equilibrium is symmetric, and by Corollary 4.5, unique. ¥
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Remark. If the Nash equilibrium is competitive, then all investors neces-
sarily choose the same portfolio, by Prop. 4.2. The converse is not true: in
Th. 4.6, for example, all investors chooose the same portfolio, but assets with
constant, but different supply elasticities have different return rates.

Are the investors better off at Nash equilibrium that at a competitive profile?
Consider an arbitrary profile w ∈ B in which all markets are active, so that
the return rates rk = rk(wk) are well defined for all k. Then the payoff of
investor i can be written πi(w) =

∑
k wi

krk, and his (gross) rate of return
(per dollar invested) is

ri = π̄i(α) =
∑

k

wi
k

W i
rk =

∑

k

αi
krk, (14)

a convex combination of the quantities r1, . . . rK . In a competitive profile,
rk = r̂ ∀k, so that of course ri = r̂. If the profile w is not competitive, then
some rk must be strictly smaller than r̂, and some strictly larger (because the
functions rk = Rk(wk) are strictly decreasing, and the sum

∑
k wk = W is

fixed). Thus it is not clear a priori if an investor’s equilibrium rate of return
is greater or smaller than r̂, especially it is not clear for large investors who
hold relatively more low-yielding assets (Th. 4.1(4)). In fact, investors never
do worse at a Nash equilibrium than at a competitive allocation:

Theorem 4.7. Let w∗ ∈ B be a Nash equilibrium that is not a competitive
allocation. Then every investor i achieves a strictly higher rate of return
than the competitive rate:

ri =
πi(w∗)

W i
> r̂ ∀i

5. Evolutionarily stable strategies

The concept of an evolutionarily stable strategy (ESS) for a finite game
introduced by Schaffer (1988) is defined for symmetric games as follows. A
strategy s in the common strategy space S is an ESS if, starting from a
symmetric situation where everybody uses the strategy s, the payoff of a
single deviator after deviation is never greater than the payoff of the others
(the non-deviators) after this deviation. I.e. no single deviation from the ESS
improves the deviator’s relative position.

Although this is a static concept, it can sometimes be shown that an ESS
is also a stable rest point of some suitably specified “evolutionary” dynamic
process of imitation and experimentation (Alós-Ferrer and Ania (2005a)).
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Since the game G is not symmetric due to the unequal wealth of different
investors, neither the definition of an ESS nor the idea of imitation is directly
applicable. But one can argue that these concepts make sense if we think
in percentage terms, i.e. in the more symmetric formulation Ḡ. Indeed,
in Ḡ, every investor, large or small, has the same strategy space ∆K , and
the payoffs of different players can meaningfully be compared. An investor
making 3% with a portfolio of a certain composition might look at some
other investor (bigger or smaller) making 4% with a portfolio of a different
composition, and might imitate the composition of the other, seemingly more
successful, portfolio. In the spirit of bounded rationality, such behavior is
certainly justifiable. If we accept this viewpoint, it becomes meaningful to
define an ESS as a strategy which, if adopted by all, cannot be destabilised
by imitation of more successful players by a single deviator.

The game Ḡ resembles a symmetric game because all players have the same
strategy space, and any two players using the same strategy αi = αj neces-
sarily have the same payoff. But the game Ḡ is still not a symmetric game in
the strict sense: if a large and a small investor with different strategies αi, αj

interchange their strategies, this may change prices and hence may change
the other players’ payoffs. Nevertheless, as argued above, we may define a
concept of ESS in Ḡ.

For a strategy α0 ∈ ∆K , we denote by ~α0 = (α0, . . . α0) ∈ (∆K)N the sym-
metric profile in which every player uses α0. Let us call a strategy α0 ∈ ∆K

an ESS of Ḡ if for every player i and for every strategy αi ∈ ∆K the following
is true:

π̄i((α0 |i αi)) ≤ π̄j((α0 |i αi)) ∀j 6= i

where (α0 |i αi) denotes the strategy profile in which player i uses strategy αi

and every other player uses the strategy α0. That is, if a player deviates from
the symmetric profile ~α0, then, after the deviation, his payoff is not larger
than the payoff of any other player, so that nobody has an incentive to imitate
the deviator. On the contrary, the deviator will have an incentive (at least in
the weak inequality sense) to imitate one of the other players, i.e. to switch
back to the ESS strategy α0.

Theorem 5.1. The game Ḡ has a unique ESS, namely α0 = α̂, where α̂ is the
competitive market portfolio corresponding to the “proportional competitive
profile” ŵ defined after Lemma 3.1. At this ESS, all players have the same
payoff in Ḡ, namely the competitive return π̄i(~α0) = r̂ ∀i.

Thus the ESS outcome is competitive, but different from the Nash outcome
in general. Such a relation between ESS and competitive outcomes has been
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observed in other contexts as well, cf. Alós-Ferrer and Ania (2005b), Vega-
Redondo (1997).

A. Appendix

Lemma A.1. Under assumption S.1

(i) for every wk ≥ 0, equation (2) determines a unique price pk = Pk(wk).
The function Pk(wk) is continuous and strictly increasing on [0,∞), with

Pk(0) = 0, lim
wk→∞

Pk(wk) = ∞

(ii) The function fk(wk) := wk/Pk(wk) is nondecreasing for wk > 0 and

lim
wk→0

wk/Pk(wk) = Sk(0) (15)

Proof.

(i) define the function

Vk(pk) = pk.Sk(pk) for pk ≥ 0. (16)

By S.1, Vk(pk) is continuous and strictly increasing on [0,∞), with Vk(0) = 0
and limpk→∞ Vk(pk) = ∞. Therefore Vk has an inverse V −1

k with the same
properties. Since equation (2) can be written Vk(pk) = wk, the price function
is equal to this inverse, Pk(wk) = V −1

k (wk).

(ii) For wk > 0, also Pk(wk) > 0, and fk(wk) = wk/Pk(wk) ≡ Sk(Pk(wk)).
The assertion follows from S.1 and (i). ¥

Remark. Conversely, the properties of the price function Pk stated in
Lemma A.1 imply that the supply function Sk satisfies S.1. Indeed, if
we postulate an arbitrary price function Pk with the properties stated in
Lemma A.1, and define a supply function Sk by the condition Pk(wk).Sk(Pk(wk)) ≡
wk for wk > 0, and by (15) for wk = 0, then Sk satisfies S.1. To see
this, write Sk(Pk(wk)) = wk/Pk(wk) and observe that the 1-1-transformation
wk ↔ pk = Pk(wk) is strictly increasing.

For future reference, we note that for any c > 0

Sk(Pk(ε)) > ε.c ∀ε > 0 sufficiently small (17)

(Since Sk(Pk(ε))/ε = 1/Pk(ε)).

The following is a more precise statement of the differentiability assumption
in S.1. It is phrased so that an infinite slope at pk = 0 is not excluded.
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S.4. For ∀k, the supply function Sk(pk) is either

(a) twice continuously differentiable on [0,∞) with S ′k(0) finite, or

(b) twice continuously differentiable on (0,∞), with
limh→0(S(h)− S(0))/h = S ′k(0) = ∞ = limpk→0 S ′k(pk)

From now on, we maintain the assumptions S.1, S.4, S.3. Clearly, the elas-
ticity function ηk = Hk(pk) = pk.S

′
k(pk)/Sk(pk) is continuously differentiable

on (0,∞) and by S.3, the limit limpk→0 Hk(pk) =: Hk(0) ∈ [0,∞] exists
(possibly infinite).

Lemma A.2. There are only two possible cases: either

(i) supply is constant, Hk(0) = 0, and Sk(pk) = Sk(0) = S̄k > 0 ∀pk ≥ 0, or

(ii) supply is not constant, Hk(0) > 0, and Sk(pk) > Sk(0) = 0 ∀pk > 0;
moreover

(α) S ′k(0) = 0 if Hk(0) > 1 (supply is elastic at 0)

(β) S ′k(0) = ∞ if 0 < Hk(0) < 1 (supply is inelastic at 0)

(γ) if Hk(0) = 1, it may be that S ′k(0) is positive and finite.

(iii) in any case, limpk→0 pk.S
′
k(pk) = 0

Proof. We omit the subscript k for simplicity.

(i) Clearly, H(0) = 0 iff H(p) = 0 ∀p > 0, i.e. iff S ′(p) = 0 ∀p > 0, i.e.
iff supply is constant (and positive, by S.1): S(p) = S(0) > 0 ∀p ≥ 0.
Obviously (iii) is satisfied in this case.

(ii) Assume now that supply is not constant. Then H(0) > 0. By S.1
S(p) > 0 for p > 0. Next we show that S(0) = 0. By definition,

p.S ′(p) ≡ H(p).S(p) ∀p > 0 (18)

and
d

dp

S(p)

p
=

p.S ′(p)− S(p)

p2
∀p > 0 (19)

Consider first the case of elastic supply at 0, i.e. H(0) > 1. Then, for
p > 0 sufficiently small, H(p) > 1, and (18) implies: p.S ′(p) > S(p), i.e.,
by (19), the positive function S(p)/p is strictly increasing in p. Therefore
limp→0(S(p)/p) exists and is nonnegative and finite. This implies that S(0) =

20



0, and furthermore that S ′(0) = limp→0(S(p) − S(0))/p = limp→0 S(p)/p is
finite. Moreover by (18):

S ′(p) ≡ H(p).
S(p)

p

Both S ′(p) and S(p)/p tend to the same finite limit S ′(0) as p → 0, whereas
H(p) is bounded away from 1 for all p sufficiently small. This is possible only
if S ′(0) = 0. This proves (ii)(α). Clearly (iii) is also satisfied in this case.

Consider now the case of inelastic or unit elastic supply at 0, 0 < H(0) ≤ 1.
Then, for p > 0, H(p) ≤ 1 by S.3, and (18) implies: p.S ′(p) ≤ S(p), i.e.,
by (19), the positive function S(p)/p is (weakly) decreasing in p. Therefore
limp→0(S(p)/p) exists and is strictly positive (possibly infinite).

Since

H(p) =
S ′(p)

S(p)/p

is also weakly decreasing by S.3, the function S ′(p) must be weakly decreas-
ing, i.e. the supply function S(p) is concave. This implies

S ′(p) ≤ S(p)− S(0)

p
∀p > 0 (20)

It implies also that S ′(0) > 0 (possibly S ′(0) = ∞), since otherwise S ′(p) ≡ 0
and supply would be constant.

We want to show that S(0) = 0. If S(0) > 0, then, for p > 0 sufficiently
small,

S(p)

[
1− H(0)

2

]
< S(0)

because S(.) is continuous and 0 < H(0) ≤ 1. Therefore S(p) − S(0) <
1
2
H(0).S(p) and, by (20)

S ′(p) <
H(0)

2
.
S(p)

p
for p sufficiently small. (21)

On the other hand, by (18), S ′(p) ≡ H(p).S(p)
p

and for p sufficiently small:

H(p) > 1
2
.H(0) (because H(0) > 0. This implies

S ′(p) >
H(0)

2
· S(p)

p
for p sufficiently small,

contradicting (21). Therefore S(0) = 0 for 0 < H(0) ≤ 1 as well. Using (18)
we see that

lim
p→0

p.S ′(p) = lim
p→0

H(p).S(p) = H(0).S(0) = 0
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so that (iii) is also satisfied.

Finally, since S(0) = 0, we have S ′(0) = limp→0(S(p)/p), and using (18)
again:

S ′(p) = H(p).
S(p)

p

If p → 0, both S ′(p) and S(p)/p tend to the same positive limit S ′(0) (possibly
infinite) and H(p) tends to H(0). If 0 < H(0) < 1 this is possible only if
S ′(0) = ∞. This proves (ii)(β). If H(0) = 1, it is possible that S ′(0) is
positive and finite; e.g. for S(p) = p, S ′(p) = 1, H(p) = 1 ∀p ≥ 0. This
proves (ii)(γ) and the Lemma. ¥

Lemma A.3.

(i) The function Vk(pk) = pk.Sk(pk) is continuously differentiable on [0,∞),
with V ′

k(pk) > 0 for pk > 0 and V ′
k(0) = Sk(0).

(ii) The price function Pk(wk) is continuously differentiable on [0,∞) [resp.
on (0,∞)], if Sk(0) > 0 [resp. Sk(0) = 0]; with P ′

k(wk) > 0 for wk > 0 and

P ′
k(0) =

1

Sk(0)
= lim

wk→0
P ′

k(wk) (22)

(where 1/Sk(0) = ∞ if Sk(0) = 0).

Proof.

(i) For pk > 0, the assertions are trivial. At pk = 0, we have:

V ′
k(0) = lim

ε→0
(Vk(ε)− Vk(0))/ε = lim

ε→0
(ε.Sk(ε)− 0)/ε = Sk(0)

For pk > 0, we have:

V ′
k(pk) = Sk(pk) + pk.S

′
k(pk)

By Lemma A.2(iii), the last term goes to zero for pk → 0, hence

lim
pk→0

V ′
k(pk) = lim

pk→0
Sk(pk) = Sk(0)

This proves (i).

(ii) The price function Pk is the inverse of the function Vk. The assertions
follow immediately from (i) and this fact, noting that P ′

k(wk) = 1/V ′
k(pk)

at all points where V ′
k is positive, and that Pk has infinite slope at zero iff.

V ′
k(0) = 0. ¥
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Lemma A.4. The game G is constant-sum (on the set {w ∈ B |wk > 0 ∀k}
of strategies where all markets are active) if and only if all supply functions
Sk(·) are constant.

Proof. The “if” part is trivial. Assume now that the game is constant-sum,
i.e.

∑
i

πi(w) =
∑

i

∑

k

wi
kRk(wk) =

∑

k

wkRk(wk) =
∑

k

fk(wk) = const.

for all wk > 0 with
∑

k wk = W . This implies f ′k(wk) = f ′`(w`) = c ∀wk, w` ,
and fk(wk) = cwk + dk ∀k, for some constants c ≥ 0, dk ≥ 0. If c > 0, then
Sk(Pk(wk)) = fk(wk) = cwk + dk is not constant, hence limpk→0 Sk(pk) = 0
by Lemma A.2, hence dk = limwk→0 fk(wk) = 0. But then fk(wk) = cwk =
wkRk(wk) ⇒ Rk(wk) = c, contradicting Lemma A.1. Therefore c = 0 and
Sk[Pk(wk)] = fk(wk) = dk > 0, i.e. supply Sk is constant. ¥

Proof of Lemma 3.2. (i) Assume that all investors follow the proportional
rule. Then

wi
k = γiEkSk ∀i, k (23)

Summing this over i gives wk = (
∑

i γ
i)EkSk ⇔Rk = (EkSk)/wk = (

∑
i γ

i)−1 =:
r̂, i.e. the profile is competitive. Thus ŵk is uniquely determined by Rk(ŵk) =
r̂. Hence EkSk = r̂ŵk. Summing this over k gives E(w) = r̂W , and sum-
ming (23) over k gives W i = γiE(w) ⇔ γi = W i/r̂W . Therefore
wi

k = γiEkSk = (W i/r̂W )r̂W = ŵkW/W i. This proves (i).

(ii) Since w is competitive, wk = ŵk where Rk(ŵk) = r̂ ∀k. Since all agents
hold the same portfolio αi = αj, summing wi

k = αi
kW

i over i gives ŵk = αi
kW

⇔ αi
k = ŵk/W ⇒ wi

k = αi
kW

i = ŵkW
i/W . This is the allocation ŵ

given in part (i) of the lemma.

¥

To prepare for the proof of Theorem 3.3, note that the payoff functions πi(w)
are defined for all nonnegative vectors w ∈ RKN

+ , independently of the agents’
budget constraints. Clearly, the functions xi

k(w) and also the payoff functions
πi(w) are differentiable in wi

k at all points where wk > 0 (with one-sided
derivatives if wi

k = 0, but wk > 0). Denote by Wa = {w ∈ RKN
+ |wk >

0 ∀k} the set of profiles where all markets are active. Note that Wa is
convex and the payoff functions πi(w) are continuous and differentiable on
Wa.
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First we compute some derivatives. Let w be a profile at which market k is
active, i.e. wk > 0, pk > 0, Rk > 0. We have

xi
k(w) =

wi
k

Pk(wk)
=

wi
k

wk

Sk(Pk(wk)) (24)

Therefore, from (12),

∂xi
k(w)

∂wi
k

=
1

Pk(wk)
·
[
1− wi

k

wk

· 1

1 + Hk[Pk(wk)]

]
≥ 0 (25)

with strict inequality unless investor i is the only one who buys asset k
(wi

k = wk) and the supply elasticity is zero (ηk = Hk[Pk(wk)] = 0). Also

∂xi
k(w)

∂wi
k

≤ 1

Pk

(26)

with strict inequality unless wi
k = 0, and

∂xi
k(w)

∂wi
k

→∞ for wk → 0, (27)

provided the expression [1−wi
k

wk
· 1
1+ηk

] remains bounded away from 0 as wk → 0

(this is certainly the case if wi
k/wk remains bounded away from 1). Moreover

∂2xi
k(w)

∂(wi
k)

2
= − P ′

k

[Pk]2

[
1− wi

k

wk

· 1

1 + Hk

]
− (28)

− 1

Pk

[
wk − wi

k

(wk)2
· 1

1 + Hk

+
wi

k

wk

· −H ′
kP

′
k

(1 + Hk)2

]
≤ 0

where Pk = Pk(wk) and Hk = Hk[Pk(wk)]. The inequality follows because
η′k = H ′

k(pk) ≤ 0 by S.3, and is strict unless wi
k = wk and both ηk = 0 and

η′k = 0.9 The cross-partials are

∂2xi
k(w)

∂wi
k∂wi

`

= 0 for ` 6= k. (29)

By (8) similar formulae hold for the profit functions πi, e.g.

∂πi(w)

∂wi
k

= Ek.
∂xi

k(w)

∂wi
k

≥ 0 for wk > 0 (30)

The formal proof of Theorem 3.3 is preceded by some lemmas.

9η′ = 0 is implied by η = 0 because η ≥ 0 and nondecreasing.
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Lemma A.5. For all i, the payoff function of investor i, πi(w) = πi(wi, w−i)
is concave in i’s own strategy wi on the set Wa, and even strictly concave
except possibly at points where wi

k = wk for some k (investor i is the only
buyer of asset k).

Proof. We have, on the convex set Wa:

∂2πi(w)

∂(wi
k)

2
= Ek.

∂2xi
k(w)

∂(wi
k)

2
≤ 0 (31)

with strict inequality for wi
k < wk and all cross-partials are zero. ¥

Lemma A.6. Let w̄ = (w̄1, . . . w̄N) ∈ B be a strategy profile at which not all
markets are active (w̄ 6∈ Wa). Then every investor has a profitable deviation,
i.e. for every i there exists a ŵi ∈ Bi such that

πi(ŵi, w̄−i) > πi(w̄) (32)

Moreover, ŵi can be chosen so that at the new profile ŵ = (ŵi, w̄−i) all
markets are active.

Proof. Fix an investor i. Since he must invest his wealth somewhere, there
exists an asset m such that w̄i

m > 0 (⇒ w̄m > 0, p̄m > 0, R̄m > 0). Let ` be
an inactive asset so that w̄` = w̄i

` = 0. Consider the following change in i’s
strategy, for small ε > 0:

ŵi
m = w̄i

m − ε, ŵi
` = ε, ŵi

k = w̄i
k for k 6= m, `.

That is, investor i shifts a small amount ε from asset m to the inactive asset `.
This shift decreases his earnings in market m by (using (30),(26))

0 ≤ ε.
∂πi(w̄)

∂wi
m

≤ ε.Em.
1

p̄m

= ε.R̄m

and it increases his earnings in market ` by E`.S`(P`(ε)). By (17) this is
strictly greater than ε.R̄m for ε sufficiently small, i.e. (32) is satisfied. If ` is
the only inactive market at w̄, we are done. If not, repeat the construction
for the next inactive asset, starting from the profile ŵ = (ŵi, w̄−i). ¥

As an immediate Corollary we have that all markets must be active at equi-
librium.
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Lemma A.7. If w is an equilibrium, then

∂πi(w)

∂(wi
k)

> 0 and
∂2πi(w)

∂(wi
k)

2
< 0 (33)

for all i = 1, . . . N , k = 1, . . . K.

Proof. By Lemma A.6, wk > 0 at equilibrium. Therefore, by (25),(28), both
claims are true unless

wi
k = wk and ηk = 0 (and η′k = 0). (34)

We have to show that this situation is impossible at equilibrium.

Indeed, if (34) holds, then wi
k = wk > 0 and ∂πi(w)/∂wi

k = 0 by (25).

On the other hand. there must exist an asset ` with wi
` < w`, hence by (25)

∂πi(w)/∂wi
` > 0

Shifting a small amount ε > 0 from asset k to asset ` increases i’s profits,
contradicting equilibrium. ¥

In particular, if an asset is in constant supply, then it must be held by
more than one investor at equilibrium. Moreover, if w∗ = (w∗i, w∗−i) is an
equilibrium, then the payoff function π(wi, w∗−i) is strictly concave in wi in
a neighborhood of w∗i, and concave elsewhere. Therefore every equilibrium
is strict.

Proof of Theorem 3.3.

Assertions (ii) and (iii) follow from the two preceding Lemmas. It only
remains to prove assertion (i) (existence of Nash equilibrium).

For ν = 1, 2, 3, . . . consider the modified game Gν with budget sets Bi(ν) =
{wi ∈ Bi|wi

k ≥ 1
ν

∀k} and payoff functions πi as before. Eventually, for
ν sufficiently large, Bi(ν) is nonempty, compact, convex. Clearly at any
w ∈ B(ν) =

∏
i B

i(ν) ⊂ Wa all markets are active and each payoff function
πi(w) = πi(wi, w−i) is continuous in w ∈ B(ν) and strictly concave in the own
strategy wi. Therefore there exists an equilibrium w(ν) = (w1(ν), . . . wN(ν))
of the modified game Gν , where of course wi

k(ν) ≥ 1
ν

always.

W.l.o.g. (passing to a subsequence if necessary) we may assume that the
sequence w(ν)ν=1,2,... converges, i.e.

w(ν) → w∗ = (w∗1, . . . w∗N) for ν →∞
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We claim that w∗ is an equilibrium in the unrestricted game G with strategy
spaces Bi. We proceed in two steps:

Step 1. w∗
k > 0 ∀k, i.e. w∗ ∈ Wa

Step 2. ∀i, w∗i is a best reply to w∗

Step 1.
Assume, indirectly, that there is an asset ` with w∗

` = 0, i.e. w`(ν) → 0
for ν → ∞. Of course then also wi

`(ν) → 0 for each agent i; but since∑
i w

i
`(ν) = w`(ν) > 0 always, there exists an agent j such that wj

`(ν)/w`(ν)
remains bounded away from 1 as ν → ∞ (taking a further subsequence if
necessary). By (27) this implies

∂xj
`(w(ν))

∂wj
`

→∞ as ν →∞

There must also exist some asset m 6= ` such that w∗j
m > 0, and hence w∗

m > 0.
Fix j, `, m. Then

∂xj
m(w(ν))

∂wj
m

=
1

Pm(wm(ν))
·
[
1− wj

m(ν)

wm(ν)
· 1

1 + Hm(Pm(wm(ν)))

]

converges to the finite number

1

Pm(w∗
m]
·
[
1− w∗j

m

w∗
m

· 1

1 + Hm(Pm(w∗
m))

]
=: cm ≥ 0

as ν →∞. Therefore, for ν sufficiently large, agent j can increase his payoff
πj(w(ν)) in the game Gν by shifting a small amount ε > 0 away from asset m
(this is feasible because eventually w∗j

m > 1
ν
) to asset `. This contradicts the

assumption that w(ν) is an equilibrium in Gν and proves Step 1.

Step 2.
By Step 1, πi(w) is continuous at w∗. Fix an investor i. We have to show
that w∗i is a best reply to w∗−i. Assume not. Then there exists ŵi ∈ Bi

which is a better reply to w∗−i, i.e.

πi(ŵi, w∗−i)− πi(w∗) > δ for some δ > 0 (35)

If the strategy profile (ŵi, w∗−i) 6∈ Wa, then by Lemma A.6 there exists a fur-

ther deviation ˆ̂w
i
such that ( ˆ̂w

i
, w∗−i) ∈ Wa and πi( ˆ̂w

i
, w∗−i) > πi(ŵi, w∗−i).

Therefore we may assume that (35) holds with ŵ := (ŵi, w∗−i) ∈ Wa, so
that πi(·) is continuous at this point. Approximate ŵi ∈ Bi by a sequence
ŵi(ν) ∈ Bi(ν). Then by continuity

πi(ŵi(ν), w−i(ν))− πi(w(ν)) >
δ

2
> 0
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for ν sufficiently large, i.e. w(ν) is not an equilibrium of Gν , contrary to
assumption. This proves Step 2 and completes the proof of Theorem 3.3.

¥

Proof of Theorem 4.1

Consider a Nash equilibrium w = (w1, . . . wN) with associated prices pk, asset
returns rk, and elasticities ηk. Denote by αi = (αi

1, . . . α
i
K) = (1/W i)wi the

equilibrium portfolio, and by ri := πi(w)/W i the average return of investor i.

The following proof is based on a careful examination of the first-order con-
ditions for a Nash equilibrium. To understand the following arguments, it
helps to keep Table 1 in mind.

Proof of Assertions 1–3:

Let w be a Nash equilibrium. By (13)

∂πi(w)

∂wi
k

= rk[1− wi
k

wk

1

1 + ηk

] (36)

Denote by λi the Lagrange multiplier associated with investor i’s budget
constraint. Then the following first-order conditions [FOC] must hold, for
i = 1, . . . N :

∂πi(w)

∂wi
k

=





rk ·
[
1− wi

k

wk
· 1

1+ηk

]
= λi ∀k with wi

k > 0

rk ≤ λi ∀k with wi
k = 0

(37)

By Lemma A.7, λi > 0 for ∀i. (13) implies, ∀i, ∀k:

λi < rk ⇔ wi
k > 0 (investor i holds asset k)

λi ≥ rk ⇔ wi
k = 0 (investor i does not hold asset k)

}
(38)

W.l.o.g., order the investors such that

λ1 ≤ λ2 ≤ · · · ≤ λN (39)

and order the assets such that

r1 ≤ r2 ≤ · · · ≤ rK . (40)

We shall see below (see (46)) that (39) implies W 1 ≥ W 2 ≥ . . . WN , i.e.
investor i = 1 is the largest and i = N is the smallest investor. Similarly,
asset k = 1 is the worst and k = K is the best asset, where “better” assets
have higher returns per dollar invested.
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For given i, define

ki := min{k|λi < rk} (worst asset held by i) (41)

and for given k, define

ik := max{i|λi < rk} (smallest investor holding k) (42)

It is easy to see that investor i holds exactly the assets k = ki, ki + 1, . . . K
and

1 = k1 ≤ k2 ≤ · · · ≤ kN ≤ K (43)

with ki = kj if λi = λj. Similarly, it is also easy to see that asset k is held
exactly by the investors i = 1, 2, . . . ik and

1 ≤ i1 ≤ i2 ≤ · · · ≤ iK = N (44)

with ik = i` if rk = r`.

The equilibrium allocation w = (wi
k) is summarized in Table 1.

The largest investor i = 1 holds all assets (w1
k > 0 ∀k) and the best asset k =

K is held by all investors (wi
K > 0 ∀i). For fixed k, we know from (13),(39)

that
wi

k ≥ wi+1
k (45)

with strict inequality iff [wi
k > 0 and λi < λi+1]. Therefore the row sums W i

in Table 1 satisfy
W 1 ≥ W 2 ≥ · · · ≥ WN (46)

with strict inequality

W i > W i+1 iff λi < λi+1 (47)

(since wi
K > 0 ∀i). This proves the first three assertions in Theorem 4.1.

Proof of assertion 5:

let rk ≤ r`. Then ik ≤ i` and w.l.o.g. k < `. Summing the first line in (13)
for asset k over i = 1, . . . ik gives (since

∑ik
i=1 wi

k = wk)

rk

[
ik − 1

1 + ηk

]
=

ik∑
i=1

λi =: Λ (48)

Summing the first line in (13) for asset ` also over i = 1, . . . ik gives

r`

[
ik − 1

1 + η`

]
= Λ if i` = ik (49)
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r`

[
ik −

∑ik
i=1 wi

`

w`

· 1

1 + η`

]
= Λ if i` > ik (50)

If i` = ik, the assertion follows directly from (48),(49). If i` > ik, then
necessarily r` > rk (per def. of ik), and (48),(50) imply

ik − 1

1 + ηk

> ik −
∑ik

i=1 wi
`

w`

· 1

1 + η`

⇒
1

1 + ηk

<

∑ik
i=1 wi

`

w`

· 1

1 + η`

≤ 1

1 + η`

⇒ ηk > η`, and assertion 5 is proved.

Proof of assertion 6:

write ri = πi(w)/W i =
∑

k(w
i
k/W

i)rk =
∑

k αi
krk, where αi

k = wi
k/W

i is the
portfolio associated with the equilibrium strategy wi. By Abel’s summation
formula, we can write

ri =
K∑

k=1

αi
krk = Ai

KrK+1 +
K∑

k=1

Ai
k(rk − rk+1)

where Ai
k =

∑k
`=1 αi

` and rK+1 is arbitrary.

Now fix two investors i ≥ j so that W i ≤ W j (investor i is smaller). We
want to show that ri ≥ rj. From Abel’s formula, noting that Ai

K = Aj
K = 1

:

ri − rj =
K−1∑

k=1

(Ai
k − Aj

k)(rk − rk+1)

Since rk ≤ rk+1 it suffices to show that Ai
k ≤ Aj

k for k = 1, . . . K − 1, or
equivalently,

K∑

`=k+1

αi
` ≥

K∑

`=k+1

αj
` for k = 1, . . . K − 1 (51)

(because Ai
` = 1−∑K

`=k+1 αi
`). Thus assertion 6 follows from ass. 4.

Proof of assertion 4:

Note that the coefficients αi
k have also the “triangular structure” exhibited

in Table 1: if some αi
k > 0, then also αi

k+1 > 0, αj
k > 0, αj

k+1 > 0; and
rk − λi > 0.
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For αi
k > 0 the first-order condition (13) can be written

rk

[
1− αi

k

W i

wk

1

1 + ηk

]
= λi ⇔

αi
k =

rk − λi

W i
· wk(1 + ηk)

rk

This implies

αi
k

αi
k+1

=

wk(1+ηk)
rk

· rk−λi

W i

wk+1(1+ηk+1)

rk+1
· rk+1−λi

W i

and
αi

k/α
i
k+1

αj
k/α

j
k+1

=
(rk − λi)/(rk+1 − λi)

(rk − λj)/(rk+1 − λj)
=: B

(all quantities are positive by the remark made above). From Table 1 we
know that λi ≥ λj, so that rk+1 ≥ rk > λi ≥ λj. But then the function
f(λ) = (rk − λ)/(rk+1 − λ) is decreasing in λ, hence B ≤ 1. This implies

αi
k

αi
k+1

≤ αj
k

αj
k+1

(52)

It remains to show that this implies (51).

Let k0 be the first (smallest) k such that αi
k > 0. Then for k0 ≤ k ≤ m ≤ K

αi
k = βi

kmαi
m

where

βi
km :=

αi
k

αi
k+1

· αi
k+1

αi
k+2

· · · α
i
m−1

αi
m

for k < m and βi
mm = 1

Defining βj
km similarly, we see from (52) that βi

km ≤ βj
km for k0 ≤ k ≤ m ≤ K.

Claim 1: αi
K ≥ αj

K

Proof: assume the contrary, αi
K < αj

K . Then αi
k = βi

kK .αi
K < βj

kK .αj
K = αj

k

for k0 ≤ k ≤ K − 1, and
∑K

k=1 αi
k =

∑K
k=k0

αi
k <

∑K
k=1 αj

k. But this is
impossible because both sums must be equal to one.

Claim 2: αi
K + αi

K−1 ≥ αj
K + αj

K−1

Proof: assume the contrary, αi
K + αi

K−1 < αj
K + αj

K−1. Then αi
K−1 < αj

K−1

by Claim 1. Therefore αi
k = βi

k,K−1.α
i
K−1 < βj

k,K−1.α
j
K−1 = αj

k for k0 ≤ k ≤
K − 2. Again the same contradiction arises.
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Claim 3: αi
K + αi

K−1 + αi
K−2 ≥ αj

K + αj
K−1 + αj

K−2

Proof: as before, assuming the contrary implies αi
K−2 < αj

K−2 by Claim 2,

and this implies that αi
k < αj

k for k0 ≤ k ≤ K−3, leading to a contradiction.

Proceeding in this manner until K−` = k0, we obtain all the inequalities (51)
(the remaining ones are trivial). This proves assertion 4 and completes the
proof of Theorem 4.1.

¥
Proof of Proposition 4.4.

Let w be an equilibrium, with wi
k > 0 ∀i, ∀k. Then the first-order condi-

tions (13) take the form (remember rk = Ek/pk)

Ek

[
1− wi

k

wk

· 1

1 + ηk

]
= λipk ∀i, k (53)

Summing over i gives

Ek

[
N − 1

1 + ηk

]
= Λpk ∀k (54)

where Λ :=
∑

i λ
i > 0. The RHS of this equation is strictly increasing in

pk, and the LHS is weakly decreasing in pk by S.3, hence, for any given Λ,
there exists only one solution pk. If Λ increases, the curve described by the
RHS shifts upwards, and the LHS does not change, i.e. the intersection point
with the LHS shifts to the left, i.e. pk decreases, ∀k. Since the price function
pk = Pk(wk) is strictly increasing, wk = P−1

k (pk) also decreases strictly in Λ,
∀k. Since

∑
k wk =

∑
i W

i = W is constant, the numbers wk (and hence
also pk, ηk) are uniquely determined by (54) and the condition

∑
k wk = W .

Given this, the numbers wi
k (and the multipliers λi) are uniquely determined

by (53) and the budget constraints
∑

k wi
k = W i. ¥

Proof of Theorem 4.7

Write r∗k = Rk(w
∗
k) for the Nash quantities and r̂ = Rk(ŵk) for the competi-

tive values. Clearly,

r∗k

{
>
=
<

}
r̂ ⇔ w∗

k

{
<
=
>

}
ŵk

Fix an investor i. Denote by w∗−i
k = w∗

k − w∗i
k the total amount of money

invested in asset k by the ’others’. Define the sets K0 = {k | ŵk > w∗−i
k },

K1 = {k | ŵk = w∗−i
k }, K2 = {k | ŵk < w∗−i

k }. Then K0 is nonempty (because∑
k ŵk = W > W −W i =

∑
k w∗−i

k ), and

W i = W −
∑

k

w∗−i
k =

∑

k

(ŵk − w∗−i) =
∑

k∈K0

(ŵk − w∗−i) +
∑

k∈K2

(ŵk − w∗−i)
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If K2 6= ∅, the last sum is negative, hence
∑

k∈K0
(ŵk−w∗−i) > W i. Therefore,

investor i can find a deviating strategy wi ∈ Bi such that wi
k = 0 ∀k 6∈ K0

and ŵk > w∗−i
k + wi

k ∀k ∈ K0. Then Rk(w
∗−i
k + wi

k) > r̂ for k ∈ K0 and
πi(wi, w∗−i) =

∑
k∈K0

wi
kRk(w

∗−i
k + wi

k) > W ir̂, i.e. with the strategy wi the
investor achieves a rate of return higher than r̂. Since w∗i is a best reply to
w∗−i, we have πi(w∗) ≥ πi(wi, w∗−i) > r̂.

If K2 = ∅, then w∗−i
k ≤ ŵk ∀k and the strategy wi given by wi

k := ŵk −w∗−i
k

∀k is feasible for investor i. The profile (wi, w∗−i) ∈ B is competitive and
guarantees player i the return r̂. By assumption, the equilibrium w∗ is not
competitive, hence w∗i 6= wi. Moreover, since any equilbrium is strict by
Theorem 3.3, we must have πi(w∗) > πi(wi, w∗−1) = r̂.

¥

Proof of Theorem 5.1

By Lemma 3.2(ii) there exists a unique, strictly positive α0 = (α0
1, . . . α

0
K) ∈

∆K such that the return rk = R0 = r̂ in all markets is the same, viz. α0 = α̂.
We claim that this α̂ is ESS.

Fix an investor i and let him deviate to some strategy α0 + ε ∈ ∆K , where
ε = (ε1, . . . εK) 6= 0 and of course

∑
k εk = 0. Denote by α′ the new profile

where player i uses strategy α0 + ε and all other players use strategy α0.
Write R0 + dRk for the return rate in market k after this deviation, i.e. at
the profile α′.

The crucial observation is that ∀k εkdRk < 0 if εk 6= 0. Indeed, if εk > 0,
then more money is invested in asset k, which strictly increases the price of
this asset and strictly decreases the return Rk; and conversely for εk < 0.10

The deviator’s payoff after the deviation is

π̄i(α′) =
∑

k

(α0
k + εk)(R0 + dRk) =

∑

k

α0
k(R0 + dRk) +

∑

k

εkR0 +
∑

k

εkdRk

The second term in the last expression is zero, and the third term is negative,
by the observations made above. Therefore the payoff of a non-deviator j
(j 6= i) after the deviation is greater:

π̄j(α′) =
∑

k

α0
k(R0 + dRk) > π̄i(α′)

This proves that α0 is an ESS. It remains to show uniqueness.

10This argument parallels the one in Alós-Ferrer and Ania (2005a). Intuitively, as also
pointed out in this paper, if an investor shifts money from one market to another, he “works
against himself” by increasing the price of the asset which he is buying, and decreasing
the price of the asset which he is selling.
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Let β0 6= α0 be any other strategy. We have to show that the symmetric
profile ~β0 = (β0, . . . β0) ∈ (∆K)N is not an ESS, i.e. we have to show that
there exists a deviation ε = (ε1, . . . εK) with

∑
k εk = 0 which improves the

deviator’s relative position.

First it is clear that if β0
k = 0 for some k, then the rate of return for sufficiently

small investments in market k is arbitrarily large, and a small shift of money
into market k helps the deviator more than the others. Assume therefore
that β0 is strictly positive.

Denote by Rk the rate of return in market k under the symmetric profile ~β0.
Since β0 6= α0, we know from the first part of the proof that not all Rk

are equal, i.e. the vector (R1, . . . RK) is not orthogonal to the hyperplane
L = {z = (z1, . . . zK) ∈ RK |∑k zk = 0} in RK . Therefore we can find a
vector z ∈ L such that

∑
k zkRk > 0. Clearly, for t > 0 sufficiently small,

the vector ε = ε(t) = t.z is a feasible deviation, i.e. β0 + ε(t) ∈ ∆K .

Denote by Rk + dRk the return rate in market k after such a deviation, i.e.
at the new profile β′ = (β0 |i β0 + ε). Then, for the deviator i and any
non-deviator j:

π̄i(β′)− π̄j(β′) =
∑

k

(β0
k + εk)(Rk + dRk)−

∑

k

β0
k(Rk + dRk) =

∑

k

εk(Rk + dRk) =
∑

k

t.zk(Rk + dRk) = t.
∑

k

zk(Rk + dRk)

The last term is positive for t > 0 sufficiently small, because dRk → 0 for
t → 0. Thus we have found a deviation which makes the deviator better off
than the others, and β0 is not an ESS.

¥
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