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Abstract

We study the Ramsey (1928) model under the assumption that
households act strategically. We compute the Markov perfect equilib-
rium for this model and compare it to the original, competitive equi-
librium and to a strategic open-loop equilibrium proposed by Sorger
(2002, 2005b). We show that, if households are identical, strategic
behavior has no influence on the long run evolution of the economy.
If households are heterogeneous, however, the Markov perfect equilib-
rium has properties that differ from those of the competitive and the
open-loop equilibrium.
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1 Introduction

The model of optimal capital accumulation motivated by Ramsey (1928) has
arguably become the most important workhorse in modern dynamic macro-
economics. It forms the core of many models of economic growth, business
cycles, monetary economics, international trade, and development economics,
among many other fields. Models built on this framework are also used ex-
tensively to analyze policy issues.
In most applications, the Ramsey model is set up in the following way. The
economy is populated by infinitely many rational households and a represen-
tative firm, both of which live forever. Households have time additive utility
functions, and are usually identical with respect to their time preference
rates. The firm produces a single output good on a perfectly competitive
market, using a linear homogeneous production technology. Households own
the production factors capital and labor, which they rent to the firm to earn
factor income. As there are infinitely many households, each single house-
hold acts as a price taker on all markets. The output good is bought by the
households and used for consumption, which is the only source of utility, or
set aside to form capital for the next period.
This paper takes a different approach. We study a version of the Ramsey
model under the assumption that households act strategically. The depar-
ture from the competitive framework of price taking household behavior is
motivated by the following observations. First, the common assumption that
there are infinitely many households in the economy is obviously unjustified.
If we assume that the number of households is finite, rationality requires that
households realize their market power. Obviously, this is uncontroversial as
long as the number of households is small. This requirement is often met in
models of international trade, in which households are interpreted as coun-
tries, or in models of development economics, in which households are inter-
preted as powerful groups, such as ethnic or regional communities. However,
even if the number of households is large, a serious treatment of rationality
requires that households are strategically interacting agents. Although their
influence on prices may be very small, it is not considered negligible to a
rational household.
The second reason for departing from the competitive framework stems from
the Ramsey model itself. If time preferences are heterogeneous and house-
holds are price takers, then only the group of households who share the
smallest time preference rate will hold wealth in the long run. This is a
well known result, which has been conjectured already by Ramsey (1928)
and has been formally proved by Becker (1980). A severe shortcoming of
this result has been pointed out by Sorger (2002): if the number of house-
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holds who share the smallest time preference rate is finite, then the result
is conceptually inconsistent with one of the assumptions under which it is
derived, namely the price taking behavior of the households. Sorger (2002)
argues that, if all capital would be owned by only a finite number of ratio-
nal households, then these households would realize that they have market
power on the capital market and thus they would not take the return to
capital as exogenously given. He proposes a version of the Ramsey model, in
which households choose sequences of decision variables, knowing the inverse
factor demand functions of the representative firm and sequences of decision
variables for all other households in the economy. The households play an
open-loop Nash equilibrium in the factor markets. Sorger (2002) shows by
means of examples that in this model there exist stationary equilibria in
which all households own a positive amount of capital, that is, the Ramsey
conjecture does no longer hold. Becker (2004), Becker and Foias (2005), and
Sorger (2005b) derive further, more general results for this model. A short-
coming of the open-loop concept used by Sorger, Becker, and Foias is that the
resulting equilibrium is not sub-game perfect. We address this shortcoming
by studying a recursive version of the Ramsey model. Within our framework,
households choose optimal policy functions, given the inverse factor demand
functions of the firm and the optimal policy functions of all other households
in the economy. We solve for a stationary Markov perfect equilibrium of this
model. We believe that this equilibrium concept is the most adequate in
applications where the number of households is finite.

The remainder of the paper is organized as follows. Section 2 introduces
the Ramsey model and describes the competitive equilibrium and the open-
loop equilibrium of this model. Section 3 defines the stationary Markov per-
fect equilibrium of the Ramsey model. Section 4 analyzes stationary Markov
perfect equilibria assuming that households are identical with respect to their
utility functions, time preference rates, and initial capital endowments. Sec-
tion 5 considers the more general case where households are heterogeneous.
In this case, we are no longer able to compute the stationary Markov perfect
equilibrium analytically, and thus we use computational methods to derive
our results. Section 6 analyzes stability and dynamics of the stationary
Markov perfect equilibrium. Section 7 summarizes our main results and con-
cludes. Finally, we present a detailed description of our numerical algorithms
in an appendix.
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2 Model Formulation and Equilibrium Con-

cepts

The Ramsey (1928) model economy consists of a representative firm and H
infinitely-lived households, who own the production factors capital and labor.
Time is measured in discrete periods t ∈ {0, 1, 2, . . . }. In every period t, the
firm hires capital Kt and labor Lt from the households to produce a single
output good using a linear homogeneous production function F . Since the
firm takes market prices as given and maximizes its profit, factors are paid
their marginal products. Together with the assumption of constant returns to
scale, this implies that the firm earns zero profit in equilibrium. The output
good is bought by the households and is either used for consumption or set
aside to form capital for the next period. Households seek to maximize their
lifetime utility derived from consumption of the single good. Formally, each
household h = 1, 2, . . . , H chooses consumption and labor supply to solve

max
ch
t , lht

+∞∑
t=0

(βh)tuh(ch
t ) (1)

subject to

kh
t+1 = Rtk

h
t + Wtl

h
t − ch

t , t = 0, 1, 2, . . . ,

ch
t ≥ 0, kh

t+1 ≥ 0, 0 ≤ lht ≤ 1, t = 0, 1, 2, . . . .

The function uh : R+ 7→ R denotes household h’s utility function. The
remaining variables and parameters have the following interpretation: βh ∈
(0, 1) denotes a time discount factor, ch

t and lht denote consumption and
labor supply of household h in period t, and kh

t denotes its capital stock at
the beginning of period t. The initial capital stock of household h is a given
constant kh

0 . By Rt and Wt we denote the gross return on capital and the
wage rate, respectively, for period t.

2.1 Competitive Equilibrium and the Ramsey Conjec-
ture

Assume for the time being that households do not realize that their labor and
capital decisions influence prices. This assumption is adequate, for example,
if the number of households supplying labor and capital is very large.1 Then,
a competitive equilibrium may be defined as follows:

1Strictly speaking, this assumption is only justified if there are infinitely many house-
holds in the economy. Whenever the number of households is finite, rationality requires
that these households realize their market power.
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Definition 1. A competitive equilibrium from initial state (k1
0, k

2
0, . . . , k

H
0 ) is

a sequence E = (Wt, Rt, Lt, Kt, {(ch
t , k

h
t+1, l

h
t )|h = 1, 2, . . . , H})+∞

t=0 such that
the following conditions are satisfied:

1. For each household h ∈ {1, 2, . . . , H} the sequence (ch
t , k

h
t+1, l

h
t )+∞

t=0

solves household h’s maximization problem (1), given the sequences
of prices (Wt, Rt)

+∞
t=0 and the initial capital endowment kh

0 .

2. The firm behaves optimally, that is, Rt = 1+FK(Kt, Lt)− δ and Wt =
FL(Kt, Lt) hold for all t ∈ {0, 1, . . . }, where δ denotes the depreciation
rate of capital.

3. The factor markets clear, that is, Kt =
∑H

h=1 kh
t and Lt =

∑H
h=1 lht hold

for all t ∈ {0, 1, . . . }.
Definition 2. A sequence E = (Wt, Rt, Lt, Kt, {(ch

t , k
h
t+1, l

h
t )|h = 1, 2, . . . , H})+∞

t=0

is called a competitive equilibrium if there exists an initial state (k1
0, k

2
0, . . . , k

H
0 )

such that E is a competitive equilibrium from (k1
0, k

2
0, . . . , k

H
0 ). A competitive

equilibrium that is a constant sequence is called a steady state competitive
equilibrium.

Remark 1. In a competitive equilibrium it must hold that lht = 1 and Lt = H
for all h ∈ {1, 2, . . . , H} and all t ∈ {0, 1, . . . }. This is the case because every
household will always find it optimal to supply its entire labor endowment.

Ramsey (1928) conjectured that, in a stationary competitive equilibrium,
only the most patient households would own capital whereas all other house-
holds would have zero wealth. A formal proof of this conjecture has been
given by Becker (1980). A severe shortcoming of the result, however, has
been pointed out by Sorger (2002): if the number of households in the econ-
omy who share the smallest time preference rate is small, then the result is
conceptually inconsistent with one of the main assumptions under which it is
derived, namely with the price taking behavior of the households. Sorger ar-
gues that, if the entire capital stock belonged to only a few households, then
these households would realize that they have market power on the capital
market and thus they would not take the return on capital as exogenously
given. Sorger (2002) addresses this issue by studying a model in which the
households take the inverse capital demand function as given (instead of the
return to capital) and play a Nash equilibrium in the capital market. He
shows that there exist stationary equilibria in which all households own a
positive amount of capital. Sorger (2005b) considers a variant of this model
in which the households not only realize their market power on the capital
market but on all markets. The next section discusses Sorger’s results in
greater detail.
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2.2 Open-Loop Equilibrium

We consider the model economy introduced in the previous section. The
households, however, do no longer take the rental rates of capital and labor as
given, but know the inverse aggregate factor demand functions. The problem
of the households is to choose sequences of labor and consumption, given
the inverse factor demand functions and the sequences for capital and labor
provided by the other households in the economy. Formally, each household
h = 1, 2, . . . , H solves the problem

max
ch
t , lht

+∞∑
t=0

(βh)tuh(ch
t ) (2)

subject to

kh
t+1 = R(Kt, Lt)k

h
t + W (Kt, Lt)l

h
t − ch

t , t = 0, 1, 2, . . . ,

Kt =
H∑

j=1

kj
t , Lt =

H∑
j=1

ljt , t = 0, 1, 2, . . . ,

ch
t ≥ 0, kh

t+1 ≥ 0, 0 ≤ lht ≤ 1, t = 0, 1, 2, . . . .

R and W denote the inverse demand functions for capital and labor, respec-
tively. Sorger (2005b) defines an open-loop equilibrium as follows.

Definition 3. An open-loop equilibrium from initial state (k1
0, k

2
0, . . . , k

H
0 )

is a sequence E = (Wt, Rt, Lt, Kt, {(ch
t , k

h
t+1, l

h
t )|h = 1, . . . , H})+∞

t=0 such that
the following conditions are satisfied:

1. For each household h = 1, 2, . . . , H the sequence (ch
t , k

h
t+1, l

h
t )+∞

t=0 solves
household h’s maximization problem (2), given the functions R and W ,
the initial capital endowment kh

0 , and the H − 1 sequences of capital
stocks and labor, {(kj

t , l
j
t )

+∞
t=0 |j 6= h}.

2. The firm behaves optimally, that is, R(K, L) = 1 + FK(K, L) − δ and
W (K,L) = FL(K, L) hold for all K ≥ 0 and L ≥ 0.

Definition 4. A sequence E = (Wt, Rt, Lt, Kt, {(ch
t , k

h
t+1, l

h
t )|h = 1, 2, . . . , H})+∞

t=0

is called an open-loop equilibrium if there exists an initial state (k1
0, k

2
0, . . . , k

H
0 )

such that E is an open-loop equilibrium from (k1
0, k

2
0, . . . , k

H
0 ). An open-loop

equilibrium that is a constant sequence is called a steady state open-loop
equilibrium.
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Sorger (2002) considers an equilibrium definition that differs from the one
given above in that the households take the sequence of wage rates (Wt)

+∞
t=0

as given rather than the inverse factor demand function W . He shows by
means of examples that there exist steady state open-loop equilibria in which
all households own positive amounts of capital. Becker (2004) generalizes
Sorger’s examples to the case of a general Cobb-Douglas production function
and derives a necessary and sufficient condition for the Ramsey conjecture to
hold. Becker and Foias (2005) study the dynamics of the open-loop equilib-
rium. All of these papers deal with economies consisting of two households
only.

Sorger (2005b) studies economies with H households and uses the equi-
librium definition stated above.2 He shows that, in an open-loop equilibrium,
all households supply their entire labor endowment provided that the pro-
duction function satisfies standard assumptions and that labor demand is
elastic. He also investigates how changes in the time preference profile of
the economy affect the distribution of wealth in the steady state open-loop
equilibrium.

3 Stationary Markov Perfect Equilibrium

The results discussed in the previous section are derived using an equilib-
rium in sequence formulation: each household perfectly anticipates the se-
quences of factor prices (in the competitive equilibrium) or of labor supplies
and capital stocks of all other households (in the open-loop equilibrium),
and maximizes conditional on these sequences. Although open-loop equilib-
ria are time-consistent, they fail to be sub-game perfect. We address this
shortcoming by studying stationary Markov perfect equilibria, in which the
households choose policy functions that determine their decision variables,
knowing the optimal policy functions of all other households.

To study stationary Markov perfect equilibria, it is convenient to refor-
mulate the household’s problem in a recursive way. Let X = RH

+ be the space
of capital stocks. Then household h’s problem is to choose policy functions
ch : X 7→ R+ and lh : X 7→ [0, 1] such that

(ch(k1, k2, . . . , kH), lh(k1, k2, . . . , kH)) (3)

= argmaxch, lh

{
uh

(
ch

)
+ βhV h(k1′, k2′, . . . , kH ′)

}
,

2Sorger (2005b) assumes that the depreciation rate δ is equal to zero. The model
presented here allows for positive capital depreciation.
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where

V h(k1, k2, . . . , kH) = max
ch, lh

{
uh

(
ch

)
+ βhV h(k1′, k2′, . . . , kH ′)

}
,

kh′ = R(K, L)kh + W (K, L)lh − ch,

kj ′ = R(K,L)kj + W (K, L)lj(k1, k2, . . . , kH)− cj(k1, k2, . . . , kH), j 6= h,

K =
H∑

j=1

kj,

L = lh +
H∑

j 6=h

lj(k1, k2, . . . , kH).

The maximization is subject to non-negativity constraints ch ≥ 0, lh ∈ [0, 1],
and kh′ ≥ 0. The function V h : X 7→ R is household h’s value function.
Variables without time subscript correspond to the current period and primed
variables correspond to the next period.
We observe that a solution to household h’s problem is given by a pair of
policy functions ch and lh such that the Bellman equation

V h(k1, k2, . . . , kH) = uh
(
ch(k1, k2, . . . , kH)

)
+ βhV h(k1′, k2′, . . . , kH ′) (4)

holds, where, for all j ∈ {1, 2, . . . , H},

kj ′ = R(K,L)kj + W (K, L)lj(k1, k2, . . . , kH)− cj(k1, k2, . . . , kH).

We proceed by providing a formal definition of a stationary Markov perfect
equilibrium.

Definition 5. A stationary Markov perfect equilibrium is a set of value func-
tions {V h|h = 1, 2, . . . , H}, a set of policy functions {ch, lh|h = 1, 2, . . . , H},
and a pair of pricing functions R and W such that:

1. Given the value function V h and the other households’ policy functions
{cj, lj|j 6= h}, the policy functions {ch, lh} solve household h’s maxi-
mization problem (3); this holds for all households h = 1, 2, . . . , H.

2. Given the policy functions {cj, lj|j = 1, 2, . . . , H} , the value function
V h satisfies the functional equation (4); this holds for all households
h = 1, 2, . . . , H.

3. The firm behaves optimally, that is, R(K, L) = 1 + FK(K, L) − δ and
W (K,L) = FL(K, L) hold for all K ≥ 0 and L ≥ 0.
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We call these equilibria stationary Markov perfect equilibria because of
the fact that the policy functions and value functions do not depend explicitly
on the time variable t. The dynamics generated by such an equilibrium can
obviously be non-stationary. For this reason, let us also define what we mean
by an equilibrium path and a steady state generated by a stationary Markov
perfect equilibrium.

Definition 6. Let ({(V h, ch, lh)|h = 1, 2, . . . , H}, R,W ) be a stationary
Markov perfect equilibrium. An equilibrium path generated by this equilib-
rium is a sequence of vectors ({k1

t , k
2
t , . . . , k

H
t })+∞

t=0 satisfying the equilibrium
dynamics

kh
t+1 = R(Kt, Lt)k

h
t + W (Kt, Lt)l

h(k1
t , k

2
t , . . . , k

H
t )− ch(k1

t , k
2
t , . . . , k

H
t )

for all h ∈ {1, 2, . . . , H}, where Kt =
∑H

j=1 kj
t and Lt =

∑H
j=1 lj(k1

t , k
2
t , . . . , k

H
t ).

A steady state generated by a stationary Markov perfect equilibrium is a fixed
point of this set of difference equations.

We proceed by stating a set of necessary conditions which must be satis-
fied by any stationary Markov perfect equilibrium. To this end, let us define
Γh by

Γh

=
∂V h(k1′, k2′, . . . , kH ′)

∂kh′

×[RL(K, L)kh + W (K, L) + WL(K, L)lh(k1, k2, . . . , kH)]

+
∑

j 6=h

∂V h(k1′, k2′, . . . , kH ′)
∂kj ′ [RL(K, L)kj + WL(K, L)lj(k1, k2, . . . , kH)],

where, as before, K =
∑H

j=1 kj and L =
∑H

j=1 lj(k1, k2, . . . , kH).

Lemma 1. A stationary Markov perfect equilibrium satisfies the following
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conditions for all h ∈ {1, 2, . . . , H}:

∂uh(ch)

∂ch
− βh ∂V h(k1′, k2′, . . . , kH ′)

∂kh′

{ ≥
=

}
0 if kh′

{
=
>

}
0, (5)

Γh




≤
=
≥



 0 if lh(k1, k2, . . . , kH)





= 0,
∈ (0, 1),
= 1,

(6)

kh′ = R(K,L)kh + W (K, L)lh(k1, k2, . . . , kH)− ch(k1, k2, . . . , kH), (7)

R(K,L) = 1 + FK(K, L)− δ, (8)

W (K,L) = FL(K, L), (9)

K =
H∑

j=1

kj (10)

L =
H∑

j=1

lj(k1, . . . , kH) (11)

Proof. The proof follows immediately from the definition of a stationary
Markov perfect equilibrium. Conditions (5)-(6) are the first-order conditions
resulting from the household h’s optimization problem. Condition (7) is the
transition law for the individual capital stock of household h. Conditions (8)-
(9) define the inverse factor demand functions, and the last two conditions
(10)-(11) are the aggregate constraints.

Lemma 1 indicates that, in order to derive a stationary Markov perfect
equilibrium, we need to solve a system of functional difference equations. It
is well known that such systems hardly ever allow for analytical solutions. In
the special case where households are identical, however, one can analytically
compute the stable steady state generated by the stationary Markov perfect
equilibrium. If we allow for heterogeneity, this is no longer the case. The
next two sections discuss both cases in detail.

4 Homogeneous Households

We assume that all H households are identical, that is, they share the same
time preference factor, the same utility function, and the same initial capital
endowment:

βh = β, uh = u, kh
0 = k0 for all h = 1, 2, . . . , H
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In this special case, one can derive the steady states of the competitive equi-
librium, the open-loop equilibrium and the stationary Markov perfect equilib-
rium analytically. Lemmas 2, 3, and 4 present intermediate results. Theorem
1 provides our final result.

Let us start by noting the following simple observation. Since the pro-
duction function F is homogeneous of degree 1, its partial derivatives FK and
FL are homogeneous of degree 0. It follows therefore from Euler’s theorem
that

FKK(K, L)K + FKL(K,L)L = FKL(K, L)K + FLL(K, L)L = 0 (12)

holds for all K > 0 and L > 0.

Lemma 2. If households are identical, then it holds in every symmetric
(competitive, open-loop, or stationary Markov perfect) equilibrium that each
household provides its entire labor endowment.

Proof. Lemma 2 is obvious for the competitive equilibrium; see Remark 1.
Let us therefore consider the two strategic equilibria. In both cases, the
symmetry assumption implies

kh
t /Kt = lht /Lt = 1/H (13)

for all h ∈ {1, 2, . . . , H} and all t ∈ {0, 1, 2, . . .}.
For the open-loop equilibrium, we prove the lemma in the following way.

Since uh is an increasing function, it follows from (2) that each household h
chooses its labor supply in period t to maximize income in that period. The
latter is given by

Ih
t = R(K−h

t + kh
t , L−h

t + lht )kh
t + W (K−h

t + kh
t , L−h

t + lht )lht .

In the above expression we use K−h
t = Kt − kh

t and L−h
t = Lt − lht . Inserting

the inverse factor demand functions R(Kt, Lt) = 1 + FK(Kt, Lt) − δ and
W (Kt, Lt) = FL(Kt, Lt), we see that the derivative of household h’s income
with respect to its labor supply is given by

∂Ih

∂lht
= FKL(Kt, Lt)k

h
t + FLL(Kt, Lt)l

h
t + FL(Kt, Lt).

Substituting (13) and (12) into this equation, we obtain

∂Ih
t

∂lht
= FL(Kt, Lt) > 0.
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Obviously, this inequality is only consistent with an optimally chosen labor
supply if lht = 1.
Let us now consider a symmetric path generated by a stationary Markov
perfect equilibrium. Along such an equilibrium path, each household provides
a positive amount of capital. The equilibrium condition (5) implies therefore
that

∂V h(k1′, k2′, . . . , kH ′)

∂kh′ =
1

β

∂u(ch)

∂ch
> 0. (14)

Furthermore, from the equilibrium conditions (8)-(9) it follows that

RL(K,L)kh + WL(K, L)lh(k1, k2, . . . , kH)

= FKL(K,L)kh + FLL(K,L)lh(k1, k2, . . . , kH).

Combining this with (13) and (12) it follows that the condition

RL(K, L)kh + WL(K,L)lh(k1, k2, . . . , kH) = 0 (15)

holds along every symmetric equilibrium path generated by a stationary
Markov perfect equilibrium. Together with (14) this implies

Γh =
1

β

∂u(ch)

∂ch
W (K,L) > 0.

It follows therefore from condition (6) that lh(k1, k2, . . . , kH) = 1.

The intuition behind this result is as follows. In a strategic equilibrium
(open-loop or stationary Markov perfect), a change of the labor supply, dlht ,
has obviously two effects: a direct effect, W (Kt, Lt)dlht , and an indirect effect,
[RL(Kt, Lt)k

h
t + WL(Kt, Lt)l

h
t ]dlht . The direct effect is always positive, since

the wage rate is positive. Equation (15) shows that the indirect effect is
equal to 0 along any symmetric equilibrium path. Therefore, an increase
in the labor supply has a positive overall effect, and thus households will
provide their entire labor endowment.

Lemma 3. If households are identical, then the aggregate capital stocks in the
steady state open-loop equilibrium and the steady state competitive equilibrium
coincide.

Proof. Lemma 2 shows that all households provide their entire labor endow-
ment in equilibrium. Thus, the Euler equation for problem (2) is given by

∂uh

∂ch
t

≥ βh ∂uh

∂ch
t+1

[R(Kt+1, H) + RK(Kt+1, H)kh
t+1 + WK(Kt+1, H)] (16)

12



with equality if kh
t+1 > 0. From R(K, L) = 1 + FK(K,L) − δ, W (K, L) =

FL(K,L), (12), and (13) it follows that the Euler equation simplifies to

∂uh

∂ch
t

= β
∂uh

∂ch
t+1

R(Kt+1, H).

In a steady state of a symmetric open-loop equilibrium with positive aggre-
gate capital, it must therefore hold that

1

β
= R(K,H). (17)

It is well known that this is exactly the condition that pins down the com-
petitive steady state aggregate capital stock.

The interpretation of Lemma 3 is similar to that regarding the full em-
ployment of labor. In the open-loop equilibrium, a change of kh

t+1 has
the direct effect R(Kt+1, H)dkh

t+1 and an indirect effect [RK(Kt+1, H)kh
t+1 +

WK(Kt+1, H)]dkh
t+1. The indirect effect is equal to 0 if the equilibrium path is

symmetric. Since the indirect effect is not present in the competitive model,
the steady state aggregate capital stocks of the competitive equilibrium and
the open-loop equilibrium must coincide under symmetry.

Lemma 4. If households are identical, then the aggregate capital stock in
any stable steady state generated by a symmetric stationary Markov perfect
equilibrium coincides with the aggregate capital stock in the steady state com-
petitive equilibrium.

Proof. We prove Lemma 4 by showing that it is again equation (17) which
pins down the aggregate capital stock in a stable steady state generated by a
symmetric stationary Markov perfect equilibrium. To this end, we recall that
a stationary Markov perfect equilibrium must satisfy the Bellman equation
(4). Differentiating the Bellman equation yields

∂V h(k1, k2, . . . , kH)

∂kh
=

∂u(ch)

∂ch

∂ch

∂kh
+ β

∂V h(k1′, k2′, . . . , kH ′)

∂kh′

×
[
R(K, H) + RK(K, H)kh + WK(K, H)− ∂ch

∂kh

]

+ β
∑

j 6=h

∂V h(k1′, k2′, . . . , kH ′)
∂kj ′

×
[
RK(K,H)kj + WK(K,H)− ∂cj

∂kh

]
(18)
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and

∂V h(k1, k2, . . . , kH)

∂kj
=

∂u(ch)

∂ch

∂ch

∂kj
+ β

∂V h(k1′, k2′ . . . , kH ′)

∂kh′

×
[
RK(K,H)kh + WK(K, H)− ∂ch

∂kj

]

+ β
∂V h(k1′, k2′, . . . , kH ′)

∂kj ′

×
[
R(K,H) + RK(K,H)kj + WK(K,H)− ∂cj

∂kj

]

+ β
∑

i6=h,i6=j

∂V h(k1′, k2′, . . . , kH ′)
∂ki′

×
[
RK(K,H)ki + WK(K,H)− ∂ci

∂kj

]
. (19)

Now, in a completely analogous way as (15) has been derived, one can show
that

RK(K,L)ki + WK(K,L)li(k1, k2, . . . , kH) = RK(K, L)ki + WK(K,L) = 0
(20)

holds for all i ∈ {1, 2, . . . , H}. From (14) and (20) it follows that (18) and
(19) become

∂V h(k1, k2, . . . , kH)

∂kh
=

∂u(ch)

∂ch
R(K, H)

−β
∑

j 6=h

∂V h(k1′, k2′, . . . , kH ′)
∂kj ′

∂cj

∂kh
(21)

and

∂V h(k1, k2, . . . , kH)

∂kj
= β

∂V h(k1′, k2′, . . . , kH ′)
∂kj ′

[
R(K, H)− ∂cj

∂kj

]

−β
∑

i6=h,i6=j

∂V h(k1′, k2′, . . . , kH ′)
∂ki′

∂ci

∂kj
. (22)

In a symmetric equilibrium path generated by a stationary Markov perfect
equilibrium, it must hold for every j 6= h and every i 6= h that

∂V h(k1, k2, . . . , kH)

∂kj
=

∂V h(k1, k2, . . . , kH)

∂ki
. (23)
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In the steady state of a stationary Markov perfect equilibrium it must fur-
thermore hold for all j ∈ {1, 2, . . . , H} that

∂V h(k1′, k2′, . . . , kH ′)
∂kj ′ =

∂V h(k1, k2, . . . , kH)

∂kj
. (24)

Using (23) and (24), equation (22) becomes

1

β

∂V h(k1, k2, . . . , kH)

∂kj

=
∂V h(k1, k2, . . . , kH)

∂kj

[
R(K,H)− ∂cj

∂kj
−

∑

i6=h,i6=j

∂ci

∂kj

]
. (25)

Obviously, there are only two scenarios in which (25) holds. Either

∂V h(k1, k2, . . . , kH)

∂kj
= 0 (26)

or

1

β
= R(K, H)− ∂cj

∂kj
−

∑

i 6=h,i6=j

∂ci

∂kj
. (27)

In a stable symmetric steady state generated by a stationary Markov perfect
equilibrium, however, the condition (27) cannot hold. To show this, we
consider the Jacobian matrix associated with the equilibrium, which is given
by

J =




R(K, H)− ∂c1

∂k1 −∂c1

∂k2 . . . − ∂c1

∂kH

−∂c2

∂k1 R(K, H)− ∂c2

∂k2 . . . − ∂c2

∂kH

...
...

. . .
...

−∂cH

∂k1 . . . − ∂cH

∂kH−1 R(K, H)− ∂cH

∂kH




In a symmetric steady state, all entries in the diagonal are identical to each
other, as are all entries outside the diagonal. Formally,

∂ci

∂ki
=

∂cj

∂kj
=

∂c1

∂k1
for i, j = 1, . . . , H

∂ci

∂kj
=

∂cj

∂ki
=

∂c1

∂k2
for i, j = 1, . . . , H

This structure implies that the Jacobian has the eigenvalues

λ = R(K,H)− ∂c1

∂k1
− (H − 1)

∂c1

∂k2
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and

µ = R(K,H)− ∂c1

∂k1
+

∂c1

∂k2
,

whereby λ has multiplicity 1 and µ has multiplicity H − 1; see Lemma A.2
in Sorger (2005a). Under (27) it would follow that

λ =
1

β
− ∂c1

∂k2
, and µ =

1

β
+ (H − 1)

∂c1

∂k2
.

Since β ∈ (0, 1), this would imply that either λ > 1 or µ > 1, which cannot be
the case in a stable steady state. Thus, in the symmetric and stable steady
state generated by a stationary Markov perfect equilibrium, equation (26)
must hold. Using (14), (23), (24), and (26) we see that (21) is equivalent to
(17). This completes the proof of the lemma.

Lemmas 2, 3, and 4 allow us to formulate our main result for homogeneous
households in the following theorem.

Theorem 1. If households are identical, the symmetric and stable steady
state generated by any stationary Markov perfect equilibrium coincides with
the steady state competitive equilibrium and the steady state open-loop equi-
librium.

Proof. The proof follows directly from Lemmas 2, 3, and 4. We know from
Lemma 2 that each houshold provides the same amount of labor in every
steady state equilibrium. From Lemmas 3 and 4 we know that the aggregate
capital stocks coincide in all symmetric steady states. Since households are
identical, this carries over to the individual capital stocks.

5 Heterogeneous Households

When we consider heterogeneous households, we can no longer solve ana-
lytically for the steady state of the stationary Markov perfect equilibrium.3

In this case, we therefore find ourselves constrained to using computational
methods.

3The steady states of the competitive model and the open-loop equilibrium have been
fully characterized by Becker (1980) and Sorger (2005b), respectively.
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5.1 Numerical Method

We choose a Least Squares Projection method to determine the stationary
Markov perfect equilibria numerically. We select this method since it allows
us to implement high-order approximations easily, such that we are confident
that our results are very accurate. We approximate each household’s value
function by a parametric function in all individual capital stocks, using a
least squares projection method. We derive the coefficient vector of the ap-
proximate value functions such that the set of equilibrium conditions (5)-(11)
and the Bellman equation (4) are satisfied for every household. Given ap-
proximate value functions, we can derive the corresponding policy functions
in a straightforward manner. The latter can be used to compute the Markov
perfect steady state as the fixed point of the system dynamics. A detailed
discussion and outline of our method is given in the appendix.
Using numerical methods requires us furthermore to specify the technology
and utility functions. In order to guarantee comparability with previous
studies, we select a Cobb-Douglas production function,

F (K,L) = AKαL1−α (28)

and a constant elasticity of substitution utility function,

uh(ch) =

{
ch1−σh

1−σh if σh 6= 1

log ch if σh = 1
(29)

This is a very convenient choice, such that we do not present any further dis-
cussion. Finally, we need to assert values to the structural parameters of the
model. Table 1 summarizes these choices. For computational convenience,

Table 1: Benchmark Parameter Values
H A α δ σ1 σ2 β1 β2

2 1 0.36 0.05 1 1 0.94 0.91

we set the number of households equal to two. We believe this generates
interesting results while keeping the computational burden at a moderate
level. The total factor productivity A is normalized to 1. Our benchmark
calibration sets the capital share to 0.36, the depreciation rate equal to 0.05,
both utility function parameters σ1 and σ2 equal to 1, and the discount fac-
tors equal to β1 = 0.94 and β2 = 0.91, respectively. To experiment with
the model, and to check the sensitivity of our results with regard to different
parameter choices, we vary δ, σ1, σ2, β1, and β2 throughout our analysis.
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5.2 Results

We begin the discussion of our results by making the following remark on
the full provision of labor.

Remark 2. In all cases we consider, households find it optimal to supply their
entire labor endowment in equilibrium.

This result may not be valid generally, but our results show that the ob-
servation goes through for a broad variety of calibrations. We find this not
surprising. As was already demonstrated in the previous section for homo-
geneous households, an increase in the labor supply has a first-order positive
effect on income, as well as a second-order effect which can be positive or
negative, depending on individual labor supplies and capital holdings. This
suggests that in many cases the overall effect will be positive, such that
households supply their entire labor endowment.
Keeping this result in mind, we restrict our discussion to the steady state
capital stocks. For our benchmark calibration, we observe the following re-
sult. In both strategic equilibria, the aggregate capital stock is smaller than

Table 2: Steady State Capital Stocks: Benchmark Calibration

Markov perfect Open-loop Competitive
k1 k2 K k1 k2 K k1 k2 K

7.1581 2.5781 9.7362 6.8472 2.8161 9.6633 12.0880 0 12.0880

H = 2, A = 1, α = 0.36, δ = 0.05, σ1 = σ2 = 1, β1 = 0.94, β2 = 0.91

in the competitive equilibrium. The stationary Markov perfect equilibrium
delivers a slightly higher steady state aggregate capital stock than the open-
loop equilibrium. Furthermore, capital holdings are more dispersed in the
stationary Markov-perfect equilibrium: the patient household owns a larger
fraction of the aggregate stock in the Markov perfect steady state as com-
pared to the open-loop steady state. However, in both strategic equilibria,
the less patient agent owns a positive amount of capital such that, contrary
to the competitive equilibrium, the Ramsey conjecture does not hold. We
find that these main characteristics of the results for the benchmark cali-
bration carry over to a broad range of parameter values. The remainder of
this section presents characteristics of our results for parameter sets different
from the benchmark calibration.

Observation 1. If households are heterogeneous, utility functions have an
impact on the steady state Markov perfect equilibrium.
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We find this observation particularly interesting, since the utility func-
tions have no impact on the steady state of the competitive and the open-loop
equilibrium of the Ramsey model. For the stationary Markov perfect equi-
librium, however, they play a non-negligible role, and they affect both the
slope and the level of the policy functions. Table 2 provides some numer-
ical examples that emphasize this result. It lists individual capital stocks
for different values of the elasticity of substitution parameters σ1 and σ2.
We observe that for a given σj, the steady state capital stock of household

Table 3: Steady State Capital Stocks
Markov perfect Open-loop Competitive

σ1 σ2 k1 k2 K k1 k2 k1 k2

1 1 7.1581 2.5781 9.7362 6.8472 2.8161 12.0880 0
1 3 6.9303 2.7145 9.6448 6.8472 2.8161 12.0880 0
1 5 6.8469 2.7677 9.6146 6.8472 2.8161 12.0880 0
3 1 7.3361 2.4706 9.8067 6.8472 2.8161 12.0880 0
3 3 7.0604 2.6395 9.6999 6.8472 2.8161 12.0880 0
3 5 6.9594 2.7022 9.6616 6.8472 2.8161 12.0880 0
5 1 7.4165 2.4205 9.8370 6.8472 2.8161 12.0880 0
5 3 7.1213 2.6053 9.7266 6.8472 2.8161 12.0880 0
5 5 7.0128 2.6731 9.6859 6.8472 2.8161 12.0880 0

K = 9.6633 K = 12.0880

H = 2, A = 1, α = 0.36, δ = 0.05, β1 = 0.94, β2 = 0.91

h 6= j increases when σh increases, whereas the steady state capital stock of
household j decreases. This holds for all numerical examples we consider.

Observation 2. In the steady state of the stationary Markov perfect equilib-
rium, the ordering of households according to their capital holdings coincides
with the ordering according to their time preference rates. The more patient
a household is, the more capital it holds in the steady state.

This result seems obvious as long as we consider equal utility functions
among households. However, if utility functions are different, our first obser-
vation suggests that there may be cases, in which the ordering of households
according to their time preference rates does not coincide with the ordering
according to their steady state capital holdings. Observation 2, however,
states that this is not the case.
Since we are again not able to prove this in general, we give examples that
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Table 4: Markov Perfect Steady State Capital Stocks
k1 k2

β1 = 0.92510 β2 = 0.92490 4.8625 4.8335
β1 = 0.92501 β2 = 0.92499 4.8492 4.8475

H = 2, A = 1, α = 0.36, δ = 0.05, σ1 = 1, σ2 = 5

underscore this observation. From our first observation we would expect that
the less patient household may own a larger capital stock than the more pa-
tient one, if both households are almost equally patient, and the less patient
household has a substantially higher elasticity of substitution parameter. The
results in Table 4 show that the coincidence of orderings holds even in this
case. We are thus confident that the result carries over to a broad range of
parametric cases.

Observation 3. A mean preserving spread of time preference factors in-
creases substantially the dispersion between individual Markov perfect steady
state capital holdings, but has only minor implications for the aggregate
Markov perfect steady state capital stock.

Table 5: Mean Preserving Spreads in Discount Factors

Markov perfect Open-loop Competitive
β1 β2 k1 k2 K k1 k2 K k1 k2 K

0.925 0.925 4.85 4.85 9.70 4.85 4.85 9.70 4.85 4.85 9.70
0.93 0.92 5.62 4.08 9.70 5.52 4.17 9.69 10.41 0 10.41
0.94 0.91 7.16 2.58 9.74 6.85 2.82 9.66 12.09 0 12.09
0.95 0.90 8.69 1.14 9.82 8.13 1.47 9.61 14.21 0 14.21

H = 2, A = 1, α = 0.36, δ = 0.05, σ1 = 1, σ2 = 1

We see from the results in Table 5 that a mean preserving spread increases
the competitive steady state capital stock substantially.4 For both the steady
state open-loop equilibrium and the steady state Markov perfect equilibrium,
we observe that the dispersion between individual capital holdings increases,

4To facilitate the reading of Table 5, we display the steady state capital stocks with
only two digits after the comma.
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whereas the aggregate capital stock is only moderately affected.
In our numerical examples, we observe a small decrease in aggregate capital
holdings for the open-loop equilibrium. This observation relates to a find-
ing in Sorger (2005b), who proves that mean preserving spreads in discount
rates (ρ1, ρ2, . . . , ρH), defined by ρh = 1/βh − 1, lead to higher aggregate
steady state capital stocks for the open-loop equilibrium.5 These results,
however, do not carry over to mean preserving spreads in time preference
rates (β1, β2, . . . , βH), since mean preserving spreads in (β1, β2, . . . , βH) do
not induce mean preserving spreads in (ρ1, ρ2, . . . , ρH).
Finally, we observe in our examples that the aggregate capital stock in the
steady state generated by the stationary Markov perfect equilibrium increases
for mean preserving spreads in (β1, β2). However, we cannot provide a formal
proof that this relationship always holds.

Observation 4. The stationary Markov perfect equilibrium need not lead to
a higher steady state aggregate capital stock as compared to the open-loop
equilibrium, and need not exhibit more dispersion between the individual
steady state capital holdings.

Our results so far have shown that for many calibrations, in the steady
state of the stationary Markov perfect equilibrium the aggregate capital stock
is higher, and individual capital holdings are more dispersed, as compared
to the open-loop equilibrium. However, this is not generally true. Table 3
has demonstrated three situations in which the stationary Markov perfect
equilibrium leads to a smaller aggregate steady state capital stock. These
are cases in which the less patient household has a higher elasticity of substi-
tution parameter. Among these situations, we believe the case where σ1 = 1
and σ2 = 5 is particularly interesting, since both households save less in the
Markov perfect steady state than in the open-loop steady state.
Moreover, our results so far indicate that the stationary Markov perfect equi-
librium exhibits more dispersion between the individual steady state capital
holdings, as compared to the open-loop equilibrium. Table 6 demonstrates
that this need not be the case. If σ1 is very low and σ2 is very high, then we
observe situations in which the less patient agent saves more, and the patient
agent saves less in the Markov perfect steady state, as compared to the open-
loop steady state. Table 6 illustrates such a scenario. In the case of equal
utility functions, σ1 = σ2 = 0.5, the patient household saves more in the
Markov perfect steady state, whereas the less patient household saves less.

5In particular, Sorger (2005b) shows that if the production function is Cobb-Douglas,
mean preserving spreads in discount rates (ρ1, ρ2, . . . , ρH) do not affect the aggregate
steady state capital stock of the open-loop equilibrium, as long as the number of households
owning positive wealth is not altered.
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As stated by our first observation, increasing the elasticity of substitution
parameter of the less patient household causes a decrease in the steady state
capital stock of the patient household, whereas it increases the steady state
capital stock of the less patient household. Indeed, if σ2 = 7, we observe
that the patient household saves less in the Markov perfect steady state as
compared to the open-loop equilibrium, whereas the less patient household
saves more.

Table 6: Less Dispersed Capital Holdings
Markov perfect Open-loop Competitive

k1 k2 k1 k2 k1 k2

σ1 = 0.5 σ2 = 0.5 7.2001 2.5581 6.8472 2.8161 12.0880 0
σ1 = 0.5 σ2 = 7 6.7431 2.8387 6.8472 2.8161 12.0880 0

H = 2, A = 1, α = 0.36, δ = 0.05, β1 = 0.94 , β2 = 0.91

Observation 5. The equilibrium consumption function of household h, ch,
is monotonically increasing in kh, and may be increasing or decreasing in the
other household’s capital stock, kj, j 6= h.

Figure 1: Equilibrium consumption of household 1
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H = 2, A = 1, α = 0.36, δ = 0.05, σ1 = σ2 = 1, β1 = 0.94, β2 = 0.91

22



Figure 1 emphasizes this observation graphically. It displays optimal
consumption of household 1 as a function of its own capital stock, holding
the other household’s capital stock fixed at k2 = 0, k2 = 3, and k2 = 6,
respectively.

We observe that for each k2, consumption of household 1, c1, is increas-
ing in its capital stock, k1. Furthermore, we see that the role of the other
household’s capital stock, k2, is ambiguous. For small values of k1, c1 is
increasing in k2. For large values of k1, the opposite is true. We find that
these properties hold for a broad class of calibrations.

6 Dynamics and Stability

This section analyzes the stability and dynamics of Markov perfect equilib-
ria in the Ramsey model. We find that for all parametric cases we consider,
the steady state generated by the Markov perfect equilibrium is very sta-
ble. We observe furthermore that the structural parameters of the model, in
particular the elasticity of substitution parameters σ1 and σ2, have a strong
influence on the dynamics of the model around the steady state. This relates
to one of our previous observations, that the elasticity of substitution pa-
rameters affect both the level and slope of the equilibrium policy functions.
The following plots emphasize these observations.
We first consider the case where households are heterogeneous with respect
to their time preference rates, but share the same elasticity of substitution
parameters.6 Figure 2 visualizes the convergence to the benchmark steady
state, starting from steady states implied by different time preference pro-
files.7 We see that the equilibrium exhibits standard convergence properties.
Figure 2 does hardly change when we increase σ1 and σ2 simultaneously to
three or five, respectively. As long as both households share the same elastic-
ity of substitution parameters, an increase of σ1 and σ2 influences the speed
of convergence to the steady state, but affects its direction only moderately.
In the following we consider different elasticity of substitution parameters
across households. We observe that the Markov perfect equilibrium dynam-
ics are highly dependent on the choice of σ1 and σ2. Figure 3 visualizes one
example that we find particularly interesting. One can see from Figure 3

6The case of identical households is not explicitly discussed, since the dynamics are
very similar to the case of heterogeneous households.

7The terms in brackets in the graphs quote the discount factors β1 and β2 corre-
sponding to the respective steady states. For example, [0.95, 0.90] labels the steady state
corresponding to the parameter values H = 2, A = 1, α = 0.36, δ = 0.05, σ1 = σ2 = 1
and β1 = 0.95, β2 = 0.90, respectively.
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Figure 2: Transition to the benchmark steady state
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Figure 3: Transition to a steady state with σ1 = 3, σ2 = 1
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that during the transition from the steady state implied by β1 = 0.93 and
β2 = 0.90 to the steady state implied by β1 = 0.94 and β2 = 0.91, the less
patient household temporarily owns a bigger capital stock than in each of the
two steady states. On the other hand, during transition from the steady state
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implied by β1 = 0.95, β2 = 0.92 to the steady state implied by β1 = 0.94,
β2 = 0.91, it owns a smaller capital stock than in each of the two steady
states. The latter observation suggests that there may exist situations, in
which the less patient household temporarily holds no wealth during the
transition to the steady state. Figure 4 displays such a scenario. It shows
the convergence to the steady state implied by β1 = 0.95 and β2 = 0.90,
starting from three different capital endowments. We see that if the initial

Figure 4: A temporarily binding no-borrowing constraint
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capital stocks are given by k1
0 = 15.5 and k2

0 = 1, the less patient household
temporarily holds no capital during the transition to the steady state. The
intuition behind this result is as follows: initially, both households own more
capital than they want to in steady state, such that both households steadily
reduce their capital stocks. After some time, the less patient household is
no longer willing to hold any capital, whereas the more patient agent still
reduces its capital holdings. Obviously, since capital supply is steadily de-
creasing, the rental rate of capital is steadily increasing. Once it has reached
a certain level, the less patient household is again willing to save, since it
receives a very high return on its savings. Whereas the more patient agent
still reduces its capital holdings, the less patient agent accumulates capital
until they reach the steady state.
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7 Conclusion

We conclude by summarizing the main contributions of our paper, by dis-
cussing some possible extensions, and by pointing to possible applications.
Our contributions are the following: we formulate Markov perfect equilib-
ria for the Ramsey model economy; we prove that in the case of homoge-
neous households, strategic behavior does not affect the economy in the long
run; we analyze steady state equilibria with heterogeneous households and
study the implications of different equilibrium concepts; we study the sta-
bility and local dynamics of Markov perfect equilibria; finally, we provide a
well-behaved algorithm implemented in the popular programming language
MATLAB, which can easily be adapted to related problems.
We see three possible extensions of our analysis. First, we could study a
model with more than two heterogeneous households. Although we are con-
fident that our main characteristics of the Markov perfect equilibrium for
two households carry over, there may obviously be additional insights gained
by studying this more general case. A second possible extension relates to
the role of firms. In our model, we make the crucial assumption that there
is a single firm that operates on a competitive market. One could obviously
extend the model by allowing for a finite number of strategically interact-
ing firms. However, this is problematic, since we would need very strong
assumptions on the firms’ objectives throughout the analysis. A third pos-
sible extension is to incorporate uncertainty into the analysis, for example,
by introducing shocks to households’ preferences or to the firm’s production
technology. This, we believe, is the most interesting extension of our analysis,
since valuable insights may be gained from studying the households’ response
to shocks in a strategic environment.
Finally, we see a number of possible applications, in which Markov perfect
equilibria are the adequate model solution concept. For example, in trade
theory, Markov perfect equilibria of small dynamic models could be used
to investigate the distribution of capital across countries, or to study ques-
tions related to the balance of payments, among others. Within this field,
one interesting exercise would be to set up a model with a small number of
households, which are given the interpretation of countries. Countries differ
by their time preferences, their utility functions, their initial capital endow-
ments, and their production technologies. Each country produces the same
output good, using labor and capital as inputs. Labor is immobile, whereas
capital is mobile: countries may either use their capital for production in the
domestic market, or may rent their capital to other countries to earn factor
income. Within this model, we believe, interesting results can be obtained
by studying strategic behavior of countries. For example, one could ana-
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lyze the distribution of capital, or current accounts, in the Markov perfect
equilibrium of this model.
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A Numerical Strategy

This appendix discusses the numerical strategy we use to derive the Markov
perfect equilibrium of the Ramsey model. For notational convenience, we
describe the algorithm for H = 2 households. Extensions to a larger number
of households are straightforward.
Our algorithm is a variant of the least squares projection method intro-
duced into economics by Judd (1992). We find that this method is very well
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suited for our purpose, since it allows for the easy implementation of high-
order approximations. By using families of orthogonal polynomials, such as
Chebyshev polynomials, in the approximate value and policy functions, we
are able to increase the accuracy of our results to practically any desired level
by raising the order of approximation. Due to the orthogonality property of
Chebyshev polynomials, we can avoid multicollinearity problems which are
often encountered when applying high-order approximation methods.

The general idea underlying our algorithm is to find approximate value
functions, such that the system of equilibrium conditions (5)-(11) and the
Bellman equation (4) hold (approximately). To this end, we start by selecting
parametric functional forms

V 1(k1, k2) ≈ Ṽ (k1, k2; θ1) =
∑

i,j=0,...,P ; i+j≤P

θ1
ijTi(ξ(k

1))Tj(ξ(k
2)) (30)

V 2(k1, k2) ≈ Ṽ (k1, k2; θ2) =
∑

i,j=0,...,P ; i+j≤P

θ2
ijTi(ξ(k

1))Tj(ξ(k
2)) (31)

where θ1 and θ2 denote the parameter vectors for households 1 and 2, respec-
tively. P gives the order of approximation, and Ti denotes the Chebyshev
polynomial of order i. Chebyshev polynomials, which are defined recursively
by

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2(x) for i = 2, 3, . . .

are well suited for approximation, since they constitute a family of orthogonal
polynomials in the interval [−1, 1].8 We derive upper and lower bounds of
the state space, k̄ and k, by constructing a sufficiently large interval around
the steady state generated by the open-loop equilibrium, and use

ξ(k) = 2
k − k

k̄ − k
− 1

to map the state space into the interval [−1, 1]. We select P = 14 since we
are confident that this guarantees that our result are sufficiently accurate.9

8For further information, see Judd (1998).
9Our choice of P is not arbitrary. We know that in the special case where households

are identical, the steady states of the stationary Markov perfect equilibrium, the open-
loop equilibrium and the competitive equilibrium coincide. Obviously, we can compute
the latter two steady states analytically. This gives us the opportunity to fine tune our
algorithm. We do that by determining the order of approximation for which we derive suf-
ficiently accurate results for the steady state of the stationary Markov perfect equilibrium,
when households are identical. In practice, we use the parametric case where α = 0.36,
δ = 0.05, β1 = β2 = 0.925 and σ1 = σ2 = 1, and we raise the order of approximation until
the relative error of aggregate capital stocks is smaller than 1e-5.
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We continue by selecting n gridpoints for each capital stock as the zeros of the
Chebyshev polynomial of order n, and by combining these points to create a
bivariate grid of size n2 × 2. We denote this grid by [k1

m k2
m], m = 1, . . . , M ,

where we use M = n2 for notational convenience. In our application, we set n
equal to 15, since we find that a larger n has a negligible effect on the accuracy
of the solution, while increasing the computational time substantially.10

For any given θ, it is straightforward to find approximate policy functions
such that (5)-(11) hold. In a stationary Markov perfect equilibrium, how-
ever, also the Bellman equation (4) must be satisfied. We use an iterative
procedure to find a parameter vector θ̄ for which this is true, that is, (5)-(11)
and (4) hold.
Before discussing the steps involved in this procedure in detail, we introduce
some new notation and place a remark on the full provision of labor.
We denote by c̃(k1

m, k2
m; θ1) and c̃(k1

m, k2
m; θ2) the approximate optimal con-

sumption functions for households 1 and 2, respectively. These functions
are uniquely implied by the approximate value functions Ṽ (k1, k2; θ1) and
Ṽ (k1, k2; θ2). Finally, we define

g̃(k1, k2; θ1) = R(k1 + k2, 2)k1 + W (k1 + k2, 2)− c̃(k1, k2; θ1) (32)

and

g̃(k1, k2; θ2) = R(k1 + k2, 2)k2 + W (k1 + k2, 2)− c̃(k1, k2; θ2) (33)

Obviously, g̃(k1, k2; θ1) and g̃(k1, k2; θ2) are the households’ saving functions
when both provide one unit of labor. Since households derive no disutility
of labor, we are confident that providing the entire labor endowment is in-
deed optimal in equilibrium. Throughout our algorithm we thus assume that
l1 = l2 = 1 holds, such that we need not explicitly solve for optimal labor
supply from the equilibrium conditions. Obviously, this implies that the next
period capital stocks are given by k1

m
′
= g̃(k1, k2; θ1) and k2

m
′
= g̃(k1, k2; θ2),

respectively. We are of course aware of the fact that there might be circum-
stances under which a household would want to reduce its labor supply to
influence prices. Therefore, we check that the full labor supply assumption
holds, after having derived optimal policy functions. Indeed, we find that
the full provision of labor is optimal for all households in every parametric
case we consider.11

10By choosing n = 15 our least squares projection method actually becomes very similar
to a Collocation projection method, in which the residuals of the Bellman equation are
set equal to zero for a finite number of points.

11If the full provision of labor was not optimal for any household, we would have to
rewrite the algorithm to allow for flexible labor supply. Although such a more general
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Our iterative procedure to compute the parameter vectors θ1 and θ2,
which correspond to the stationary Markov perfect equilibrium, then involves
the following steps.

1. First we derive initial estimates of θ1 and θ2. To this end, we compute
the value of every grid point [k1

m k2
m], m = 1, . . . ,M , for each house-

hold, assuming it lived only for one period and consumed all its wealth
and income at once. Using the results of the one-period problem, we
compute initial estimates, θ∗ = [θ1∗ θ2∗], by ordinary least squares.12

2. Given approximate value functions Ṽ (k1, k2; θ1∗) and Ṽ (k1, k2; θ2∗), we
use the equilibrium condition (5) to express optimal current consump-
tion of both households as functions of next period capital stocks. We
use these expressions in the full labor supply saving functions (32) and
(33), such that we obtain a system of two non-linear equations in two
unknowns, k1

m
′
and k2

m
′
, for each point in the grid. We derive k1

m
′
and

k2
m
′
, m = 1, . . . , M , using a non-linear equations solver. Given next

period capital stocks, we compute optimal consumption from (5), that
is, we compute c1

m = c̃(k1
m, k2

m; θ1∗) and c2
m = c̃(k1

m, k2
m; θ2∗) for all m.

We then derive the right hand-sides of the Bellman equations (4) as
functions of current capital stocks, k1

m and k2
m, and of parameters, θ1∗

and θ2∗. That is, we compute

rhs1
m = u1(c̃(k1

m, k2
m; θ1∗)) + β1Ṽ (g̃(k1

m, k2
m; θ1∗), g̃(k1

m, k2
m; θ2∗); θ1∗)

rhs2
m = u2(c̃(k1

m, k2
m; θ2∗)) + β2Ṽ (g̃(k1

m, k2
m; θ1∗), g̃(k1

m, k2
m; θ2∗); θ2∗)

for all gridpoints m = 1, . . . , M . Then, we derive a new parameter
estimate θ̂ = [θ̂1 θ̂2] as

θ̂ = arg min
θ

M∑
m=1

(
(Ṽ (k1

m, k2
m; θ1)− rhs1

m)2 + (Ṽ (k1
m, k2

m; θ2)− rhs2
m)2

)

Finally, we check whether |θ∗− θ̂| < ε, where ε denotes the convergence
criterion, which we set to 1e−6. If converge has not been achieved, we
set θ∗ = θ̂ and repeat the step. If |θ∗ − θ̂| < ε holds, we let θ̄ denote
the final parameter vector and proceed to the next step.

algorithm is relatively easy to implement, we think that our version is preferable. It is
substantially faster and more reliable, since we do not have to account for occasionally
binding constraints.

12In some cases it may be that the algorithm fails to converge, since the initial guess
derived from the one-period problem is too far away from the true solution. In these cases,
however, one can usually apply homotopy methods to derive a better initial guess.
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3. We check whether the optimality assumption of full labor supply holds
for θ̄. To this end, we inspect whether

0 < Ṽ ′
(1)(g̃(k1

m, k2
m; θ̄1), g̃(k1

m, k2
m; θ̄2); θ̄1)

×
[
RL(Km, 2)k1

m + W (Km, 2) + WL(Km, 2)
]

+ Ṽ ′
(2)(g̃(k1

m, k2
m; θ̄1), g̃(k1

m, k2
m; θ̄2); θ̄1)

[
RL(Km, 2)k2

m + WL(Km, 2)
]

and

0 < Ṽ ′
(2)(g̃(k1

m, k2
m; θ̄1), g̃(k1

m, k2
m; θ̄2); θ̄2)

×
[
RL(Km, 2)k2

m + W (Km, 2) + WL(Km, 2)
]

+ Ṽ ′
(1)(g̃(k1

m, k2
m; θ̄1), g̃(k1

m, k2
m; θ̄2); θ̄2)

[
RL(Km, 2)k1

m + WL(Km, 2)
]

hold for all points in the grid, m = 1, . . . ,M . Here, Km = k1
m +k2

m and
Ṽ ′

(j)(k
1
m, k2

m; θ̄h) denotes the derivative of household h’s approximate
value function with respect to the jth argument.

4. Finally, we use the policy functions to compute the fixed point

k1∗ = g̃(k1∗, k2∗; θ̄1), k2∗ = g̃(k1∗, k2∗; θ̄2)

where k1∗ and k2∗ denote the steady state capital stocks generated by
the stationary Markov perfect equilibrium.

For further technical details we refer the reader to the MATLAB codes,
which are available from the authors upon request and will be available on
the authors’ websites by the time of publication.
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