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1 Introduction

Romer (1990) was the first to formally demonstrate within a dynamic general equilibrium frame-
work how the excludability of ideas creates incentives for research and development (R&D),
and how these incentives can lead to endogenous growth of per-capita output. He assumed that
there exists a range of intermediate goods, each one produced according to a different design.
The patent system ensures that every design can be used only by a single producer who is
therefore able to make positive profits. The prospect of inventing new designs that generate
positive profit flows induces households to devote part of their labor force (or human capital) to
R&D. As a result, the range of intermediate goods expands over time (horizontal innovations,
variety expansion) and per-capita output grows.

Romer (1990) as well as many other writers following his approach assumed that all intermediate
goods have the same quality, that is, they are equally useful in the production of final output.1

This homogeneity assumption rules out creative destruction: once a good has been invented,
it is produced and used forever at the same rate as all other goods. Grossman and Helpman
(1991a, 1991b) and Aghion and Howitt (1992), on the other hand, introduced models in which
R&D leads to the improvement of existing products rather than to the invention of new ones.
In these models, the range of intermediate goods remains constant, but the quality of any
given product increases over time (vertical innovations, quality improvements). As soon as an
improved design for a product is invented, the innovator captures the whole market for that
particular variety by setting a limit price. In other words, these so-called Schumpeterian growth
models describe a process of creative destruction.

In the present paper we modify the model of horizontal innovations by assuming that inter-
mediate goods can be heterogeneous with respect to their quality. Since the quality of an
intermediate good determines its productivity in the final good sector, it follows that designs
for high-quality products are more valuable than those for low quality products. Researchers
can determine the quality of their designs at the time of invention. In doing so they face a
trade-off between the quality (and, hence, the value) and the quantity of new inventions because
designs of high quality require more research effort than those of low quality. The researchers
select that point on the quality/quantity frontier which maximizes the return to their research
effort.

Adding a quality dimension to the model of horizontal innovations gives it a distinctive Schum-
peterian flavor. As the quality of intermediate goods increases, final good producers substitute
the new and better goods for the old and inferior ones. Because different intermediate goods
are imperfect substitutes for each other, this does not lead to an immediate replacement of the
old inputs by the new ones, as in the above mentioned models of vertical innovation, but to a
slow reduction of the utilization of low quality inputs. More specifically, the ratio between the
production rate of any given intermediate good and the average production rate of all interme-
diate goods converges to zero at a finite rate. Instead of the creative destruction captured by
models of vertical innovations, our model is therefore more appropriately described as one of
creative displacement , whereby the process of displacement happens faster in quickly growing
economies than in slowly growing ones.

1For a recent survey see Gancia and Zilibotti (2005).
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Including the quality decision in the model of horizontal innovations has also another advantage,
which has to do with the scale effect. What makes endogenous growth possible in all R&D driven
growth models is an external effect of existing knowledge on the productivity of researchers.
This externality arises because of the non-rival nature of knowledge. In Romer (1990), the effect
takes the form Ȧ(t) = const.×LR(t)A(t), where A(t) denotes the number of intermediate goods
at time t and LR(t) measures research time (or human capital utilization in the R&D sector).
The proportionality of research productivity, Ȧ(t)/LR(t), to the number of existing designs,
A(t), creates the well-known strong scale effect according to which larger economies grow at
higher rates than smaller ones. Jones (1995) emphasized that there is little empirical support
for this scale effect and he suggested an alternative model that avoids it. According to that
model, research output is described by an equation of the form Ȧ(t) = const.×LR(t)A(t)γ, where
γ < 1. The productivity of researchers is therefore no longer proportional to existing knowledge
but it is an increasing and strictly concave function of A(t). Although this specification gets
rid of the scale effect, it creates another unpleasant feature. The long-run growth rate of the
economy depends only on the rate of population growth and on the externality parameter γ.
Since neither of these two parameters can be easily influenced by policy, is is common to refer
to this model as one of semi-endogenous growth (rather than truly endogenous growth).2

The model discussed in the present paper uses the same approach as Jones (1995) to avoid the
strong scale effect but it retains the property that R&D subsidies have a long-run growth effect.
We describe existing knowledge at time t not by the number of existing intermediate goods,
A(t), but by their average quality which we denote by Q(t). Adapting the approach suggested by
Jones (1995) to this scenario, the research equation takes the form Ȧ(t) = const.×LR(t)Q(t)γ.
If the researchers choose quality optimally, it turns out that average quality Q(t) is related to
A(t) according to Q(t) = const.× A(t)κ, where κ is a variable that can be influenced by R&D
subsidies. This implies that growth is described by the equation Ȧ(t) = const. × LR(t)A(t)γκ.
Although formally equivalent to the main assumption made by Jones (1995), this equation does
not imply policy-invariance because the exponent of A(t) and, hence, the long-run growth rate
of the economy is not a function of policy-independent parameters but can be controlled by the
government.

At first glance it may appear that the mechanism by which the scale effect is eliminated in
our model is the same as that in earlier papers combining aspects of horizontal and vertical
innovations like Young (1998), Peretto (1998), or Dinopoulos and Thompson (1998).3 This is,
however, not the case because those authors deal essentially with models of vertical innovations
even if they assume that the number of differentiated varieties is endogenously determined.
Research effort is spread across the entire range of intermediate goods (or sectors), that is, all
existing varieties can be improved by vertical innovations. If an increase in the scale of the
economy increases also the rents that can be captured by successful innovators, then this leads
to research on a broader range of goods without increasing the intensity of research in each
sector: in the long-run, the growth rate of the economy remains the same. The model of the

2Other models that are based on similar ideas as those in Jones (1995) have been developed for example by
Kortum (1997) and Segerstrom (1999).

3For some non-scale growth models, like Aghion and Howitt (1998, chap. 12), it is quite obvious that they
are based on mechanisms different from the one in the present paper as they do not include an explicit choice
of product quality.
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present paper, on the other hand, is primarily one of horizontal innovations in which research is
not sector-specific. Increased rents can therefore not be dissipated through increased entry and,
as in Jones (1995), it is only the declining ratio of R&D productivity to existing knowledge that
avoids the increase of the growth rate. To summarize this point, the contribution of the present
paper to the discussion about the scale effect is not to show how the strong scale effect can be
avoided in the endogenous growth model of Romer (1990) but to show how policy-invariance
can be avoided in the semi-endogenous growth model of Jones (1995).

The question of why policy has long-run growth effects in the present paper but not in the semi-
endogenous growth models of Jones (1995), Kortum (1997), or Segerstrom (1999) has a simple
answer. The underlying reason is that R&D subsidies can be made quality-dependent.4 Because
of the positive external effect of average quality on the productivity of researchers, policy
incentives for the invention of high quality products translate directly into high productivity
in R&D which, in turn, leads to high growth of per-capita output. One policy implication
of the present paper is therefore that, in order to promote high growth, governments should
make their R&D subsidies dependent on how useful the resulting innovations are in final output
production.

We compute both the market equilibrium under laissez-faire and the solution that would be
chosen by a benevolent social planner. Both the growth rate of per-capita output and the
research intensity are lower under laissez-faire than they are in the optimal solution. Using a
simple growth accounting exercise we can show that quality improvements contribute more to
overall economic growth in the optimal solution than in the market equilibrium, whereas the
contribution of variety expansion is smaller in the social planner’s solution than in equilibrium.
Finally, we show that the social planner’s solution can be implemented by the government via
a combination of a production subsidy for intermediate goods producers (to compensate for
monopolistic competition in that sector) and a quality-contingent R&D subsidy (to compensate
for the external effects in R&D) provided that both subsidies are financed by a lump-sum tax
on households.

The rest of this paper is organized as follows. In Section 2 we formulate the model. Apart
from our description of R&D, this model is very similar to those in Romer (1990) and Jones
(1995). In Section 3 we derive the market equilibrium of the economy, focussing on balanced
growth paths. This allows us to discuss the process of creative displacement. Section 4 first
presents the social planner’s solution of the model and compares it to the market equilibrium.
We then show how the government can affect the long-run growth rate by a quality-dependent
R&D subsidy and how it can implement the optimal solution via taxes and subsidies. Finally,
Section 5 concludes the paper.

2 Model formulation

We consider a continuous-time model of an economy that lasts from t = 0 to t = +∞. The
economy has two production sectors, one for final output and the other one for intermediate
goods. In addition there exists a R&D sector. Final good producers operate under perfect

4This possibility has already been mentioned by Young (1998) although he did not include it in his model.
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competition whereas the intermediate goods market is characterized by monopolistic competi-
tion. The labor supplied by the households is either used in production or used for research.
Research leads to the invention of new intermediate goods. Contrary to the existing models
of horizontal innovation, however, it is assumed that researchers can determine the quality of
their designs, and intermediate goods are therefore heterogeneous with respect to quality.

2.1 Households

The economy is populated by a continuum of measure 1 of identical infinitely-lived households.
At time t, the size of any given household is equal to L(t), where L̇(t) = nL(t). The population
growth rate n is assumed to be strictly positive. Households derive utility from consumption
according to the utility functional5

∫ +∞

0

e−(ρ−n)t ln[c(t)] dt, (1)

where c(t) denotes per-capita consumption in period t. The parameter ρ is the common time-
preference rate of the households. It is assumed that ρ > n, which ensures that the utility
functional takes finite values for all exponentially growing paths of per-capita consumption.

Each individual is endowed with one unit of homogeneous labor per time period. The labor
endowment of the representative household at time t is therefore equal to L(t). The labor
supplied by the households is either used as an input in one of the two production sectors of
the economy or for research. The competitive real wage in production is denoted by w(t). The
rate of return to one unit of labor used in research is denoted by wR(t). Total labor income
by the representative household is therefore equal to [LY (t) + LX(t)]w(t) + LR(t)wR(t), where
LY (t), LX(t), and LR(t) denote the labor employed in final good production, intermediate
goods production, and research, respectively.

Households can store wealth by holding shares in dividend paying firms.6 Due to no-arbitrage
conditions, all these assets have the same real rate of return (dividends plus capital gains), which
we denote by r(t). Let us denote by a(t) the wealth owned by the representative household at
time t. It evolves according to the flow budget constraint

ȧ(t) + L(t)c(t) = a(t)r(t) + [LY (t) + LX(t)]w(t) + LR(t)wR(t). (2)

Income consists of asset returns and labor income (right-hand side) and is used for asset accu-
mulation and consumption (left-hand side).

The representative household maximizes its utility given in (1) subject to the flow budget
constraint (2), the resource constraint

LY (t) + LX(t) + LR(t) = L(t), (3)

5The analysis presented below can be generalized to the case where households have the instantaneous utility
functional [c(t)1−θ − 1]/(1− θ) with θ > 0. All key results of the paper carry over to this more general case. To
simplify the algebra a bit, we restrict the presentation to the logarithmic case θ = 1.

6These are the intermediate goods producing firms. Firms in the final good sector make zero profits due to
perfect competition and constant returns to scale.
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and the no-Ponzi game condition

lim
t→+∞

a(t)e−
R t
0 r(τ) dτ = 0. (4)

A necessary and sufficient condition for an optimal consumption path is the Euler equation

ċ(t)/c(t) = r(t)− ρ. (5)

2.2 Final output

A single homogeneous final good is produced from labor and differentiated intermediate goods.
The set of intermediate goods available at time t is the interval [0, A(t)]. The production
function for final output is

Y (t) = LY (t)1−α

∫ A(t)

0

q1−α
i xi(t)

α di, (6)

where Y (t), LY (t), and xi(t) denote the rate of final output in period t and the corresponding
input rates of labor and intermediate good i, respectively. The number α ∈ (0, 1) is an exoge-
nously given technological parameter.7 The parameter qi describes the quality of good i which
is an indicator of its productivity in the final good sector.8 The quality of each intermediate
good is determined at the time of its invention and does not change over time. Different inter-
mediate goods, however, may be of different quality. We will explain in subsection 2.4 below
how the measure of intermediate goods, A(t), and the quality of an intermediate good, qi, is
determined by R&D.

Final output is chosen as the numeraire. Firms in the final good sector take the measure of
available intermediate goods, A(t), their respective quality levels, qi, the real wage, w(t), and
the prices of intermediate goods, pi(t), as given and maximize their profit rates. The necessary
and sufficient first-order conditions for this profit maximization problem are

w(t) = (1− α)Y (t)/LY (t) (7)

and
pi(t) = α[qiLY (t)/xi(t)]

1−α. (8)

2.3 Intermediate goods

All intermediate goods are produced by the same technology which uses labor as its only input.
By a suitable choice of the units of measurement we may assume that the production of one

7The parameter α has multiple interpretations: it measures for example the labor share of income generated
in final good production, the degree of market power, and the returns to specialization. It would be possible
to disentangle (some of) the roles of α along the lines suggested by Benassy (1998) and Alvarez-Pelaez and
Groth (2005), but for the sake of simplicity we refrain from doing so.

8The particular way how quality qi and quantity xi(t) are combined in (6) follows Dinopoulos and Thomp-
son (1998) and Aghion and Howitt (2005). Other formulations exist in the literature but using them would
complicate the algebra without substantially altering the results of the present paper.
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unit of any intermediate good requires one unit of labor (irrespective of the quality of the good).
Monopoly rights for the production of intermediate good i are secured by a permanent patent.
The firm holding that patent is therefore a monopolist and maximizes its profit rate subject to
the technological constraint and the inverse demand function given in (8). Formally, in every
period t, firm i chooses xi(t) ≥ 0 so as to maximize

πi(t) = pi(t)xi(t)− w(t)xi(t) = α[qiLY (t)]1−αxi(t)
α − w(t)xi(t). (9)

The necessary and sufficient first-order condition for profit maximization yields

xi(t) =
[
α2/w(t)

]1/(1−α)
qiLY (t) (10)

and pi(t) = w(t)/α. All intermediate goods are sold for the same price (a constant markup
on production costs) but their production rates are proportional to their quality levels. Inter-
mediate goods of higher quality are therefore produced at higher rates. These results reflect
the two assumptions that the production technology is the same for all intermediate goods and
that the demand for an intermediate good is proportional to its quality.

Substituting (10) into (9) one finds that firm i’s profit rate is given by

πi(t) = (1− α)
[
α(1+α)/w(t)α

]1/(1−α)
qiLY (t).

The present value as of time t of the profit flow for firm i over the interval [t, +∞) is therefore

Vi(t) =

∫ +∞

t

e−
R τ

t r(τ ′) dτ ′πi(τ) dτ = qiv(t), (11)

where

v(t) = (1− α)α(1+α)/(1−α)

∫ +∞

t

e−
R τ

t r(τ ′) dτ ′w(τ)−α/(1−α)LY (τ) dτ. (12)

Vi(t) is the value of firm i or, equivalently, its share price at time t. Finally, we note that the
total amount of labor used for the production of intermediate goods is given by

LX(t) =

∫ A(t)

0

xi(t) di =
[
α2/w(t)

]1/(1−α)
A(t)Q(t)LY (t), (13)

where

Q(t) = A(t)−1

∫ A(t)

0

qi di (14)

is the average quality of intermediate goods existing at time t (also called the quality index).

2.4 Research and development

Each intermediate good is produced according to a different design. These designs, in turn, are
produced by researchers. The R&D sector is a perfectly competitive industry with no barriers
to entry, that is, every person can create designs and sell them to potential intermediate good
producers at competitive prices.
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We assume that researchers can choose the quality levels of the product designs they create.
This choice involves a tradeoff between the research effort they have to spend in order to create
a new design on the one hand and the value (i.e., market price) of the new design on the other
hand. The latter is determined by the present value of future profits that can be generated
using the new product. As can be seen from (11), this value is proportional to the product
quality.

As for the research effort necessary to develop a new design, we assume that it is an increasing
function of the quality of the product and a decreasing function of the average quality of
the already existing products. More specifically, the rate at which a single researcher makes
innovations of quality q at time t is assumed to be equal to

F (q, t) =





[β − q/Q(t)]Q(t)γ if q ≤ βQ(t),

0 if q > βQ(t),
(15)

where β > 1 and γ ≥ 0 are fixed constants and where Q(t) is the quality index defined in (14).

In this paper, Q(t) is interpreted as a measure of total knowledge available in the economy
at time t. The right-hand side of (15) is a decreasing function of the target quality q and an
increasing function of the existing knowledge Q(t). The negative dependence of F (q, t) on q
means that designs of high quality require more research effort than designs of lower quality.
In particular, the specification in (15) implies that it is impossible to create designs of quality
q ≥ βQ(t). The assumption β > 1 is therefore necessary in order to ensure that quality
improvements are feasible.

The positive dependence of F (q, t) on Q(t) reflects an intertemporal knowledge spillover effect.
In the present model, this effect has two components corresponding to the two appearances of
Q(t) on the right-hand side of (15). To explain them, it is useful to depict equation (15) in the
form of a quality/quantity frontier; see figure 1. For a fixed value of Q(t), the set of all pairs
(q, F (q, t)) satisfying equation (15) forms the downward sloping line AB in the quality/quantity
space.9 An increase of existing knowledge Q(t) makes the frontier flatter (AC) and it shifts
it outwards (DE). The flattening of the frontier corresponds to the appearance of Q(t) in
the brackets on the right-hand side of (15) and implies that less quantity has to be sacrificed
in order to achieve a given quality increment. In other words, researchers can invent better
products at any given rate of innovations when they start from a higher average quality of
existing products. The outward shift from AC to DE comes from the term Q(t)γ in (15) and
reflects a general improvement of the quality/quantity tradeoff (without any effect on the rate
of transformation between quality and quantity): innovations occur faster and they lead to
better products.

It is worth pointing out that the invention of a new product increases total knowledge only to
the extent that it improves the average quality Q(t) of all intermediate goods. If a new design
of low quality is created, total knowledge as measured by Q(t) decreases. While this possibility
may appear counterintuitive at first glance, it is not if one assumes that researchers can only

9The linearity of the quality/quantity frontier is imposed for simplicity. None of the main insights derived
in this paper depend on this linearity assumption.
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sample the existing designs but are unable to study all of them. In this case, adding a design
of low quality reduces the chances to find and, hence, to profit from good ideas.10

Researchers take the productivity function F (or, equivalently, the quality/quantity frontier)
as given and choose the quality level q optimally. A researcher who designs a good of quality
q at time t will be able to sell it for qv(t); see equation (11). The rate of return to one unit of
time spent for designing a good of quality q at time t is therefore equal to

WR(q, t) = qv(t)F (q, t) = q[β − q/Q(t)]v(t)Q(t)γ. (16)

This rate of return has a unique maximum at q = (β/2)Q(t). For the sake of a more compact
notation, let us define κ = β/2− 1. Using that definition and noting that all researchers try to
make the most profitable innovations, it follows that

qA(t) = (1 + κ)Q(t). (17)

Because of (16)-(17), the resulting rate of return to research time is given by

wR(t) = WR(qA(t), t) = (1 + κ)2v(t)Q(t)1+γ. (18)

2.5 Market clearing

Having described the behavior of all agents in the economy, let us now turn to market clear-
ing. Market clearing on intermediate goods markets has already been taken into account by
substituting the inverse demand functions in the profit maximization problems of intermediate
goods producers. This leaves us with the markets for labor, assets, and final output.11

The labor market clearing condition coincides obviously with the representative household’s
resource constraint (3). However, equilibrium on the labor market imposes also another con-
straint. Since labor is homogeneous it must receive the same remuneration in all its uses.
Labor used as input in final good or intermediate goods production earns the real wage w(t),
whereas labor used to do research yields the return wR(t). If labor is used both in production
and research, then it must hold that wR(t) = w(t). On the other hand, if wR(t) < w(t), then
households will not do any research, that is, LR(t) = 0. The final case wR(t) > w(t) would lead
to LY (t) = LX(t) = 0, which cannot occur in equilibrium as labor is required for any form of
production. We can therefore summarize these observation in the following condition:

wR(t) ≤ w(t) with equality if LR(t) > 0. (19)

Asset market clearing requires that the wealth of the representative household at time t is equal
to the total value of all intermediate goods producing firms, i.e.,

a(t) =

∫ A(t)

0

Vi(t) di (20)

10At this stage it is also worth mentioning that all of the results of this paper remain qualitatively correct if
one replaces the term Q(t)γ in (15) by the more general term A(t)γAQ(t)γQ with γA ≥ 0 and γQ ≥ 0. In this
more general setting, the knowledge spillover effect depends on both product variety and product quality. For
the sake of simplicity we restrict ourselves to the special case γA = 0.

11According to Walras’ law, one of the market clearing conditions is redundant.
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with Vi(t) given in (11).

The market for final output is in equilibrium if

c(t) = Y (t)/L(t). (21)

This is the case because the only demand for final output is the consumption demand of the
households.

2.6 The knowledge spillover effect

Before we analyze the market equilibrium of the economy, we need to make a remark regarding
the size of the parameter γ that describes the knowledge spillover effect in (15). To this end,
let us introduce some notation that will be used throughout the rest of this paper. For any
variable y(t), we denote by gy(t) its growth rate defined by gy(t) = ẏ(t)/y(t). The relative
quality of the latest intermediate good at time t is denoted by z(t), that is, z(t) = qA(t)/Q(t).

Now suppose that all researchers at time t choose the relative quality z(t).12 Because every
researcher produces new designs at the rate F (z(t)Q(t), t), and the total measure of researchers
is given by LR(t), it follows that the measure of intermediate goods evolves according to

Ȧ(t) = LR(t)F (z(t)Q(t), t) = [β − z(t)]LR(t)Q(t)γ. (22)

Differentiating the definition of the quality index (14) with respect to time t and using qA(t) =
z(t)Q(t) yields

gQ(t) = [z(t)− 1]gA(t). (23)

Defining S(t) = Q(t)γ/A(t), it follows from (22)-(23) that

Ṡ(t) = [β − z(t)][γz(t)− (1 + γ)]LR(t)S(t)2.

In order for the model to be well defined we must ensure that all variables take finite values at
all times t. This implies in particular that the above differential equation for S(t) must have a
globally defined solution for all feasible paths of relative quality z(t) and research time LR(t).
It follows that γz − (1 + γ) ≤ 0 must hold for all z ∈ [0, β].13 Obviously this is the case if and
only if γ ≤ 1/(β − 1). This assumption will therefore be maintained throughout the paper. It
imposes an upper bound on the parameter γ, which measures the strength of the intertemporal
knowledge spillover effect.14

12We know from (17) that z(t) = β/2 = 1 + κ must hold in equilibrium but, for the moment, let us consider
all possible values z(t) ∈ [0, β].

13This is the case because the solution of the differential equation Ṡ(t) = ζS(t)2 and the initial value S(0) = ζ0

diverges to +∞ in finite time whenever ζ > 0 and ζ0 > 0.
14The assumption γ ≤ 1/(β − 1) corresponds to the assumption that ϕ < 1 holds in equation (6) of

Jones (1995); see also footnote 15 below.
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3 Laissez-faire equilibrium

In the present section we discuss the decentralized market equilibrium of the economy without
government intervention. We start by studying how the quality of intermediate goods evolves
over time. Then we derive the growth rates of the most important endogenous variables along a
balanced growth path. Finally, we discuss creative displacement, that is, the process by which
intermediate goods become obsolete because they are slowly but continually replaced by goods
of higher quality.

3.1 Equilibrium quality

We start with the following simple but important lemma relating the quality index Q(t) to the
measure of intermediate goods A(t). Recall the definition κ = β/2− 1.

Lemma 1 In every equilibrium it holds for all t ≥ 0 that

Q(t) = BA(t)κ, (24)

where B = A(0)−κQ(0). Furthermore, qi = (1 + κ)Biκ holds for all i ≥ A(0).

Proof: Combining (17) and (23) yields gQ(t) = κgA(t). Equation (24) follows immediately
from this result. Combining (17) and (24) yields qA(t) = (1 + κ)BA(t)κ. Since this has to hold
for all t ≥ 0 we obtain qi = (1 + κ)Biκ for all i ≥ A(0). ¤

Let us add two remarks regarding the equilibrium quality. First, it is easy to see from (17) that
a newly developed product has a quality level exceeding the average quality of existing products
if and only if κ > 0 (which is equivalent to β > 2). In other words, if large quality improvements
are possible (that is, if β is larger than 2), then it follows that newly developed products are
of superior quality. If innovations cannot lead to large quality jumps (i.e., if β is smaller than
2), then product quality in equilibrium must be decreasing over time. Correspondingly, we see
from lemma 1 that, in the case β > 2, average quality Q(t) and product quality qi are increasing
functions of A(t) and i, respectively.

The second remark is of a more technical nature. Lemma 1 shows that A(t)−κQ(t) is invariant
with respect to time t along every equilibrium. For different equilibria, however, the value
of A(t)−κQ(t), which we have denoted by B, is generally a different one. If an equilibrium
converges towards a balanced growth path equilibrium (BGP equilibrium), then it must be the
case that A(t)−κQ(t) = B holds also along the BGP equilibrium. It follows that equilibria
starting in different initial states do not in general converge to the same BGP equilibrium. We
can therefore not expect uniqueness of a BGP equilibrium. Instead, it can be conjectured that,
for every value B > 0, there exists a unique BGP equilibrium along which A(t)−κQ(t) = B
holds. This conjecture will be shown to be true in the next subsection.
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3.2 Balanced growth

Substituting (17) and (24) into (22) we obtain

Ȧ(t) = (1 + κ)BγLR(t)A(t)γκ. (25)

This equation resembles the central assumption in Jones (1995) according to which the rate of
change of the measure of intermediate goods is proportional to the measure of researchers and to
a power of the measure of intermediate goods itself.15 Note that our assumption γ ≤ 1/(β− 1)
implies γκ < 1. Based on the above equation, Jones (1995) shows that his model allows for a
BGP equilibrium along which LR(t) grows at the rate n and A(t) grows at the rate

g = n/(1− γκ). (26)

It is straightforward to derive an analogous result for the present model. This result is stated
in the following theorem. The proof of the theorem as well as some other properties of BGP
equilibria can be found in appendix A.

Theorem 1 For every fixed value B > 0 and every initial population L(0) > 0, there exists
a unique BGP equilibrium satisfying A(t)−κQ(t) = B for all t. Moreover, along every BGP
equilibrium it holds that

gA(t) = g > 0 , gQ(t) = κg , gY/L(t) = (1− α)(1 + κ)g > 0, (27)

and
LR(t)/L(t) = K/(1− α + α2 + K), (28)

where g is given by (26) and K = α(1− α)(1 + κ)/[1 + κ + (ρ− n)/g] > 0.

As in Jones (1995), positive population growth is necessary for economic growth. More precisely,
from (26) and (27) it follows that all the growth rates mentioned in theorem 1 are proportional
to the population growth rate n. Whereas the measure of intermediate goods, A(t), and per-
capita output, Y (t)/L(t), always grow at positive rates, the same need not be true for the
quality index Q(t). Whether Q(t) grows or not depends on whether κ > 0 or κ ≤ 0, that is, on
whether β > 2 or β ≤ 2; see also the discussion in subsection 3.1.

Since the growth rates in (27) are independent of the initial value of the population, L(0), there
is no strong scale effect.16 The reason for the absence of a strong scale effect is exactly the
same as in the model from Jones (1995), namely that existing knowledge exhibits decreasing
returns in the aggregate production function for ideas. In the present model, this property is
ensured by γκ < 1 which, in turn, follows from the assumption γ < 1/(β − 1).

15The assumption under consideration is equation (6) in Jones (1995). It is more general than our equation
(25) in the sense that it is of the form Ȧ(t) = const.×LR(t)µA(t)ϕ, where µ and ϕ are real numbers satisfying
ϕ < 1. Our case corresponds to µ = 1 and ϕ = γκ. For further discussion see also Jones (2005).

16This means that there is no effect of the scale of the economy, L(0), on the long-run growth rate g. There is,
however, a weak scale effect, that is, the level of A(t) (and other variables) along the BGP equilibrium depends
on L(0). See appendix A for details and Jones (2005) for a general discussion of weak and strong scale effects.
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For the purpose of illustration of theorem 1, we present a few numerical results in table 1 below.
The results have been produced using the following parameter specifications: the population
growth rate n is set to 1%, the time-preference rate ρ to 3%, and the technology parameter
α is equal to 1/3. Similar parameter specifications are often used in calibration exercises for
yearly data. To pin down reasonable values for the parameters β and γ describing the external
effects in R&D, we report the results for a grid of parameter values where β ∈ {2, 4, 6} and
γ ∈ {0.05, 0.1, 0.15}. Note that these parameter values satisfy all our restrictions including
γ < 1/(β − 1). The first entry in each cell is the growth rate of per-capita output gY/L(t), the
second one is the research intensity LR(t)/L(t), the third one is a growth accounting measure D
which will be explained shortly, and the last entry measures the speed of creative displacement
to be defined in the next subsection.

γ 0.05 0.10 0.15

β

2

0.67%

8.70%

0.00%

+∞

0.67%

8.70%

0.00%

+∞

0.67%

8.70%

0.00%

+∞

4

1.40%

12.78%

50.00%

65.8

1.48%

13.07%

50.00%

62.4

1.57%

13.38%

50.00%

58.9

6

2.22%

15.15%

66.67%

31.2

2.50%

15.71%

66.67%

27.7

2.86%

16.30%

66.67%

24.3

Table 1: The market equilibrium for the parameter values n = 1%, ρ = 3%, α = 1/3,
β ∈ {2, 4, 6}, and γ ∈ {0.05, 0.1, 0.15}. First line in each cell is gY/L(t), second line
is LR(t)/L(t), third line is D, and last line is H.

The growth rates of per-capita output for the chosen parameter values range from two thirds of
a percentage point to almost three percentage points. These numbers are roughly in line with
empirical data for many countries. US per-capita GDP, for example, has grown on average at
1.8% per year during the last 125 years, which is very close to the average growth rate reported
in table 1. As for the research intensity LR(t)/L(t) we obtain values between 8% and a bit over
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16%, which are too high to be realistic.17 The simplifications of our model, in particular the
homogeneity of labor, are likely to be responsible for this misfit. It can be conjectured that the
introduction of different skill levels would improve the quantitative predictions of the model
along this dimension.

We know from theorem 1 that gY/L(t) = (1 − α)[gA(t) + gQ(t)] and gQ(t) = κgA(t); see also
equation (45) in appendix A. The contribution of quality improvements to overall economic
growth is therefore equal to (1 − α)gQ(t)/gY/L(t) = κ/(1 + κ) = (β − 2)/β. We denote this
contribution by D and report its value as the third entry in each cell of table 1. Note that this
contribution is independent of the intertemporal knowledge spillover parameter γ. The first row
of the table corresponds to β = 2, which implies κ = 0. In this case, quality remains constant
and, hence, quality improvements do not contribute to economic growth, that is, D = 0. In
the second row of the table, which corresponds to β = 4, it holds that κ = 1 and D = 1/2.
Variety expansion and quality improvements contribute equally to the growth rate of per-capita
output. Finally, in the third row it holds that β = 6, κ = 2, and D = 2/3. In this case, quality
improvement is the dominant source of economic growth.

Whenever D > 0, the growth rates and the research intensity depend positively on the exter-
nality parameter γ. This shows that, as long as quality improvement contributes to economic
growth, the strength of the knowledge spillover has a positive growth effect. If quality im-
provement does not happen (D = 0), on the other hand, then there is no effect of knowledge
spillovers on the long-run growth rate of the economy or on the research intensity.18 This fol-
lows of course from our assumption that knowledge is represented entirely by average quality
Q(t).

3.3 Creative displacement

We have already noted before that the average quality of intermediate products increases over
time if and only if β > 2 or, equivalently, κ > 0. For the present subsection we assume this
condition to hold. Newly invented products are therefore of a higher quality than old ones. It
can be expected that, in this situation, new products will drive the old ones out of the market.
To see this formally, we use (7), (10), (26), and (27) to get

gxi
(t) = −(1 + γ)κg. (29)

If κ > 0, as we presently assume, then it follows that the production rate of any given product
i converges exponentially to 0. This alone, however, does not prove that intermediate good i is
driven out of the market but partly reflects a process of expenditure diversion. The increase of
the measure of intermediate goods dilutes the expenditure of final good producers over a larger
mass of inputs, thereby reducing the demand for any given product.

17According to Jones (2002), the research intensity in the US is smaller than 1%. Because this empirical
estimate is based on a narrow definition of “research”, it is probably biased downwards; see footnote 9 in
Jones (2002).

18If β < 2, then κ < 0 and quality deteriorates over time, i.e., gQ(t) < 0. In this case we would have D < 0
and higher values of γ would correspond to smaller growth rates. The knowledge spillover effect would be
negative. Since we do not regard this case as an interesting one, we do not report any results for β < 2.
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Let us therefore denote the average production rate of all intermediate goods by X(t), that is,

X(t) =
1

A(t)

∫ A(t)

0

xi(t) di.

From (13) it follows that X(t) = LX(t)/A(t). Using gLX
(t) = n (see equation (47) in appendix

A), (26), and (27) we obtain gX(t) = −γκg. Combining this with (29) we get gxi
(t)− gX(t) =

−κg. This shows that the ratio between the production rate of any given intermediate good,
xi(t), and the average production rate of all intermediate goods, X(t), converges at the rate
κg towards 0 (remember that κ > 0 is assumed throughout this subsection). Old goods are
therefore slowly but steadily displaced by new and better ones. We call this process creative
displacement because it captures Schumpeter’s idea of creative destruction but differs from the
instantaneous replacement of inferior goods typically found in models of vertical innovation
like those from Grossman and Helpman (1991a, 1991b) and Aghion and Howitt (1992). The
difference arises of course because the horizontal innovations in our model create imperfect
substitutes to existing products of lower quality, whereas vertical innovations create perfect
substitutes of existing products of lower quality.

The half-life of the variable xi(t)/X(t) is given by H = − ln(2)/[gxi
(t) − gX(t)] = ln(2)/(κg).

We report this number as the last entry in each cell of table 1. If quality remains constant
(β = 2), then there is no creative displacement and the half-life is equal to +∞. In the cases
β = 4 and β = 6, the half-life periods are finite but rather large (recall that the unit of time
is assumed to be one year). In general, the half-life is negatively related to the growth rate of
per-capita output. This follows from the observation that g and κ are positively related to each
other (see equation (26)) and that H is a decreasing function of κg. The process of creative
displacement happens therefore faster in quickly growing economies than in slowly growing
ones.

4 Optimal growth

In the present section we first derive the allocation that would be chosen by a benevolent
social planner. We then discuss how this optimal solution can be implemented by subsidies
and taxation. We shall demonstrate in particular how the government can affect the long-run
growth rate of the economy using quality-dependent R&D subsidies.

4.1 The social planner’s solution

In order to solve the social planner’s optimization problem we proceed in three steps. The first
two steps deal with the optimal allocation of resources within any given period t. Step 3 finally
treats the intertemporal tradeoff that arises from the optimal choice of quality and research
intensity.

Consider the economy at time t. In step 1 we study how, given A(t), {qi | i ∈ [0, A(t)]}, LY (t),
and LX(t), the social planner allocates the LX(t) units of labor to the A(t) intermediate goods
producers that exist at time t. Since all final output is consumed and since the production of
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one unit of any type of intermediate good requires one unit of labor, the social planner must
solve the problem of maximizing the final output rate as given in (6) subject to the constraint∫ A(t)

0
xi(t) di = LX(t). The solution of this problem is given by xi(t) = qiLX(t)/ [A(t)Q(t)] and

the resulting optimal rate of final output at time t is

Y (t) = [A(t)Q(t)LY (t)]1−αLX(t)α. (30)

In step 2 we take A(t), Q(t), and LR(t) as given and determine the optimal allocation of labor
between its two uses in the production of intermediate and final goods. This allocation can be
found by maximizing Y (t) as given in (30) with respect to LY (t) and LX(t) and subject to the
resource constraint (3). The solution to this problem is given by LX(t) = α[L(t)− LR(t)] and
LY (t) = (1− α)[L(t)− LR(t)] and the corresponding optimal rate of final output is

Y (t) = αα[(1− α)A(t)Q(t)]1−α[L(t)− LR(t)]. (31)

We are now ready for step 3 of the solution of the social planner’s optimization problem. The
social planner wants to maximize the representative household’s objective functional in (1).
Since the only use of final output is consumption, it must hold that c(t) = Y (t)/L(t); see also
(21). Substituting this relation together with (31) into (1), using L̇(t)/L(t) = n and cancelling
constant terms, we can write the social planner’s objective functional as

∫ +∞

0

e−(ρ−n)t {(1− α) ln[A(t)Q(t)] + ln[L(t)− LR(t)]} dt. (32)

The social planner maximizes this objective functional subject to the differential equations
(22)-(23), which are repeated here for convenience:

Ȧ(t) = [β − z(t)]LR(t)Q(t)γ,

Q̇(t) = [β − z(t)][z(t)− 1][LR(t)/A(t)]Q(t)1+γ.

The control constraints are 0 ≤ LR(t) ≤ L(t) and 0 ≤ z(t) ≤ β.

This is a standard optimal control problem with state variables A(t) and Q(t) and control vari-
ables LR(t) and z(t). The fact that the social planner internalizes all externalities is reflected
by non-convexities of that problem which imply that the first-order conditions of the maximum
principle are not automatically sufficient for optimality. The following theorem assumes there-
fore that an optimal solution with balanced growth (i.e., an optimal BGP) exists and it uses
the necessary optimality conditions to characterize the properties of that solution.

Theorem 2 There exists a unique value z̄ ∈ (β/2, β) satisfying G(z̄) = 0, where G(z) is the
second-order polynomial

G(z) = 2γ(ρ− n)z2 − [(2 + 2γ + βγ)ρ− (1 + γ + βγ)n] z + β(1 + γ)ρ.

Along an optimal BGP it holds that

gA(t) = ḡ , gQ(t) = κ̄ḡ , gY/L(t) = (1− α)(1 + κ̄)ḡ, (33)

and
LR(t)/L(t) = K̄/(1 + K̄), (34)

where κ̄ = z̄ − 1, ḡ = n/(1− γκ̄), and K̄ = (1− α)(β − z̄)/[β − z̄ + (1 + β − 2z̄)(ρ− n)/ḡ].
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The proof of the theorem can be found in appendix B. To compare the equilibrium BGP
described in theorem 1 with the optimal BGP from theorem 2 we first note that z̄ > β/2
implies κ̄ > κ and, hence, ḡ > g. It follows that all the optimal growth rates in (33) are higher
than the corresponding equilibrium growth rates in (27). To illustrate the extent to which
equilibrium growth rates fall short of the optimum, we report in table 2 the characteristics of
the optimal solution for the same parameter values that have been used to generate table 1.
Table 2 is organized in the same way as table 1, that is, the first entry in each cell is the growth
rate of per-capita output gY/L(t), the second entry is the research intensity LR(t)/L(t), the
third entry is the contribution of quality improvement to growth D, and the last entry is the
half-life period H.

γ 0.05 0.10 0.15

β

2

0.81%

21.36%

17.33%

327

0.83%

21.70%

18.00%

309

0.85%

22.05%

18.66%

292

4

1.75%

36.89%

59.03%

45

1.95%

39.38%

59.81%

40

2.21%

42.40%

60.70%

34

6

2.85%

48.72%

72.96%

22

3.56%

54.29%

73.90%

18

4.94%

62.23%

75.23%

12

Table 2: The social planner’s solution for the parameter values n = 1%, ρ = 3%,
α = 1/3, β ∈ {2, 4, 6}, and γ ∈ {0.05, 0.1, 0.15}. First line in each cell is gY/L(t),
second line is LR(t)/L(t), third line is D, and last line is H.

The numerical results confirm that the social planner solution features higher growth rates
than the market equilibrium. More specifically, optimal growth rates are between 20% and
70% higher than their equilibrium counterparts. The most striking difference between tables
1 and 2, however, is that the social planner employs roughly 2-4 times more labor in the
R&D sector than would be the case in the market equilibrium. Even if the absolute numbers
of R&D intensity in our model are much higher than they are in reality, the ratio between
the optimal R&D intensity and its equilibrium value closely matches the estimates that Jones
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and Williams (1998) have drawn from a large body of empirical work in the productivity
literature.19 From (31) and theorem 2 we see that the contribution of quality improvement
to overall economic growth, D, is again given by (1 − α)gQ(t)/gY/L(t) = κ̄/(1 + κ̄). Contrary
to the case of the market equilibrium, in the optimal solution this number depends also on γ.
A comparison of tables 1 and 2 shows that D is on average (across the chosen values of γ)
somewhat higher than it was in the market equilibrium especially for small values of β. For the
case β = 2, for example, growth in the market equilibrium is entirely driven by variety expansion
(D = 0), whereas quality improvements contribute roughly 18% to per-capita output growth in
the optimal solution. For higher values of β, the difference between D in the optimal solution
and the market equilibrium is not as striking. Finally, the half-life period H in the command
economy is considerably smaller than in the decentralized one. Thus, creative displacement
happens much faster under the control of a social planner than in laisse-faire equilibrium.

4.2 Optimal policy

There are two reasons why the market equilibrium is not optimal: firstly, there is monopolistic
competition in the intermediate goods market and, secondly, the average quality has external
effects on the research productivity. In the present subsection we show how the government can
compensate these distortions and decentralize the optimal solution derived in subsection 4.1 by
means of appropriate subsidies and taxes.

The distortion by monopoly power can be easily offset by a production subsidy for intermediate
goods producers. Since the markup on production costs is equal to 1/α − 1, the government
can use a constant production subsidy σX = 1/α− 1 in order to induce firms to produce at the
efficient output level.

Let us now turn to the more complicated question of how to compensate the external effects
in the R&D sector. These externalities distort both the quality decision of the researchers and
the total amount of labor employed in that sector. Correspondingly, the government needs a
R&D subsidy depending on two policy parameters that can be set independently from each
other to offset the two distortions. The basic mechanism of such an optimal R&D subsidy is
easy to demonstrate. Suppose that the government grants researchers a subsidy at the rate of

σR(q, t) =
δ̃β̃ − β + (1− δ̃)q/Q(t)

β − q/Q(t)
(35)

when they successfully develop a good of relative quality q/Q(t) at time t. Here, β̃ and δ̃ are
the policy parameters which can be arbitrary positive constants. The proof of the following
lemma is trivial and therefore omitted.

Lemma 2 If β̃ > β, then it follows that σR(q, t) is strictly increasing with respect to q and
satisfies limq→βQ(t) = +∞. The sign of σR(0, t) coincides with the sign of δ̃β̃ − β.

The lemma shows that σR(q, t) is indeed a non-negative subsidy for any possible relative quality
level q/Q(t) ∈ [0, β] provided that the conditions β̃ ≥ β and δ̃ ≥ β/β̃ hold. If β̃ > β and

19Jones and Williams (1998) define R&D intensity as R&D spending as a share of GDP. In the present paper,
in contrast, we use employment in R&D as a share of total employment.
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δ̃ < β/β̃, on the other hand, then σR(q, t) is negative for small values of q, in which case
low-quality innovations are taxed rather than subsidized.20

In the presence of the R&D subsidy (35), the return on labor used for designing an intermediate
good of quality q at time t is no longer given by (16) but by

W̃R(q, t) = [1 + σR(q, t)][β − q/Q(t)]qv(t)Q(t)γ = δ̃[β̃ − q/Q(t)]qv(t)Q(t)γ. (36)

Maximizing W̃R(q, t) with respect to q ∈ [0, βQ(t)] yields q = min{β̃/2, β}Q(t). Since β̃ can be
freely chosen by the government, min{β̃/2, β} can take any feasible value in the interval [0, β].
It follows therefore that, by a suitable choice of the policy parameter β̃, the government can
perfectly control the quality decisions of researchers. In what follows, we assume that β̃ ≤ 2β
such that min{β̃/2, β} can be replaced by β̃/2. Moreover, in analogy to subsection 2.4 we
define κ̃ = β̃/2 − 1. By the same reasoning that has been applied in subsection 2.4, one can
see that the above assumptions imply

qA(t) = (1 + κ̃)Q(t) (37)

for all t.

Before we discuss the role of the other policy parameter δ̃, let us show that the policy parameter
β̃ (or, equivalently, κ̃) has a long run growth effect. Indeed, since relative quality z(t) =
qA(t)/Q(t) = 1 + κ̃, it follows from (22)-(23) that

Ȧ(t) = (1 + 2κ− κ̃)LR(t)Q(t)γ (38)

and gQ(t) = κ̃gA(t). Lemma 1 holds also in the present case with κ replaced by κ̃. It follows
that Q(t) = BA(t)κ̃. Combining this with (38), we obtain the equation

Ȧ(t) = (1 + 2κ− κ̃)BγLR(t)A(t)γκ̃, (39)

which is the correct modification of equation (25) in the presence of a research subsidy of the
form (35). Applying the same arguments as in the proof of theorem 1 (which are those originally
put forward by Jones (1995)) it follows that the growth rate of A(t) along any balanced growth
path must be equal to

g̃ = n/(1− γκ̃). (40)

Since κ̃ can be controlled by the policy parameter β̃, we conclude that the government can
affect the growth rate of the economy. The policy-invariance proposition of semi-endogenous
growth models is therefore not applicable to the present model.

The above arguments did not involve the policy parameter δ̃ at all. What matters for the
quality decisions of the researchers is the incentive controlled by β̃. But in order to implement
the optimal solution, the government must also be able to affect the aggregate research intensity
LR(t)/L(t). This can be done by an appropriate choice of δ̃. Under a R&D subsidy of the form
(35), the rate of return to research time is given by

wR(t) = W̃R(qA(t), t) = δ̃(1 + κ̃)2v(t)Q(t)1+γ, (41)

20In the following discussion we shall, for simplicity, always refer to σR(q, t) as a research subsidy although
we do not exclude the case where σR(q, t) is negative for some values of q.
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which makes it obvious that the government can use δ̃ to control wR(t).

We assume that both the production subsidy for intermediate good producers and the R&D
subsidy are financed by a lump-sum tax on households. Denoting the tax per household at
time t by T (t), the government’s budget constraint can be expressed as

T (t) = σX

∫ A(t)

0

pi(t)xi(t) di + σR((1 + κ̃)Q(t), t)Ȧ(t)VA(t)(t).

The first term on the right-hand side is the total production subsidy paid to intermediate good
producers and the second term is the research subsidy.

Following the same arguments as in appendix A, one can show that the market equilibrium
under the tax/subsidy regime (σX , σR, T ) described above has the following properties.

Theorem 3 Consider the market equilibrium under the tax/subsidy policy described above.
For every fixed value B > 0 and every initial population L(0) > 0, there exists a unique BGP
equilibrium satisfying A(t)−κ̃Q(t) = B for all t. Moreover, along every BGP equilibrium it
holds that

gA(t) = g̃ > 0 , gQ(t) = κ̃g̃ , gY/L(t) = (1− α)(1 + κ̃)g̃ > 0,

and
LR(t)/L(t) = δ̃K̃/(1 + δ̃K̃),

where

K̃ =
(1− α)(1 + κ̃)2

(1 + 2κ− κ̃)[1 + κ̃ + (ρ− n)/g̃]
.

Comparing theorems 1 and 3 it is obvious that the optimal BGP can be decentralized by
choosing the policy parameters β̃ and δ̃ in such a way that the two equations g̃ = ḡ and
δ̃K̃/(1+ δ̃K̃) = K̄/(1+ K̄) hold. It is easy to see that this is the case if and only if β̃ = 2z̄ and
δ̃ = K̄/K̃. In table 3 we report the required settings of the policy parameters under the same
parameter constellations that have already been used in tables 1 and 2. The first entry in each
cell is β̃ and the second one is δ̃.

We know from the above discussion and from theorem 2 that β̃ = 2z̄ > β. This can also be
seen from table 3. According to lemma 2 this demonstrates that the optimal R&D subsidy
σR(q, t) is increasing with respect to quality. The condition δ̃ > β/β̃, on the other hand, is
satisfied for β = 4 and β = 6 but fails to hold for β = 2. Because of lemma 2 this shows that
the R&D subsidy is positive whenever β = 4 or β = 6 but that it becomes negative for small
relative quality levels when β = 2. The interpretation of this result is that, in the case β = 2,
where researchers choose to make no quality improvements under laissez-faire, the government
has to take the drastic measure of penalizing (i.e., taxing) low-quality innovations in order to
implement the optimal solution.
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γ 0.05 0.10 0.15

β

2
2.42

0.70

2.44

0.69

2.46

0.68

4
4.88

0.99

4.98

1.00

5.09

1.01

6
7.40

1.30

7.66

1.39

8.07

1.53

Table 3: Policy parameters implementing the social planner’s solution for the pa-
rameter values n = 1%, ρ = 3%, α = 1/3, β ∈ {2, 4, 6}, and γ ∈ {0.05, 0.1, 0.15}.
First line in each cell is β̃, second line is δ̃.

5 Conclusion

We have studied a growth model with horizontal innovations à la Romer (1990), in which
the quality of new products is endogenously determined. The optimal quality decisions of the
researchers balance the required research effort against the value of their inventions. Under
suitable parameter constellations, the model predicts that existing products are slowly but
steadily driven out of the market by new products of superior quality.

The paper adds also a new aspect to the discussion about the scale effect of endogenous growth
models. Indeed, our model assumes a scale-free research equation similar in nature to that in-
troduced by Jones (1995). Contrary to Jones (1995), however, our model describes endogenous
growth (as opposed to semi-endogenous growth) because the government can affect the growth
rate of per-capita output by making research subsidies quality-dependent. In particular, we
were able to compute the optimal solution of the model and to demonstrate how it can be
decentralized using a combination of a production subsidy for intermediate goods producers, a
research subsidy, and a lump-sum tax on households.

A very rough calibration of the model shows that the most striking difference between the
market equilibrium and the social planner’s solution is that, in the latter, a much larger fraction
of the labor force is employed in the R&D sector. The extent to which optimal R&D intensity
exceeds its equilibrium value in our theoretical model matches closely the predictions derived by
Jones and Williams (1998) from empirical studies of productivity. The policy recommendation
of our paper is therefore that governments should provide incentives for R&D but that these
incentives have to be made contingent on the quality of the resulting innovations.
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Appendix A

This appendix presents the proof of theorem 1 as well as some additional results about market
equilibria (in particular about BGP equilibria). Let us start with some preliminary observations.

From (11), (14), and (20) we get

a(t) = A(t)Q(t)v(t). (42)

From (6), (10), and (14) it follows that

Y (t) =
[
α2/w(t)

]α/(1−α)
A(t)Q(t)LY (t). (43)

Substituting (43) into (7) one gets

w(t) = α2α [(1− α)A(t)Q(t)]1−α . (44)

Substituting this result back into (43) we obtain

Y (t) = α2α(1− α)−α [A(t)Q(t)]1−α LY (t). (45)

Combining (13), (14), and (44) yields

LX(t) = [α2/(1− α)]LY (t). (46)

Since labor is necessary for production, the inequalities LY (t) > 0 and LX(t) > 0 must hold for
all t in any equilibrium. If this equilibrium is a BGP, then it follows obviously that

gLY
(t) = gLX

(t) = gL(t) = n. (47)

Along a BGP equilibrium, the growth rate of per-capita consumption is constant. In this case,
it follows therefore from the Euler equation (5) that the real interest rate is also constant, that
is, gr(t) = 0.

Let us now turn to the research effort LR(t). Along a BGP equilibrium, this variable must
either be equal to 0 or growing at the population growth rate n. The following lemma rules
out the former case.

Lemma 3 Along a BGP equilibrium it must hold that LR(t) > 0 and gLR
(t) = n.

Proof: Suppose that LR(t) = 0 holds for all t. Then it follows from (24), (25), and (44) that
gA(t) = gQ(t) = gw(t) = 0. Using gw(t) = gr(t) = 0, (47), and (12) it follows that gv(t) = n.
Together with gQ(t) = 0 and (18) this implies gwR

(t) = n. Because of n > 0, the results
gw(t) = 0 and gwR

(t) = n are inconsistent with (19). This contradiction proves the lemma. ¤

Proof of Theorem 1: From (25) we get

gA(t) = (1 + κ)BγLR(t)A(t)γκ−1.
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Because of lemma 3 it follows that gA(t) must be strictly positive. Differentiating the above
equation with respect to t and using gLR

(t) = n we obtain ġA(t) = gA(t)[n−(1−γκ)gA(t)]. Since,
along a BGP equilibrium, gA(t) must be a strictly positive constant we obtain gA(t) = g > 0,
where g is defined in (26). The remaining growth rates in (27) are easily derived from this
result and equations (24), (45), and (47).

As for the interest rate it follows from (5), (21), and (27) that

r(t) = (1− α)(1 + κ)g + ρ. (48)

Let us now turn to the proof of (28). From (27) we know that A(t) = A0e
gt and Q(t) = Q0e

κgt

for some constants A0 and Q0. Dividing (25) by A(t), evaluating the resulting equation at
t = 0, and using the definition B = A−κ

0 Q0 yields therefore

A0/Q
γ
0 = (1 + κ)LR(0)/g. (49)

Equation (44), on the other hand, implies that

w(t) = α2α [(1− α)A0Q0]
1−α e(1−α)(1+κ)gt. (50)

Substituting this result together with (48) and LY (τ) = LY (t)en(τ−t) into (12) it follows that

v(t) =
α1+2α(1− α)1−α(A0Q0)

−α

(1 + κ)g + ρ− n
LY (t)e−α(1+κ)gt. (51)

Substituting this and LY (t) = LY (0)ent into (18) and using (26) yields

wR(t) =
α1+2α(1− α)1−α(1 + κ)2A−α

0 Q0
1−α+γLY (0)

(1 + κ)g + ρ− n
e(1−α)(1+κ)gt.

Substituting this result and (50) into condition (19) we get

A0/Q
γ
0 = α(1 + κ)2LY (0)/[(1 + κ)g + ρ− n].

Together with (49) this implies LY (0) = (1 − α)LR(0)/K, where K is defined in theorem 1.
Substituting this and (46) into (3) yields after simplifications equation (28).

Equations (47) and (51) imply that gv(t) = n− α(1 + κ)g. Using this result and (27) in (42),
we obtain ga(t) = gA(t) + gQ(t) + gv(t) = n + (1 − α)(1 + κ)g. Together with (48) and the
assumption ρ > n this shows that the no-Ponzi game condition (4) is satisfied.

Finally, it remains to show that the BGP equilibrium is indeed uniquely determined for any
fixed pair (B, L(0)), where B = A(0)−κQ(0). Substituting (28) into (49) we obtain

A0/Q
γ
0 = (1 + κ)KL(0)/[(1− α + α2 + K)g].

Because of γκ < 1, there exists exactly one pair (A0, Q0) satisfying this equation as well
as A−κ

0 Q0 = B. Thus, for any fixed pair (B,L(0)) ∈ (0, +∞)2, there exists a unique BGP
equilibrium. In addition, it is easy to see that higher values of L(0) translate into higher values
of both A0 and Q0. Thus, the BGP equilibrium exhibits a weak scale effect.
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Appendix B

The Hamiltonian function for the social planner’s optimal control problem can be written as

J(A,Q, LR, z, λA, λQ, t) = (1− α) ln(AQ) + ln[L(t)− LR] + J1(A,Q, z, λA, λQ)LR,

where J1(A, Q, z, λA, λQ) = (β− z)QγλA[1 + (z− 1)λQQ/(λAA)], and where λA and λQ are the
costate variables corresponding to A and Q, respectively. The adjoint equations are

gλA
(t) = ρ− n− (1− α)/[λA(t)A(t)] + [z(t)− 1]gA(t)/M(t) (52)

and
gλQ

(t) = ρ− n− (1− α)/[λQ(t)Q(t)]− gA(t) {γM(t) + (1 + γ)[z(t)− 1]} , (53)

where
M(t) = [A(t)λA(t)]/[Q(t)λQ(t)]. (54)

We start by proving a few auxiliary lemmas.

Lemma 4 Along every optimal BGP it holds for all t that LR(t) > 0 and gLR
(t) = n.

Proof: Suppose to the contrary that LR(t) = 0 holds for all t along an optimal BGP. From
the state equations we see that A(t) and Q(t) must be constant (hence, gA(t) = 0) and that
the choice of z(t) has no influence on the value of the objective functional. We can therefore
conclude that the constant control path z(t) = 1 is optimal. Using these results in (52)-(53) and
noting that gλA

(t) and gλQ
(t) must be constant along a BGP, it follows that λA(t) and λQ(t)

themselves must be constant. Substituting gA(t) = gλA
(t) = gλQ

(t) = 0 into (52)-(53) and
using the assumption ρ > n we conclude that λA(t) and λQ(t) are strictly positive constants.
A necessary condition for LR(t) = 0 to be optimal is that the derivative of the Hamiltonian
with respect to LR evaluated at LR = 0 is non-positive. This means that

J1(A(t), Q(t), z(t), λA(t), λQ(t)) ≤ 1/L(t).

The results mentioned above imply that the left-hand side of this inequality is a positive con-
stant. Since n > 0, the right-hand side converges to 0 and the inequality is therefore violated
for all sufficiently large t. This contradiction proves the lemma. ¤

Lemma 5 Along every optimal BGP z(t) is constant and it holds for all t that 0 < z(t) < β.

Proof: Along a BGP both gA(t) and gQ(t) are constant. Because of (23) this implies that
z(t) is constant as well. Now suppose that z(t) = 0 for all t. This means that newly invented
intermediate goods have quality qi = 0 and, hence, do not contribute anything to final good
production. R&D is therefore useless and it is optimal to choose LR(t) = 0. Since this is a
contradiction to lemma 4, it follows that z(t) > 0 holds.

Now suppose that z(t) = β for all t. In this case it follows from the state equations that A(t)
and Q(t) are constant and independent of the choice of LR(t). From (32) we see therefore that
LR(t) = 0 must be optimal. This contradicts lemma 4 again, and it follows that z(t) < β. ¤
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Proof of Theorem 2: From lemma 5 we know that z(t) must be a constant. Let us denote
this constant by z̄. From (23) we obtain immediately that

gQ(t) = (z̄ − 1)gA(t). (55)

Dividing equation (22) by A(t) and noting that gA(t) and z(t) must be constant along a balanced
growth path, one sees that LR(t)Q(t)γ/A(t) must remain constant. Because of lemma 4 this
implies that n + γgQ(t)− gA(t) = 0. Together with (55) this yields the first two statements in
(33). The third one follows now easily from gL(t) = gLR

(t) = n and (31).

Let us now turn to the determination of z̄. From lemma 5 we know that 0 < z̄ < β, that is, z̄ is
an interior maximum of the Hamiltonian function J . The corresponding first-order condition
is LR(t)Q(t)γλA(t)[1 + β − 2z̄ −M(t)]/M(t) = 0, which implies that

M(t) = 1 + β − 2z̄. (56)

This shows that M(t) must be constant.

Now consider the adjoint equation (52). Since z(t), M(t), gλA
(t), and gA(t) are constants along a

BGP, it follows that λA(t)A(t) must also be constant. Hence, we obtain gλA
(t) = −gA(t) = −ḡ.

Equation (53) implies in a completely analogous way that gλQ
(t) = −gQ(t) = −(z̄ − 1)ḡ.

Substituting these results back into (52)-(53), we get

−ḡ = ρ− n− (1− α)/[λA(t)A(t)] + (z̄ − 1)ḡ/M(t) (57)

and
−(z̄ − 1)ḡ = ρ− n− (1− α)/[λQ(t)Q(t)]− ḡ [γM(t) + (1 + γ)(z̄ − 1)] .

Multiplying the former equation by M(t) and subtracting it from the latter, we obtain after
some rearrangement

M(t) = 1− (1 + γ)z̄ḡ/[(1 + γ)ḡ + ρ− n].

Substituting for M(t) and ḡ from (56) and ḡ = n/[1− γ(z̄− 1)], we finally obtain the equation
G(z̄) = 0, with G as defined in the theorem. Now note that G(0) = β(1 + γ)ρ > 0 and G(β) =
−β(ρ − n)[1 − γ(β − 1)] < 0, where we have used the assumptions ρ > n and γ < 1/(β − 1).
Since G(z̄) is a quadratic polynomial in z̄, these properties prove that there exists exactly one
value z̄ ∈ (0, β) satisfying G(z̄) = 0. Finally, because of G(β/2) = β(1 + γ)n/2 > 0, this
solution must also satisfy z̄ > β/2.

It remains to determine the optimal research intensity LR(t)/L(t). From lemma 4 we know
that LR(t) > 0. Since LR(t) = L(t) leads to an objective value of −∞, we can also conclude
that LR(t) < L(t). The optimal value of LR(t) must therefore be an interior maximum of the
Hamiltonian function. The corresponding first-order condition is J1(t) = 1/[L(t)−LR(t)], which
can also be written as LR(t)/L(t) = J1(t)LR(t)/[1 + J1(t)LR(t)].21 The proof of the theorem is
therefore complete if we can show that J1(t)LR(t) = K̄ with K̄ as defined in theorem 2.

From the definitions of J1(t) and M(t), from z(t) = z̄, and from gA(t) = ḡ we know that

J1(t)LR(t) = ḡλA(t)A(t)[1 + (z̄ − 1)/M(t)].

21Here and in what follows we write J1(t) instead of J1(A(t), Q(t), z(t), λA(t), λQ(t)).
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Solving (57) for λA(t)A(t) and substituting the result into the above equation yields after
rearrangements

J1(t)LR(t) =
(1− α)ḡ[M(t) + z̄ − 1]

[M(t) + z̄ − 1]ḡ + M(t)(ρ− n)
.

Replacing M(t) by its value given in (56) one obtains J1(t)LR(t) = K̄. This completes the
proof of the theorem.
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Figure 1: The quality/quantity frontier.

28


