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1 Introduction

Following the influential contributions of Kormendi and Meguire (1985) and Barro

(1991), the empirical growth literature has used cross-country regressions to identify

variables that are robustly (partially) correlated to growth of per capita GDP. Many

different economic, social and political variables have been proposed as important

determinants of economic growth. Durlauf and Quah (1999), for instance, name

more than eighty variables that have been included at least once in a cross-country

growth regression. Brock and Durlauf (2001) refer to this problem as the “open-

endedness” of theories of economic growth.

Levine and Renelt (1992) gave a first assessment of the robustness of growth determi-

nants by applying a version of Leamer (1983)’s extreme bounds analysis. Levine and

Renelt checked for robustness when changing the set of conditioning variables and

concluded that almost no variable used by Kormendi and Meguire (1985) and Barro

(1991) is robustly correlated with average GDP per capita growth. Sala-i-Martin

(1997a, 1997b), however, considers that the robustness test implied by extreme

bounds analysis is too strong for any variable to pass it in the framework of empiri-

cal growth research, and proposed to analyze the entire distribution of estimates of

the partial correlation between a given variable and long-run growth. Adopting such

an approach, Sala-i-Martin (1997a, 1997b) attaches a “confidence level” (in terms of

the probability mass on one side of zero in the empirical distribution of the estimate

of the partial correlation) to each variable, and proposes to consider those variables

with a confidence level of 95% or more as robustly correlated with long-run growth.

Using this method, the conclusion is that there exists a considerable number of eco-

nomic, political and demographic variables that are actually (partially) correlated

to growth in a robust fashion.

The methods used to assess the robustness of covariates in growth regressions used

by Levine and Renelt (1992) and Sala-i-Martin (1997a, 1997b) rely on models of

a given size, so model uncertainty concerning the number of variables that should

be included in the growth regression is not considered. Bayesian model averaging

methods allow to account for model uncertainty both in the size of the model and

in the choice of explanatory variables. Sala-i-Martin, Doppelhofer and Miller (2004)

- henceforth SDM (2004) - introduce an alternative approach, Bayesian Averaging

of Classical Estimates, BACE, that builds upon Bayesian model averaging without

needing to specify prior distributions for all parameters in the econometric specifica-
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tion.1 The method can be applied simply by repeated OLS estimations and presents

a tractable setting aimed at accounting for model uncertainty in linear growth re-

gressions. The results in SDM (2004) are in line with Sala-i- Martin (1997a, 1997b),

indicating that there is a sizable group of variables which are robust explanatory

factors for economic growth.

All the methods named above approach the issue of model uncertainty in growth

regressions under the assumption that the relationship between the explanatory vari-

ables and the growth rate is linear. This essentially implies that the effect associated

with a particular variable is constant across subsamples of the data used. Various

deviations from the linear paradigm have been tested in the empirical literature and

there is ample evidence of parameter heterogeneity, multiple regimes and threshold

nonlinearities in cross country growth regressions (see e.g. Durlauf and Johnson,

1995, Durlauf, Kourtellos and Minkin, 2001, Masanjala and Papageorgiou, 2004,

or Papageorgiou, 2002).2 Many theoretical growth models deliver multiple steady

states (e.g. Azariadis and Drazen, 1990). Masanjala and Papageorgiou (2004) have

explicitly model nonlinearities in the aggregate production function. Finally, issues

such as “poverty traps” and other threshold effects have been very influential in

economic policy-making, motivating for example some of the “Millenium Goals”

proposed by the United Nations.3 The existence and economic importance of non-

linearities and threshold effects among determinants of economic growth plays thus

a major role in the present policy discussion on global development strategies.

In this paper we explicitly allow for non-linearities in the form of level-dependent

parameter heterogeneity as usually specified by threshold models (see Hansen, 1996,

2000). We allow for uncertainty over possible threshold effects and associated thresh-

old observations by extending the BACE method of SDM (2004) and estimating the

posterior distribution of these quantities of interest. We propose a method for es-

timating threshold values under model uncertainty based on the inspection of the

posterior inclusion probability of the threshold parameter. Note that the distri-

bution of threshold effects and interactions are calculated by averaging over many

1See also Fernández, Ley and Steel (2001) for an approach to robustness evaluation in cross-
country growth regressions using Bayesian model averaging.

2Crespo Cuaresma (2002) presents a robustness exercise where threshold nonlinearity is explic-
itly accounted for but model size uncertainty is not dealt with.

3For an interesting debate on this issue see the interchange between Jeffrey Sachs and William
Easterly at http://www.nyu.edu/fas/institute/dri/Easterly/index.html.

2



possible specifications and are therefore not conditional on a particular model. The

resulting inference and policy analysis is therefore taking into account uncertainty

over models, including nonlinear effects.

The paper contributes to the literature on the empirics of economic growth nonlin-

earities as follows: First, our proposed method allows the estimation of the entire

posterior distribution of thresholds and associated nonlinear effects. We only need to

specify a set of candidate threshold variables (motivated by the literature on growth

nonlinearities discussed above) and prior parameters for the expected number of ex-

planatory and threshold variables being present in the model. Second, we show that

once we allow for uncertainty over the number of threshold variables and threshold

observations, there is a relatively small set of robust nonlinear effects. In particular,

conditioning on the Number of Years an Economy Has Been Open affects the size

and significance of the effect of some other determinants of growth, whereas Initial

Income appears to play a much less prominent role as a threshold variable when

allowing for uncertainty over the number of variables causing nonlinearities. This

result can be contrasted with the vast evidence of (model specific) nonlinearities

found in earlier studies. Third, a technical contribution of the paper is to extend

the BACE sampling method to the estimation of the distribution of nonlinear ef-

fects and associated thresholds. A key role is played by the specification of priors

of inclusion of threshold variables and thresholds. We also extend the “stratified”

sampler proposed by SDM (2004) to the case of threshold regressions.

The paper is organized as follows. Section two presents the methodology proposed

to account for threshold nonlinearity in cross-country growth regressions in the pres-

ence of model uncertainty, which we call Bayesian Averaging of Thresholds (BAT).

Section three reports the results of the robustness analysis for a dataset formed by

the 21 variables that SDM (2004) find robust in their analysis and two potential

threshold variables: the initial level of GDP per capita and the proportion of years

that the economy has been open. Section four concludes and presents further paths

of research.
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2 Bayesian Averaging of Thresholds (BAT)

2.1 Thresholds and model uncertainty: BAT

The BAT approach is aimed at evaluating the existence and robustness of nonlin-

earities in regressions with model uncertainty. It is a generalization of the BACE

approach in SDM (2004) which allows for threshold effects of certain variables on

the regression parameters.

Consider a set of variables that are potentially related to growth, X, and a set of

variables that are potentially causing threshold-nonlinearity in the growth regres-

sion, Z. Z may or may not be a subset of X. The stylized nonlinear model we are

considering is

γ = α +
n∑

k=1

βkxk +
m∑

j=1

[
(α∗j +

n∑

k=1

β∗jkxk)I(zj ≤ τj)

]
+ ε, (1)

where γ is a vector of T observations of growth rates of GDP per capita, x1, . . . , xn

∈ X, z1, . . . , zp ∈ Z, I(·) is the indicator function, taking value one if the argu-

ment is true and zero otherwise and ε is an error term assumed uncorrelated across

cross-sectional units and with constant variance σ2. There are therefore m variables

inducing nonlinearity in (1) and for simplicity we assume that the nonlinearity which

is induced by variable zi is independent from the regime in which an observation is

according to another threshold variable zj, for i 6= j. Although the BAT method can

be generalized in a straightforward manner to the setting with dependent nonlin-

earities, this assumption avoids having to use cross-products of indicator functions

in (1), which would increase the computational time of the procedure significantly.

Since we are explicitly dealing with model uncertainty, n and m are not assumed

to be known. Instead, in the spirit of SDM (2004), we assume prior inclusion prob-

abilities for the elements of X and Z. In particular, we assume a prior inclusion

probability of n̄/N for the variables in X and a prior inclusion probability of m̄/M

for the variables in Z, where N = card(X) and M = card(Z). This implies that

the prior expected number of included X-variables in the regression (excluding the

constant) is n̄ and the prior expected number of variables inducing nonlinearities is

m̄, leading to an expected model size of (n̄ + 1)(m̄ + 1).

Given the choice of regressors from X and threshold variable from Z we proceed as

follows to choose a threshold value zj. We assign a diffuse prior to values of zj ac-
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tually observed in the sample after trimming 100×θ% of the observations from each

extreme of the empirical distribution. We impose this trimming of the distribution

to avoid that one of the resulting regimes contains too few observations which could

lead to unreliable estimation results. Therefore, the prior inclusion probability of

zj,i (observation i in threshold variable zj) as a threshold in (1) conditional on the

inclusion of zj as a threshold variable is uniform and given by 1/[T (1− 2θ)].4

It should be noted that this prior specification for the threshold values uses sample

information and could thus be controversial if the Bayesian approach is to be taken

literally. A related issue is the ordering of variables in the cross-sectional context,

which is straightforward in the time-series context.5 We proceed in the estimation

by assuming a “natural ordering” of threshold variables Z from smallest to largest

realized value and applying the trimming and selection of threshold to the ordered

observations. Given the obvious difficulties involved in setting bounds to the prior

distribution of the threshold values without observing the realized sample of the

threshold variable and since using sample information for the prior specification is

standard in the Bayesian literature of threshold estimation (see, for example, Koop

and Potter, 1999), we decided to use this mixed approach to threshold estimation.6

Given the setting put forward above, the prior probability attached to a model

containing n X-variables and m threshold variables with thresholds {τ1, . . . , τm} is7

P (Mn,m,τ1,...,τm) = (n̄/N)n(1− n̄/N)N−n(m̄/M)m(1− m̄/M)M−m[1/[T (1− 2θ)]]m.

(2)

With this diffuse prior specification and further assuming a diffuse prior with respect

to σ, the odds ratio for two models can be approximated (see Leamer, 1978, and

Schwarz, 1978) as

4For two consecutive ordered observations zj,i and zj,i+1, any threshold value τj in the interval
[zj,i, zj,i+1) leads to the same variable I(zj ≤ τj). This implies that we only need to define a discrete
prior probability for each realized value of zj , instead of a continuous prior density on the support
of zj .

5We thank Hashem Pesaran for raising this point in discussions with us.
6See also Phillips (1991) for a reference to this controversy.
7This is the prior model probability assuming that there are no repeated observations in the

central 100(1-2θ)% of the empirical distribution of the variables in the Z group. If an observation
for variable zj repeated r times, its prior inclusion probability as a threshold value conditional on
the inclusion of zj as a threshold variable would be r/[T (1 − 2θ)], and P (Mn,m,τ1,...,τm) could be
adjusted conveniently.
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P (M0|Y )

P (M1|Y )
=

P (M0)

P (M1)
T (k0−k1)/2

(
SSE0

SSE1

)−T/2

, (3)

where ki is the size of model i, P (·|Y ) refers to posterior probabilities and SSEi is

the sum of squared residuals from the estimation of model i. Therefore, given our

model space M the posterior probability of model i can be computed as

P (Mi|Y ) =
P (Mi)T

−ki/2SSE
−T/2
i∑card(M)

j=1 P (Mj)T−kj/2SSE
−T/2
j

. (4)

The posterior model probabilities allow us to easily compute the first and second

moment of the posterior densities of the α, β and τ parameters in (1), given by

E(ξ|Y ) =

card(M)∑

l=1

P (Ml|Y )E(ξ|Y, Ml) (5)

and

var(ξ|Y ) =

card(M)∑

l=1

P (Ml|Y )var(ξ|Y, Ml) +

+

card(M)∑

l=1

P (Ml|Y )(E(ξ|Y, Ml)− E(ξ|Y ))2 (6)

where ξ is the parameter of interest and E(ξ|Y, Ml) is the OLS estimator of ξ for

the constellation of X- variables, Z-variables and threshold values implied by model

l. The posterior probability that a given X-variable, Z-variable or threshold value is

part of the regression can be computed as the sum of posterior model probabilities

of those models containing the variable or threshold value of interest.

2.2 Random sampling in the BAT framework

Since the number of possible regressions for reasonable sizes of X and Z is enormous,8

we have implemented both random sampling and a version of the “stratified” sam-

pling procedure proposed by SDM (2004).9 For the random sampler (RS), we use

8Notice that for a given Z-variable, T (1− 2θ) threshold values are possible, and each threshold
value defines a different model in our setting. This implies that, for a given group of X variables
and two threshold variables, [T (1−2θ)]2 models are possible. For example, if T=90, θ=0.15, N=20
and M=2, M contains more than 4200 million models.

9For details see the Technical Appendix to SDM (2004), which is available at:
www.econ.cam.ac.uk/doppelhofer
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prior inclusion probabilities of variables in X and Z and the uniform prior over

threshold values zj to obtain (5), (6) and the posterior inclusion probabilities for X-

variables, Z-variables and threshold values. The sampling design is as follows.

1. We sample nj variables from X and mj variables from Z. Each variable in

these sets has an inclusion probability of n̄/N and m̄/M for the set X and Z

respectively.

2. For each one of the mj Z-variables sampled, we independently sample a thresh-

old value from the empirical distribution of realized values after trimming

100× θ% of the observations from the extremes.

3. Equation (1) is estimated for the constellation of variables and threshold val-

ues which has been sampled. The information necessary in order to obtain

equations (4), (5) and (6) are saved for the model sampled.

4. Steps 1.-3. are replicated R (a large number of) times and (4), (5) and (6)

are computed using the replicated models, replacing card(M) by R. Changes

in parameters of interest are monitored to ensure convergence of averages of

sampling distributions to the posterior distribuition10.

The procedure allows us to obtain the posterior inclusion probability of all possible

interactions of variables in X with indicator functions for a given variable of Z and

a threshold value zj. This posterior inclusion probability is computed as the sum

of posterior model probabilities for models including that threshold variable and

threshold value and allows us to obtain an estimate for the threshold value corre-

sponding, for instance, to the mode of the posterior inclusion probability. Compar-

isons with the prior inclusion probabilities enable us to identify the threshold values

whose inclusion probability increases or decreases after observing the data. In a

similar fashion, the nonlinear effect can be evaluated by computing the posterior

expected value and posterior variance of the parameter of the interaction for the

corresponding threshold value.

2.3 Stratified sampling in the BAT framework

The “stratified sampler” first proposed by SDM (2004) extends naturally to the

sampling over threshold variables Z and thresholds zj proposed in this paper. The

sampling design is very similar to the random sampling procedure described in 1-4

10See Doppelhofer and Durlauf (2006) for a discussion of model averaging techniques.
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above. However, instead of the same (identical) prior sampling probability n̄/N and

m̄/M for variables from X and Z respectively, we adjust the sampling probability

to account for variables providing good fit. The first step is therefore replaced by:

1’. We sample nj variables from X and mj variables from Z starting with prior in-

clusion probability of n̄/N and m̄/M , respectively. After a number of random

draws, the sampling probabilities are adjusted to reflect model fit, captured

by the posterior inclusion probability of variables in sets X and Z,

P (ξ 6= 0|Y ) =
S∑

l=1

P (Ml|Y )I(ξ 6= 0|Ml)

for the corresponding parameter ξ. The sampling probabilities are then given

by a weighted average of prior and posterior inclusion probabilities. To ensure

that the posterior distributions are consistently estimated, the sampling prob-

abilities are bounded away from the extremes (0 or 1) by introducing lower

and upper bounds.

2’. Similarly, the probability of threshold zj can be adjusted to reflect higher

probability of choosing an important threshold point in the sampling proba-

bility. Inspecting the uniform prior and posterior distribution shows potential

computational gains in simulating the posterior distribution.

Steps 3 and 4 are then repeated as in the random sampling procedure. The savings

of computation time can be considerable, in particular in the case of a large number

of nonlinear threshold interactions and threshold values.

3 Nonlinearities and growth: Empirical applica-

tion

In this section we apply the BAT procedure to a reduced set of growth covariates

in order to evaluate the existence and nature of nonlinearities in growth regressions.

We choose the 21 variables that SDM (2004) find to be robustly related to growth

using the (linear) BACE approach as the set X. The variables are presented in a

table in the Data Appendix, together with the rest of the variables included in the

analysis carried out in SDM (2004).11 For this application, we will use a relatively

11The first 18 variables are robustly related to growth meaning that, in the linear BACE setting,
the posterior inclusion probability is higher than the prior inclusion probability. The other three
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small group of variables as Z, formed by two variables that have often been reported

to cause threshold-nonlinearity in growth regressions: the initial level of GDP per

capita and the proportion of years that the economy is open according to the cri-

teria in Sachs and Warner (1995). Durlauf and Johnson (1995), Hansen (2000),

Masanjala and Papageorgiou (2004) and Crespo Cuaresma (2002) report evidence

on nonlinearity induced by initial GDP per capita levels. Papageorgiou (2002) finds

evidence that sets of countries with different openness levels tend to differ in the

statistical model relating economic growth to other economic variables.12

The results presented below were obtained with ten million replications of the BAT

procedure with random sampling setting n̄=5, m̄=1 and θ = 0.15. We also ran

the BAT procedure with other parameter constellations and the results concerning

the existence and nature of nonlinearities appear robust to sensible changes in the

expected number of included variables in the X group, n̄, the expected number of

included variables from the Z group, m̄ and the trimming parameter.

Figure 1 and Figure 2 present the posterior inclusion probabilities for the threshold

value in all possible interactions of the X group variables with each one of the thresh-

old variable (initial GDP per capita in Figure 1 and proportion of years that the

economy is open in Figure 2). The prior inclusion probability for each realized value

is also plotted in the figures.13 While in the case of initial GDP the prior inclusion

probability is the same for all threshold values, in the case of the openness vari-

able the repetition of identical values in the sample leads to different prior inclusion

probabilities for each potential threshold value. The most remarkable feature of the

posterior inclusion probabilities of the threshold values for initial GDP per capita is

that they systematically fall below the prior inclusion probability, therefore lending

little evidence to the existence of threshold nonlinearities caused by initial develop-

ment levels once that model uncertainty is explicitly taken into account. The bigger

bulk of posterior inclusion probability appears for many interactions in the interval

variables used as part of X (DENS60, RERD and OTHFRAC) are marginally related to growth:
the posterior inclusion probability is slightly smaller than the prior inclusion probabilities, but
their corresponding effect is estimated with high precision when they are included in the growth
regression.

12See also Huang and Chang (2006) and Papageorgiou (2006).
13For a given interaction and a threshold value, the prior inclusion probability is given by the

product of the prior inclusion variable of the corresponding X variable (n̄/N), the corresponding
Z variable (m̄/M) and the corresponding threshold value (r/[T (1− 2θ)], where r is the number of
times the threshold value is repeated in the range of potential threshold values of the Z variable).
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Figure 1: Posterior and prior inclusion probability, threshold value in Initial GDP

per capita
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Figure 2: Posterior and prior inclusion probability, threshold value in proportion of

Years Open
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between 7.26 (corresponding to the initial GDP per capita of Malaysia) and 7.45

(corresponding to the initial GDP per capita of Algeria). It should be noted that for

simulations run setting m̄=2 (that is, considering only nonlinear threshold models

with both threshold variables as the relevant class), posterior inclusion probabilities

in this range appeared greater than the prior inclusion probabilities, but as long as

model uncertainty with respect the existence of nonlinearities is taken into account

(that is, for parameter constellations with m̄ < 2 such as the one reported here),

the evidence of threshold effects caused by initial GDP per capita levels disappears.

Variable β: Posterior mean β: Posterior s.d. β∗: Posterior mean β∗: Posterior s.d.
Intercept 0.060352 0.022257 -0.009038 0.014481
East Asian dummy 0.019399 0.006475 -0.038349 0.010120
Primary schooling 1960 0.025717 0.010226 0.017526 0.015585
Investment price -0.000083 0.000027 0.000011 0.000085
Fraction tropical area -0.013797 0.004492 0.008528 0.008710
Malaria prevalence -0.011639 0.008979 -0.018294 0.019087
Life expectancy 1960 0.000708 0.000351 -0.000719 0.000653
African dummy -0.008482 0.011845 -0.031641 0.009293
Latin American dummy -0.012638 0.005627 0.008361 0.007484
Spanish colony -0.009723 0.005534 0.010712 0.007640

Values obtained with ten million replications of the BAT procedure for the group of robust variables

in SDM (2004) (first 21 variables in the Data Appendix), for n̄=5, m̄=1 and θ = 0.15. Posterior

mean and standard deviation of β∗ evaluated at the threshold value of openness corresponding to

the mode of the posterior inclusion probability of each interaction reported.

Table 1: Posterior mean and standard deviations of β and β∗ conditional on inclusion

for openness as a threshold variable

In Figure 2 the posterior inclusion probabilities for the threshold value correspond-

ing to the openness variable are presented. In the case of this threshold variable

posterior inclusion probabilities are higher than prior inclusion probabilities in the

range delimited by 0.22 (corresponding to the openness experience of Gambia and

Ghana in our sample) and 0.33 (the proportion of years open for Nicaragua and

Syria in our data) for the interactions with the following variables: the regression

intercept, East Asian dummy, primary schooling 1960, investment price, fraction

of tropical area, malaria prevalence, life expectancy in 1960, African dummy, Latin

American dummy and Spanish colony. For these variables, Table 2 presents the

posterior mean and standard deviation of β and β∗ in (1) conditional on inclusion
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of the respective variables, evaluated at the threshold value of the openness variable

corresponding to the mode of the posterior inclusion probability for each interaction.

The interaction effect is very well estimated for the case of the East Asian and

African dummies, and the results shed an interesting light on the effects which are

picked up by these variables in cross country growth regressions. The posterior mean

of the East Asian dummy parameter (conditional on inclusion) corresponding to the

regime of “open countries” (defined by a threshold parameter of 0.22 in the variable

“Years open”, which corresponds to the mode of the posterior inclusion parameter)

is very similar to the result obtained in SDM (2004)14 for the linear setting and is

estimated very precisely. The posterior mean of the additive effect for observations

in the regime of “closed countries” is -0.038, with a posterior standard deviation of

0.010, which deems the positive effect of the East Asian dummy inexistent for this

subsample. A similar conclusion is reached for the case of the African dummy: when

the interaction effects with openness are taken into account, this variable appears

only robust and estimated with a high degree of precision in the regime correspond-

ing to the subsample of relatively closed countries. Furthermore, the quantitative

effect in this regime is estimated to be higher in absolute value than the linear elas-

ticity obtained in SDM (2004).15 These results suggest that these regional dummies

are basically picking up the effect of subsamples of countries with a differential open-

ness experience in the period under consideration.

4 Conclusions

We propose a new method of jointly assessing threshold effects and model uncer-

tainty in the framework of cross-country growth regressions. Our methodology

makes use of Bayesian model averaging in the spirit of SDM (2004) to deal with

model uncertainty, including uncertainty about nonlinear effects. We put forward a

method for estimation of thresholds based on the evaluation of the posterior inclu-

sion probability of potential threshold values.

14In SDM (2004)’s results, the East Asian dummy is found to be the most robust variable of
a set of 67 growth covariates. Conditional on inclusion of this variable in the linear setting, the
posterior mean of the parameter attached to the dummy in SDM (2004) is 0.022, with posterior
standard deviation of 0.006.

15The posterior mean conditional on inclusion for the African dummy in SDM (2004) is -0.015,
with a posterior standard deviation of 0.007.
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We use the set of explanatory variables that SDM (2004) found to be robustly related

to economic growth in linear models. As threshold variables, we use initial GDP per

capita and the proportion of years that the economy was open. We find no evidence

of nonlinear growth effects generated by initial level of GDP per capita. This is

contrary to other empirical studies (see for instance Durlauf and Johnson, 1995, and

Hansen, 2000) which do not explicitly take model uncertainty into account, whereas

we allow for uncertainty about model size, threshold values and the nature of the

interactions. We find evidence of robust interactions between the number of years

an economy has been open and several other growth determinants. Our results

imply that the widely used East Asian dummy and African dummy are picking

up the effect of subsamples of countries with a high and low degree of openness,

respectively.

References

[1] Azariadis, C. and A. Drazen (1990), Threshold externalities in economic devel-

opment. Quarterly Journal of Economics 105, 501-526.

[2] Barro, R.J. (1991), Economic growth in a cross section of countries. Quarterly

Journal of Economics CVI, 407-443.

[3] Brock, W.A. and S.N. Durlauf (2001), Growth Empirics and Reality. The World

Bank Economic Review 15, 229-72.

[4] Crespo Cuaresma, J. (2002), Some million thresholds: nonlinearity and cross-

country growth regressions, Working Paper 0210, Department of Economics,

University of Vienna.

[5] Doppelhofer, G. and S.N. Durlauf (2006), Model Averaging: A Survey. Mimeo.

[6] Durlauf, S.N. and P.A. Johnson (1995), Multiple regimes and cross-country

growth regressions. Journal of Applied Econometrics 10, 365-384.

[7] Durlauf, S.N., Kourtellos, A. and A. Minkin (2001), The local Solow model.

European Economic Review 45, 928-940.

[8] Durlauf, S. N. and D.T. Quah (1999), The new empirics of economic growth,

in J.B. Taylor and M. Woodford (eds.), Handbook of Macroeconomics, vol. IA.

North-Holland, Amsterdam, 231-304.

14



[9] Fernández, C., Ley, E. and M.F. Steel (2001), Model uncertainty in cross-

country growth regressions. Journal of Applied Econometrics 16, 563-576.

[10] Hansen, B. E. (1996), Inference when a nuisance parameter is not identified

under the null hypothesis. Econometrica, 64, 413-430.

[11] Hansen, B. E. (2000), Sample splitting and threshold estimation. Econometrica,

68, 575-603.

[12] Huang, H. and Y. Chang (2006), Trade as a threshold variable for multiple

regimes: A comment. Economics Letters 91, 458-459.

[13] Koop, G. and S. M. Potter (1995), Bayes factors and nonlinearity: Evidence

from economic time series. Journal of Econometrics 88, 251-281.

[14] Kormendi, R., and P. Meguire (1985), Macroeconomic determinants of growth,

cross-coutry evidence. Journal of Monetary Economics 16, 141-163.

[15] Leamer, E.E. (1983), Let’s take the Con out of Econometrics. American Eco-

nomic Review 73, 31-43.

[16] Levine, R. and D. Renelt (1992), A sensitivity analysis of cross-country growth

regressions. American Economic Review 82, 942-963.

[17] Masanjala, W.H. and C. Papageorgiou (2004), The Solow Model with CES

Technology: Nonlinearities and parameter heterogeneity. Journal of Applied

Econometrics 19, 171-201.

[18] Papageorgiou, C. (2002), Trade as a threshold variable for multiple regimes.

Economics Letters 77, 85-91.

[19] Papageorgiou, C. (2006), Trade as a threshold variable for multiple regimes:

Reply. Economics Letters 91, 460-461.

[20] Phillips, P.C.B. (1991), To criticize the critics: An objective Bayesian analysis

of stochastic trends. Journal of Applied Econometrics 6, 333-364.

[21] Sachs, J. and A. Warner (1995), Economic reform and the process of global

integration. Brookings Papers on Economic Activity 1, 1-95.

[22] Sala-i-Martin, X. (1997a), I just ran two million regressions. American Eco-

nomic Review 87, 178-183.

15



[23] Sala-i-Martin, X. (1997b), I just ran four million regressions. NBER Working

Paper 6252.

[24] Sala-i-Martin, X. Doppelhofer, G. and R. Miller (2004), Determinants of Long-

Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach,

American Economic Review 94, 2004, 813-835.

16



A Data Appendix

Rank Short Name Variable Description PIP Mean S.D.

Dep. GROWTH Growth of GDP per capita – 0.0182 0.019
Var. at PPP between 1960–1996. 1

1 EAST East Asian Dummy 0.82 0.11364 0.31919
2 P60 Primary Schooling Enrollment 0.80 0.72614 0.29321
3 IPRICE1 Investment Price 0.77 92.47 53.68
4 GDPCH60L Log GDP in 1960 0.68 7.35494 0.90108
5 TROPICAR Fraction of Tropical Area 0.56 0.57024 0.47160
6 DENS65C Population Coastal Density 0.43 146.87 509.83
7 MALFAL66 Malaria Prevalence 0.25 0.33943 0.43089
8 LIFE060 Life Expectancy 0.21 53.72 12.06
9 CONFUC Fraction Confucian 0.21 0.01557 0.07932
10 SAFRICA Sub-Saharan Africa Dummy 0.15 0.30682 0.46382
11 LAAM Latin American Dummy 0.15 0.22727 0.42147
12 MINING Fraction GDP in Mining 0.12 0.05068 0.07694
13 SPAIN Spanish Colony Dummy 0.12 0.17045 0.37819
14 YRSOPEN Years Open 1950-94 0.12 0.35545 0.34445
15 MUSLIM00 Fraction Muslim 0.11 0.14935 0.29616
16 BUDDHA Fraction Buddhist 0.11 0.04659 0.16760
17 AVELF Ethnolinguistic Fractionalization 0.10 0.34761 0.30163
18 GVR61 Gov’t Consumption Share 0.10 0.11610 0.07454
19 DENS60 Population Density 0.09 108.07 201.44
20 RERD Real Exchange Rate Distortions 0.08 125.03 41.71
21 OTHFRAC Fraction Speaking Foreign Language 0.08 0.32092 0.41363

Explanatory variables are ranked by Posterior Inclusion Probability P (ξj 6= 0|Y ) (PIP) using the

BACE method (SDM, 2004). The set of regressors X is given by variables 1 to 21. The threshold

variables Z are ranked 4 (Log GDP in 1960) and 14 (Years Open 1950-94), respectively, but this

is not necessarily informative of their role as threshold variable. Variables ranked 22 to 67 were

not included in the results presented.
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Rank Short Name Variable Description PIP Mean S.D.

22 OPENDEC1 Openness Measure 1965-74 0.08 0.52307 0.33591
23 PRIGHTS Political Rights 0.07 3.82250 1.99661
24 GOVSH61 Government Share of GDP 0.06 0.16636 0.07115
25 H60 Higher Education Enrollment 0.06 0.03761 0.05006
26 TROPPOP Fraction Population In Tropics 0.06 0.29998 0.37311
27 PRIEXP70 Primary Exports 0.05 0.71988 0.28270
28 GGCFD3 Public Investment Share 0.05 0.05216 0.03882
29 PROT00 Fraction Protestant 0.05 0.13540 0.28506
30 HINDU00 Fraction Hindu 0.04 0.02794 0.12465
31 POP1560 Fraction Population Less than 15 0.04 0.39251 0.07488
32 AIRDIST Air Distance to Big Cities 0.04 4324 2614
33 GOVNOM1 Nominal Government Share 0.04 0.14898 0.05843
34 ABSLATIT Absolute Latitude 0.03 23.21 16.84
35 CATH00 Fraction Catholic 0.03 0.32826 0.41459
36 FERTLDC1 Fertility 0.03 1.56202 0.41928
37 EUROPE European Dummy 0.03 0.21591 0.41381
38 SCOUT Outward Orientation 0.03 0.39773 0.49223
39 COLONY Colony Dummy 0.03 0.75000 0.43549
40 CIV72 Civil Liberties 0.03 0.50947 0.32593
41 REVCOUP Revolutions and Coups 0.03 0.18489 0.23223
42 BRIT British Colony Dummy 0.03 0.31818 0.46844
43 LHCPC Hydrocarbon Deposits 0.02 0.42115 4.35121
44 POP6560 Fraction Population Over 65 0.02 0.04881 0.02898
45 GDE1 Defense Spending Share 0.02 0.02589 0.02463
46 POP60 Population in 1960 0.02 20308 52538
47 TOT1DEC1 Terms of Trade Growth in 1960s 0.02 -0.00208 0.03455
48 GEEREC1 Public Education Spending Share 0.02 0.02441 0.00964
49 LANDLOCK Landlocked Country Dummy 0.02 0.17045 0.37819
50 HERF00 Religion Measure 0.02 0.78032 0.19321
51 SIZE60 Size of Economy 0.02 16.15 1.82
52 SOCIALIST Socialist Dummy 0.02 0.06818 0.25350
53 ENGFRAC English Speaking Population 0.02 0.08398 0.25224
54 PI6090 Average Inflation 1960-90 0.02 13.13 14.99
55 OIL Oil Producing Country Dummy 0.02 0.05682 0.23282
56 DPOP6090 Population Growth Rate 1960-90 0.02 0.02153 0.00946
57 NEWSTATE Timing of Independence 0.02 1.01136 0.97667
58 LT100CR Land Area Near Navigable Water 0.02 0.47216 0.38021
59 SQPI6090 Square of Inflation 1960-90 0.02 394.54 1119.70
60 WARTIME Fraction Spent in War 1960-90 0.02 0.06955 0.15241
61 LANDAREA Land Area 0.02 867189 1814688
62 ZTROPICS Tropical Climate Zone 0.02 0.19002 0.26869
63 TOTIND Terms of Trade Ranking 0.02 0.28127 0.19038
64 ECORG Capitalism 0.02 3.46591 1.38089
65 ORTH00 Fraction Orthodox 0.02 0.01867 0.09829
66 WARTORN War Participation 1960-90 0.02 0.39773 0.49223
67 DENS65I Interior Density 0.02 43.37 88.06
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