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1 Introduction

Suppose you are contesting a prize with a single adversary, where the highest

bidder wins the prize and both bidders loose their investment. Investments

have no opportunity cost and your adversary has a higher initial budget. If

you’d simply both invest your initial budget you’d loose with certainty, so

what do you do? You’d look for the possibility of gambling with your initial

budget in the hope of increasing it. Knowing this, the adversary will also

gamble with his initial budget. This paper solves for the optimal strategy and

pay-offs in this all-pay auction game with known asymmetric initial budgets

under the assumption of the existence of a fair insurance market. We derive

existence and uniqueness for the two player, one slot (prize) game; uniqueness

and existence for the two player, T -slot game; existence and generic examples

for the n player, 1 slot game; and existence and an example of multiple

equilibria for the multiple slots, n player game.

Our most interesting result from the point of view of the auction literature

is that the pay-off function is non-standard. The dominant pay-off function in

the literature is the contest function for all-pay auctions proposed by Tullock

(1980) given by f(si)
f(sj)

. Here si denotes the budget of player i. This pay-off

function was subsequently adapted and used by many others (eg. Cornes

and Hartley (2005)). The pay-off function in our two-player game with i = 1

being the player with the smaller initial budget, turns out to be s1
2s2
. The

major difference is the higher expected return to the person with the higher

budget over the Tullock (1980) contest. The intuition behind this result is

that on a fair insurance market player 1 can write a contract in which she

obtains the same budget as player 2 with probability s1
s2
(conditional on which

she’d have a 50% chance of winning the contest) and ends up with zero with

probability (1− s1
s2
). Our main empirical prediction is that players with lower

budgets with positive probability make an eventual bid of zero, whereas the

player with the highest budget makes positive bids on all slots in all equilibria

we look at. This may help explain one of the stylized observation on political

lobbying (which is an example of an all-pay auction) that, ex post, some
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particular lobbying markets appear uncontested (see for instance Katz et al

1990).

By now, a large literature exists detailing the optimal strategy of bid-

ders in an all-pay auction under various valuation, information, budgetary,

and pre-commitment constraints. Hillman and Riley (1989) derived the

Nash-equilibrium of the 2-player, 1 slot all-pay auction under the assump-

tion of heterogeneous valuations without budget constraints. Extensions to

this basic all-pay auction framework have included the possibility of pre-

committment to lower valuations via delegation (Konrad et al. 2004), in-

complete information (Barut et al. 2002), sequential bids rather than simul-

taneous bids (Leininger 1991), and binding budget constraints (Laffont and

Robert, 1996).1 Baye et al. (1996) provide an early overview of the basic

1-slot all-pay auction and Klemperer (1999) provides a survey of the general

auction literature.

The model in our paper differs in two important respects from the existing

literature. The main innovation is the presumption of a fair insurance market

where individuals can gamble with their initial budgets. This extension can

be given three justifications which delimit the interpretation of the results of

this paper.

The first interpretation is to take the existence of a fair insurance lit-

erally and to interpret the results that way: individuals, departments, and

whole organisations can gamble on stock markets, option markets, and on

betting markets. Our paper shows how budget-constrained players should

1The paper by Laffont and Robert (1996) shares the assumption of our paper that

bidders are financially constrained and that those constraints and the ensuing strategies

are common knowledge. Unlike them, we assume heterogeous budgets.

The idea to look at optimal bidding behavior in all-pay auctions rather than optimal

auction design is the spirit of Konrad et al. (2004). They ask whether delegation in all pay

auctions is an optimal strategy and show the optimal two-part contract a buyer will set

for an agent bidding on his behalf. This delegation in their model has the benefit of pre-

commting to having lower expected bids in the actual auction. The possibility of delegation

in our model would not change anything because players only care about winning and not

about the resources lost in the contest and thus there would be no benefit to delegation.
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gamble with their initial budgets if the subsequent game is an all-pay auc-

tion. The natural starting assumption to study this situation is to presume

the existence of a fair insurance market.

A second rationale for the fair insurance assumption is to see the as-

sumption of fair insurance as the limit situation when players are playing

over very many slots simultaneously and have to allocate a fixed budget over

these slots. Then, on average, each slot is allocated a certain amount of the

resource in expectation.

A final rationale for the assumption of a fair insurance market is take fair

insurance as describing an intermediary stage. In the intermediary stage each

player can choose from a menu of possible investments on which the fixed

budget is spent, where individuals can choose the result of that investment

strategy if the strategy works whereby the chance of success is inversely

related to that result. An example of different strategies in the context of

a patent race would be to either thoroughly research everything such that

a certain level of innovation in a new product is reached with certainty, or

to research only a fraction and gamble that one nevertheless has hit upon a

big innovation by chance. The result of that intermediary stage then forms

the ‘bid’ in the outcome stage (the patent request), whereby the player with

the highest intermediary result wins. Again, a natural starting point for the

analysis of such a contest is to presume that the intermediary process in

which one can choose between levels of risks of failure is characterised by

fair insurance (i.e. the odds of achieving a result in the intermediary stage

is perfectly inversely related to the hight of the result).

A lesser difference between our paper and the existing literature is that in

our paper, we presume that players care only about the probability of winning

the contest. There are two main rationales for that assumption. One is that

it simply recognises that there are many situations where agents are given

a fixed budget by a principle to achieve a given objective. Examples would

be an R&D department that is given a fixed budget to win a patent race

by a principal; sports institutes given a budget to produce as many winners

4



as possible by a government; and a legal firm given a fixed budget to win a

particular case. A secondary rationale for the assumption that the players

dont care about the invested resource is to fit situations where the bid is not

monetary but is in terms of something with little opportunity value to the

player, such as campaigning effort by a politician. A natural extension to

our work is to look at situations where there is an opportunity cost to the

resources put into the contest.

There are many markets that are set up as all-pay auctions and which

thereby form potential applications of our model. Konrad et al. (2004) argue

that all-pay auctions play an important role in many allocation processes,

from lobbying over political campaign spending and spatial competition to

sport contests, patent / R&D races, and military campaigns. Cornes and

Hartley (2005) additionally note that law cases, competitive research grants,

and status games are also all-pay auctions. Formalising these arguments,

Baye and Hoppe (2003) show that rent seeking contests, patent races and

innovation tournaments are strategically equivalent.

The paper proceeds as follows. We first state the problem formally for

the two player case. Section 3 provides a solution for the two player multiple

objects case. We show existence and characterize the unique equilibrium. In

section 4 we show existence for the case of more than two players. In the

final section we conclude and discuss possible extensions.

2 The basic 2-player problem

Consider the following problem: Two players, 1 and 2, simultaneously al-

locate scarce resources to T locations, which form the set Z = {1, .., T}.
Without loss of generality we assume that each location pays a identical re-

turn of 1 to the player who allocates more to the location in question. Both

players maximize their return and we require the resource constraint to be

fulfilled in expectation. Let Ts1 and Ts2 denote the total amount of the

resource available to players 1 and 2 and xz, yz the amount allocated to slot

5



z by player 1, 2 respectively. Without loss of generality we assume s1 ≤ s2.

Given that we look at mixed strategies, we denote by F z
1 and F z

2 the strate-

gically chosen stochastic distribution functions of xz, yz. Then the problem

is the following:

Ts1 ≥
TX
z=1

Z ∞

0

xdF z
1 (x)(1)

Ts2 ≥
TX
z=1

Z ∞

0

ydF z
2 (y)(2)

P1 =
1

T

TX
z=1

Z ∞

0

Z ∞

0

[I{(x,y)∈R2|x>y} +
1

2
I{(x,y)∈R2|x=y}]dF z

1 (x)dF
z
2 (y)(3)

F1 = argmax
F1

P1 for a given F2

F2 = argmax
F2

1− P1 for a given F1

where I{.} is the indicator function and F z
1 , F

z
2 denote the equilibrium c.d.f.’s

of player 1, 2 respectively for the choice of the amount of the resource allo-

cated to slot z and F1 = (F 1
1 , .., F

T
1 ), F2 = (F

1
2 , .., F

T
2 ) and similarly for eF1, eF2.

These c.d.f.’s are chosen strategically. What makes the problem non-trivial

is that equilibrium distributions F z∗
1 and F z∗

2 both have to be non degenerate

for all z. We intuitively argue this here by supposing the converse. If F z
1 was

degenerate in x for all z, then player 2 could overbid player 1 for this z and

P1 would be 0. Indeed, player 2 would overbid player 1 marginally in any

region z if xz was known with certainty. Converse, if yz was known, then the

optimal reaction of player 1 would be to overbid player 2 marginally in those

regions with lowest yz until mass runs out. Knowing this, the optimal yz

would be equal to s2, in which case P1 would be s1
s2
and player 2 could profit

by switching to the same strategy as player 1. In equilibrium it thus cannot

be that for any z ∈ {1, .., T}, the strategies of players are not random.
We continue by solving for the 2 player 1 slot case, after which we extend

both the number of players and the number of slots.
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3 Existence and Uniqueness for the case of

two players

Without loss of generality, we take 0 < s1 ≤ s2. The following theorem settles

the existence problem.

Theorem 1. The following strategies form a Nash equilibrium of the game:

In each slot z player 1 chooses F z∗
1 according to

F z∗
1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for x < 0

1− s1
s2
for x = 0

1− s1
s2
+ s1

2s22
x for 0 < x ≤ 2s2

1 for x > 2s2

and player 2 chooses F z∗
2 according to

F z∗
2 (y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for y < 0

1
2s2

x for 0 ≤ y ≤ 2s2
1 for y > 2s2 .

In this equilibrium P1 =
s1
2s2

.

Proof. A simple calculation shows that for these strategies the resource con-

straints (1) and (2) are satisfied.

Now if player 2 chooses F z∗
2 , z = 1, . . . , T , and player 1 invests an amount

of x ≥ 0 with probability one in slot z, then the expected payoff of player 2
in z is equal to 0 if x > 2s2 and equal to 1− 1

2s2
x otherwise. Consequently,

if player 2 chooses F z∗
2 , z = 1, . . . , T , and player 1 chooses F

z
1 , z = 1, . . . , T ,

and respects his resource constraint, then the (average over slots) expected

payoff of 2 is equal to
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1

T

TX
z=1

Z 2s2

0

µ
1− x

2s2

¶
dF z

1 (x)

≥ 1

T

TX
z=1

Z ∞

0

µ
1− x

2s2

¶
dF z

1 (x)

= 1− 1

2s2

1

T

TX
z=1

Z ∞

0

x dF z
1 (x)

≥ 1− 1

2s2
s1 by the resource constraint for player 1.

On the other hand, when player 1 chooses F z∗
1 , z = 1, . . . , T , and player 2

invests an amount of y ≥ 0 with probability one in slot z, then the expected
payoff of player 1 in z is equal to 0 if y > 2s2, equal to 1−(1− s1

s2
+ s1
2s22

y) ≡ s1
s2
−

s1
2s22

y if 0 < y ≤ 2s2, and equal to 1
2
(1− s1

s2
)+ s1

s2
if y = 0. Consequently, when

player 1 chooses F z∗
1 , z = 1, . . . , T , and player 2 chooses F

z
2 , z = 1, . . . , T ,

and respects his resource constraint, then the (average over slots) expected

payoff of player 1 is equal to

1

T

Ã
TX
z=1

µ
1

2

µ
1− s1

s2

¶¶
+

Z 2s2

0

µ
s1
s2
− s1y

2s22

¶
dF z

2 (y)

!

≥ 1

T

TX
z=1

Z 2s2

0

µ
s1
s2
− s1y

2s22

¶
dF z

2 (y)

≥ 1

T

TX
z=1

Z ∞

0

µ
s1
s2
− s1y

2s22

¶
dF z

2 (y)

=
s1
s2
− s1
2s22

1

T

TX
z=1

Z ∞

0

y dF z
2 (y)

≥ s1
s2
− s1
2s22

s2 by the resource constraint for player 2

=
s1
2s2

.

Since for any choices of strategies by players 1 and 2 the (average over

slots) expected payoffs sum to one, it follows that the choices F z∗
1 , z =

8



1, . . . , T , by player 1 and F z∗
2 , z = 1, . . . , T , by player 2 form an equilibrium.

The proof establishes in particular that in any equilibrium the expected

payoff of player 1 is equal to s1
2s2
and the expected payoff of 2 equal to 1− s1

2s2
.

Thus in any existing equilibrium, the player having less resources wins less

than his share of the overall resources in the economy ( s1
2s2

< s1
s1+s2

). The

basic idea of the proof is that, if player 2 uses a strategy to allocate the same

expected amount of the resource on each slot and a uniform distribution on

the interval [0, 2s2], then player 1 cannot acquire more than P1 =
s1
2s2

. We

now show that the proposed mixing strategies are a unique equilibrium.

Theorem 2. The equilibrium strategies F z∗
1 , F

z∗
2 , z = 1, . . . , T , from the

statement of Theorem 1 are the only equilibrium strategies.

Proof. Consider first the case of only one slot. Suppose the pair (F1, F2)

is any equilibrium for this case. Then by the proof of Theorem 1, the pair

(F1, F ∗2 ) is an equilibrium, too. Clearly this implies that F1(2s2) = 1. Let

g : [0, 2s2] → [0, 1] be given by g(0) = (1/2)F1(0), and for x > 0 by g(x) =

F1(x) if F1 is continuous at x and by g(x) = limx0↑x F (x
0) + (1/2)(F1(x) −

limx0↑x F (x
0)) otherwise. By Lemma 5 in the Appendix, the equilibrium

conditions with respect to F ∗2 and the fact that supp dF
∗
2 = [0, 2s2] imply

that for some numbers α, β we have g(x) = α+ βx for all x ∈ (0, 2s2]. Thus
F1(x) = α+ β(x) for all [0, 2s2] (since F1 is right continuous at 0). An easy

calculation shows that the resource constraint for player 1 and the fact that

F1(2s2) = 1 imply that α = 1 − (s1/s2) and β = s1/(2s
2
2) must hold. Thus

F1 = F ∗1 . Similarly it follows that F2 = F ∗2 .

Now consider case of multiple slots z = 1, . . . , T and suppose that the

pair
¡
F1 = (F

1
1 , . . . , F

T
1 ), F2 = (F

1
2 , . . . , F

T
2 )
¢
is any equilibrium. We have to

show that for each z, F z
1 = F z∗

1 and F z
2 = F z∗

2 .

The following terminology will be used in the rest of this proof. For real

numbers s01, s
0
2 ≥ 0 and distribution functions F 0

1, F
0
1, with F 0

1(x) = 0 for

x < 0 and F 0
2(y) = 0 for y < 0, we will say that the pair (F

0
1, F

0
2) is a one slot

9



equilibrium for s01 and s02 if F
0
1 chosen by player 1 and F 0

2 by player 2 forms

an equilibrium in the one slot problem where the resources of player 1 are

given by s01 and that of player 2 by s
0
2.

For each z = 1, . . . , T , let sz1 =
R∞
0

x dF z
1 (x) and sz2 =

R∞
0

y dF z
2 (y).

Clearly, in any equilibrium, for both players 1 and 2 the resource condition

must hold with equality. Thus we must have
PT

z=1 s
z
1 = Ts1 and

PT
z=1 s

z
2 =

Ts2 .

Now by the arguments in the proof of Theorem 1 and the remarks follow-

ing that proof, the pair (F ∗1 , F2) is also an equilibrium. Clearly, this means

in particular that for each z the pair (F z∗
1 , F z

2 ) is a one slot equilibrium for

s1 and sz2. By the uniqueness result for the one slot case established above,

it follows that for any z,

if s1 < sz2 then

F z∗
1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

1− s1
sz2

if x = 0

1− s1
sz2
+ s1

2(sz2)
2x if 0 < x ≤ 2sz2

1 if x > 2sz2 .

and if s1 ≥ sz2 then

F z∗
1 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0

1
2s1

x if x ≤ 0 ≤ 2s1
1 if x > 2s1 .

(4)

On the other hand, by the definition of F z∗
1 ,

(5) F z∗
1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

1− s1
s2

if x = 0

1− s1
s2
+ s1

2s22
x if 0 < x ≤ 2s2

1 if x > 2s2 .

If s1 < s2 then it is immediate that (4) and (5) are consistent only if sz2 = s2.

In case s1 = s2, (4) and (5) imply at least that s1 ≥ sz2 must hold for all
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z, and then the resource constraint
PT

z=1 s
z
2 = Ts2 implies that also in this

case sz2 = s2 for each z. Thus in any case, sz2 = s2 for each z (since s1 ≤ s2

by hypothesis). That is, (F z∗
1 , F z

2 ) is a one slot equilibrium for s1 and s2.

By the uniqueness result for the one slot case, it follows that F z
2 = F z∗

2 for

each z.

Now to see that F z
1 = F z∗

1 must hold for each z, first note that the pair

(F1, F2) being an equilibrium implies that sz1 > 0 for each z. For each z

define a mapping φz : R+ → R by

φz(yz) =

⎧⎨⎩ 1
2sz1

yz if yz < sz1

1− sz1
2
1
yz

if yz ≥ sz1 ,

and define a mapping φ : RT
+ → R by

φ(y1, . . . , yT ) =
TX
z=1

φz(yz) .

By the argument of the proof of Theorem 1, the fact that the pair (F1, F2) is

an equilibrium implies that the pair (F1, F ∗2 ) is an equilibrium, too. It follows

that for each z, the pair (F z
1 , F

z∗
2 ) is a one slot equilibrium for sz1 and s2.

By the remarks following the proof of Theorem 1, then, the expected payoff

of player 2 in the one slot equilibrium (F z
1 , F

z∗
2 ) is equal to

s2
2sz1

if s2 < sz1

and is equal to 1− sz1
2s2
if s2 ≥ sz1. Consequently the total expected payoff of

player 2 in the equilibrium (F1, F
∗
2 ) is equal to φ(s2, . . . , s2).

The mapping φ attains a maximum at (y1, . . . , yT ) = (s2, . . . , s2) over

the set {(y1, . . . , yT ) ∈ RT
+ :
PT

z=1 y
z = Ts2}. Indeed, suppose there would

be an (y1, . . . , yT ) ∈ RT
+ with

PT
z=1 y

z = Ts2 such that φ(y1, . . . , yT ) >

φ(s2, . . . , s2). Again by the proof of Theorem 1, there is a strategy F 0 =

(F 10, . . . , F T 0) such that for each slot z,
R∞
0

y dF z0
Y (y) = yz and such that the

expected payoff for z is ≥ yz

2sz1
if yz < sz1 and is ≥ 1−

sz1
2yz
if yz ≥ sz1. It follows

that the total expected payoff of F 0 is larger than φ(s2, . . . , s2), contradicting

the fact that the pair (F1, F ∗2 ) is an equilibrium.

Observe now that each mapping φz is differentiable in yz and that the

derivative with respect to yz is strictly decreasing on the interval [sz1,∞). Also
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Figure 1: Equilibrium strategies for s1 = 1 and s2 = 2 : F
z∗
1 (x) (black) and

F z∗
2 (x) (red).

observe that (F z
1 , F

z∗
2 ) being a one slot equilibrium for s

z
1 and s2 means that

s2 ≥ sz1 must hold by the uniqueness result for the one slot case. Consequently

the fact that φ attains a maximum at (s2, . . . , s2) over the set

{(y1, . . . , yT ) ∈ RT
+ :

TX
z=1

yz = Ts2}

implies that the sz1 ’s must coincide whence, by the resource constraint for

player 1, sz1 = s1 must hold for each z. Thus, for each z, the pair (F z
1 , F

z∗
2 )

is a one slot equilibrium for s1 and s2. By the uniqueness result for the one

slot case again, we may conclude that F z
1 = F z∗

1 for each z. This completes

the proof of the theorem.

The equilibrium allocation follows a clear-cut mixing rule. For player 2

it is optimal to allocate to any region z an independent random draw from

the uniform distribution on the range [0, 2s2]. The equilibrium response of

player 1 is to choose 0 with probability 1 − s1
s2
and a random draw of the

same uniform distribution as the one by player 2 with probability s1
s2
. The

pictures below illustrate this result.

Putting this result into the context of a motivating example, say the

political game with two parties spending a fixed campaign budget over a

12



continuum of elections: for the bigger party 2, who has on average s2 to

spend in each of the elections it contests, it is optimal to randomly choose

an amount y in the range [0, 2s2] with each amount having equal probability.

Simultaneously, party 1 would decide with probability (1− s1
s2
) not to spend

any resources on that particular election at all, and with probability s1
s2
would

spend a positive amount of resources, randomly choosing an amount x to

spend from the range [0, 2s2] with each point having equal probability. This

choice process is then repeated in all the elections that these two parties

simultaneously contest: in each election the parties take fresh draws from F1

and F2. The expected outcome is that party 1 wins a proportion s1
2s2
of all

the elections.

4 Existence with more than two agents.

It is convenient to first treat the special case of only one slot (Section 4.1).

Existence of equilibrium in the multiple slots case will follow easily from

existence in the one slot case (Section 4.2).

4.1 The special case of one slot

We use the following notation:

• There are n agents j = 1, . . . , n with resources sj > 0.

• 0 < r1 < r2 . . . < rm are the levels of resources appearing among the n

agents.

• ni, i = 1, . . . ,m, denotes the number of agents j with sj = ri.

The term “distribution function on R+” means a weakly increasing and
right-continuous function F : R+ → R+ such that limx→∞ F (x) = 1.

The proof of equilibrium existence is organized in a series of lemmata.

Lemma 1. Let Gj be a distribution function on R+ for each j = 1, . . . , n.

Suppose the following conditions to hold for each j.
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(a)
R
R+

xdGj(x) = sj.

(b) There are real numbers αj ≥ 0 and βj > 0 such that

(i)
Q

j0 6=j Gj0(x) ≤ αj + βjx for all x ∈ R+;

(ii)
Q

j0 6=j Gj0(x) = αj + βjx for Gj-almost all x ∈ R+.

(c) Gj(0) = 0 if
Q

j0 6=j Gj0(0) > 0.

(d) The function
Q

j0 6=j Gj0(·) is continuous at Gj-almost all x ∈ R+.

Then (G1, . . . , Gn) is an equilibrium.

Proof. Consider any j and let Hj be any distribution function on R+ such
that

R
R+ x dHj(x) ≤ sj Note that if j sets some amount x with certainty,

then his expected payoff is ≤
Q

j0 6=j Gj0(x), and is =
Q

j0 6=j Gj0(x) if x > 0

and Gj0 is continuous at x for each j0 6= j. Thus the expected payoff for Hj

is

≤
Z
R+

Y
j0 6=j

Gj0(x) dHj(x)

≤
Z
R+
(αj + βjx) dHj(x)

≤ αj + βjsj ,

while the expected payoff from Gj isZ
R+

Y
j0 6=j

Gj0(x) dGj(x) =

Z
R+
(αj + βjx) dGj(x)

= αj + βjsj .

This completes the proof.

The next two lemmata essentially give a heuristic for finding equilibria.

Figure 2 provides an illustration of how strategies generically look like for

this heuristic. In this example s1 = 1, s2 = 2 and s3 = 3. The stratagies

are characterized by two critical values, a maximum bid c0, in this case
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c0 = 6. 9358 and a critical value c1, in this example c1 = 3.8456. 2 All players

distribute their bids over the interval [0; c0]. The strategies of all players are

continuous piecewise defined distribution functions. Players 1 and 2 have

a positive probability mass on 0. Player 1 never bids any positive amount

below c1 and concentrates all his budget on high bids. Player 2 and 3 have

a positive probability for all bids between 0 and the maximum bid c0.3

Given these strategies every player is indifferent between any distribution

of bids that fulfill his or her budget requirement.

Lemma 2. Suppose n > 2 and nm > 1. Let Fi, i = 1, . . . ,m, be distribution

functions on R+ with
R
R+ x dFi(x) = ri for each i = 1, . . . ,m. Suppose

there are real numbers β > 0 and ci, i = 1, . . . ,m, such that the following

conditions hold.

(i) (Fm(x))
nm−1 ·

Q
i<m(Fi(x))

ni = βx for all 0 ≤ x ≤ 1/β;

(ii) c1 > c2 . . . > cm−1 > cm = 0;

(iii) Fi(x) = max{Fm(x), Fm(ci)} for each i = 1, . . . ,m− 1;

Then (G1, . . . , Gn) with Gj = Fi if sj = ri is an equilibrium.

2In a general version with players with m different levels of budgets there are m − 1
critical values, each with the feature that a player with a budget rk has no probability

mass on bids below ck.
3The exact functions are

F1(x) =

⎧⎨⎩
√
a+ bc1 for 0 ≤ x ≤ c1
√
a+ bx for c1 < x ≤ c0

,

F2(x) =

⎧⎨⎩ a+bx√
a+bc1

for 0 ≤ x ≤ c1
√
a+ bx for c1 < x ≤ c0

and

F3(x) =

⎧⎨⎩
xb

(1−a)
√
a+bc1

for 0 ≤ x ≤ c1

xb
(1−a)

√
a+bx

for c1 < x ≤ c0
,

where c0 = 1−a
b = 6.9358, a = 0.237754, b = 0.109901and c1 = 3.8456.
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Figure 2: Equilibrium strategies for the case s1 = 1 (yellow), s2 = 2 (green),

s3 = 3 (black).

Proof. Conditions (a) to (d) of Lemma 1 hold, with αj = 0 and βj = β for

each j = 1, . . . , n.

Lemma 3. Suppose n > 2 and nm = 1. Let Fi, i = 1, . . . ,m, be distribution

functions on R+ with
R
R+ x dFi(x) = ri for each i = 1, . . . ,m. Suppose there

are real numbers α > 0, β > 0, and ci, i = 1, . . . ,m − 1, such that the
following conditions hold.

(i)
Q

i<m(Fi(x))
ni = α+ βx for all 0 ≤ x ≤ (1− α)/β;

(ii) Fm(x) · (Fm−1(x))
nm−1−1 ·

Q
i<m−1(Fi(x))

ni = β
1−αx for all 0 ≤ x ≤ 1−α

β
;

(iii) c1 > c2 . . . > cm−2 > cm−1 = 0;

(iv) Fi(x) = max{Fm−1(x), Fm−1(ci)} for each i = 1, . . . ,m− 2;

Then (G1, . . . , Gn) with Gj = Fi if sj = ri is an equilibrium.

Proof. Conditions (a) to (d) of Lemma 1 hold, with αj = α and βj = β for

that j with sj = rm, and αj = 0 and βj = β/(1− α) for the other j’s.

The next lemma provides the main tool to establish that strategies as given

by the previous lemmata indeed exist.
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Lemma 4. Let p ≥ 2 be an integer, let qi ≥ 1 be an integer for each i =

1, . . . , p, and let 0 < t1 < t2 . . . < tp be real numbers. Then:

(I) Given any number a ∈ [0, 1) there are distribution functions Fi on R+,
i = 1, . . . , p, such that

(i)
R
R+

xdGi(x) = ti for each i = 1, . . . , p

and such that for some real numbers b(a) > 0 and c1 > c2 . . . > cp = 0

(ii)
Qp

i=1(Fi(x))
qi = a+ 1−a

b(a)
x for all 0 ≤ x ≤ b(a), and

(iii) Fi(x) = max{Fp(x), Fp(ci)} for each i = 1, . . . , p− 1.

(II) Moreover, given any number r > tp, the number a can be chosen in

such a way that the distribution function F on R+ given by

(*) F (x) =

1
b(a)

x

a+ 1−a
b(a)

x
Fp(x) for 0 ≤ x ≤ b(a).

satisfies

(**)
Z
R+

xdF (x) = r.

Proof: see Appendix. In Lemma 2 and Lemma 3 we proposed candidates

for equilibrium strategies. With the help of Lemma 4 we show in the proof

of the following theorem the existence of these strategies.

Theorem 3. An equilibrium exists in the one slot case with any finite num-

ber of agents.

Proof. Suppose first that nm ≥ 2. Let F1, . . . , Fm be distribution functions

on R+, chosen according to Lemma 4(I), with a = 0, p = m, ti = ri for

all i = 1, . . . , p, qi = ni for i = 1, . . . , p − 1, but(!) qp = nm − 1. Let
G1, . . . , Gn be defined as in the statement of Lemma 2. Then, by Lemma 2,

(G1, . . . , Gn) is an equilibrium. For the case nm = 1, let F1, . . . , Fm−1 be

distribution functions on R+ chosen according to Lemma 4, with p = m− 1,
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ti = ri and qi = ni for i = 1, . . . ,m−1, such that the number a is so that (∗∗)
of that lemma holds for r = rm and the distribution function F determined

by (∗). Then for each j with sj = ri < rm, set Gi = Fi, and for that j

with rj = rm set Gj = F . where F is the distribution function according to

part (II) of Lemma 4. A glance at Lemma 3 reveals that (G1, . . . , Gn) is an

equilibrium.

4.2 The case of multiple slots

As before, there are n agents j = 1, . . . , n with resources Tsj > 0 for each j,

where T denotes the number of slots. By Theorem 3, there is an n-tuple

(G1, . . . , Gn) of distribution functions on R+ which constitutes a partial equi-
librium in any single slot when each agent invests an amount sj of his re-

sources in each slot. For each j = 1, . . . , n, let Fj be the T -tuple of distribu-

tion functions on R+ given by F z
j = Gj for each z = 1, . . . , T . We claim that

the n-tuple (F1, . . . , Fn) constitutes an equilibrium for the T slots problem.

To see this, consider any agent j. By the definition of Fj we have

TX
z=1

Z
R+

x dF z
j (x) =

TX
z=1

Z
R+

x dGj(x) = Tsj

i.e. the resource constraint holds for Fj. Observe that since each agent

i 6= j chooses the same strategy Gi in each slot, j is confronted with the

same payoff function in each single slot. Let us denote this payoff function

common for all slots by πj. (That is, πj(x), x ∈ R+, is the expected payoff
when j invests an amount of x with certainty in any of the single slots.) Now

suppose there is a T -tuple Hj = (H1
j , . . . , H

T
j ) of distribution functions on

R+, i.e. of strategies for the single slots z = 1, . . . , T , such that the resource
constraint holds for Hj and such that Hj yields a expected payoff larger than

that of Fj, i. e. such that

TX
z=1

Z
R+

x dHz
j (x) ≤ Tsj
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and
TX
z=1

Z
R+

π(x) dHz
j (x) >

TX
z=1

Z
R+

π(x) dF z
j ((x) .

Set Hj =
1
T

PT
z=1H

z
j . Then Hj is a distribution function on R+ and we haveZ
R+

x dHj(x) =
1

T

TX
z=1

Z
R+

x dHz
j (x) ≤ sj

as well asZ
R+

πj(x) dHj(x) =
1

T

TX
z=1

Z
R+

πj(x) dH
z
j (x) >

1

T

TX
z=1

Z
R+

πj(x) dF
z
j (x)

=

Z
R+

πj(x) dGj(x) .

But this amounts to a contradiction to the fact that (G1, . . . , Gn) is a partial

equilibrium in any single slot for the resources sj. We may conclude that

(F1, . . . , Fn) is an equilibrium for the T slots problem. Thus we have shown:

Theorem 4. An equilibrium exists for the multiple slots problem.

This theorem establishes existence for the multi player multi slot problem.

A simple example shows that equilibria in this case are not unique. Take as an

example the case of 2 slots and 3 players, with the first two players having

an equal amount of resources equal to s1 = s2 = b, and the third player

having double the amount of resources of the other players, i.e. s3 = 2b.

In one equilibrium, player 1 allocates b to the first market, and 0 to the

second market; player 2 allocates 0 to the first market and b to the second

market. The third player allocates b to market 1 and b to market 2. On

each market, the players allocating positive expected resources play as in

the 2-player game. Hence, the highest observable bid in this equilibrium is

given as c1 = 2b and given the equilibrium allocation an additional marginal

unit spend on any of the slots yields the same payoff equal to 1
2b
for every

player on every market, making all players indifferent between the equilibrium

and any alternative allocation in that equilibrium. Hence the proposed first
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equilibrium is indeed an equilibrium. Payoffs are then proportional to the

share of each agent of the total budget, i.e. player 3’s payoff (expected

proportion of all markets won) is 0.5 and that of player 1 and 2 is 0.25

each. Consider now a second equilibrium where player 1 and player 2 each

allocate b
2
to both market 1 and market 2, and player 3 allocates b to market

1 and b to market 2. On each market, players play according to the multiple

player on one market allocation of Lemma 4. In that case, the highest bid

with positive probability is c1 ≈ b ∗ 2.12 and the payoff of player 3 is 0.588
whereas the payoff of player 1 and player 2 is 0.206 each. Marginal payoffs

to player 1 and 2 in each market is now 1
c1
whereas it equals 1

c1
∗ (1− 0.22)

for player 3 on both markets, whereby marginal payoffs are non-increasing.

Thus, no player can improve their payoff and the proposed second equilibrium

holds. Interestingly enough, this example shows that expected payoffs are not

unique in the multiple slot case whilst they are unique in the N slots, 2 player

game. In the shown equilibrium of the 1 slot game, there is a positive bonus

(≡expected payoff -(share of resources)) to being the single biggest player. In
the multiple slot case this bonus may disappear if the biggest player overall

is not the biggest (i.e. highest amount of resources) in any of the individual

slots. This is exactly the situation in the first equilibrium given above, where

player 1 and 2 both increased their payoffs by concentrating their resources

on one market, thereby denying the the bonus to the biggest player of being

the biggest in either of the two markets. Unfortunately, we cannot find an

example for multi player, one slot game of multiple equilibria and conjecture

that the 1 slot game equilibrium is unique.

5 Conclusions, applications and extensions

The theorems in this paper have straightforward applications. For one, they

are prescriptive theorems that can be used in practise by budget constrained

players facing an all-pay auction who have access to a fair insurance market.

They should thus for instance be useful to campaign managers of politicians,
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and the managers of R&D departments engaged in patent races. The theo-

rems in this paper can also be used as predictive theorems of the allocation

of resources we should observe in practise in these instances. The predic-

tion that the smaller party doesn’t contest some regions at all whilst the

bigger party always contests all regions is particularly suited for empirical

applications.

An extension is to vary the payoff over slots from winning. We can ac-

commodate this into our framework by interpreting a ‘large slot’ as nothing

more than having a higher weight. Specifically, we can introduce a weight-

ing function w(t) with t denoting the slot where w(t) is always positive and

has expectation 1 over all slots. The payoff in t gets multiplied with this

weight. All the reasoning of the theorem goes through. For instance, in the

two-player case we get exactly the same mixing distributions F ∗A and F ∗B as

long as we multiply the randomly chosen Xz and Y z for the slot with pay-off

1 by w(z), i.e. the allocated expected budgets and bids are proportional to

the profit of the slot.

Another natural extension is to introduce the assumption that bidders

care about the resources lost in the auction. We’d anticipate that this would

have to mean an increase in the marginal probability of winning the contest

for an additional bid, which in turn would suggest that the average bids

would reduce. Introducing an opportunity costs of bids also reintroduces the

questions of optimal auction design and entry issues (with zero opportunity

costs, all available resources will be spent in any auction where additional

resources imply a higher probability of winning the contest, which makes the

issue of design trivial). A promising area of future research in the line we have

opened lies in the multiple slots case, where our investigation has shown the

possibility of non-unique pay-offs and strategies. It would be interesting to

further investigate the case with one big player and various small ones where

tacit collusion between small players by not bidding on each others’ market

can bring them benefits whilst remaining optimal for each smaller player.

Such a situation would especially seem to be important for military and
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political markets where groups of smaller players sometimes tacitly collude

against a single big player and sometimes do not. A thought would be to see

what happens if one would allow for contractable side-payments.

6 Appendix

Proof of Lemma 4:

Proof. Fix any numbers a ∈ [0, 1) and b > 0. Inductively define distribution

functions F a,b
1 , . . . , F a,b

p on R+ and real numbers b ≥ ca,b1 ≥ ca,b2 . . . ≥ ca,bp ≥ 0
in the following way. Let (F a,b

1 , ca,b1 ) be the (uniquely determined) pair, where

F a,b
1 is a distribution function and 0 ≤ ca,b1 ≤ b is a real number, such that

1.
³
F a,b
1 (x)

´q1+···+qp
= a+ 1−a

b
x for all ca,b1 ≤ x ≤ b;

2. F a,b
1 (x) = F a,b

1

¡
ca,b1
¢
for 0 ≤ x < ca,b1 ;

3.
R
R+ x dF

a,b
1 (x) ≤ t1;

4. there is no real number 0 ≤ c < ca,b1 such that (a) to (c) hold with c

substituted for ca,b1 .

Given that functions F a,b
1 , . . . , F a,b

k and numbers ca,b1 ≥ ca,b2 . . . ≥ ca,bk have

been defined for 1 ≤ k < p, define F a,b
k+1 and ca,bk+1 by

1. F a,b
k+1(x) = F a,b

k (x) for all ca,bk ≤ x ≤ b;

2.
Qk

i=1

³
F a,b
i

¡
ca,bi
¢´qi

·
³
F a,b
k+1(x)

´qk+1+···+qp
= a+ 1−a

b
x for ca,bk+1 ≤ x < ca,bk ;

3. F a,b
k+1(x) = F a,b

k+1

¡
ca,bk+1

¢
for 0 ≤ x < ca,bk+1;

4.
R
R+ x dF

a,b
k+1(x) ≤ tk+1;

5. there is no real number 0 ≤ c < ca,bk+1 such that (a) to (d) hold with c

substituted for ca,bk+1.
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(This construction can be done because 0 < t1 < t2 . . . < tp by hypothesis.)

Observe that the numbers ca,bi and the integrals
R
R+ x dF

a,b
i (x), i = 1, . . . , p,

depend continuously on (a, b).4 In particular, if (an, bn) → (a, b) in [0, 1) ×
R++, then F an,bn

i (x) → F a,b
i (x) for every x ∈ R+ and each i. Moreover, for

any fixed a ∈ [0, 1), if b is sufficiently large then ca,bp > 0, while if b > 0 is

sufficiently small then ca,bp = 0. But if ca,bp > 0 then
R
R+ x dF

a,b
p (x) = tp by

construction. Hence, by continuity, there is a number b(a) > 0 such that

both c
a,b(a)
p = 0 and

R
R+ x dF

a,b(a)
p (x) = tp. But

R
R+ x dF

a,b(a)
p (x) = tp impliesR

R+ x dF
a,b(a)
i (x) = ti for each 1 ≤ i ≤ p− 1, again by construction. Thus (I)

of the lemma follows in view of the way the functions F a,b
i were defined. As

for part (II), note first that our construction guarantees that for any given

a ∈ [0, 1), whenever b0 > b > 0 and both ca,bp = 0 and
R
R+ x dF

a,b
p (x) = tp

then ca,b
0

p > 0, so the number b(a) from the previous paragraph is uniquely

determined. It is evident that if an → a in [0, 1 then the sequence (b(an))

must be bounded. Combining these facts with the fact mentioned above

that the numbers ca,bi and the integrals
R
R+ x dF

a,b
i (x), i = 1, . . . , p, depend

continuously on (a, b) one finds that the mapping a 7→ b(a) is continuous

on [0, 1). In particular it follows that if an → a in [0, 1 then F
an,b(an)
p (x) →

F
a,b(a)
p (x) for every x ∈ R+. Consequently, for the distribution functions F

a

on R+ defined for each a ∈ [0, 1) by

F
a
(x) =

1
b(a)

x

a+ 1−a
b(a)

x
F a,b(a)
p (x) for 0 ≤ x ≤ b(a)

we have that if an → a in [0, 1) then F
an
(x)→ F

a
(x) for every x ∈ R+ whenceR

R+ x dF
an
(x)→

R
R+ x dF

a
(x). Evidently, for a = 0 we have

R
R+ x dF

a
(x) =R

R+ x dF
a,b(a)
p (x), while if an → 1 we must have b(an) → ∞ implying that

F
an
(x)→ 0 for each x > 0 and hence that

R
R+ x dF

an
(x)→∞. Thus (II) of

the lemma follows.
4To see this and some of the points mentioned in the sequel, use for instance the fact

that if F is any distribution function on R+ then
R
R+ xdF (x) =

R
R+(1− F (x)) d(x).

23



In the following lemma, z is a real number > 0 and P is the set of all

(Borel-) probability measures on [0, z].

Lemma 5. Let g : [0, z] → R+ be an increasing function, let μ ∈ P with

suppμ = [0, z], and suppose (∗)
R
[0,z]

x dμ(x) = c for some real number c.

Suppose

∞ >

Z
[0,z]

g dμ ≥
Z
[0,z]

g dμ0 for all μ0 ∈ P with
Z
[0,z]

x dμ0(x) = c.

Then for some numbers α, β we must have g(x) = α + βx for all x ∈ [0, z]
with x > 0. That is, on (0, z], g is the restriction of an affine function.

Proof. Since g is increasing and suppμ = [0, z], it is readily seen that (∗)
and (∗∗) imply that g must be continuous at every x ∈ [0, z] with x > 0. It

follows that we may assume that g is also continuous at 0. Let M be the

vector space of all bounded signed Borel measures on [0, z] and let Iμ be the

order ideal in M generated by μ; that is,

Iμ = {μ0 ∈M : −nμ ≤ μ0 ≤ nμ for some n ∈ N}.

Let 1 be the function from [0, z] to R that is constant equal to 1, and let q1,
q2, and q3 be the linear mappings from M to R given by

q1(μ
0) =

Z
[0,z]

g dμ0

q2(μ
0) =

Z
[0,z]

1 dμ0

q3(μ
0) =

Z
[0,z]

x dμ0(x) .

Let q1, q2, and q3 denote the restrictions to Iμ of q1, q2, and q3, respectively.

Let ker denote the kernel of a linear mapping. Evidently (∗) and (∗∗) imply
that ker q2∩ker q3 ⊂ ker q1. According to a standard fact from linear algebra
this means that q1 = αq2 + βq3 for some real numbers α and β. Now since

suppμ = [0, z], Iμ is weak∗ dense in M . Since q1, q2, and q3 all are weak∗

continuous it follows that q1 = αq2+βq3 whence g has the form g(x) = α+βx,

x ∈ [0, z].
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