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Evolutionary stability and Nash equilibrium in
finite populations, with an application to price

competition

1 Introduction

In recent years, a renewed interest in decision rules based on imitation has emerged,

partially motivated by the literature on evolutionary game theory. Björnerstedt and

Weibull (1996) show that if a game is recurrently played by a continuum population

of individuals who mimic the actions of better performing individuals observed at

random, population play follows the solution trajectories of the replicator dynamics;

imitation is thus one of the possible decision rules underlying the most prominent

evolutionary dynamics. It is well known that Nash equilibria are rest points of the

replicator dynamics. Moreover, evolutionarily stable strategies (henceforth ESS) as

defined by Maynard Smith and Price (1973) for a continuum population are always

Nash equilibrium strategies and asymptotically stable in the replicator dynamics.

Further, if a state is the limit of a trajectory starting in the interior of the state space,

then this limit is necessarily a symmetric Nash equilibrium. In summary, if individu-

als in a large population mimic successful behavior, when population play converges,

it does so to a Nash equilibrium. Hence, evolutionary game theory provides a non

rationalistic foundation to equilibrium play (see Weibull, 1995, chap. 2 and 3).

The relation between ESS, Nash equilibrium, and the long-run outcomes of imi-

tative dynamics in finite-population models is not so well understood. This relation

constitutes the main interest of the present paper. In particular, we identify classes

of games where a finite-population ESS is always a Nash equilibrium strategy.

The concept of finite-population ESS as defined by Schaffer (1988) is not re-

lated to Nash equilibrium in general (cf. Section 3).1 Stochastic models of evo-

lutionary learning in games that postulate individual behavior driven by imitation

also yield somewhat contradictory outcomes. A prominent example is provided by

Vega-Redondo (1997), who shows that imitation of successful strategies leads to

competitive equilibrium in a Cournot oligopoly. Alós-Ferrer et al. (2000), however,

show that imitative behavior does lead to Nash equilibrium in a Bertrand oligopoly.

The latter holds also in the case of convex costs where there is a large set of Nash

1Schaffer (1989) shows, for example, that Nash equilibrium and ESS differ in a Cournot duopoly

and Hehenkamp et al. (2004) show this for rent-seeking games. Tanaka (1999; 2000) has similar

results for oligopolies with asymmetric cost functions and differentiated product respectively.
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equilibria beyond the competitive equilibrium (see Dastidar (1995)).2 These results

show that, in finite-population models, imitative behavior may or may not lead to

Nash equilibrium, depending on the type of game. The present paper takes a fur-

ther step in trying to understand how the properties of imitative rules are related

to evolutionary stability of Nash equilibrium in finite-population models.

The results obtained so far point rather to a more general relation between evolu-

tionary stability, the long-run outcomes of imitative behavior, and perfectly compet-

itive (instead of Nash) equilibrium. In a recent paper, Alós-Ferrer and Ania (2005)

study this relation for a class of games that includes the Cournot oligopoly. Their fo-

cus is on aggregative games, where payoffs to any player depend on own strategy and

an aggregate of all players’ strategies. For an aggregative game, aggregate-taking

behavior can be defined as payoff maximization disregarding the own effect on the

aggregate, which is the analogue to perfectly competitive behavior. It is shown that,

if the game displays strategic substitutability between own strategy and the aggre-

gate, aggregate-taking behavior has strong evolutionary stability properties. These

properties, in turn, imply that aggregate-taking behavior is the long-run outcome of

a stochastic learning process where individual decisions are based on imitation of suc-

cessful strategies and random experimentation. Strategic substitutability between

own strategy and the aggregate creates a tension between high relative performance,

the dominating force behind evolutionary stability, and high absolute performance,

which drives Nash equilibrium; as a consequence, imitation leads away from Nash

equilibrium.

In contrast, our main focus here will be on games where imitation is improving;

i. e. where mimicking successful strategies always results in a payoff improvement

to the imitator. In such games the conflict between absolute and relative payoff

maximization is weakened and we can show that a finite-population ESS always

corresponds to a symmetric Nash equilibrium. Before that, we define imitative

behavior formally and review the concept of finite-population ESS. We will argue

that as a consequence of finite-population effects, the coincidence of ESS and Nash

equilibrium constitutes the exception rather than the rule. That said, we proceed

to show that ESS and Nash equilibrium do coincide in constant-sum games and in

games with weak payoff externalities, where any deviation always affects the de-

viator’s payoff more than the opponents’ payoffs. We then turn to games where

2Note that the results for Cournot and Bertrand competition are compatible only in the partic-

ular case of homogeneous product and constant unit costs, where firms competing à la Bertrand

always price competitively in equilibrium. For the case of increasing marginal costs, it is shown

that imitative behavior leads to a subset of the set of Nash equilibria. That subset includes the

competitive equilibrium only in certain cases.
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imitation is improving and establish a link between the static equilibrium concepts

and the properties of imitative dynamics. Finally, we give an example of a game

in the latter class, namely a Bertrand oligopoly with homogeneous product and de-

creasing returns to scale. We show that mimicking the price of the best performing

firm in the industry always increases the profits of the imitating firm. This implies

that evolutionarily stable prices correspond to Nash equilibrium prices. In the con-

text of this example, we also show that not all Nash equilibria are evolutionarily

stable; evolutionary stability actually selects a subset of the equilibrium prices char-

acterized by Dastidar (1995). Our results for the example also clarify some of the

dynamic results obtained in Alós-Ferrer et al. (2000). The fact that ESS corresponds

to Nash equilibrium only exceptionally, makes it even more remarkable that this is

the case for price competition.

The results obtained here for Bertrand oligopoly are related to those in Qin and

Stuart (1997) and Hehenkamp and Leininger (1999), who study evolutionary stabil-

ity of Bertrand equilibrium in a market with constant unit costs and a continuum

population. Whereas the former show that the Nash equilibrium where all firms

price at marginal cost is not evolutionarily stable, the latter argue that, if the set of

prices that firms are allowed to charge is discrete, then a new equilibrium appears

where all firms set the smallest price above marginal cost, and this equilibrium is

indeed evolutionarily stable. In the analysis, they use the notion of evolutionary

stability for a continuum population — which corresponds in that case to a con-

tinuum of firms that are randomly matched in a continuum of n-firm independent

Bertrand markets. This framework, traditionally used for evolutionary analysis, is

difficult to reconcile with the interpretation of an oligopolistic market as a game

with a small number of players. Partly, our contribution is to show that the finite-

population definition of evolutionary stability is better suited for the analysis of

evolutionary aspects in markets. For the case of constant unit costs, our results

imply evolutionary stability of the Nash equilibrium.

The type of improving property exploited in the present paper is related to the

optimality properties of imitative rules defined by Schlag (1998) for the case of

multi-arm bandit problems; i. e. problems of individual decision making under un-

certainty. There, it is shown that individuals in a large population can learn the best

strategy by following certain forms of sophisticated imitation. Conlisk (1980) and,

more recently, Rhode and Stegeman (2001) and Schipper (2002) provide dynamic

models with two types of decision-makers, optimizers and imitators, in a stable en-

vironment. In different contexts, they show that imitators survive and perform at

least as well as optimizers in the long run. The idea that absolute payoff maximizers
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do not necessarily obtain higher payoffs in equilibrium than individuals with other

objectives was also proposed by Fershtman and Judd (1987) and, more recently,

Koçkesen et al. (2000) show that strategic decision makers that maximize relative

instead of absolute payoffs may have an absolute-payoff advantage in equilibrium in

a large class of interesting economic games that satisfy structural conditions related

to super- or submodularity, payoff monotonicity, and payoff externalities.

Imitative behavior has often been justified not on the grounds of optimality in

decision making, but because it saves decision-making costs. Pingle and Day (1996)

report on a number of experimental settings where decision costs have been explicitly

incorporated. They find that subjects use imitation along with other modes of

economizing behavior in order to avoid those costs. Finally, Huck et al. (1999) and

Apesteguia et al. (2003) provide theoretical and experimental support showing that

the use and dynamic properties of imitative behavioral rules depend crucially on

the informational setting in which they take place. Our work is complementary to

theirs, showing that even under the same informational assumptions, imitative rules

have different properties depending on the game where they are used. Moreover, our

emphasis is on the fact that the dynamic properties of imitation are directly related

to the properties of the static concept of finite-population evolutionary stability.

The rest of the paper is organized as follows. In Section 2 we make a formal

description of imitative and improving rules. In Section 3 we review the concept of

finite-population ESS and establish the relation to Nash equilibrium in particular

classes of games. In Section 4 we turn to Bertrand oligopoly and show that price

imitation is always improving, which allows to calculate the set of evolutionarily

stable prices easily; at the end of the section we also explore the effects of imitative

behavior on industry profits. In Section 5 we make some concluding remarks.

2 Simple behavioral rules for games

In the present section we give a definition of imitative behavior. A basic premise

will be that behavior is adaptively driven by observation of past actions and the

performance associated to those actions.3 As will become apparent later on, behavior

based on imitation requires symmetry to a certain extent; for example, imitation is

only possible if the same set of actions is available to all decision makers. Therefore

our focus will be on symmetric games and on symmetric behavioral rules.

3Our formal description of behavioral and, in particular, imitative rules will be akin to those in

Apesteguia et al. (2003), Josephson and Matros (2004), and Selten and Ostmann (2001).
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2.1 Better reply correspondence

Consider a normal-form game Γ with set of players I = {1, . . . , n}, set of strategies S,

common to all players, and payoffs to player i ∈ I given by the function πi : Sn → R.

The game is symmetric if there exists a function π : S × Sn−1 → R such that, for

any strategy profile s = (s1, . . . , sn), πi(s) = π(si|s−i) = π(si|s
′
−i) where si is player

i’s strategy in the profile s, s−i is the vector of all players’ strategies except i in the

profile s, and s′−i is any permutation of s−i. I. e. the game is symmetric if payoffs to

any strategy are independent of the players’ names and invariant to permutations

of the opponents’ strategies.

Denote (s′i, s−i) the strategy profile where all players but i choose strategies

according to a given profile s and player i chooses s′i ∈ S. Given s, the better reply

set of player i is given by

Bi(s) = {s′i ∈ S | πi(s
′
i, s−i) ≥ πi(s)}. (1)

The set Bi(s) contains the strategies that would weakly improve i’s payoff at s.

Obviously, si ∈ Bi(s) for all s. This concept was introduced by Ritzberger and

Weibull (1995).

2.2 Imitative and improving rules

Let us now consider any decision problem where the individuals in I = {1, . . . , n}

have to choose strategies from the set S, knowing the sets I and S, and knowing

that their payoffs depend on the strategies chosen by others in I. Suppose, however,

that they do not have precise information about the payoff function and are thus

not able to calculate best responses. Instead, they decide on the basis of observed

past performance. Since they do not behave strategically, we do not refer to them

as players, but rather as individuals or decision makers. We now define what we

mean by an imitative behavioral rule in this context.

A behavioral rule for decision maker i, denoted Fi : Xi ։ S, is a correspondence

mapping i’s set of possible observations Xi into the set of strategies S. Given

that individual i observes xi ∈ Xi, Fi(xi) ⊆ S is the set of strategies that i may

take next period. A system of behavioral rules F = (F1, . . . , Fn) is symmetric if

X = X1 = . . . = Xn and if F1(x) = . . . = Fn(x) for all x ∈ X; i. e. if all decision

makers have the same set of possible observations, and if the individual behavioral

rules prescribe the same to all of them, provided that they observed the same. For

the purpose of this paper it will be enough to focus on symmetric systems where all

decision makers use the same behavioral rule F .

5



Let C(s) be the set of strategies currently chosen at any profile s. Formally,

C(s) = {s ∈ S | s = si, for some i ∈ I}. (2)

A behavioral rule F : X ։ S is imitative if X = Sn × R
n and F (x) ⊆ C(s)

for all x = (s,u) ∈ X where u = (u1, . . . , un) is an arbitrary vector of observed

payoffs.4 Note the two parts of the definition. First, current strategies chosen and

payoffs to all individuals constitute the set of possible observations. Second, the

rule prescribes to choose strategies that are observed in the current profile only. We

explicitly introduce the first requirement because imitation is possible only if other

strategies are observed. Observability of payoffs is not necessary in general for the

definition of an imitative rule. Rules like ‘imitate the most popular strategy’ do

not require that payoffs are observed. It is more likely, however, that imitation is

based on some measure of success associated to each strategy and that this success

is related to payoffs obtained and not only to popularity.5

Given x = (s,u), let the reference set at x be given by

R(x) = {s ∈ S | s = si for some i ∈ I and ui ≥ uj for all j ∈ I}. (3)

The reference set R(x) ⊆ C(s) contains the strategies chosen at s that gave highest

observed payoffs. We say that a behavioral rule F corresponds to imitate the best if

F (x) = R(x) for all x ∈ X; i. e. if the strategies that may be chosen by any decision

maker next period are those that gave highest payoffs in the current profile.

Finally, suppose that the underlying decision problem can be modelled through

the game Γ, although individuals do not know the payoff functions and follow some

simple behavioral rule F . Given s ∈ Sn, denote π(s) = (π1(s), . . . , πn(s)) the

associated vector of payoffs. We say that a behavioral rule F is improving in Γ

if for all x(s) = (s, π(s)), F (x(s)) ⊆ Bi(s) for all s ∈ Sn and all i ∈ I. I. e. starting

at any s with associated observed payoffs given by u = π(s) according to Γ, following

F will result in a weak payoff improvement to any decision maker.

4We use the notation π for payoffs resulting from the game Γ and u for arbitrary vectors of

observed payoffs. Recall that decision makers cannot infer payoffs when they observe strategies.
5A more general definition of an imitative rule could allow the elements of X to be arbitrary

sets instead of vectors, provided that each element of X intersects S × R; i. e. imitation is only

possible if at least some strategy and payoff are observed. It is not necessary that individuals

observe all strategies currently used and their associated payoffs. Alternatively, they could observe

the current strategies and payoffs of some randomly chosen sample of individuals, or they could

also have information about past behavior. This would require a richer structure for the set X

that we avoid here.
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3 Evolutionary stability in finite populations

In the present section we establish a relation between improving imitative rules and

the concept of evolutionary stability. It is customary in evolutionary game theory

to consider an infinite population of individuals who are randomly matched to play

some given game recurrently. In that context, a strategy is evolutionarily stable if,

once adopted by all individuals in the population, it cannot be outperformed by any

other mutant strategy coming in the population in a sufficiently small fraction. The

notion of evolutionary stability is based on relative performance; that is, on payoff

comparisons between the status quo and the mutant strategy in the post-entry

population profile. It is well known that in the context of an infinite population an

evolutionarily stable strategy always constitutes a symmetric Nash equilibrium (see

Weibull, 1995, chap. 2). In the same spirit, Schaffer (1988) proposed a definition of

evolutionary stability for n-player games played within a finite population, which

seems more suitable for application to economic problems. In this context, however,

due to finite-population effects, a strategy may be successful in relative terms even

if it is not a Nash equilibrium strategy (see Vega-Redondo, 1996, sec. 2.7).

Consider the symmetric game Γ. The set of players I is the finite population

of individuals choosing strategies from S. Payoffs to individual i ∈ I at the profile

s = (si, s−i) are given by πi(s) = π(si|s−i).

We say that s ∈ S is an evolutionarily stable strategy (ESS) if for all s′ ∈ S,

π(s|s′, s, n−2. . . , s) ≥ π(s′|s, s, n−1. . . , s). (4)

An ESS is strict if the last inequality holds strictly for all s′ 6= s. That is, once

adopted by all individuals in the population, an ESS cannot be outperformed by any

alternative strategy after any single deviation. Note that, in a population where all

but one deviant choose s, the single deviant choosing s′ faces the opponents’ profile

(s, s, n−1. . ., s) while those still choosing s face the profile (s′, s, n−2. . . , s); the deviant

never confronts another deviant as in the standard definition of ESS for an infinite

population where a small positive mass of mutants enters the population.

The focus of evolutionary stability is not on the usual comparison of payoffs to s

and s′ before and after deviation as in a Nash equilibrium, but on the comparison of

simultaneous payoffs to s and s′ in the resulting profile after deviation. An ESS has

a relative, not necessarily an absolute, advantage. If an ESS, s, has been adopted

by all individuals in the population, it may be profitable for an individual to deviate

to some s′, but that deviation would result in an even larger increase in the payoffs

of s, which has ex-post a relative advantage.

An ESS can be viewed as a Nash equilibrium strategy of a transformed game,

7



where the players’ objective is to maximize relative instead of absolute payoffs.

Rewriting expression (4), we say that s is an ESS if it solves the problem

max
s′∈S

π(s′|s, s, n−1. . . , s) − π(s|s′, s, n−2. . . , s). (5)

Instead, a strategy played in a symmetric Nash equilibrium of the original game

(with payoff function π) would only maximize the first part of the objective function

in problem (5). Therefore, it is not surprising that the equivalence of ESS and Nash

equilibrium strategies is more the exception than the rule.

On the other hand, the concept of ESS is related to another well-known equi-

librium concept. In particular, Schaffer (1989) shows for a symmetric Cournot

duopoly with constant unit costs that the output level corresponding to the com-

petitive equilibrium is evolutionarily stable. When all firms behave competitively

and price equals marginal cost, any firm deviating from the competitive output

may strategically improve its profits, but in that case the profits of the competi-

tive firms will increase even more. This result was generalized by Alós-Ferrer and

Ania (2005) to a large class of economic games, where finite-population ESS is re-

lated to perfectly competitive behavior. Here perfectly competitive behavior refers

to aggregate-taking behavior; that is, payoff maximizing behavior disregarding the

individual effect on some payoff-relevant aggregate.

Yet a natural question is whether the concept of finite-population ESS is some-

times related to Nash equilibrium, and whether we can say anything general about

the games where that is the case. We turn to this question in what follows.

3.1 Equivalence to Nash equilibrium in constant-sum games

We first focus on constant-sum games; i. e. games such that
∑

i πi(s) is constant for

all s. The next proposition shows that ESS and Nash equilibrium strategies coincide

in that case.

Proposition 1. Let Γ be a symmetric, constant-sum game. A strategy s is ESS if

and only if s = (s, . . . , s) is a symmetric Nash equilibrium in Γ.

Proof. Consider the symmetric profile (s, . . . , s) and a unilateral deviation to any

strategy s′ 6= s. The sum of payoffs before and after deviation has to be the same,

since the game is of constant sum. It follows that
(

n − 1

n

)

π(s|s′, s, n−2. . . , s) +

(

1

n

)

π(s′|s, n−1. . . , s) = π(s|s, n−1. . . , s) (6)

By equation (6) the payoff to s before deviation must lie between the payoffs to s

and s′ after deviation. If s is an ESS, then π(s|s′, s, n−2. . ., s) ≥ π(s′|s, n−1. . . , s) for all s′;
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i. e. after any deviation, the deviator to s′ must have a lower payoff that those still

choosing s. Equation (6) then implies that π(s|s, n−1. . . , s) ≥ π(s′|s, n−1. . . , s) for all s′.

Thus (s, . . . , s) is a symmetric Nash equilibrium. Analogously, if (s, . . . , s) is a Nash

equilibrium, then π(s|s, n−1. . . , s) ≥ π(s′|s, n−1. . . , s) for all s′; i. e. the deviator to any s′

must have a lower payoff than before deviation. Equation (6) then implies that, if

the payoff to the deviator decreases, that of the non-deviators must increase to keep

the sum of payoffs constant; thus π(s|s′, s, n−2. . . , s) ≥ π(s′|s, n−1. . . , s) for all s′, so that

s is an ESS.

Intuitively, in a constant-sum game if the payoffs to a player decrease after a de-

viation, the opponents’ payoffs must increase, leaving the deviator in a worse relative

position. This shows that any strategy played at a symmetric Nash equilibrium must

be evolutionarily stable. Conversely, the payoffs to any player in a symmetric profile

must equal the average payoff across players in a non-symmetric profile. Thus if a

single deviator from a symmetric profile is worse off in relative terms after deviation,

this must result from a worsening in absolute terms. Therefore, any evolutionarily

stable strategy is played at a symmetric Nash equilibrium.

3.2 Games with weak-payoff externalities

The focus in this section is on games where the effect of any unilateral deviation

on the deviator’s payoff is always greater than the effect on the opponents’ payoffs.

Formally, we say that Γ has weak-payoff externalities, if for all s, s′ ∈ Sn with

s = (si, s−i), s′ = (s′i, s−i), and si 6= s′i and for all i, j ∈ I, i 6= j we have

|πi(s
′) − πi(s)| > |πj(s

′) − πj(s)|.

Proposition 2. Let Γ be a symmetric game with weak-payoff externalities. A strat-

egy s is ESS if and only if s = (s, . . . , s) is a Nash equilibrium.

Proof. Suppose s is ESS but s = (s, . . . , s) is not a Nash equilibrium. It follows that

there exists s′ 6= s such that

π(s|s′, s, n−2. . . , s) ≥ π(s′|s, n−1. . . , s) > π(s|s, n−1. . . , s).

That is, it is profitable to deviate to some s′ for some player, but payoffs to the

non-deviators increase at least as much, so that the deviator ends up in a worse

relative position. This obviously contradicts the fact that the game has weak-payoff

externalities.
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Analogously, suppose that s = (s, . . . , s) is a Nash equilibrium, but s is not ESS.

It follows that there exists s′ 6= s such that

π(s|s, n−1. . . , s) ≥ π(s′|s, n−1. . . , s) > π(s|s′, s, n−2. . . , s).

That is, a deviation to s′ results in a decrease in absolute payoffs for the deviator,

but payoffs to the non-deviators decrease at least as much, so that the deviator ends

up in a better relative position. This again contradicts the property of weak-payoff

externalities.

3.3 Games where imitation is improving

So far we have identified classes of games where the relation between ESS and Nash

equilibrium can be established directly. We now turn to a dynamic approach. In

this section we relate ESS and Nash equilibrium through the properties of imitative

behavioral rules of the type defined in Section 2.2. In particular, we show that in

games where imitation is improving an ESS is always played in a symmetric Nash

equilibrium. We will also see later by means of an example, that the reciprocal

implication does not hold and thus there may be Nash equilibria that are not evo-

lutionarily robust. In this class of games, evolutionary stability indeed serves as a

selection criterion.

Proposition 3. Consider the decision problem modelled by the game Γ. Suppose

decision makers do not behave strategically but follow a simple behavioral rule F

corresponding to imitate the best. Assume that F is improving in Γ. If s is an ESS

of Γ, then s = (s, . . . , s) is a Nash equilibrium of the game.

Proof. Suppose s ∈ S is an ESS and let s′ ∈ S be any other strategy. Then

π(s|s′, s, n−2. . . , s) ≥ π(s′|s, n−1. . . , s) holds by definition. Let s′ = (s′, s, n−1. . ., s) be the

resulting strategy profile after a single deviation to s′ with associated vector of

payoffs π(s′). Let F correspond to imitate the best, then at s′ all individuals observe

x(s′) = (s′, π(s′)) and s ∈ R(x(s′)). If F is improving, then R(x(s′)) ⊆ Bi(s
′) for all

i ∈ I. This implies that π(s|s, n−1. . . , s) ≥ π(s′|s, n−1. . . , s); i. e. the deviant choosing s′

obtains a weak improvement by choosing s, implying that s must correspond to a

symmetric Nash equilibrium of Γ.

Example 1. Minimum-effort games

Consider the class of games where each player i ∈ I chooses an effort level

si ∈ S ≡ R+. Player i’s payoff is given by

πi(s1, . . . , sn) = a · min{s1, . . . , sn} − b · si + c,
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where a, b, and c are constants with a > b ≥ 0. These are referred to as minimum-

effort coordination games or Stag Hunt games (see Crawford (1991)).

To see that imitation is improving note that at the profile s, individuals observe

x(s) = (s, π(s)) and the reference set is R(x(s)) = {si ∈ R+|si = min{s1, . . . , sn}}.

Take any individual j with sj 6= min{s1, . . . , sn}, j’s payoff always improves after

imitation since

(a − b) · min{s1, . . . , sn} + c ≥ a · min{s1, . . . , sn} − b · sj + c

It is easy to see that although any level of effort constitutes a symmetric Nash

equilibrium, only s = 0 is an ESS.

3.4 Discussion on supermodular and potential games

We conclude this section with a discussion on supermodular and potential games.

At first glance, these well behaved classes of games seem good candidates that would

satisfy the kind of properties we have been looking at. It turns out that games where

imitation is improving (and thus ESS always corresponds to Nash equilibrium) are

neither a special case of, nor do they include, supermodular or potential games.

Intuitively, strategic complementarities in the case of supermodular games seem

to provide a framework where imitation should have good strategic properties. The

reason being that imitation has the effect of pooling decision makers in the same

direction. Given that best response correspondences are increasing in this case (see

e. g. Vives, 1999, sec. 2.2.3), ‘moving together’ seems as the right thing to do from a

strategic perspective. However, imitation not only determines the direction in which

a mimicking decision maker moves, but makes decision makers move to exactly the

same strategy. Although it may be correct that the better reply correspondence lies

in the direction of better performers, copying the opponent strategy may take the

decision maker ‘too far’ with respect to the better reply set. An example of a super-

modular game where the ESS and the Nash equilibrium differ is given by Tanaka

(2000) for the case of price competition with differentiated product. Proposition 3

above then implies that imitation can not be improving. Thus, supermodular games

are not a subclass of the games where imitation is improving. Reciprocally, it is easy

to construct examples of games which are not supermodular (not even ordinally su-

permodular) but where imitation is improving. Thus, supermodularity is unrelated

to the property of improving imitation.

Monderer and Shapley (1996) show that certain examples of Cournot oligopoly

are (cardinal) potential games. However, as mentioned above, ESS there corre-

sponds to competitive and not to Nash equilibrium. Proposition 3 then implies that
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imitation is not improving in Cournot oligopolies. On the other hand, the property

of improving imitation seems to be related intuitively to the finite improvement

property that characterizes generalized ordinal potential games (see Monderer and

Shapley (1996)). However, we present here an example of a game where imitation

is improving and the finite improvement property is violated. This example shows

that the class of games where imitation is improving is not a subclass of generalized

ordinal potential games.

Example 2. Consider the two-player game with payoff matrix

X Y Z

X 0,0 0,0 -1,1

Y 0,0 0,0 1,-1

Z 1,-1 -1,1 0,0

It is easy to see that imitation is improving in this game.6 However, the game has

a cycle in the following improvement path

(Y, X) → (Z, X) → (Z, Z) → (Y, Z) → (Y, X);

hence, it is not a generalized ordinal potential game. This example shows that

games where imitation is improving are not a subclass of the most general class

of potential games. Additionally, given that not even the most restrictive class of

potential games (namely cardinal potential games) is a subclass of the games where

imitation is improving, we conclude that these two classes of games are unrelated.

4 Price imitation

In this section we provide an economic example of a class of n-person games where

imitate the best is always improving. Therefore, by Proposition 3 all ESS are Nash

equilibrium strategies. As we will show below, this fact is useful to find all ESS.

4.1 The industry

Let the game Γ model an industry where identical firms I = {1, . . . , n} set prices

from S = [0, p]. All firms face the same cost function C(q), where q is the individual

output level. Assume that C is strictly increasing and convex and, for simplicity, that

C(0) = 0. Suppose customers buy from the firm with lowest price only and that firms

6It is also easy to check that this game is not ordinally supermodular under any reordering of

the strategies.
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adjust production to demand. Let D(p) be a strictly decreasing demand function,

which we assume strictly positive for all p ∈ [0, p]. In case of ties, demand splits

equally. Given the strategy profile p = (p1, . . . , pn), let P (p) = min{p1, . . . , pn} and

M(p) = {i ∈ I | pi = P (p)}. Thus |M(p)| is the number of firms that set lowest

price at p. The profits to firm i are given by

πi(p) =

{

P (p)D(P (p))
|M(p)|

− C
(

D(P (p))
|M(p)|

)

if i ∈ M(p)

0 if i /∈ M(p)

and the game is obviously symmetric.

Contrary to the case of constant unit costs, where market price always equals

marginal cost in equilibrium, Dastidar (1995) shows that a symmetric Bertrand

oligopoly with homogeneous product and convex costs has a large set of pure-

strategy Nash equilibria. In order to state the set of equilibria, define for any

k = 1, . . . , n, and any p ∈ R+

π(p, k) = p
D(p)

k
− C

(

D(p)

k

)

.

Let Pk ∈ R+ be such that π(Pk, k) = 0 and D(Pk) > 0; i. e. Pk is such that k active

firms make zero profits. Let P ′
k ∈ R+ be such that π(P ′

k, k) = π(P ′
k, 1); i. e. P ′

k is such

that each of the k active firms are indifferent between sharing the market and being

a monopolist at price P ′
k. It can be shown that Pk is decreasing with k, P ′

n > P1,

and that, for any price p ∈ [Pn, P ′
n], the profile where all firms set price equal to p

is a Nash equilibrium (see Dastidar, 1995, Lem. 6 and 7, and Prop. 1). Note that

at the Nash equilibrium where all firms set price Pn firms make zero profits.

4.2 Price imitation is improving

We now proceed to show that copying the price of the most successful firm in the

industry can only improve the profit of the imitating firm, therefore imitate the best

is improving in this game. This result provides a strategic rationale for the imitation

of competitors’ prices.

Given p, all firms observe x(p) = (p, π(p)), where π(p) is the vector of profits.

Then the reference set is given by

R(x(p)) = {p ∈ [0, p] | p = pi for some i ∈ I and πi(p) ≥ πj(p)) ∀j ∈ I}.

The rule imitate the best prescribes to copy any of the prices charged by the firms

with highest profits; i. e. F (x(p)) = R(x(p)) for all p.

13



Proposition 4. In a symmetric Bertrand oligopoly with decreasing demand D(p),

increasing and convex costs C(q), and equal splitting in case of ties, R(x(p)) ⊆ Bi(p)

for all p ∈ R
n and all i ∈ I with x(p) = (p, π(p)).

Proof. For all strategy profiles of the type pn = (p, p, n. . ., p), when all firms set the

same price, firms share the market and obtain the same profits. By following imitate

the best, none of them will change the price and profits cannot change after any

price revision, implying that R(x(p(n))) = {p} ⊂ Bi(p
(n)) for all i ∈ I.

All other states are of the form p(m) = (p1, p2, . . . , pn) where 1 ≤ m < n firms

set price p and all other firms set a higher price. Without loss of generality, assume

that p1 = p2 = · · · = pm = p and that pi > p for i = m + 1, . . . , n. The profits of

the firms i = m + 1, . . . , n, with higher than minimum price, are πi(p
(m)) = 0 while

the profits of the firms i = 1, . . . , m, with minimum price p are given by

πi(p
(m)) = π(p, m) = p

D(p)

m
− C

(

D(p)

m

)

=
D(p)

m

[

p − AC

(

D(p)

m

)]

where AC(q) = C(q)/q denotes average cost and the last equality is understood to

hold only if D(p) > 0. To show that starting at p(m) imitate the best is improving,

we have to consider the following cases separately.

First, if π(p, m) > 0, then R(x(p(m))) = {p}. Convexity of C(q) implies that

that AC(q) is increasing in q.7 After strategy revision, profits of idle firms do not

change and for any i = 1, . . . , m + 1

πi(p
(m+1)) = π(p, m + 1) =

D(p)

m + 1

[

p − AC

(

D(p)

m + 1

)]

≥

D(p)

m + 1

[

p − AC

(

D(p)

m

)]

> 0 (7)

This implies that p ∈ Bi(p
(m)) for all i ∈ I.

Second, if π(p, m) < 0, then R(x(p(m))) = {pm+1, . . . , pn}, since highest profits

equal zero and are attained by idle firms. Imitation of any price in R(x(p(m)))

would not change profits for idle firms i = m + 1, . . . , n. What happens to the

7Consider q′ ≥ q > 0, by convexity of C(q),

C(q) ≤
q

q′
C(q′) +

(

1 −
q

q′

)

C(0) =
q

q′
C(q′)

Thus, AC(q′) ≥ AC(q). If C(0) > 0 and costs are convex, then AC(q) is U-shaped, but average

variable costs are increasing. Actually, this is all we need here, although for simplicity we assumed

zero fixed costs.
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profits of active firms, i = 1, . . . , m, when any of them copies a price in R(x(p(m)))?

Obviously, if m > 1, any unilateral deviation to a price in R(x(p(m))) will yield the

deviating firm zero profits, which is better than losses. Consider now the case m = 1

with π(p, 1) = D(p)[p − AC(D(p))] < 0. In this case R(x(p1)) = {p2, . . . , pn}. Call

p′ = min R(x(p1)). If firm 1 now imitates any pi > p′, it will face no demand and

avoid losses. If it imitates p′, its profits after imitation will be

π(p′, m′) =
D(p′)

m′

[

p′ − AC

(

D(p′)

m′

)]

(8)

where m′ ≥ 2 is the number of firms setting price p′ after imitation. If the expression

in square brackets in equation (8) is positive, then after imitation profits instead of

losses are achieved. If it is still negative, since p′ > p, the demand faced after imita-

tion is smaller (D(p′)/m′ ≤ D(p′) ≤ D(p)), thus also AC(D(p′)/m′) ≤ AC(D(p));

that is, less is sold to a lower loss per unit which results in lower total losses. In any

case, profits of firm 1 after imitation will increase.

Last, if π(p, m) = 0, then R(x(p(m))) = {p1, . . . , pn} = C(p), since all firms

active or idle make zero profits. That is, at these strategy profiles, imitate the best

prescribes to imitate any of the observed prices. Again we distinguish the cases

m > 1 and m = 1. Suppose m > 1, then for any i = 1, . . . , m imitate the best

will not change profits, and for any i = m + 1, . . . , n that imitates p the new profits

will be as in equation (7) positive. Suppose m = 1, then for all i = m + 1, . . . , n

everything is analogous to the case m > 1, and for firm 1 everything is analogous

to the case π(p, 1) < 0 considered above.

Remark 1. It is straightforward to check that the proof of Proposition 4 extends

to the case of constant unit costs; i. e. if AC(q) = c ≥ 0 for all q.

4.3 Evolutionarily stable prices

It follows from Propositions 3 and 4 that all ESS prices must correspond to Nash

equilibrium. Thus the set of ESS must be a subset of [Pn, P ′
n]. The next proposition

identifies the set of prices that are evolutionarily stable.

Proposition 5. In a symmetric Bertrand oligopoly with decreasing demand D(p),

increasing and convex costs C(q), and equal splitting in case of ties, the set of prices

that are evolutionarily stable is the interval [Pn−1, P1].
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Proof. Recall that, by definition, at any Pk we have that D(Pk) > 0 and the following

holds:

π(Pk, k) =
D(Pk)

k

[

Pk − AC

(

D(Pk)

k

)]

= 0

Note first that, starting at Pk if all k firms increase their price to p > Pk simul-

taneously, demand per firm will decrease and, by decreasing returns to scale, unit

costs will decrease with AC
(

D(p)
k

)

< AC
(

D(Pk)
k

)

. At the new price, profits per

unit sold are now strictly positive. Since demand is positive by assumption, prof-

its will increase above zero. Analogously, if all firms simultaneously decrease their

price, profits will fall below zero. I. e. for 0 < p < Pk we have π(p, k) < 0 and for

Pk < p < p we have π(p, k) > 0.

Now, for all strategy profiles p = (p, . . . , p) where all firms set p ∈ [Pn, Pn−1), if

a firm deviates upwards to any p′ > p the profits of the deviator are zero because

consumers buy only at the minimum price p. Given that p < Pn−1 the remaining

n− 1 firms still charging p will make losses; i. e. π(p, n− 1) < 0. This means that a

single deviation to a higher price can destabilize the profile where all firms set price

p, implying that p is not an ESS.

Note also that for all strategy profiles p = (p, . . . , p) where all firms set p ∈

(P1, P
′
n], if a firm deviates downwards to any P1 < p′ < p, the deviating firm, now

the one with lowest price in the market, still makes profits because p′ > P1, while all

competitors make zero profits; i. e. π(p′, 1) > 0. This means that a single deviation

to a lower price can destabilize p, and thus p is not an ESS.

It remains to check that all prices p ∈ [Pn−1, P1] are ESS. Consider any symmetric

profile p = (p, . . . , p) with p ∈ [Pn−1, P1]. Note that any deviant setting price

p′ > p earns zero profits while non-deviants get π(p, n − 1) ≥ 0 since p ≥ Pn−1.

Alternatively, any deviant with price p′ < p obtains π(p′, 1) < 0 since p′ < P1, while

non-deviants earn zero profits.

Proposition 5 shows that only a strict subset of Nash equilibrium prices are

evolutionarily stable. In particular neither very low prices like Pn not very high

prices in that interval, like P ′
n, are robust to single deviations. If the market price is

lower than Pn−1, the profit margin is so small that any firm that would experiment

with a higher price would leave competitors with losses. If the market price is higher

than P1, a monopoly would be profitable at that and slightly lower prices, thus any

firm that would experiment with a slightly lower price would make profits and leave

competitors with zero profits. If relative performance is relevant to firms we can rule

out some of the Nash equilibria; in particular those equilibria with zero or low profits.

In a dynamic setting with firms that imitate the price of the best-performing firms
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in the industry and sporadically experiment with unobserved prices, Alós-Ferrer et

al. (2000) show that precisely the prices in the interval [Pn−1, P1] are the long-run

prices observed in a Bertrand oligopoly with homogeneous product and decreasing

returns to scale. As we see here, the fact that all prices in the interval [Pn−1, P1] are

ESS underlies their dynamics results, since none of these prices can be destabilized

with a single mutation.

the fact that these prices are evolutionarily stable is crucial for their result, since

single deviations to other prices are not enough to destabilize profiles where all firms

set the same price in that interval.

Example 3. Consider a symmetric duopoly with demand function D(p) = 10 − p

and cost function C(q) = 1
2
q2. Any profile where both firms set the same price in

[P2, P
′
2] with P2 = 2 and P ′

2 = 4.285 is a Nash equilibrium. The only price which

is evolutionarily stable is P1 = 3.33, which entails strictly positive profits for both

firms and turns out to be the competitive equilibrium also.

Remark 2. Note that if unit costs are constant, i. e. if AC(q) = c ≥ 0 for all q,

then Pk = c for all k. Thus, the only ESS is p = c.

4.4 Industry profits

The results obtained so far focus on profits to individual firms. We turn our focus

now to industry profits. We show that when all firms follow imitate the best si-

multaneously, average payoff in the industry does not necessarily increase, although

individual payoff always increases. Interestingly, we will argue at the end of the

section that some imitative rules could even have both properties, always improving

individual and average industry payoff.

Following the notation introduced previously in this section, at any strategy

profile p(m), average industry profits are given by

π(p(m)) =
m · π(p, m)

n
=

D(p)

n

[

p − AC

(

D(p)

m

)]

(9)

Note first that, if π(p, m) > 0, then R(x(p(m))) = {p}. Thus, if all firms follow

imitate the best simultaneously, all will set price p. Since AC(·) is increasing we

have

π(p(n)) − π(p(m)) =
D(p)

n

[

AC

(

D(p)

m

)

− AC

(

D(p)

n

)]

≥ 0 (10)

That is, from any strategy profile where all active firms in the industry obtain strictly

positive profits, imitate the best will increase average payoff in the industry.
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To see that average industry payoff may decrease when all firms imitate the prices

of the best performing firms consider the following example. Take I = {1, . . . , 4}

and consider the strategy profile p(2) = (p, p, p′, p′′) with p < p′ = p + ǫ < p′′ for

small ǫ > 0. Assume the demand and cost functions are such that8

π(p, 2) =
D(p)

2

[

p − AC

(

D(p)

2

)]

< 0; i such that pi = p

Then π(p(2)) = 1
2
π(p, 2) < 0

Now it could happen that firms with maximum profits (choosing p′ and p′′ in

our example) do not change their price and firms with lower than maximum profits

(currently choosing p) copy the highest price observed, p′′. The resulting strategy

profile after imitation would be of the type p′(1) = (p′, p′′, p′′, p′′). After imitation,

the profit of the firm with price p′ will be given by

π(p′, 1) = D(p + ǫ) [p + ǫ − AC (D(p + ǫ))]

For ǫ > 0 small enough,

π(p′(1)) − π(p(2)) =
1

4
π(p′, 1) −

1

2
π(p, 2) < 0.

That is, in an industry where the current active firms make losses, copying the

price set by firms which are not active, which can be interpreted as exiting the

industry, leaves the industry with fewer active firms. Decreasing returns to scale

imply that profits can be even lower, and thus average industry profits may decrease.

Consider instead a further specification of the imitative rule used so far, assuming

that firms copy only the lowest price among those that gave maximum payoffs. This

rule is plausible if we believe that firms understand at least the broad structure of

the game they are playing, even if they do not know the demand and cost functions

exactly. We refer to this rule as imitate the minimum best and it is formally defined

as follows. Given x = (p,u), F (x) = min R(x). As the following proposition shows,

this rule has both properties; it increases individual as well as average industry

profits.

Proposition 6. In a symmetric Bertrand game with decreasing demand D(p), in-

creasing and convex costs C(q), and equal splitting in case of ties, imitate the min-

imum best is improving; i. e. min R(x(p)) ⊆ Bi(p) for all p ∈ R
n and all i ∈ I

with x(p) = (p, π(p)). Moreover, when all firms use imitate the minimum best

simultaneously, average industry profits always increase.

8Take for example D(p) = 12 − 2p, C(q) = q2, and p
(2) = (2, 2, 2.5, 3).
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Proof. The first part of the proposition is a straightforward corollary from Proposi-

tion 4. To see that, when all firms follow the rule, it also increases average industry

payoffs define let p(m) be a state of the type defined above, where 1 ≤ m < n firms

set price p and all other firms set higher prices. Note first that, at states where

all active firms have strictly positive profits min R(x(p)) = R(x(p)) = {p}, and

at states where active firms obtain exactly zero profits R(x(p)) = {p1, . . . , pn} and

min R(x(p)) = {p} also. By (10) in all those states average payoff increases when

all firms copy p. At states where active firms make losses, the reference set is given

by R(x(p(m))) = {pm+1, . . . , pn}. Let p′ = min{pm+1, . . . , pn}. If all firms copy p′,

the industry moves to a state of the form p(n) = (p′, n. . ., p′). By (9),

π(p′(n)
) − π(p(m)) =

D(p′)

n

[

p′ − AC

(

D(p′)

n

)]

−
D(p)

n

[

p − AC

(

D(p)

m

)]

>

>
D(p′)

n

[

(p′ − p) + AC

(

D(p)

m

)

− AC

(

D(p′)

n

)]

> 0

The first inequality holds because D(p′) < D(p) and π(p(m)) < 0. The second

inequality holds because p′ > p and AC is increasing.

5 Conclusions

Evolutionary game theory emphasizes the role of relative performance in determin-

ing the outcomes that we should expect to observe in games. In the framework

of a continuum population, developed and extensively applied in Biology, the no-

tion of evolutionary stability provides a stability check for Nash equilibrium. The

application of evolutionary principles to finite-population models has shown some

surprising effects. In particular, high relative performance is often in accordance

with perfectly competitive behavior, and not necessarily with the strategic behavior

inherent to Nash equilibrium.

The present paper explores the relation between finite-population evolutionary

stability and Nash equilibrium. First, we show that ESS and symmetric Nash equi-

librium strategies coincide in zero-sum games and in what we call games with weak

payoff externalities. Then we point out that in some games (e. g. minimum-effort

games) imitate the best is improving, meaning that individuals who copy the best-

performing among the observed actions can only improve their payoffs. If that is the

case, imitate the best is strategically justified and gives rise to a dynamics related

to the better-reply dynamics. We then show that in these kind of games finite-

population evolutionarily stable strategies always correspond to Nash equilibrium

strategies, but not vice-versa.
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We illustrate these properties in the context of a Bertrand oligopoly with homo-

geneous product and decreasing returns to scale. There, we show that price imitation

is always individually improving; a firm that mimics the price of the best performing

competitor can only improve its profits. This, in turn, implies that all evolutionarily

stable prices are Nash equilibrium prices. This result allows easy identification of

the set of evolutionarily stable prices. Moreover, we find that not all Nash equilibria

are evolutionarily stable. Sufficiently low prices, that can be part of a Nash equi-

librium, can easily lead to losses, if a boundedly rational firm experiments with a

higher price. Analogously, sufficiently high Nash equilibrium prices leave room for

an individual firm to dominate the market at a slightly lower price. Even if these

deviations imply a reduction of the deviator’s profits by definition, they have an

even stronger negative effect on competitors and result in a relative advantage.

Note finally that the evolutionarily stable prices characterized here would also

be the prediction of a model where firms care for both, absolute and relative per-

formance, as in Koçkesen et al. (2000). Given that evolutionarily stable strategies

are Nash equilibria, any deviation would be associated with a worse absolute and

relative position. Therefore, this set of prices is extremely robust.
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