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Abstract

This paper evaluates the performances of Perturbation Methods, the
Parameterized Expectations Algorithm and Projection Methods in find-
ing approximate decision rules of the basic neoclassical stochastic growth
model. In contrast to the existing literature, we focus on comparing nu-
merical methods for a given functional form of the approximate decision
rules, and we repeat the evaluation for many different parameter sets.
We find that significant gains in accuracy can be achieved by moving
from linear to higher-order approximations. Our results show further that
among linear and quadratic approximations, Perturbation Methods yield
particularly good results, whereas Projection Methods are well suited to
derive higher-order approximations. Finally we show that although the
structural parameters of the model economy have a large effect on the
accuracy of numerical approximations, the ranking of competing methods
is largely independent from the calibration.
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1 Introduction

In many applications, equilibrium decision rules of dynamic models cannot be
derived analytically. The reason underlying this observation is that the solution
procedure usually involves solving complex constrained intertemporal optimiza-
tion problems and thus translates into finding the zeros of a high-dimensional
system of non-linear functional equations. These equations are constituted, for
example, by first-order conditions and market clearing conditions. Often the
equilibrium conditions involve stochastic elements and expectations over non-
linear functions of future variables, such that an analytical solution is generally
infeasible.
Instead of solving for exact equilibria economists approximate decision rules
numerically. Various different methods have been developed in recent years to
conduct this task.1 A first formal evaluation of competing numerical methods
in macroeconomics can be found in Taylor and Uhlig (1990). They compare the
performances of fourteen different methods in solving the neoclassical stochastic
growth model without leisure choice. Taylor and Uhlig (1990) show that differ-
ent numerical methods have significantly different implications for the model’s
equilibrium properties. They conclude that - as no clear winner can be found
among the competing methods - researchers shall be aware not to use any spe-
cific method blindly.2

A more recent evaluation of numerical methods is provided by Aruoba, Fernandez-
Villaverde, and Rubio-Ramirez (2003). They compare linear and log-linear ap-
proximations with higher-order Perturbation methods, Projection Methods and
Value Function Iteration. They conclude that high-order approximation meth-
ods yield superior results than linear approximations. Taking accuracy, speed
and programming burden into account, they suggest to move to at least a second-
order approximation when solving dynamic equilibrium models. Novales and
Pérez (2004) arrive at the opposite conclusion. They compare the performances
of log-linear and linear approximations with a second-order Parameterized Ex-
pectations approach. Using three different well-known economic models they
find that the results derived from log-linear approximations of the models are
virtually indistinguishable from those obtained using the Parameterized Expec-
tations Algorithm. Log-Linearization methods, they conclude, are well suited to
approximate dynamic economic models in many applications. Finally, a paper
by Heer and Maussner (2004) takes a position in between. They suggest using
log-linearization in the first place and, if necessary, applying non-linear methods
such as the Parameterized Expectations Approach and Projection Methods to
improve the accuracy in highly non-linear problems.
Our impression from the existing literature is that it gives too little advice
to applied macroeconomists which methods to use for approximating dynamic
general equilibrium models. In particular, we think that three important ques-
tions about the performance of numerical methods have not been satisfactorily
answered yet:

1For surveys of numerical methods in economics see Judd (1998), Marimon and Scott
(1999) and Heer and Maussner (2005).

2A severe limitation of the evaluation exercise conducted in Taylor and Uhlig (1990) has
been pointed out by Novales and Pérez (2004). Because only one solution realization was
considered for each method and the probability distribution of the technology shock differs
among the implemented approaches, the study by Taylor and Uhlig (1990) lacks homogeneity
and robustness.
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1. Does increasing the order of approximation significantly improve the ac-
curacy of the solution?

2. For a given order of approximation of the policy function, which method
selects the coefficients of the decision rules in the best way?

3. Do the performances of competing numerical methods depend strongly on
the structural parameters of the model to be solved?

As outlined above, the existing literature gives contradictory answers to the first
of these questions, thus we believe the topic deserves further investigation. The
second question, to the best of our knowledge, has not yet been explicitly em-
phasized. We believe it is of special interest in applications where researchers
have strong a priori beliefs about the functional form of the decision rules.3

The problem is then to select the method which best estimates the coefficients
of these decision rules. The third question has already been partly covered by
all four contributions cited in the beginning of this section. However, all these
papers analyze parameter sensitivity using only very few different calibration
schemes. In this paper, we use 500 different parameter sets. This allows us to
investigate the dependence of numerical accuracy on structural parameters in
greater detail.
The remainder of the paper is organized as follows. Section two overviews the
basic neoclassical growth model and defines its competitive equilibrium. Sec-
tion three briefly discusses three numerical methods to solve for an approximate
equilibrium of the model economy. Section four presents two formal methods to
assess the quality of numerical approximations. Section five illustrates our eval-
uation exercise and presents its results. Section six summarizes and concludes.

2 The Model

We evaluate competing numerical methods using the basic neoclassical growth
model as a testing ground. We basically choose this model because it guar-
antees comparability with other studies. As the model is very well-known we
restrict ourselves to presenting the main formulas and defining the competitive
equilibrium.
The model economy is populated by a single representative household. Time is
discrete, i.e. t ∈ {0, 1, 2, . . .}. The household chooses sequences of consumption
{ct}∞t=0, investment {it}∞t=0, output {yt}∞t=0 and capital {kt+1}∞t=0 such that it
maximizes the expected discounted utility derived from its current and future
consumption stream. The maximization is subject to constraints posed by a
production function, a budget constraint, a law of motion for the exogenous
productivity level, and by non-negativity requirements for all variables. We as-
sume a CES utility function and a Cobb-Douglas production function. Formally,
the household solves

max
ct,it,yt,kt+1

E0

∑∞
t=0 βt(1− γ)−1

c1−γ
t (1)

subject to

yt = atk
α
t

3These beliefs may for example come from related models which are analytically solvable.
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it = yt − ct

kt+1 = (1− δ)kt + it

log at+1 = ρ log at + σεεt+1

εt+1 ∼ N(0, 1)
ct > 0, it > 0 , kt > 0 ∀t

The parameters and variables have the following interpretation: at denotes an
exogenous level of technological progress; β ∈ (0, 1) is the household’s time
discount factor; α ∈ (0, 1) is a production function parameter which describes
capital’s share in output; γ > 0 is a utility function parameter describing the
household’s attitude towards risk; δ ∈ (0, 1) is the depreciation rate of capital;
εt+1 denotes a shock to technology at time t + 1, which is normally distributed
with mean zero; the parameter σε captures the standard deviation of technology
shocks, ρ governs their persistence.
A necessary condition for optimality is given by the Euler equation

c−γ
t = βEtc

−γ
t+1[αat+1k

α−1
t+1 + (1− δ)] (2)

Et denotes the expectation operator conditional upon the information available
to the decision maker at time t. When augmented with a transversality condition

lim
t→∞

βtc−γ
t kt+1 = 0 (3)

the Euler equation (2) becomes sufficient for optimality.4

The system of equilibrium conditions is summarized by

EtR(ct+1, it+1, yt+1, ct, it, yt, kt+1, kt, at+1, at) = 0

where

R(·) =




βct+1
−γ [αat+1kt+1

α−1 + (1− δ)]− c−γ
t

yt − atk
α
t

yt − ct − it
(1− δ)kt + it − kt+1

ρ log at − log at+1




Using ft = (ct it yt)′, st = kt and vt = at the model’s equilibrium conditions
read

EtR(ft+1, ft, st+1, st, vt+1, vt) = 0 (4)

The vector ft contains the model’s control variables, st contains the endoge-
nous state variables and vt contains the exogenous state variables. A recursive
competitive equilibrium of the model economy may be defined as follows:

Definition A recursive competitive equilibrium is a pair of policy functions
ft = g(st, vt) and st+1 = h(st, vt) such that - for every initial state s0 and exoge-
nous process {vt}∞t=0 - the system of functional equations (4) and a transversality
condition are satisfied.

4See, for example, Stokey and Lucas (1989) for a proof of the sufficiency

4



3 Numerical Methods

As the competitive equilibrium cannot be solved for analytically, we use numer-
ical methods to derive an approximation. We consider three classes of methods
which we think are particularly popular among researchers: Perturbation Meth-
ods, Parameterized Expectations Algorithms (PEA) and Projection Methods.
The remainder of this section briefly illustrates the steps involved in the imple-
mentation of each of the methods.5

3.1 Perturbation

Perturbation Methods are widely used to approximate dynamic general equi-
librium models. Particularly first-order Perturbation, which is often referred to
as (Log-)Linearization, is a very popular method to solve for approximate de-
cision rules of dynamic models. Following the seminal paper by Blanchard and
Kahn (1980) different variants of first-order Perturbation have been developed.6

Recent contributions include Uhlig (1999), Sims (2002) and Klein (2000). Ex-
tensions to higher orders have been introduced by Schmitt-Grohe and Uribe
(2004), Swanson, Anderson, and Levin (2003) and Kim, Kim, Schaumburg, and
Sims (2005). We follow Klein (2000) to derive first-order accurate solutions
and apply the methods proposed by Schmitt-Grohe and Uribe (2004) to derive
second-order approximations.
Our implementation of Perturbation Methods thus requires the following steps.

1. Rewrite the equilibrium equations as

ER̃(f∗t+1, f
∗
t , x∗t+1, x

∗
t ) = 0 (5)

where f∗t = log ft, x∗t = [log s′t log v′t]′ and R̃ denotes the system of
rewritten equilibrium conditions. Compute the non-stochastic steady state
(f̄∗, x̄∗) by solving

R̃(f̄∗, f̄∗, x̄∗, x̄∗) = 0

for f̄∗ and x̄∗.

2. Recall that the model’s competitive equilibrium is given by a set of policy
functions f∗t = g(x∗t , σε) and x∗t+1 = h(x∗t , σε) + ησεεt+1 where η = [0 1]′ .
Use them both to rewrite (5) as

ER̃(g(h(x∗t , σε) + ησεεt+1, σε), g(x∗t , σε), h(x∗t , σε) + ησεεt+1, x
∗
t ) = 0

Summarize this system by F (x∗t , σε) = 0.

3. Approximate the system of equilibrium conditions F (x∗t , σε) with a first-
order Taylor series around the non-stochastic steady state (x̄∗, 0). Denote
the system of approximate conditions by F̃ 1(x∗t , σε). Use the algorithm

5Detailed outlines of these methods can be found in Judd (1998), Marimon and Scott
(1999) and Heer and Maussner (2005).

6A detailed survey and comparison of these methods can be found in Anderson (2000).
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by Klein (2000) to derive the stable solution of F̃ 1(x∗t , σε) = 0. This
translates into solving a system of equations

F (x̄∗t , 0) = 0
Fx(x̄∗t , 0) = 0 (6)

Fσε(x̄∗t , 0) = 0

for first-order accurate decision rules ft = g̃1(st, vt) and s1
t+1 = h̃(st, vt),

which are consistent with the transversality condition.

4. To derive second-order accurate decision rules, approximate the system
of equilibrium conditions with a second-order Taylor series, F̃ 2(x∗t , σε).
Setting F̃ 2(x∗t , σε) = 0 requires that (6) and

Fxx(x̄∗t , 0) = 0
Fxσε(x̄∗t , 0) = 0 (7)
Fσεx(x̄∗t , 0) = 0

Fσεσε(x̄∗t , 0) = 0

hold. Given ft = g̃1(st, vt) and s1
t+1 = h̃(st, vt), the system of equations

(7) is linear. Solve this system for second-order accurate decision rules
ft = g̃2(st, vt) and s2

t+1 = h̃(st, vt).

In principle, we can repeat the last step to derive approximations of any desired
order: given the approximation of order n, the approximation of order n + 1
can be derived by solving a linear system of equations. However, as the matrix
algebra involved becomes very complex for orders of three and more, we confine
ourselves to Perturbation Methods of order one and two.

3.2 The Parameterized Expectations Algorithm

The Parameterized Expectations Algorithm (PEA) has been introduced into
economics by Marcet (1988) and den Haan and Marcet (1990). Modifications
can be found in Christiano and Fisher (2000) and Maliar and Maliar (2003),
among others. The underlying idea is to approximate the conditional expecta-
tion arising in the stochastic Euler equation (2) by a parametric function in the
model’s state variables, ψ(st, vt; κ). The functional form ψ and the parameter
vector κ then imply decision rules which solve the system of model equations.
Using these decision rules and a sequence of shocks for the exogenous process
allows for the generation of artificial time series of the model’s variables. Fur-
thermore we can build a series of ’forecast errors’ that the household commits
by using ψ(st, vt; κ) to form expectations. An updated κ can be found by min-
imizing the sum of squared forecast errors. This procedure is repeated until κ
converges. The final κ then constitutes the best parameter vector a household
can use to form expectations.

To facilitate comparison with the previous methods we again rewrite the
model in natural logarithms. Our implementation of the PEA then requires the
following steps.

1. Rewrite the model as

R̃(Etφ(f∗t+1, f
∗
t , s∗t+1, s

∗
t , v

∗
t+1, v

∗
t ), f∗t , s∗t+1, s

∗
t , v

∗
t+1, v

∗
t ) = 0 (8)
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where the asterisk again indicates the natural logarithm of a variable and
where the function φ explicitly captures the part of the system where
expectations have to be taken. R̃ is essentially the same function as R but
accounts for the new arguments.

2. Choose a function ψ(s∗t , v
∗
t ; κ) to approximate Etφ(f∗t+1, f

∗
t , s∗t+1, s

∗
t , v

∗
t+1, v

∗
t ).

Make an initial guess for the vector κ, denote it by κ0.

3. Replace Etφ(f∗t+1, f
∗
t , s∗t+1, s

∗
t , v

∗
t+1, v

∗
t ) in (8) by ψ(s∗t , v∗t ; κ0) and solve for

the implied decision rules g̃(s∗t , v
∗
t ; ψ, κ0) and h̃(s∗t , v

∗
t ; ψ, κ0).7

4. Pick an initial state s0 and generate a sequence of length T for the ex-
ogenous state, {v∗t }T

t=0. Generate artificial series {f∗t }T
t=0 and {s∗t+1}T

t=0

using g̃(s∗t , v
∗
t ;ψ, κ0) and h̃(s∗t , v

∗
t ; ψ, κ0).

5. Compute a parameter vector κ1 as

κ1 = arg min
κ

T−1∑
t=0

(
ψ(s∗t , v

∗
t ; κ)− φ(f∗t+1, f

∗
t , s∗t+1, s

∗
t , v

∗
t+1, v

∗
t )

)2

6. Select an updating rule µ and derive a new κ0 as κnew
0 = µ(κ0, κ1). Re-

place κ0 by κnew
0 . Go back to Step 3 until κ has converged.

Our implementation of the PEA uses artificial series of length T = 5.000 and
a complete updating scheme, i.e. µ(κ0, κ1) = κ1. The maximum number of
iterations is set to 500. To find the initial guess we use an estimation-based
log-linear homotopy approach as described in Pérez (2004).
A potential problem with the PEA is that convergence may fail if the initial
guess κ0 is too far away from the true solution. Another problem is that the
nonlinear regression involved in the PEA may suffer from multicollinearity. This
is because the regressors become highly correlated when the order of approxi-
mation increases.8 We can largely circumvent the first problem by making an
educated guess using the results derived from a log-linear approximation of the
model. However, the second problem turns out to be severe. We find that the
accuracy of the PEA does not significantly improve when we move from first
to second-order approximation. We believe this result comes from the multi-
collinearity introduced by adding second-order polynomial terms.

3.3 Galerkin Projection

Projection Methods have been introduced into economics by Judd (1992). An-
other important contribution is Christiano and Fisher (2000) who combine the
Parameterized Expectations Algorithm and Projection Methods to solve models
with occasionally binding constraints.
Projection Methods differ from the PEA in three important aspects. First,
instead of approximating the expectations function φ, Projection Methods ap-
proximate the decision rules g and h directly. Secondly, Projection Methods
use families of orthogonal polynomials for approximation, such as Chebyshev

7Implicitly we assume that for a given φ the system of functional equations is invertible
with respect to the decision variables. This condition is usually met in economic models.

8It is easy to check that Corr(xi, xi+1) → 1 for i →∞
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Polynomials or Legendre polynomials. Finally, Projection Methods differ from
the PEA in the choice of minimization criteria. Whereas the PEA minimizes the
sum of squared forecast errors, Projection Methods generally solve a problem

∫
EtR̃(st, εt+1; g̃;κ)ωi(xt)dxt = 0 i = 1, . . . , n (9)

where xt = (s′t v′t)
′ denotes the model’s state variables and ωi(xt) is a weight-

ing function that determines the minimization criterion used. Depending on
the specific choice for ωi(xt) we distinguish between Least Squares Projection,
Collocation and Galerkin Projection.9 In this paper we use a Galerkin approach
with Chebyshev Polynomials as basis functions. The latter are defined recur-
sively by

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2(x) for i = 2, 3, . . .

Chebyshev Polynomials constitute a family of orthogonal polynomials on the
interval [−1, 1] with respect to the weight function ω(x) = 1/

√
1− x2. For-

mally, for all i 6= j it holds that
∫ 1

−1
Ti(x)Tj(x)ω(x)dx = 0. This orthogonality

property allows us to increase the order of approximation without introducing
multicollinearity.

The steps involved in our implementation of Galerkin Projection are as fol-
lows.

1. Rewrite the model as

EtR̃ (g(h(x∗t , εt+1)), g(x∗t ), h(x∗t , εt+1), x∗t ) = 0 (10)

where x∗t = (log s′t log v′t)′ summarizes the model’s state variables trans-
formed to natural logarithms. The function f∗t = g(x∗t ) denotes the true
policy function that solves (10). Recall that once the true g has been
found, the policy function h(x∗t , εt+1) is uniquely determined by the sys-
tem of equilibrium conditions.

2. Select an order of approximation, n, and use a complete basis of Chebyshev
polynomials to form g̃(x∗t ; κ). As the vector x∗t contains only two variables,
the approximate decision rule is given by

g̃(x∗t ; κ) =
∑

i = 0, . . . , n
j = 0, . . . , n

i + j 6 n

κijTi(ξ(x∗1t ))Tj(ξ(x∗2t ))

where x∗1t gives the first element of x∗t and x∗2t gives the second element,
and where ξ maps the state space into the interval [−1, 1].

3. Use g̃(xt; κ) to derive h̃(xt, εt+1; g̃, κ) from the equilibrium system. Re-
place g and h in (10) by their approximate counterparts to derive a residual
function

EtR̃(x∗t , εt+1; g̃, κ) (11)

For the true policy functions the residual function is zero everywhere.
However, this does not hold for approximate policy functions.

9Because of the specific problem Projection Methods solve, they are equivalently referred
to as Weighted Residual Methods. Further information can be found in Judd (1998).
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4. For a given functional form g̃ find the (n+1)(n+2)/2×1 parameter vector
κ that minimizes the error that results from using g̃(x∗t ; κ) instead of the
true g(x∗t ) in (11). For a Galerkin Method this translates into solving

∫ ∫
EtR̃(x∗t , εt+1; g̃;κ)ωi(x∗1t )ωj(x∗2t )dx∗1t dx∗2t = 0 i = 1, . . . , n (12)

where the weights are given by

ωi(x∗1t ) =
Ti(ξ(x∗1t ))√
1− ξ(x∗1t )2

ωj(x∗2t ) =
Tj(ξ(x∗2t ))√
1− ξ(x∗2t )2

5. Approximate the integral in (12) numerically using Gauss-Chebyshev quadra-
ture. To this end, compute m > n nodes for each state variable as the
zeros of the Chebyshev polynomial of order m. Then approximate (12) by

m∑

l1=1

m∑

l2=1

EtR̃(x∗l1l2 , εt+1; g̃;κ)Ti(ξ(x∗1l1 ))Tj(ξ(x∗2l2 )) = 0 (13)

i = 0, . . . , n j = 0, . . . , n i + j 6 n

where x∗l1l2
= (x∗1l1

x∗2l2
)′.

6. Evaluate the conditional expectation in (13) using Gauss-Hermite quadra-
ture and solve this system of (n+1)(n+2)/2 equations for the coefficient
vector κ.

Our implementation of the Galerkin Projection Method uses m = 7 nodes for
each of the two state variables. We use a linear mapping ξ(x) = 2(x− x)/(x̄−
x)− 1 to transform the state variables into the interval [−1, 1]. The upper and
lower regions of the state space, x̄ and x, are taken from the simulated series
derived from first-order Perturbation. These series are also used to initialize the
non-linear equations solver.10

The Galerkin Projection method seems to be particularly well suited to de-
rive high-order approximations. We see two reasons for that. First, because
Galerkin Projection does not suffer from multicollinearity due to the orthogo-
nality properties of the Chebyshev regressors. Secondly, because the complexity
of the problem increases only moderately with the order of approximation. For
example, for our model economy a fourth-order approximation requires solving
a system of fifteen nonlinear equations, whereas a sixth-order approximation
translates into solving a system of twenty-eight equations. Standard computer
software should give solutions to such problems within seconds.

4 Accuracy of Numerical Approximations

In choosing a certain numerical method researchers trade off computational
time, programming burden and the accuracy of the approximate equilibrium.
Due to the steady improvement of computer hardware and the public availabil-
ity of computer code, computational time and programming burden are often

10Further technical details can be found in the MATLAB codes, which are available on the
author’s website http://homepage.univie.ac.at/paul.pichler
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claimed to become negligible.11 Thus, the accuracy of the solution becomes an
even more important criterion.
Economists usually apply informal and formal methods to assess the quality of
approximate equilibria. Particularly popular informal methods are the compar-
ison of decision rules, sample moments and impulse response functions. Among
the formal methods economists typically consider Euler Equation Errors in-
troduced by Judd (1992) and further developed by Santos (2000), and a χ2-
Accuracy-Test developed by den Haan and Marcet (1994). The remainder of
this section illustrates these two approaches.

4.1 Euler Equation Residuals

Judd (1992) proposes to evaluate numerical methods by the size of error the
representative household would make if it used the approximate decision rule
instead of the true one. This error is given by

ut = R(Et[g̃[h̃(st, vt), vt+1], g̃(st, vt), h̃(st, vt), st, vt+1, vt])

where g̃ and h̃ are approximate decision rules. For the optimal growth model
this corresponds to

ut = ct − [Etβc−γ
t+1(αat+1k

α−1
t+1 + 1− δ)]1−γ

A scale free measure of the error is provided by dividing ut by the level of
consumption. The quality of a numerical method can then be assessed by sim-
ulating artificial time series of a pre-specified length T for all variables, and by
judging the size of

EE1 = log10

(
1
T

T∑
t=1

|ut

ct
|
)

(14)

EE2 = log10

(
1
T

T∑
t=1

(
ut

ct

)2
)

(15)

EE3 = log10

(
max |ut

ct
|
)

(16)

Measure (14) calculates the average error an individual makes by using approx-
imate instead of true decision rules, (15) gives a measure of the volatility of the
error and (16) gives its maximum. Obviously, the smaller these measures are
the better is the approximation.

4.2 The χ2-Accuracy Test

den Haan and Marcet (1994) propose to check the accuracy of numerical ap-
proximations by testing whether the expectation errors satisfy the martingale
difference property. This property is implied by the assumption that the house-
hold forms expectations rationally. Consider the general model rewritten in a
way such that

R̃(Etφ(ft+1, ft, st+1, st, vt+1, vt), ft, st+1, st, vt+1, vt) = 0 (17)
11We believe this statement is only partly true. Because economic models grow in complexity

very fast, computational time may still remain a topic in applied work. Furthermore, computer
code may not be available in many applications.
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Again, the function φ collects all equilibrium conditions where expectations have
to be taken. Let q denote the dimension of φ. Given simulated time series of
length T for all variables, we can construct a series of expectation errors {ut}T

t=1

defined by

ut+1 = Etφ(ft+1, ft, st+1, st, vt+1, vt)− φ(ft+1, ft, st+1, st, vt+1, vt)
t = 0, . . . , T − 1 (18)

where ut+1 is a vector of size q×1. Because expectations are rational, the errors
{ut}T−1

t=0 should be innovations. Hence they should have a zero mean, be serially
uncorrelated and should be uncorrelated with any instrumental variable in the
household’s information set.12 Let z(st, vt) be a multidimensional function that
generates sequences of nz instrumental variables obtained from the simulated
state variables {st}T

t=0 and {vt}T
t=0. Then the rational expectations hypothesis

requires

Et[ut+1 ⊗ z(st, vt)] = 0 ∀t = 0, . . . , T − 1

The sample counterpart to this expression is given by

BT =
1
T

T−1∑
t=0

[ut+1 ⊗ z(st, vt)]

If the approximation is good, then BT should be very close to zero. In order
to assess the quality of the approximation we thus need a criterion to decide
whether BT is significantly different from zero. den Haan and Marcet (1994)
provide such a criterion. They demonstrate that under the null hypothesis
H0 : BT = 0 the statistic

JT = TB′
T A−1

T BT

is distributed as a χ2 variable with q ·nz degrees of freedom. AT is a consistent
estimate of the matrix

SW =
∞∑

i=−∞
E[ut+1 ⊗ z(st, vt)] · [ut+1−i ⊗ z(st−i, vt−i)]′

Discussions of how to derive AT can be found in the GMM literature, e.g. in
Hansen (1982) and Newey and West (1987).
An approximation can be considered as good if the statistic JT is within the
uncritical region of a χ2

qnz
distribution. den Haan and Marcet (1994) propose

to repeat the test for different realizations of the stochastic processes and report
the percentage of statistics in the upper and lower regions of a χ2

qnz
distribution.

This way, they conclude, one can further reduce the probability that an accurate
solution is rejected or that an inaccurate solution is accepted.

5 The Evaluation Exercise

Throughout our evaluation exercise we use seven different numerical methods to
solve for approximate decision rules of the basic neoclassical growth model. First

12Instrumental variables are usually state variables or functions of state variables.
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we apply the three methods illustrated in Section 3 to derive (log-)linear decision
rules. We then repeat the procedure using quadratic decision rules. Finally, we
use Galerkin Projection of order four to derive a high-order approximation.
Because the model’s structural parameters determine the non-linearity of the
problem and the deviations of model variables around the steady state, we
guess that the quality of approximation depends crucially on these parameters.
Thus we consider 500 different calibration sets for our evaluation. We derive the
parameter vectors by drawing randomly from a postulated uniform distribution.
This distribution is chosen such that it covers the range typically considered in
the literature for parameters of the neoclassical growth model. It is given in
Table 5. Using a large number of different parameter sets guarantees robustness

Table 1: Postulated Distributions for Structural Parameters
Parameter Distribution

α U [0.24, 0.36]
β U [0.95, 0.99]
γ U [1.5, 3]
δ U [0.025, 0.1]
ρ U [0.85, 0.95]
σε U [0.01, 0.1]

of our results with respect to variations in the structural parameters.
We start our evaluation exercise by generating artificial series of the model’s

exogenous state variable, the technology level, for every parameter constellation.
We then apply all seven numerical methods to solve for approximate equilibria of
the model and generate simulated time series for all endogenous variables. These
series are used to compute Euler Equation Errors, first and second moments of
simulated model variables and forecast errors together with their correlation
properties. The following sections discuss each of these three steps in turn and
present our results.

5.1 Euler Equation Errors

Given simulated time paths for the model’s variables we calculate Judd’s (1992)
Euler Equation Errors and derive the measures (14)-(16). Along the way we
evaluate the conditional expectation in the Euler equation applying Gauss-
Hermite quadrature. Our results, together with the mean computer time13

associated with each numerical method, are summarized in Table 2. We observe
that for the case of a linear approximation the PEA and Perturbation Method
deliver almost equally accurate solutions as measured by the Euler Equation
Errors. Galerkin Projection performs poorly. The associated Mean Absolute
Euler Equation Error is approximately seven times larger than those associated
with the competing methods.

Our results for the second-order approximation differ substantially. The
Perturbation Method performs best, followed by the Galerkin Projection. The

13Our calculations were conducted using an Acer Aspire 1622LM notebook with 3.0 GHz
Pentium 4 processor and 512MB DDR333 SDRAM
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Table 2: Mean Computer Time and Euler Equation Errors

CPU EE1 EE2 EE3

Perturbation 1 0.3587 -3.2248 -6.2665 -2.2989
PEA 1 53.9945 -3.2041 -6.1297 -2.2321

Galerkin 1 1.4121 -2.3803 -4.7373 -1.9831
Perturbation 2 0.4362 -4.8259 -9.2923 -3.6626

PEA 2 196.0976 -3.2212 -6.1372 -2.1871
Galerkin 2 3.2370 -4.3595 -8.5526 -3.7939
Galerkin 4 8.1613 -6.1182 -12.0908 -5.7091

PEA delivers only poor results. It is particularly interesting that the perfor-
mance of the PEA improves only slightly when we move from a linear to a
quadratic approximation of the expectations function. A possible explanation
is that the second-order PEA fails to converge within 500 iterations in approx-
imately twenty percent of the cases considered. We then use the last estimate
for further analysis. As these last estimates are found to be very close to the
final parameter vectors, however, we think that failed convergence causes only
a minor deterioration in accuracy. The relatively poor performance is rather a
consequence of the multicollinearity introduced by adding quadratic terms, and
of the relatively small number of artificial data points we use.14 On the contrary,
the quality of the Galerkin Projection increases substantially when higher-order
terms are added in the decision rules. Moving from first to second-order ap-
proximation reduces the Mean Absolute Euler Equation Error by a factor of
almost hundred. Another significant gain in accuracy is achieved by moving
from second to fourth order. We believe this substantial gain is a consequence
of the orthogonality property of the regressors, and of the particularly good
performance of Chebyshev polynomials in fitting non-linear functions. Finally,
we observe that the accuracy of the approximation increases by a factor of al-
most forty when moving from first-order to second-order Perturbation. Our
results demonstrate that increasing the order of approximation yields signif-
icant gains in accuracy when using Perturbation Methods and the Galerkin
Projection Method, however, not when using the Parameterized Expectations
Algorithm. This, we believe, explains why Aruoba, Fernandez-Villaverde, and
Rubio-Ramirez (2003) and Novales and Pérez (2004) arrive at opposite con-
clusions. The first paper compares (log-)linear approximations with high-order
Projection and Perturbation Methods. As the latter perform particularly well
the authors conclude that non-linear methods are to be preferred over linear ap-
proximations. Novales and Pérez (2004) compare linear approximations with a
second-order Parameterized Expectations Algorithm. Because the second-order
PEA performs only poorly, the authors conclude that log-linearization methods
yield satisfactory results. Our exercise explains both results in a unified frame-
work.

14Increasing the length of artificial series would improve the performance of the PEA, how-
ever, at the cost of dramatically increased computational burden. For manageable T we are
convinced that Perturbation and Projection Methods still perform better than the PEA, thus
we keep our length of artificial series at T = 5.000.
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Table 2 shows further that Perturbation Methods most efficiently select the co-
efficients of the decision rules for a fixed order of approximation. Obviously, first
and second-order Perturbation yield the best results among linear and quadratic
approximations, respectively. High-order Perturbation Methods thus seem par-
ticularly promising for approximation purposes. Incorporating them into the
evaluation exercise would be an interesting extension of our work. Finally, we
find that whereas the accuracy of numerical methods depends strongly on the
structural parameters, the relative performances do not. Figure 1 plots Logged
Mean Absolute Euler Equation Errors for all parameter constellations under
consideration. Obviously the approximation accuracy depends strongly on the
structural parameters, as the Mean Euler Equation Errors vary by a factor of
far over hundred, even over 10.000 for the fourth-order Galerkin method. Figure
2 plots pairwise differences in logged Mean Absolute Euler Equation Errors for
each parameter set. We see that whether a particular method performs better
than another is largely independent from the structural parameters. For exam-
ple, the Galerkin Projection Method of order four yields better results than all
other approximations for all parameter vectors.

5.2 Comparison of Simulated Moments

We continue our evaluation by visually inspecting first and second moments of
simulated model variables. Table 3 reports unconditional means and standard
deviations for consumption and capital series implied by the seven methods
under consideration. One method, the first-order Galerkin Projection, implies

Table 3: First and Second Moments of Simulated Consumption and Capital
Series

Consumption Capital
Mean Std Mean Std

Perturbation 1 1.4003 0.2055 6.6450 1.6703
PEA 1 1.4147 0.2053 6.9027 1.6557

Galerkin 1 1.3697 0.2102 5.6038 1.4012
Perturbation 2 1.4177 0.2057 6.9861 1.7725

PEA 2 1.4144 0.2051 6.8954 1.6570
Galerkin 2 1.4151 0.2039 6.9427 1.7460
Galerkin 4 1.4155 0.2040 6.9510 1.7337

apparently different means and standard deviations for the simulated time series.
We think that this is the consequence of the particularly poor performance of
the Galerkin Projection when linear decision rules are postulated. Furthermore,
we observe that unconditional means implied by first-order Perturbation tend
to be smaller than their counterparts implied by other approaches. Among the
remaining methods we can hardly visually identify any differences. We thus
conclude that the inspection of simulated moments may serve well as a tool
to detect very bad approximations, but is not of great help in selecting among
good approximations.
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Figure 1: Logged Mean Absolute Euler Equation Errors
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Figure 2: Pairwise Differences in Logged Mean Absolute Euler Equation Errors
(A value below zero indicates that the first method yields better results than the
second)
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5.3 Forecast Error Properties

To check whether our solutions satisfy the rational expectations hypothesis we
compute sequences of the household’s forecast errors. Table 4 reports their
unconditional means, mean autocorrelation coefficients of lag one and mean
correlation coefficients with three instrumental variables: the capital stock, the
technology level and the product of the both. Table 5 reports the respective
maximum in absolute value. As a matter of time we do not apply the den Haan
and Marcet (1994) accuracy test to check for the martingale difference property.
The test requires solving and simulating the model many hundred times for each
parameter set and thus increases the computational burden dramatically.15

Table 4: Mean Correlation Properties of Forecast Errors

Mean AR(1) k a k*a
Perturbation 1 -0.0005 -0.0050 -0.0003 -0.0047 0.0006

PEA 1 -0.0000 -0.0005 -0.0011 -0.0002 -0.0008
Galerkin 1 0.0000 -0.0011 -0.0011 -0.0003 -0.0009

Perturbation 2 -0.0000 -0.0016 0.0029 -0.0006 0.0019
PEA 2 -0.0000 0.0022 -0.0007 0.0003 -0.0004

Galerkin 2 -0.0000 -0.0007 -0.0010 -0.0002 -0.0008
Galerkin 4 -0.0000 -0.0006 -0.0010 -0.0002 -0.0008

Table 5: Maximum Absolute Correlation Properties of Forecast Errors

AR(1) k a k*a
Perturbation 1 0.0632 0.0399 0.0411 0.0348

PEA 1 0.0524 0.0447 0.0325 0.0397
Galerkin 1 0.0734 0.0453 0.0340 0.0409

Perturbation 2 0.0586 0.0511 0.0434 0.0449
PEA 2 0.6748 0.1508 0.0341 0.1069

Galerkin 2 0.0600 0.0476 0.0332 0.0429
Galerkin 4 0.0593 0.0478 0.0330 0.0429

We find that all methods under consideration seem to fulfill the rational
expectations hypothesis reasonably well. The mean correlation coefficients are
close to zero for every method considered. The maximum absolute correlation
coefficients are well below ten percent except for two cases of the second-order
PEA. Similarly to the last section we conclude that the properties of forecast
errors seem to be a good device to detect bad approximations, whereas they are
hardly helpful in selecting among the better approximations.

15For example, if we used only 100 replications the computational time required by our
evaluation exercise would increase from approximately two days to more than half a year.
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6 Summary and Conclusion

This paper evaluates seven different implementations of numerical methods to
solve for approximate decision rules of the neoclassical growth model. Our first
result is that major gains in accuracy can be achieved by increasing the order
of approximation. Moving from a first-order to a second-order approximation
reduces the Mean Absolute Euler Equation Error substantially for Perturba-
tion and Projection Methods. These methods are still computationally fast and
relatively easy to implement, as computer codes are publicly available. In addi-
tion we find that using a fourth-order Galerkin Projection method may further
increase accuracy significantly at low computational costs. We find that the
Parameterized Expectations approach is not well suited for higher-order ap-
proximations, as it is particularly slow and performs rather poorly as long as
the initial guess is not very close to the true solution.
Our second result is that - given the order of approximation - Perturbation
Methods select the coefficients of the decision rules in the most efficient way.
In cases where a priori information restricts the decision rule to be linear or
quadratic, first and second-order Perturbation Methods are best suited to derive
the unknown coefficients, whereas Projection Methods may yield very inaccu-
rate results. Thus we suggest to use Projection Methods only when the order
of approximation is sufficiently large.
Finally, we find that whether a certain numerical method outperforms another
is largely independent of the structural parameters. We find that local approx-
imation methods, such as Perturbation, may still outperform global methods,
such as Galerkin Projection, even when the volatility of the model around the
steady state is relatively high.
There are some obvious limitations and possible extensions of our analysis. We
use only a very simple model throughout our evaluation exercise and cannot
guarantee that our results carry over to more complex economies. To assure ro-
bustness, the evaluation exercise should be repeated using more complex mod-
els. In addition we could extend the analysis to comprise further numerical
approaches, such as higher-order Perturbation Methods. We leave both points
for further research.
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