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On Core-Walras Equivalence in Banach Spaces when

Feasibility is defined by the Pettis Integral ∗

Konrad Podczeck†

Abstract

The paper studies the core-Walras equivalence problem in the com-
modity space framework of Banach spaces, allocations being defined as
Pettis integrable functions. In particular, a core-Walras equivalence result
for a certain class of commodity spaces is established, without requiring
that the commodity space be separable. The class covered by this result
includes the Lp(µ) spaces, 1 ≤ p < ∞, µ being σ -finite. On the other
hand, responding to objections made against some recent core-Walras non-
equivalence results in the Bochner integrable allocations setting, it is shown
that these latter results carry over to the Pettis integrable allocations set-
ting, unless additional restrictions on the heterogeneity of agents’ prefer-
ences are in force.

1 Introduction

This paper deals with the core-Walras equivalence problem in infinite dimen-

sional commodity spaces; in particular with the impact of the heterogeneity of

preferences which may appear in an economy with a continuum of agents when

the commodity space is large.

Several extensions of Aumann’s (1964) classical core-Walras equivalence the-

orem to infinite dimensional commodity spaces have been established in the lit-

erature. See, e.g., Bewley (1973), Gabszewicz (1968), Mas-Colell (1975), Mertens

(1970), Ostroy and Zame (1994), Rustichini and Yannelis (1991), Tourky and

Yannelis (2001), Zame (1986). In most of these results, the commodity space is

separable (at least in a topology for which preferences are continuous), and may

thus be interpreted as being “not too large" relative to the size of an economy

with a continuum of agents; in particular, agents’ preferences cannot be “too

dispersed.”

∗Thanks to Mario Pascoa, Rabee Tourky, Nicholas Yannelis, and a referee for helpful discus-
sions and suggestions.

†Institut für Wirtschaftswissenschaften, Universität Wien, Hohenstaufengasse 9, A-1010
Wien, Austria. E-mail: konrad.podczeck@univie.ac.at
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In the seminal contribution of Tourky and Yannelis (2001), it was shown

that having a commodity space that is “not too large" indeed matters for the

core-Walras equivalence problem. In fact, these authors showed that given any

non-separable Hilbert space as commodity space, one can find an atomless econ-

omy such that, when feasibility of allocations is defined in terms of the Bochner

integral, core-Walras equivalence fails even though the usual standard assump-

tion are met. Subsequently, it was shown in Podczeck (2003) that a core-Walras

non-equivalence result like that of Tourky and Yannelis (2001) actually holds in

any non-separable Banach space, and in Podczeck (2002) related results for the

commodity space setting of Banach lattices were established.1

The interpretation of these results of Tourky and Yannelis (2001) and Pod-

czeck (2003, 2002) is that a large number of agents does not guarantee perfect

competition unless there are in fact “many more agents than commodities;” if

this latter condition does not hold, then a large number of agents means that

agents’ characteristics may be extremely dispersed, so that the standard theory

of perfect competition fails.2

The reason underlying core-Walras non-equivalence in non-separable Banach

spaces when feasibility is defined in terms of the Bochner integral can be viewed

as follows. Since Bochner integrable allocations must be essentially separably

valued, the property of an allocation being in the core is separably determined

in the sense that a feasible allocation is a core allocation already when it is a

core allocation relative to every separable subspace of the commodity space.

On the other hand, across the separable subspaces of the commodity space the

profile of agents’ preferences may be extremely dispersed. As a consequence,

since the property of an allocation being Walrasian is determined relative to

the entire commodity space, the core may be larger than the set of Walrasian

allocations—even when the economy in question is atomless.

This intuition, however, leads to an objection that has been made against the

analysis in Tourky and Yannelis (2001) and Podczeck (2003, 2002): Since allo-

cations are essentially separably valued, blocking possibilities are very limited

when the commodity space is non-separable, which makes the core “large” in

some sense, thus implying a bias in favor of core-Walras non-equivalence; there-

fore a notion of integrability weaker than Bochner integrability should be used

to define feasibility of allocations.

In this note we take up this objection and consider the core-Walras equiv-

alence problem in the Pettis integrable allocations setting. Our main result is

1In the non-equivalence results of Tourky and Yannelis (2001) and Podczeck (2003), the
ordering of the commodity space is not taken as a priori given. Rather, it is constructed in the
proofs; in particular, it is not a lattice ordering.

2We refer to Tourky and Yannelis (2001) and Podczeck (2003) for a more detailed discussion
of this point.
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that, in this setting, core-Walras equivalence indeed holds for some class of

commodity spaces regardless of whether or not the actual space is separable.

(See Theorem 6 in Section 3.2.) However it turns out that this is not due to the

Pettis integral by itself, but rather due to the interplay between defining allo-

cations to be Pettis integrable functions and measurability assumptions on the

profile of agents’ preferences.

It is well known that without such a measurability assumption core-Walras

equivalence can fail even in the setting of finitely many commodities. (See e.g.

the example in Tourky and Yannelis (2001).) Now measurability of the profile

of agents’ preferences can be defined in several ways. Two of them are—where

(T , T , ν) is the measure space of agents of an economy, and �t denotes the

strict preference relation of agent t ∈ T :

(M1) If x and y are any two consumption bundles then {t ∈ T : x �t y} is a

measurable set, i.e. it belongs to T .

(M2) If f and g are any two allocations then {t ∈ T : f (t) �t g(t)} is a measur-

able set, i.e. it belongs to T .

If the commodity space is a separable Banach space, then, regardless of whether

allocations are defined to be Bochner integrable functions or to be just Pettis

integrable, (M1) and (M2) amount to the same condition (provided, of course,

that certain standard assumptions on preferences are in force).3 If allocations

are defined to be Bochner integrable functions, then regardless of whether the

commodity space is a separable or a non-separable Banach space, (M1) and (M2)

amount to the same condition, too. However, if allocations are defined to be

Pettis integrable and the commodity space is a non-separable Banach space, then

(M1) and (M2) need no longer be equivalent, and this indeed has consequences

in regard to the core-Walras equivalence problem. In fact, we show:

(1) The core-Walras non-equivalence results of Tourky and Yannelis (2001)

and Podczeck (2003, 2002) continue to hold when allocations are defined to be

Pettis integrable but only (M1) is required to be satisfied by the profile of agents’

preferences. Thus, defining feasibility in terms of the Pettis integral has, by it-

self, no effect for the core-Walras equivalence problem compared with defining

feasibility in terms of the Bochner integral.

(2) Even if (M2) is required to hold instead of only (M1), and allocations are

defined to be Pettis integrable, one can find non-separable commodity spaces in

which core-Walras equivalence fails.

(3) However, together with requiring (M2), defining allocations to be Pettis

integrable may have an effect: As will be shown, under these conditions, in the

3For this and the following sentence, see the proposition in Section 3.2.
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commodity space setting of Banach lattices with an order continuous norm and

a weak unit, core-Walras equivalence holds, regardless of whether the commod-

ity space is separable or not.

Taken together, (1)–(3) say that defining allocations to be Pettis integrable

may indeed lead to different conclusions for the core-Walras equivalence prob-

lem, compared with the results in Tourky and Yannelis (2001) and Podczeck

(2003, 2002), but only in connection with a strong version of a measurability

assumption concerning the profile of agents’ preferences.

The interpretation is that it is crucial for core-Walras equivalence to hold in

a large commodity space that preferences are not too dispersed across agents,

and that whether allocations are defined to be Bochner or just Pettis integrable

matters only in connection with this. If the restriction on the allowed hetero-

geneity of a profile of agents’ preferences is only as incorporated in the measur-

ability assumption (M1), then the core-Walras non-equivalence results for the

Bochner integrable allocations setting carry over to the Pettis integrable allo-

cations setting. On the other hand, for a non-separable commodity space, the

measurability assumption (M2) may imply a restriction on the allowed hetero-

geneity of preferences which, in the Pettis integrable allocations setting, goes

beyond that implied by (M1). Therefore, in that setting, core-Walras equivalence

may hold under (M2) even when the commodity space is non-separable.

We close the introduction by noting that non-separable Banach spaces, in

particular non-separable Banach lattices, indeed appear as commodity spaces

in the economic literature. An example is the model by Khan and Sun (1997) of

financial trading under uncertainty. In that model, the space of asset returns is

an Lp space over a sample space of uncertain states that is taken to be an atom-

less Loeb probability space. However, Lp spaces on such probability spaces are

non-separable. (See, e.g., Jin and Keisler, 2000.) In Sun (1996) it was argued that

atomless Loeb probability spaces are indeed the most appropriate infinite ide-

alizations of a large finite set of uncertain states. But then non-separability has

to be taken into account in the context of Lp(µ) spaces as models for economic

situations involving uncertainty. Note that the Lp(µ) spaces, for 1 ≤ p < ∞ and

µ σ -finite, are covered by our core-Walras equivalence result in Theorem 6.

Another example are models of commodity differentiation where the com-

modity space is M(Ω), the space of all regular bounded Borel measures on

a compact Hausdorff space Ω. If Ω is uncountable, then this space is non-

separable. The theory of thick and thin markets developed by Ostroy and Zame

(1994) uses this framework of commodity differentiation. As shown by these au-

thors, in order to have examples of thin markets, preferences must not be weak∗

continuous (as frequently assumed in models of commodity differentiation), but

just norm continuous, so that (norm) non-separability of M(Ω) actually matters.
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Let us remark here that, for the space M(Ω), core-Walras equivalence holds

in the Pettis integrable allocations setting under assumption (M2). This can be

deduced from Theorem 6 in the present paper together with some arguments

from the proof of Theorem 2 in Podczeck (2002).4 Actually, if Ω is such that

for every regular Borel measure µ on Ω, L1(µ) is separable (e.g. if Ω = [0, 1])

then core-Walras equivalence holds in M(Ω) already in the Pettis integrable al-

locations setting under (M1) as well as in the Bochner integrable allocations

setting.5

Finally, we remark that if the commodity space is actually a dual Banach

space, then the notion of the Gelfand integral may be more appropriate than that

of the Pettis integral to define feasibility of allocations. This is so in particular

for the space M(Ω) as model of commodity differentiation. An investigation of

the core-Walras equivalence problem for dual Banach spaces in the Gelfand inte-

grable allocations setting will be the topic of future research. Note, though, that

for reflexive Banach spaces, the Gelfand and the Pettis integral coincide. Thus,

if only the measurability assumption (M1) is required to hold for the preference

mapping of an economy, then—for a dual Banach space—simply replacing “Pet-

tis” by “Gelfand” in the definition of allocations will not eliminate the possibility

of core-Walras non-equivalence.

2 Notation and Terminology

(1) If E is a Banach space, then E∗ denotes the dual space of E, i.e. the space

of all continuous linear functions from E into R. If x ∈ E and p ∈ E∗, the value

p(x) of p at x will often be denoted by 〈p, x〉 for notational convenience. E∗

is always regarded as endowed with the dual norm. We write ‖·‖ for both the

4By applying Theorem 6 to the restriction of an economy to the norm closure of the order
ideal generated by the aggregate endowment, followed by applying Assumption (A9) (bounded
marginal rates of substitution) to get an equilibrium with respect to the entire commodity
space. For the first step one has to note that, for the space M(Ω), if allocations are Pettis
integrable and consumption sets are the positive cone of the commodity space, then a feasible
allocation takes almost all of its values in the norm closure of the order ideal generated by the
aggregate endowment. For the second step, see the proof of Podczeck (2002, Theorem 2(i)⇒(ii))
for details.

5For the Bochner integrable allocations setting, see Podczeck (2002, Theorem 2(i)⇒(ii)). The
arguments in the proof of that result can be adapted to deal, for the space M(Ω), with the
Pettis integrable allocations setting under (M1). As shown in Podczeck (2002) for the Bochner
integrable allocations setting, if the commodity space is a Banach lattice, and the ordering
considered is the given lattice ordering, then separability properties of order ideals are relevant
for core-Walras equivalence, and not separability of the entire commodity space. This is not in
contradiction with the non-equivalence results in Tourky and Yannelis (2001) and Podczeck
(2003). For as noted above, in those non-equivalence results the ordering of the commodity
space is not taken as a priori given, but is constructed in the proofs, and in particular is not a
lattice ordering.
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norm of E and the norm of E∗. We write σ (E, E∗) for the weak topology of E,

and σ (E∗, E) for the weak∗ topology of E∗. Finally, for a subset A of E:

int A denotes the (norm) interior of A.

(2) Let E be a Banach space, and let (T , T , ν) be a complete finite measure

space. A function s : T → E is called a measurable simple function if there are

x1, x2, . . . , xn ∈ E and S1, S2, . . . , Sn ∈ T such that s =
∑n

i=1 xi1Si . Here and

later on, if S ⊂ T then 1S denotes the characteristic function of S, i.e. 1S(t) = 1

if t ∈ S and 1S(t) = 0 if t ∈ T ØS. If s =
∑n

i=1 xi1Si is a measurable simple

function from T into E and S ∈ T then the integral of s over S is defined as∫
S s dν =

∑n
i=1 ν(Si ∩ S)xi. A function f : T → E is said to be weakly measur-

able if the function t , 〈q, f (t)〉 is measurable for every q ∈ E∗. The function

f : T → E is said to be strongly measurable if f is the pointwise limit almost

everywhere of a sequence of measurable simple functions. Recall that according

to Pettis’s measurability theorem, f is strongly measurable if and only if f is

weakly measurable and essentially separably valued; the latter means that there

is a separable subspace F of E such that f (t) ∈ F for almost all t ∈ T . A weakly

measurable function f : T → E is said to be Pettis integrable if for each S ∈ T
there is an xS ∈ E such that 〈q, xS〉 =

∫
S〈q, f (t)〉 dν(t) for all q ∈ E∗. In this

case we write xS =
∫
S f (t) dν(t) or xS =

∫
S f dν or simply xS =

∫
S f and call xS

the Pettis integral of f over S. A strongly measurable function f : T → E is said

to be Bochner integrable if there exists a sequence (sn) of measurable simple

functions from T into E such that
∫

‖f (t) − sn(t)‖ dν(t) → 0 as n → ∞. In this

case for each S ∈ T , lim
∫
S sn dν exists (and is independent of the special choice

of the sequence (sn)) and is called the Bochner integral of f over S. Note that if

f is Bochner integrable then f is Pettis integrable, and the Pettis integral and the

Bochner integral of f coincide over any S ∈ T . Thus if f is Bochner integrable,

we may also write
∫
S f to denote the Bochner integral of f over S.

(3) By an ordered Banach space we mean a Banach space endowed with a

vector ordering such that the positive cone is closed. Let E be an ordered Banach

space.

(a) As usual, the ordering of E is denoted by ≥, and E+ denotes the positive

cone of E, i.e. E+ = {x ∈ E : x ≥ 0}.

(b) E∗ will always be regarded as endowed with the dual ordering; thus, in

particular:

E∗
+ = {q ∈ E∗ : q(x) ≥ 0 for all x ∈ E+}.

(c) A linear functional q ∈ E∗ is said to be strictly positive if q(x) > 0 when-

ever x ∈ E+Ø{0}.

(4) Let F be a Riesz space (i.e. vector lattice).

(a) The ordering of F is again denoted by ≥, and F+ denotes the positive cone

of F , i.e. F+ = {x ∈ F : x ≥ 0}. For x, y ∈ F the expressions x+, x−, |x|, x ∨ y ,
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x ∧ y , and x ⊥ y have the usual lattice theoretical meaning.

(b) Let x, y ∈ F . Then:

[x, y] denotes the order interval {z ∈ F : x ≤ z ≤ y}.

Ax denotes the order ideal in F generated by x. Thus, if x ∈ F+ then

Ax =
∞⋃

n=1

[−nx, nx] = {z ∈ F : |z| ≤ nx for some n ∈ N}.

(5) (a) C(Ω) stands for the space of all continuous real valued functions on

some compact Hausdorff space Ω, endowed with the supremum norm and the

usual pointwise ordering; thus C(Ω) is a Banach lattice.

(b) By a “C(Ω) space” we mean a Banach lattice that is isomorphic as a Banach

lattice to a concrete space C(Ω). Recall that every Banach lattice whose positive

cone has a non-empty interior is a C(Ω) space.

(6) Let E be any Banach lattice.

(a) A point x ∈ E+ is said to be a quasi-interior point of E+ if Ax is dense in E.

Recall that this can be equivalently expressed by saying that x is a quasi-interior

point of E+ if q(x) > 0 whenever q ∈ E∗
+ Ø{0}.

(b) For a strictly positive q ∈ E∗
+ :

σ (E, Aq) denotes the weak topology of E with respect to the order ideal Aq.

(Note that when q is strictly positive, Aq separates the points of E.)

3 The model and the results

3.1 The model

Let E be an ordered Banach space. An economy E with commodity space E is a

pair [(T , T , ν), (X(t), �t, e(t))t∈T ] where

– (T , T , ν) is a complete positive finite measure space of agents;

– X(t) ⊂ E is the consumption set of agent t;

– �t ⊂ X(t) × X(t) is the (strict) preference relation of agent t;

– e(t) ∈ E is the initial endowment of agent t;

and where the endowment mapping e : T → E, given by t , e(t), is assumed to

be Pettis integrable. The economy E = [(T , T , ν), (X(t), �t, e(t))t∈T ] is said to

be atomless if the measure space (T , T , ν) is atomless.

An allocation for the economy E is a Pettis integrable function f : T → E such

that f (t) ∈ X(t) for almost all t ∈ T . An allocation f is said to be feasible if∫
T

f (t) dν(t) =
∫

T
e(t) dν(t) .
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A Walrasian equilibrium for the economy E is a pair (p, f ) where f is a

feasible allocation and p ∈ E∗ Ø {0} is a price system such that for almost

every t ∈ T :

(i) 〈p, f (t)〉 ≤ 〈p, e(t)〉 and

(ii) if x ∈ X(t) satisfies x �t f (t) then 〈p, x〉 > 〈p, e(t)〉.

A feasible allocation f is said to be a Walrasian allocation if there is a

p ∈ E∗ Ø{0} such that (p, f ) is a Walrasian equilibrium. An allocation f is a

core allocation if it is feasible and if there does not exist a coalition S ∈ T with

ν(S) > 0 and a Pettis integrable function g : T → E+ such that

(i)
∫
S g(t) dν(t) =

∫
S e(t) dν(t), i.e. g is feasible for S, and

(ii) g(t) �t f (t) for almost all t ∈ S.

We denote by C(E) the set of all core allocations of the economy E, and by

W (E) the set of Walrasian allocations.

The following assumptions on agents’ characteristics are standard.

(A1) e(t) ∈ E+Ø{0} for every t ∈ T .

(A2) X(t) = E+ for every t ∈ T .

(A3) �t is irreflexive and transitive for every t ∈ T .

(A4) For every t ∈ T , �t is continuous, i.e. for each x ∈ E+ the sets

{y ∈ E+ : y �t x} and {y ∈ E+ : x �t y} are (norm) open in E+.6

(A5) For every t ∈ T , �t is strictly monotone, i.e. whenever x, x′ ∈ E+ with

x ≥ x′ and x 6= x′ then x �t x′.

For our core-Walras non-equivalence results we will consider the following

strengthening of (A3).

(A6) For every t ∈ T , �t is the asymmetric part of a reflexive, transitive, and

complete preference/indifference relation åt .

Moreover, we will take into consideration the assumption that preferences are

convex.

(A7) For every t ∈ T , �t is convex, i.e. for each x ∈ E+ the set

{y ∈ E+ : y �t x} is convex.

6For convenience of reference later on, (A4) as well as the following assumptions on prefer-
ences are formulated for consumption sets that are equal to E+ since these assumptions will
be considered only in conjunction with Assumption (A2).
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In the case where the commodity space E has the property that int E+ 6= ∅,

in particular if E is actually a C(Ω) space, i.e. a Banach lattice with int E+ 6= ∅,

we will take the following strengthening of (A1) into consideration.

(A8) e(t) ∈ int E+ for every t ∈ T .

In the general case where E is a Banach lattice whose positive cone E+ may

have an empty interior, we will consider a condition on marginal rates of substi-

tution, which is taken from Zame (1986); see also Ostroy and Zame (1994).

(A9) There are strictly positive linear functionals α, β ∈ E∗ with α ≤ β such

that for every t ∈ T , whenever x, u, v ∈ E+ satisfy u ≤ x and α(v) > β(u)
then x − u + v �t x.

Note that this is a requirement on preferences that is uniform over agents as

well as over the consumption set E+. We refer to Zame (1986) for a discussion

of this condition as well as for corresponding examples. (It may be seen that

(A9), together with (A3) and the convexity assumption (A7), is equivalent to the

following statement: “There are strictly positive elements α, β in E∗, with α ≤ β,

such that given any t ∈ T and x ∈ E+ there is a p in the order interval [α, β]
such that p(x) ≤ p(y) for all y ∈ E+ with y �t x.” Thus, since supporting

price systems are measures of marginal rates of substitution, (A9) is indeed a

condition putting bounds on these rates.)

It is well known that if the commodity space is infinite dimensional and con-

sumption sets have empty interior, then—regardless of whether or not the com-

modity space is separable, and regardless of whether allocations are defined to

be Bochner or just Pettis integrable—one way in which core-Walras equivalence

can fail is through preferences displaying marginal rates of substitution that are

not properly bounded; cf. the example of a failure of core-Walras equivalence de-

scribed in Rustichini and Yannelis (1991). This reflects the general fact that if

consumption sets in an infinite dimensional commodity space have empty inte-

rior, then continuity of preferences by itself does not provide the appropriate

bounds on marginal rates of substitution in order for preferred sets to admit

supporting price systems. By requiring economies to satisfy (A9), we will rule

out this sort of failure of core-Walras equivalence, which is not the focus of this

note.

It should be remarked that some of the above assumptions (in combination)

may amount to an assumption on the commodity space E; or, to say it the other

way round, some of these assumptions can be satisfied only if E∗, and hence

E, has certain properties. This is the case for (A9), which can hold only if E∗

indeed possesses strictly positive elements. Similarly, if E is a C(Ω) space then

(A2) to (A5) together with (A7) can hold simultaneously only when strictly posi-

tive linear functionals on E do exist. (Indeed, when these assumptions hold and

9



int E+ 6= ∅, then, given any t ∈ T and x ∈ E+, the set of all y ∈ E+ preferred

to x by t is supported by a positive p ∈ E∗ Ø{0}, and when x actually belongs

to int E+ then p must in fact be strictly positive, by the usual argument.) Let us

remark here that strictly positive linear functionals exist on any separable Ba-

nach lattice as well as on any order continuous Banach lattice E whose positive

cone E+ contains quasi-interior points.

3.2 Results

We are going to present results showing that the crucial point for core-Walras

equivalence to hold in Banach spaces is not in the first line whether allocations

are defined to be Bochner or just Pettis integrable; rather, what matters are

restrictions on the heterogeneity of preferences across agents, as embodied in

measurability conditions on the profile of these characteristics.

As already noted in the introduction, without measurability assumptions on

the profile of agents’ preferences, core-Walras equivalence may fail even in the

setting of finitely many commodities. In this note we will consider the following

two measurability conditions, both being well known from the literature. Let E
be an ordered Banach space, and let E be an economy with commodity space E
satisfying Assumption (A2), i.e. consumption sets are equal to E+.

(M1) If x and y are any two consumption bundles then {t ∈ T : x �t y} is a

measurable set, i.e. it belongs to T .

(M2) If f and g are any two allocations then {t ∈ T : f (t) �t g(t)} is a measur-

able set, i.e. it belongs to T .

We first summarize some more or less well known facts concerning the formal

relationship between these two conditions. Obviously (M2) implies (M1) under

(A2), regardless of how allocations are being defined. The following proposition

addresses the reverse implication. (See Section 4.1 for the proof.)

Proposition. Let E be any ordered Banach space and let E be an economy with

commodity space E satisfying assumptions (A2) to (A5). Then (M1) implies that

(M2) holds relative to the set of all allocations that are strongly measurable.7

Thus, under some standard assumptions, in the setting where allocations are

defined to be Bochner integrable, (M1) and (M2) are equivalent. According to the

Pettis measurability theorem, a weakly measurable function taking values in a

7If for each t ∈ T , �t is the asymmetric part of a reflexive, transitive, and complete pref-
erence/indifference relation åt , then the strict monotonicity assumption (A5) can be dropped
from the statement of this proposition. We have not checked whether this is possible in general.
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separable Banach space is actually strongly measurable. Thus if E is separable,

then (M1) and (M2) are also equivalent in the Pettis integrable allocations setting.

Let us turn to the core-Walras equivalence problem. As noted in the introduc-

tion, an objection that was made against the core-Walras non-equivalence results

for non-separable Banach spaces by Tourky and Yannelis (2001) and Podczeck

(2003, 2002) is that these results are artifacts of the Bochner integrable allo-

cations setting, because Bochner integrable functions must be essentially sep-

arably valued and thus coalitional blocking possibilities are very limited when

the commodity space is non-separable. Indeed, one could conjecture that if al-

locations are defined to be Pettis integrable, so that blocking is not restricted

to separable subspaces of the commodity space, then these non-equivalence re-

sults would break down. However, as we will show now, this conjecture is false

if there is no restriction on the profile of agents’ preferences beyond that incor-

porated in the measurability assumption (M1). (Actually, in Tourky and Yannelis

(2001) and Podczeck (2003, 2002), (M2) is required to hold, but by what has been

noted in the previous paragraph, in the Bochner integrable allocations setting

(M1) and (M2) are equivalent given that certain standard assumptions are met.)

Our first theorem shows, in particular, that the core-Walras non-equivalence

results of Tourky and Yannelis (2001) and Podczeck (2003) carry over to the

Pettis integrable allocations setting when only (M1) is required to hold for an

economy. (For this theorem and the subsequent theorems and corollaries, note

that according to the definitions in the previous subsection, the Pettis integrable

allocations setting is in force in this paper.)

Theorem 1. Let E be any non-separable Banach space. Assume the continuum

hypothesis. Then there is an ordering ≥ on E, under which E is an ordered Banach

space with int E+ 6= ∅, and an atomless economy E with commodity space E such

that assumptions (A2), (A4) to (A8), and (M1) hold but such that C(E) 6⊂ W (E).

(See Section 4.2 for the proof. The continuum hypothesis which is assumed in

this theorem is also assumed in Tourky and Yannelis (2001) and Podczeck (2003,

2002).)

Let us turn to the commodity space setting of Banach lattices. (In particular,

the ordering of the commodity space is taken to be the given lattice ordering,

and is not an object of construction as in the previous theorem.) We will first

consider the case where the commodity space E is actually a C(Ω) space, i.e.

a Banach lattice with int E+ 6= ∅.

For such spaces E, and the context of atomless economies satisfying assump-

tions (A2), (A4) to (A8), and (M1), the following condition on E, called property

(CD), was identified in Podczeck (2002) as the decisive condition on the com-

modity space in order for core-Walras equivalence to hold in the Bochner inte-

grable allocations setting.
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(CD) Given any q ∈ E∗
+ there is a countable subset D of E such that whenever

q′ ∈ E∗
+ and q′(d) = q(d) for all d ∈ D then q′ = q.

(Note that this is a condition concerning only positive elements q, q′ ∈ E∗, and

that the set D in its statement may depend on q.) Clearly, every separable Banach

lattice has property (CD), but there are also non-separable Banach lattices satis-

fying (CD) (e.g. C(Ω) where Ω is the so called split interval; see Podczeck (2002)

for details). Examples of C(Ω) spaces that do not satisfy (CD) are provided by

any infinite dimensional space L∞(µ) and, in particular, by `∞. (Again, see Pod-

czeck (2002) for details.) The following theorem points out that also in the Pet-

tis integrable allocations setting, core-Walras equivalence fails in C(Ω) spaces

not satisfying property (CD) if the profile of agents’ preferences has to satisfy

only (M1).

Theorem 2. Let E be a C(Ω) space with E∗ containing strictly positive elements.

Suppose that E fails property (CD), and assume the continuum hypothesis. Then

there is an atomless economy E with commodity space E such that assumptions

(A2), (A4) to (A8), and (M1) are satisfied but such that C(E) 6⊂ W (E).

(See Section 4.3 for the proof.) As just noted, infinite dimensional L∞(µ) spaces

fail property (CD), and when the measure µ is σ -finite then the duals of these

spaces possess strictly positive elements. Thus:

Corollary 1. Assume the continuum hypothesis. Then there exist (non-separable)

C(Ω) spaces E such that C(E) 6⊂ W (E) holds for some atomless economy E with

commodity space E satisfying assumptions (A2), (A4) to (A8), and (M1).

Let us turn to the general case where the commodity space is a Banach lat-

tice E whose positive cone E+ may have an empty interior. In the context of

atomless economies satisfying assumptions (A1) and (A2), (A4) to (A7), and (A9)

as well as (M1), the decisive condition on E for core-Walras equivalence to hold

in the Bochner integrable allocations setting was identified in Podczeck (2002)

to be the following condition, called here (SI).

(SI) For every e ∈ E+ and every strictly positive q ∈ E∗, the relativization of the

topology σ (E, Aq) to Ae is separable.8

(See Podczeck (2002) for an intuition for this condition, as well as for corre-

sponding examples.) The following theorem for the Pettis integrable allocations

setting holds.

8Recall from Section 2 that given e ∈ E+ and q ∈ E∗
+ , Ae denotes the order ideal in E gen-

erated by e, and Aq the order ideal in E∗ generated by q; recall also that σ (E, Aq) denotes the
weak topology of E with respect to Aq.
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Theorem 3. Let E be a Banach lattice with E∗ containing strictly positive ele-

ments. Suppose that E fails condition SI, and assume the continuum hypothesis.

Then there is an atomless economy E with commodity space E such that assump-

tions (A1) and (A2), (A4) to (A7), and (A9) as well as (M1) are satisfied but such

that C(E) 6⊂ W (E).

(See Section 4.4 for the proof.) As shown in Podczeck (2002, Lemma 1), if E is a

σ -Dedekind complete Banach lattice such that E+ contains quasi-interior points

and E∗ contains strictly positive elements, then condition (SI) holds if and only

if E is separable. Thus Theorem 3 implies:

Theorem 4. Let E be any non-separable σ -Dedekind complete Banach lattice

such that E+ contains quasi-interior points and such that E∗ contains strictly

positive elements. Assume the continuum hypothesis. Then there is an atomless

economy E with commodity space E such that assumptions (A1) and (A2), (A4) to

(A7), and (A9) as well as (M1) are satisfied but such that C(E) 6⊂ W (E).

Every order continuous Banach lattice is σ -Dedekind complete, and when

the positive cone of an order continuous Banach lattice contains quasi-interior

points then its dual contains strictly positive elements. Thus the following corol-

lary of Theorem 4 holds.

Corollary 2. Let E be any non-separable order continuous Banach lattice such

that E+ contains quasi-interior points. Assume the continuum hypothesis. Then

there is an atomless economy E with commodity space E such that assumptions

(A1) and (A2), (A4) to (A7), and (A9) as well as (M1) are satisfied but such that

C(E) 6⊂ W (E).

Note that all the Lp(µ) spaces, 1 ≤ p < ∞, the measure µ σ -finite, belong

to the class of order continuous Banach lattices with a positive cone containing

quasi-interior points. Thus for an important class of commodity spaces, core-

Walras equivalence fails also in the Pettis integrable allocations setting when

the commodity space is non-separable and just (M1) is required to hold for the

profile of agents’ preferences.

The results so far mean that defining allocations to be Pettis integrable,

rather than Bochner integrable, can have an effect in regard to the core-Walras

equivalence problem, compared with the non-equivalence results in Tourky and

Yannelis (2001) and Podczeck (2003, 2002), only in conjunction with a restric-

tion of preference heterogeneity across individuals that goes beyond that im-

plied by the measurability assumption (M1). Thus let us consider (M2).

It turns out that even (M2) not necessarily does the job. Indeed, by a result

due to Kunen (see Negrepontis, 1984, pp. 1123–1128) there exists, under the
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continuum hypothesis, a compact Hausdorff space Ω with the following proper-

ties: (a) Ω is separable; (b) there is a point in Ω at which Ω is not first countable,

so that, in particular, C(Ω) is non-separable; but (c) given any finite measure

space (T , T , ν), every weakly measurable function from T into C(Ω), hence ev-

ery Pettis integrable function from T into C(Ω), is in fact strongly measurable.9

Because of (c), given an economy with commodity space C(Ω) satisfying as-

sumptions (A2) to (A5), if (M1) holds then (M2) holds as well according to the

proposition above. On the other hand, (a) means that C(Ω)∗ possesses strictly

positive elements, while (b) implies that C(Ω) fails property (CD) as may readily

be seen. Consequently Theorem 2 implies:

Theorem 5. Assume the continuum hypothesis. Then there exist (non-separable)

C(Ω) spaces E such that C(E) 6⊂ W (E) holds for some atomless economy E with

commodity space E satisfying assumptions (A2), (A4) to (A8), as well as (M2).

However, there are some non-separable commodity spaces for which (M2) in-

deed leads to core-Walras equivalence in the Pettis integrable allocations setting.

In fact, we have the following result.

Theorem 6. Let E be any order continuous Banach lattice with E+ containing

quasi-interior points. Then C(E) = W (E) holds for every atomless economy E
with commodity space E satisfying assumptions (A1) to (A5), (A9), and (M2).

Thus, in the Pettis integrable allocations setting, core-Walras equivalence holds

in particular for the important class of the Lp(µ) spaces, 1 ≤ p < ∞, the mea-

sure µ σ -finite, regardless of whether the actual space under consideration is

separable or not, provided that (M2) and some other standard assumptions are

in force. (See Section 4.5 for the proof of Theorem 6. Note that in this latter

theorem, preferences are not assumed to be complete or convex, and that no

set theoretical assumption is involved.)

What drives Theorem 6, compared with Theorem 5, is the fact that for the

commodity spaces of Theorem 6 there is a plenty of allocations that are not

strongly measurable, so that (M2) indeed imposes a restriction on the hetero-

geneity allowed for a profile of agents’ preferences in an atomless economy,

which goes beyond the restriction implied by (M1).10

9Properties (b) and (c) are not explicitly stated in Negrepontis (1984). However, Ω is the
one-point compactification Ω′ ∪ω0 of a locally compact Hausdorff space Ω′ that is not Lindelöf,
which implies that Ω is not first countable at ω0. On the other hand, C(Ω) is Lindelöf in the
weak topology, which implies (c) because Ω being separable means that C(Ω)∗ contains a count-
able set separating the points of C(Ω); for this latter implication, see Lemma 1 in Section 4.5.1.

10Of course, this is so only when the measure space of agents has non-measurable subsets.
However, it is consistent with ZFC that there is no non-trivial atomless measure on the power set
of any set, i.e. that every (non-trivial) atomless measure space has many non-measurable sub-
sets. In the proof of Theorem 6 we will take care of the possibility of an atomless measure space
of agents where every subset is measurable.
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4 Proofs

4.1 Proof of the Proposition in Section 3.2

Note for the following that all consumption sets are equal to E+ according to

Assumption (A2). Let f , g : T → E+ be any two strongly measurable functions.

By definition of “strongly measurable," there exist sequences (f ′
n) and (g′

n)
of measurable simple functions from T into E such that for almost all t ∈ T ,

f ′
n(t) → f (t) and g′

n(t) → g(t). Since f ′
n, g′

n are measurable simple functions,

there are, for each n ≥ 1, measurable simple functions fn, gn : T → E+ such that

‖f ′
n(t) − fn(t)‖ ≤ dist(f ′

n(t), E+) + 1/n

for all t ∈ T as well as

‖g′
n(t) − gn(t)‖ ≤ dist(g′

n(t), E+) + 1/n

for all t ∈ T , where dist(x, E+) = inf{‖x − y‖ : y ∈ E+}. Consider the sequence

(fn). For each t ∈ T ,

‖f (t) − fn(t)‖ ≤ ‖f (t) − f ′
n(t)‖ + ‖f ′

n(t) − fn(t)‖
≤ ‖f (t) − f ′

n(t)‖ + dist(f ′
n(t), E+) + 1/n

≤ ‖f (t) − f ′
n(t)‖ + ‖f ′

n(t) − f (t)‖ + 1/n

the latter inequality holding because f (t) ∈ E+. Thus fn(t) → f (t) for almost

all t ∈ T (because f ′
n(t) → f (t) for almost all t ∈ T ). Analogously it follows that

gn(t) → g(t) for almost all t ∈ T .

Let T ′ be the set of all t ∈ T for which fn(t) → f (t) as well as gn(t) → g(t).

Then T ØT ′ is a null set, and since (T , T , ν) is complete, it suffices to show that

{t ∈ T ′ : g(t) �t f (t)} belongs to T . Thus we may as well assume that T ′ = T .

Fix any v ∈ E+ Ø{0}. Using transitivity, continuity, and strict monotonicity of

preferences, it is straightforward to check that

{t ∈ T : g(t) �t f (t)} =
⋃
k

⋃
m

⋂
n≥m

{t ∈ T : (1 − (1/k))gn(t) �t (1/k)v + fn(t)}

where k, m, n ∈ NØ{0}. (To see that the set on the left is contained in that on

the right, note that continuity and strict monotonicity imply, in particular, that

whenever g(t) �t f (t) there is a z ∈ E+ such that g(t) �t z �t f (t).)

Evidently (M1) implies that (M2) holds relative to the set of all allocations

that are simple functions. Hence, since (1 − (1/k))gn and (1/k)v1T + fn, k ≥ 1,

are measurable simple functions, the sets

{t ∈ T : (1 − (1/k))gn(t) �t (1/k)v + fn(t)}

are in T , and it follows that {t ∈ T : g(t) �t f (t)} ∈ T as well. This completes

the proof of the proposition.
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4.2 Proof of Theorem 1

We first construct an ordering on E, in the same way as in Tourky and Yannelis

(2001) and Podczeck (2003). Let BE denote the closed unit ball in E. Pick some

u ∈ E with ‖u‖ = 3 and let C be the cone generated by {u} + BE , i.e.

C = {x ∈ E : x = λ(u + y), y ∈ BE, λ ≥ 0}.

Then C is convex, and since u ∉ BE , C is closed and C ∩ −C = {0}. Thus C
generates a vector ordering on E under which E becomes an ordered Banach

space with positive cone E+ equal to C .11 Evidently, int E+ 6= ∅.

Next, using the Hahn Banach theorem, select a q̂ ∈ E∗ with ‖q̂‖ = 3 and

q̂(u) = 9 (as is possible since ‖u‖ = 3). Then for each q ∈ E∗ with ‖q‖ ≤ 1 and

each y ∈ BE ,

(q̂ + q)(u + y) = 9 + q̂(y) + q(u) + q(y) ≥ 9 − 3 − 3 − 1 > 0.

That is, for each q ∈ E∗ with ‖q‖ ≤ 1, q̂ + q is a strictly positive element of E∗.

In particular, q̂ is strictly positive.

Since E is non-separable, and since the continuum hypothesis is assumed,

we may appeal to Podczeck (2003, Section 4.1, Proposition)12 to find a family

(q′
α)α<ω1 of elements of E∗, denoting by ω1 the first uncountable ordinal num-

ber, such that q′
α 6= 0 and ‖q′

α‖ ≤ 1 for every ordinal α < ω1, but such that

given any x ∈ E there is an ordinal αx < ω1 such that for each α ∈ [αx, ω1),

q′
α(x) = 0. For each α < ω1 set qα = q′

α + q̂. Then, by what has been noted in

the previous paragraph, each qα is a strictly positive element of E∗. Also, qα 6= q̂
for each α < ω1, but given any x ∈ E there is an ordinal αx < ω1 such that for

each α ∈ [αx, ω1), qα(x) = q̂(x).

Let (T , T , ν) be any non-trivial, atomless, complete, finite measure space. We

will construct an economy E with (T , T , ν) as measure space of agents and E
as commodity space such that C(E) 6⊂ W (E) but such that all the assumptions

listed in the statement of Theorem 2 hold.

The continuum hypothesis, which is assumed, implies that there is no non-

trivial atomless measure on the power set of any set. Thus there must be an

S ⊂ T with ν∗(S) < ν∗(S).13 Evidently this implies that there is an S ⊂ T such

that actually 0 = ν∗(S) < ν∗(S). Choose and fix such a set S.

11It is easily seen that the cone E+ so constructed is normal, i.e. has not an excessive “width;”
in particular, order intervals are norm bounded, and every element of E∗ is the difference of
two elements of E∗

+ . Cf. Kelley and Namioka (1976, pp. 227 and 228).
12This proposition in Podczeck (2003) relies on a result due to Juhász and Szentmiklóssy

(1992) about transfinite sequences in compact spaces.
13If A is any subset of T , then ν∗(A) denotes the inner measure of A and ν∗(A) denotes the

outer measure of A.
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Again since the measure space (T , S, ν) is atomless, and since the continuum

hypothesis is in force, we can write T =
⋃

α<ω1 Nα where (Nα)α<ω1 is a family

of pairwise disjoint null sets in T , again denoting by ω1 the first uncountable

ordinal number. (Cf. Proposition 5.2 in Tourky and Yannelis, 2001.) Denote by

φ : S → [0, ω1) the mapping that takes a t ∈ S to that ordinal number α for

which t ∈ Nα.

For each t ∈ S set qt = qφ(t). Then (qt)t∈S is a family of strictly positive

elements of E∗ such that

(1) qt 6= q̂ for all t ∈ S

but

(2) for any x ∈ E, qt(x) = q̂(x) for almost all t ∈ S

because for each ordinal number α < ω1 we have φ−1
(
[0, α)

)
= S ∩

⋃
α′<α Nα′ ,

each Nα′ is a null set, and for each α < ω1 the set [0, α) is countable.

It is straightforward to verify that (1) and (2) together with the fact that

ν∗(S) > 0 imply:

There is no p ∈ E∗ such that for almost every t ∈ S,

qt = λtp for some real number λt .
(3)

We now construct an economy with (T , T , ν) as measure space of agents

in the following way. Fix any interior point e of E+. For each agent t in T , we

let the consumption set be equal to E+ and the endowment e(t) be equal to e.

Then assumptions (A2) and (A8) are met. Further, since the measure ν is finite,

the endowment mapping t , e is Pettis integrable, as required in our definition

of an economy.

Concerning preferences, for each t ∈ S let a utility function ut : E+ → R be

defined by

ut(x) = qt(x), x ∈ E+,

and for each t ∈ T ØS, let a utility function ut : E+ → R be defined by

ut(x) = q̂(x), x ∈ E+.

Clearly the family of preferences so defined satisfies all the assumptions from

(A4) to (A7). Moreover, using (2), given any x ∈ E+ we have ut(x) = q̂(x) for

almost all t ∈ T . Evidently this implies that (M1) holds because the measure

space (T , T , ν) is complete.

We have thus constructed an atomless economy E with commodity space E
such that the assumptions listed in the statement of Theorem 2 all hold.
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Consider the initial allocation t , e. Since e ∈ int E+ and consumption sets

are equal to E+, a glance at (3) shows that this allocation is not Walrasian. Thus

to finish the proof, it suffices to show that the initial allocation t , e is in C(E).

To this end, fix any coalition S ∈ T with ν(S) > 0 and let f : T → E+ be any

allocation (i.e. Pettis integrable function) such that ut(f (t)) > ut(e) for almost

all t ∈ S. By the definition of the ut this means that for some null set N ⊂ (SØS)
we have 〈q̂, f (t)〉 > 〈q̂, e〉 for all t ∈ (S ØS)ØN. Let

S′ = {t ∈ S : 〈q̂, f (t)〉 ≤ 〈q̂, e〉}.

Then S′ØN ⊂ S ∩ S. By definition of Pettis integrability, f is weakly measurable

and thus S′ ∈ T since (T , T , ν) is complete. Hence S′ Ø N ∈ T as well, and

because ν∗(S) = 0 we must have ν(S′ Ø N) = 0 whence ν(S′) = 0. That is,

〈q̂, f (t)〉 > 〈q̂, e〉 for almost all t ∈ S whence f is not feasible for S. We conclude

that the initial allocation t , e indeed belongs to C(E). This completes the proof

of the theorem.

4.3 Proof of Theorem 2

Since E fails property (CD) by hypothesis, and since the continuum hypothesis

is assumed, is follows by arguments from the proof of Theorem 1 in Podczeck

(2002) that there are a q̂ ∈ E∗
+ and a family (qα)α<ω1 of elements of E∗

+—as

earlier denoting by ω1 the first uncountable ordinal number—such that qα 6= q̂
for each α but such that given any x ∈ E there is an ordinal αx < ω1 such

that for each α ∈ [αx, ω1), qα(x) = q̂(x). Because E∗ contains strictly positive

elements by hypothesis, it may be assumed that q̂ and each qα are actually

strictly positive (by adding, if necessary, a common strictly positive element

of E∗ to q̂ and to each qα). The arguments of the proof of Theorem 1 from the

fourth paragraph upwards now verbatim apply to establish the theorem.

4.4 Proof of Theorem 3

Let (T , T , ν) be any non-trivial, atomless, complete, finite measure space. The

hypotheses about E together with the continuum hypothesis guarantee, accord-

ing to the proof of Theorem 2 in Podczeck (2002), that there are an e ∈ E+Ø{0},

strictly positive elements α, β, q̂ ∈ E∗, with α ≤ β, and for each t ∈ T a qt ∈ E∗

such that:

(a) q̂ ∈ [α, β] and for each t ∈ T , qt ∈ [α, β].

(b) For each t ∈ T there is a z ∈ Ae (depending on t) such that qt(z) 6= q̂(z).

(Recall: Ae denotes the order ideal generated by e.)
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(c) For each x ∈ E, qt(x) = q̂(x) for almost all t ∈ T .

By the arguments from the proof of Theorem 1, choose a set S ⊂ T with

0 = ν∗(S) < ν∗(S). Define an economy E with (T , T , ν) as space of agents and

E as commodity space in the following way. For each t ∈ T , let the consumption

set be equal to E+ and the endowment be equal to e. For each t ∈ S, let a utility

function ut : E+ → R be given by

ut(x) = qt(x), x ∈ E+,

and for t ∈ T ØS let a utility function ut : E+ → R be given by

ut(x) = q̂(x), x ∈ E+.

The atomless economy E so defined satisfies all the assumptions listed in

the statement of Theorem 3. Indeed, this is clear for (A1), (A2), and (A4) to (A7).

(For (A5), recall that qt , t ∈ S, and q̂ are strictly positive.) Since q̂ and qt , t ∈ S,

belong to the order interval [α, β] and α, β are strictly positive, (A9) is also

satisfied as may readily be verified. (See the proof of Theorem 2 in Podczeck,

2002, for the details.) Finally, given any x ∈ E+ we have ut(x) = q̂(x) for almost

all t ∈ T , and this implies that (M1) holds since the measure space (T , T , ν) is

complete.

Now by virtue of the fact that ν∗(S) = 0, it follows as in the proof of Theo-

rem 1 that the initial allocation t , e is in C(E). Thus it remains to see that this

allocation is not Walrasian. To this end, let q̂|Ae and qt|Ae, t ∈ S, denote the

restrictions to Ae of q̂ and qt , respectively. Then, from above,

qt|Ae 6= q̂|Ae for each t ∈ S

but

for any x ∈ Ae, qt|Ae(x) = q̂|Ae(x) for almost all t ∈ S.

By virtue of the fact that ν∗(S) > 0, this implies that there is no p ∈ E∗ such

that for almost every t ∈ S, qt|Ae = λtp|Ae for some real number λt , as may

easily be verified.

Now suppose, if possible, that for some p ∈ E∗ the pair (p, t , e) were a

Walrasian equilibrium. Note that given any z ∈ Ae, for some real number λ > 0

we have e+λz ≥ 0. Thus the equilibrium conditions would imply that for almost

every t ∈ S, Ae ∩ ker p ⊂ ker qt ,14 or, equivalently, qt|Ae = λtp|Ae for some real

number λt . However, this contradicts the conclusion of the previous paragraph.

Hence the theorem has been established.
14ker p denotes the kernel of p, i.e. ker p = {x ∈ E : p(x) = 0}; similarly for ker qt .
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4.5 Proof of Theorem 6

4.5.1 Preliminaries

In this subsection, E is a (real) Banach space and (T , T , ν) is a complete finite

measure space. We first fix some additional notation and terminology, and col-

lect some facts which will be used in the following proofs.

If A ⊂ E and p ∈ E∗ then

– 〈p, A〉 denotes the set {p(x) : x ∈ A};

– c` A denotes the (norm) closure of A;

– co A denotes the convex hull of A.

Recall that two weakly measurable functions f , g : T → E are said to be

weakly equivalent if for each q ∈ E∗, 〈q, f (t)〉 = 〈q, g(t)〉 for almost all t ∈ T ,

the exceptional set of measure zero possibly depending on q.

Recall that a Banach space E is said to be weakly compactly generated if it

contains a weakly compact subset whose linear span is dense in E. A Banach

space E is measure-compact if given any finite measure space (T , T , ν), every

weakly measurable function f : T → E is weakly equivalent to a strongly mea-

surable function g : T → E.15 The Banach space E is said to have the PIP (“Pet-

tis integral property") if given any finite measure space (T , T , ν), every norm

bounded and weakly measurable function f : T → E is Pettis integrable.

We will use the following facts. If the Banach space E is weakly compactly

generated then E is measure-compact, and if E is measure-compact then E has

the PIP. Further, if E is weakly compactly generated then E∗ is angelic in the

weak∗ topology σ (E∗, E); that is, for a bounded set A ⊂ E∗, the σ (E∗, E)-closure

of A is the set of σ (E∗, E)-limits of sequences from A. (For these facts, see Edgar,

1979, pp. 563.)

Finally, note that if E is an order continuous Banach lattice such that E+
contains quasi-interior points, then E is weakly compactly generated. (Indeed,

e being a quasi-interior point of E+ means, by definition, that the linear span of

the order interval [−e, e] is dense in E, and if E is order continuous then order

intervals in E are weakly compact.)

The following lemma was invoked in the discussion preceding the statement

of Theorem 5. We remark for that context that a Banach space that is Lindelöf

in the weak topology is measure-compact. (Again, see Edgar, 1979, pp. 563.)

Lemma 1. Suppose E is measure-compact and that E∗ contains a countable set

separating the points of E. Then every weakly measurable function from T into E
is strongly measurable.

15The original definition of “measure-compact" for a Banach space is that every probability
measure on the Baire σ -algebra generated by the weak topology is τ-smooth; according to Edgar
(1977, Proposition 5.4), this definition is equivalent to the one presented here.
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Proof. Suppose f : T → E is weakly measurable. Since E is measure-compact,

there is a strongly measurable function g : T → E which is weakly equivalent

to f . But since E∗ contains a countable set separating the points of E, the fact

that f and g are weakly equivalent means that we must have f (t) = g(t) for

almost all t ∈ T . Thus, since g is strongly measurable, f is strongly measurable

as well.

The following lemmata will be needed in the sequel.

Lemma 2. Let Λ be a closed convex cone in E and let f : T → E be a Pettis inte-

grable function with f (t) ∈ Λ for almost all t ∈ T . Let g : T → E be a strongly

measurable function and suppose that g is weakly equivalent to f . Then also

g(t) ∈ Λ for almost all t ∈ T .

Proof. Since g is strongly measurable, and since (T , T , ν) is complete, g is

T−B(E) measurable16 and therefore we can consider the image measure on

(E, B(E)) of ν under g; let us denote this measure by µ. Another appeal to

the fact that g is strongly measurable shows that µ has a support, denoted by

supp µ in the sequel. (Indeed, select a closed separable subspace F of E such

that g(t) ∈ F for almost all t ∈ T . In particular, then, µ(E ØF) = 0. Note that

B(F) = {B ∈ B(E) : B ⊂ F} and let µF be the restriction of µ to B(F). Since F is

separable, µF has a support. It follows that µ has a support, too.)

For each p ∈ E∗, let Hp denote the closed halfspace {x ∈ E : p(x) ≥ 0}.

Further, let Λ∗ = {p ∈ E∗ : p(x) ≥ 0 for all x ∈ Λ} and note that Λ =
⋂

p∈Λ∗ Hp

by the Hahn-Banach theorem.

Now since g is weakly equivalent to f and f is Pettis integrable, g is also

Pettis integrable, and in particular,
∫
S g(t) dν(t) =

∫
S f (t) dν(t) for each S ∈ T .

By hypothesis, for each p ∈ Λ∗, f (t) ∈ Hp for almost all t ∈ T and hence∫
S f (t) dν(t) ∈ Hp for all S ∈ T . Thus, for each p ∈ Λ∗,

∫
S g(t) dν(t) ∈ Hp for

all S ∈ T whence g(t) ∈ Hp for almost all t ∈ T . But since each set Hp is

closed, this implies that supp µ ⊂ Hp for each p ∈ Λ∗, that is, supp µ ⊂ Λ. Thus

µ(EØΛ) = 0 whence g(t) ∈ Λ for almost all t ∈ T .

Lemma 3. Suppose E is weakly compactly generated and let G be a total subset

of E∗. Let A be any non-empty subset of T (not necessarily measurable) and let

f : A → E be any function (also not necessarily measurable). Suppose that for each

p ∈ G, 〈p, f (t)〉 = 0 for almost all t ∈ A. Then for each p ∈ E∗, 〈p, f (t)〉 = 0

for almost all t ∈ A.

Proof. Consider the set F ⊂ E∗ defined as

F = {p ∈ E∗ : 〈p, f (t)〉 = 0 for almost all t ∈ A}.
16B(E) denotes the (norm) Borel σ -algebra of E; similarly for B(F) below.
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Evidently, F is a linear subspace of E∗ containing G. Hence F is weak∗ dense

in E∗ because G is total. Observe next that if (pn) is any sequence in F that is

weak∗ convergent to some p ∈ E∗ then p must be in F , too. Consequently, since

the dual of a weakly compactly generated Banach space is angelic in the weak∗

topology, F ∩ B is weak∗ closed for each weak∗ compact subset B of E∗. By the

Krein-Smulian theorem, it follows that F is weak∗ closed, whence F = E∗ since

F is weak∗ dense in E∗.

For the presentation of the next three lemmata we introduce the following

definition. Given a measurable space (T , T ) and any vector space X, we say that

a set A of functions from T into X has Property (∗) if whenever f , g ∈ A and

S ∈ T then also 1Sf + 1TØSg ∈ A.

Lemma 4. Let A be a set of strongly measurable Pettis integrable functions from

T into E and let B = {z ∈ E : z =
∫

f for some f ∈ A}. Suppose that (T , T , ν) is

atomless and that A has Property (∗). Then the (norm) closure of B is convex.

Proof. As shown by Zame (1986, Lemma D, p. 9-13), the (norm) closure of the

range of a vector measure defined by a Pettis integrable but strongly measurable

function17 on an atomless measure space is convex. With this fact substituted

for the corresponding fact about the vector measure defined by a Bochner inte-

grable function, the arguments in the proof of Theorem 6.2 in Yannelis (1991,

p. 22) apply to yield the claim of the lemma.

Lemma 5. Let ϕ : T → 2E be a correspondence, A be the set of all strongly mea-

surable Pettis integrable selections of ϕ, and B = {z ∈ E : z =
∫

f for some f ∈ A}.

If (T , T , ν) is atomless then c` B is convex.

Proof. Evidently A has Property (∗). Thus the lemma follows from the previous

one.

Lemma 6. Let ϕ : T → 2E be a correspondence, let C be the set of all Pettis

integrable selections of ϕ, and let D = {z ∈ E : z =
∫

g for some g ∈ C}. Suppose

that (T , T , ν) is atomless and that E is measure-compact. Then c` D is convex.

Proof. Let A be the set of all strongly measurable functions f from T into E
such that f is weakly equivalent to some g ∈ C . Then every element of A is

Pettis integrable since every element of C is. Moreover, A has Property (∗) since

C does. Let B = {z ∈ E : z =
∫

f for some f ∈ A}. A glance at Lemma 4 shows

that c` B is convex.

Now since E is measure-compact, every g ∈ C is weakly equivalent to some

strongly measurable function f from T into E. Thus D = B and we may conclude

that c` D is convex.
17I.e. the vector measure W defined by W (S) =

∫
S f dν , S ∈ T , if f is the function in question.
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For convenience of reference, we also state the following trivial modification

of the previous lemma.

Lemma 7. Let ϕ : T → 2E be a correspondence, let S ∈ T , and let C be the set of

all Pettis integrable selections g of ϕ such that 1Sg is strongly measurable. Let

D = {z ∈ E : z =
∫

g for some g ∈ C}. Suppose that (T , T , ν) is atomless and that

E is measure-compact. Then c` D is convex.

Proof. The arguments of the proof of the previous lemma apply.

Lemma 8. Let f : T → E be a Pettis integrable but strongly measurable function.

Then given any ε > 0 and any S ∈ T with ν(S) > 0 there is an S′ ∈ T with

S′ ⊂ S such that the mapping 1S′f is Bochner integrable and such that∥∥∥∥∫
S

f (t) dν(t) −
∫

S′
f (t) dν(t)

∥∥∥∥ < ε.

(In particular, the Pettis integral and the Bochner integral of 1S′f coincide.) More-

over, given δ > 0, S′ can be chosen so that ν(S ØS′) < δ.

Proof. Let S ∈ T , with ν(S) > 0. For each integer n > 0, set

Sn = {t ∈ S : ‖f (t)‖ ≤ n}.

Then Sn ↑ S. Also, since f is strongly measurable, the mapping t , ‖f (t)‖ is

measurable, so Sn ∈ T for each n. Now by Diestel and Uhl (1977, Theorem

5, p.53), the indefinite Pettis integral of the Pettis integrable function f is a ν-

continuous vector measure, so
∫
SØSn f (t) dν(t) → 0 since ν(S ØSn) → 0. Hence,

by the additivity of the indefinite Pettis integral,
∫
Sn f (t) dν(t) →

∫
S f (t) dν(t).

Finally, by definition of the sets Sn, for each n the mapping 1Snf is norm

bounded, and therefore Bochner integrable since it is strongly measurable.

Lemma 9. Suppose E is an order continuous Banach lattice such that E+ contains

quasi-interior points. Then there is a family (xi, pi)i∈I of elements of E × E∗ such

that:

(i) 〈pi, xj〉 6= 0 if and only if i = j.

(ii) The set {pi : i ∈ I} is a total subset of E∗ (i.e. separates the points of E).

(iii) Let Q denote the set of all finite linear combinations of the xi such that the

coefficients are rational. Then Q ∩ E+ is dense in E+.

(Thus the family (xi, pi)i∈I is a Markushevich basis for E with a special property.

Note that it is not claimed that the elements xi themselves belong to E+.)
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Proof.18 By a well known representation theorem (see Lindenstrauss and Tzafriri,

1979, p. 25, Theorem 1.b.14) we may assume that for some probability space

(Ω, Σ, µ):

(I)

(a) L∞(µ) ⊂ E ⊂ L1(µ) and the ordering of E is that induced from L1(µ)
(i.e. is the “pointwise almost everywhere” ordering).

(b) L∞(µ) ⊂ E∗ ⊂ L1(µ).

(c) 〈p, x〉 =
∫

px dµ for all p ∈ E∗ and x ∈ E.

In particular, then, the subspace L∞(µ) of E separates the points of E∗ (because

L∞(µ) separates the points of L1(µ)). That is, L∞(µ) is ‖·‖E-dense in E. By the

continuity of the lattice operations in E this implies (since the ordering of E is

the “pointwise almost everywhere” ordering):

(Id) L∞(µ)+ is a ‖·‖E-dense subset of E+.

Assume (for the time being) that there is a family (xi, pi)i∈I of elements of

L∞(µ) × L∞(µ) such that:

(II)

(1)
∫

pixj dµ 6= 0 if and only if i = j.

(2) The set {pi : i ∈ I} separates the points of L1(µ).

(3) Let Q be the set of all finite linear combinations of xi’s with rational

coefficients. Then Q ∩ [0, 1Ω] is ‖·‖1-dense in [0, 1Ω] (where [0, 1Ω] is

the order interval {x ∈ L∞(µ) : 0 ≤ x ≤ 1Ω}).

Then by (Ia) and (Ib), (xi, pi)i∈I is actually a family of elements of E × E∗. Be-

cause of (Ic) and (II1), it satisfies (i) of the theorem. Also, from (Ic) and (II2), it is

clear that (ii) of the theorem holds. To see that (iii) holds as well, consider the

order interval [0, 1Ω] ⊂ L∞(µ) ⊂ L1(µ) and set Q1 = Q ∩ [0, 1Ω]. By (II3), Q1 is

σ (L1, L∞)-dense in [0, 1Ω]. Now by (Ia), [0, 1Ω] is also an order interval in E. In

particular, [0, 1Ω] is σ (E, E∗)-compact since E is order continuous. But from (Ib)

and (Ic), the topology σ (E, E∗) is, on [0, 1Ω], at least as strong as the topology

σ (L1, L∞). It follows that both topologies agree on [0, 1Ω] and hence that Q1

is σ (E, E∗)-dense in [0, 1Ω]. Evidently the ‖·‖E-closure of Q1 is convex, and is

therefore the same as the closure of Q1 for the topology σ (E, E∗). Thus Q1 is

in fact ‖·‖E-dense in [0, 1Ω]. It follows that Q ∩L∞(µ)+ is ‖·‖E-dense in L∞(µ)+,

18In this proof, ‖·‖E will refer to the norm of E; ‖·‖1 will refer to the usual L1(µ) norm, and
‖·‖∞ to the usual L∞(µ) norm.
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and from this combined with (Id) that Q ∩ E+ is ‖·‖E-dense in E+. Thus (iii) of

the theorem is satisfied by the family (xi, pi)i∈I .

Thus we must show that a family (xi, pi)i∈I of elements of L∞(µ) × L∞(µ)
satisfying (1) to (3) of (II) does exist.

Before proceeding with this task, we introduce some notational conventions.

Let S ∈ Σ with µ(S) > 0. Then µS denotes the restriction of µ to (S, ΣS) where

ΣS = {S′ ∈ Σ : S′ ⊂ S}. Also, to avoid confusion, in L1(µS) the characteristic

function of S is denoted by 1̃S , while in L1(µ) the characteristic function of S is

denoted, following our general notation, by 1S . Further, let {−1, 1} denote the

two point measure space, each point in which has measure 1/2, and let {−1, 1}K

denote the product measure space of K copies of {−1, 1}, where K is an arbitrary

non-empty index set.

Suppose we have a partition π of Ω into sets S ∈ Σ with µ(S) > 0—in

particular, π is (at most) countable—such that for each S ∈ π there is a family

(x̃i, p̃i)i∈IS in L∞(µS) × L∞(µS) for which (II) holds with L1(µS) in place of L1(µ)
and [0, 1̃S] in place of [0, 1Ω]. For each S ∈ π , set xi = 1Sx̃i and pi = 1Sp̃i for

all i ∈ IS . Further, set I =
⋃

S∈π IS (disjoint union). Then (xi, pi)i∈I is a family of

elements of L∞(µ) × L∞(µ), which satisfies (II) as may readily be checked.

(For (1) of (II), note that
∫

pixj dµ = 0 if i ∈ IS and j ∈ IS′ with S 6= S′, and

that for i, j belonging to the same IS ,
∫

pixj dµ =
∫

p̃ix̃j dµS . For (2) note that if

z ∈ L1(µ) satisfies
∫

piz dµ = 0 for all i ∈ I, then for each S ∈ π , the restriction

of z to S is (almost everywhere in S) equal to zero since {p̃i : i ∈ IS} separates

the points of L1(µS), whence z = 0 because π is at most countable. Concern-

ing (3), note first that if z ∈ [0, 1Ω] then for each S ∈ π , zS ∈ [0, 1̃S] where zS is

the restriction of z to S. Next note that if π is finite and for each S ∈ π we have

a finite linear combination of x̃i’s, i ∈ IS , say
∑nS

k=1 αkS x̃ikS
, which is in [0, 1̃S],

then
∑

S∈π
∑nS

k=1 αkS xikS
is a finite linear combination of xi’s which is an element

of [0, 1Ω]; moreover, for any given z ∈ [0, 1Ω], ‖z −
∑

S∈π
∑nS

k=1 αkS xikS
‖1 =∑

S∈π ‖1Sz −
∑nS

k=1 αkS xikS
‖1 =

∑
S∈π ‖zS −

∑nS
k=1 αkS x̃ikS

‖1. For the case of an

infinite π , note that the set of all x ∈ [0, 1Ω] with 1Sx = 0 for all but finitely

many S ∈ π is ‖·‖1-dense in [0, 1Ω].)

Now by Maharam’s theorem, there is a partition π of Ω into sets S ∈ Σ,

with µ(S) > 0, such that for each S ∈ π there is Banach lattice isomorphism TS

from L1(µS) onto either R or L1({−1, 1}KS ) for some infinite KS , which satisfies

TS(1̃S) = 1{−1,1}KS in case it has range L1({−1, 1}KS ).19 Thus it is enough to

show that, given an arbitrary non-empty index set K, there is a family (xi, pi)i∈I

in L∞({−1, 1}K) × L∞({−1, 1}K) such that (II) holds, with L1({−1, 1}K) in place

of L1(µ) and [0, 1{−1,1}K ] in place of [0, 1Ω]. (Indeed, if (xi, pi)i∈IS is such a

19Of course, with the specification TS (1̃S ) = 1{−1,1}KS , the isomorphism TS need not be an
isometry since µS is not a probability measure unless π = {Ω}.
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family in L∞({−1, 1}KS ) × L∞({−1, 1}KS ) ⊂ L1({−1, 1}KS ) × L∞({−1, 1}KS ), then

setting x̃i = T −1
S (xi) and p̃i = T ∗

S (pi), i ∈ I—where T ∗
S is the adjoint operator

of TS—evidently provides a family (x̃i, p̃i)i∈IS in L∞(µS) × L∞(µS) for which (II)

holds with L1(µS) in place of L1(µ) and [0, 1̃S] in place of [0, 1Ω].)

Thus let {−1, 1}K be given. In the following, t stands for a generic element

of {−1, 1}K , and tk, k ∈ K, stands for the kth coordinate of t. Let F be the set

of all finite subsets of K. For each non-empty F ∈ F let wF : {−1, 1}K → {−1, 1}
be the function given by

wF (t) =
∏
k∈F

tk , t ∈ {−1, 1}K ,

and let w∅ = 1{−1,1}K . That is, (wF )F∈F is the family of Walsh functions on

{−1, 1}K .

According to a well known fact (see e.g. Negrepontis, 1984, p. 1076)

∫
wF wF ′ =

1 if F = F ′

0 if F 6= F ′

and thus, identifying each wF with its “equal almost everywhere” equivalence

class, (wF , wF )F∈F is a family of elements of L∞({−1, 1}K)×L∞({−1, 1}K) which

satisfies (1) of (II).

Let W be the linear span of {wF : F ∈ F} and let Y be the set of all elements

of L1({−1, 1}K) that are equivalence classes, modulo “equal almost everywhere,”

of functions depending on only finitely many coordinates.

Again by a standard fact, Y is ‖·‖1-dense in L1({−1, 1}K). Moreover, Y is a

sublattice of L1({−1, 1}K) containing 1{−1,1}K . Hence, considering the order in-

terval [0, 1{−1,1}K ] in L1({−1, 1}K), we have that Y ∩[0, 1{−1,1}K ] is ‖·‖1-dense in

[0, 1{−1,1}K ] by virtue of the continuity of the lattice operations in L1({−1, 1}K).

By another well known fact, every function on {−1, 1}K that depends on only

finitely many coordinates can be written as a finite linear combination of Walsh

functions. Hence, from the previous paragraph, W ∩ [0, 1{−1,1}K ] is ‖·‖1-dense

in [0, 1{−1,1}K ].

Now since order intervals in the dual of a Banach lattice are weak∗ compact,

[0, 1{−1,1}K ] is compact for the weak∗ topology σ
(
L∞({−1, 1}K), L1({−1, 1}K)

)
,

and it follows that this latter topology coincides on [0, 1{−1,1}K ] with the weak

topology σ
(
L1({−1, 1}K), L∞({−1, 1}K)

)
. Thus W ∩[0, 1{−1,1}K ], being ‖·‖1-dense

and hence weakly dense in [0, 1{−1,1}K ], is actually weak∗ dense in [0, 1{−1,1}K ].20

But [0, 1{−1,1}K ] separates the points of L1({−1, 1}K), and consequently so does

W ∩[0, 1{−1,1}K ], being weak∗ dense in [0, 1{−1,1}K ], whence so does {wF : F ∈F}.

Thus (2) of (II) is satisfied by the family (wF , wF )F∈F .

20I.e. σ
(
L∞({−1, 1}K), L1({−1, 1}K)

)
-dense in [0, 1{−1,1}K ].
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Let Q be the set of all linear combinations of wF ’s with rational coefficients.

Note that Q is ‖·‖∞-dense in W and hence Q∩‖·‖∞- int[0, 1{−1,1}K ] is ‖·‖∞-dense

in W ∩‖·‖∞- int[0, 1{−1,1}K ]. Now W ∩‖·‖∞- int[0, 1{−1,1}K ] 6= ∅; e.g. (1/2)1{−1,1}K

belongs to this intersection. Hence W ∩ ‖·‖∞- int[0, 1{−1,1}K ] is ‖·‖∞-dense in

W ∩ [0, 1{−1,1}K ] (because if x ∈ [0, 1{−1,1}K ] and y ∈ ‖·‖∞- int[0, 1{−1,1}K ] then

(1 − λ)x + λy ∈ ‖·‖∞- int[0, 1{−1,1}K ] for 0 < λ < 1). Therefore the fact that

Q ∩ ‖·‖∞- int[0, 1{−1,1}K ] is ‖·‖∞-dense in W ∩ ‖·‖∞- int[0, 1{−1,1}K ] implies that

Q∩[0, 1{−1,1}K ] is ‖·‖∞-dense in W ∩[0, 1{−1,1}K ]. Consequently, Q∩[0, 1{−1,1}K ]
is ‖·‖1-dense in [0, 1{−1,1}K ], since W ∩ [0, 1{−1,1}K ] is ‖·‖1-dense in [0, 1{−1,1}K ]
and since ‖x‖1 ≤ ‖x‖∞ for x ∈ L∞({−1, 1}K). Thus the family (wF , wF )F∈F
satisfies (3) of (II). This completes the proof of the lemma.

The following lemmata are needed only to cover the case of an economy

where the space of agents is a (non-trivial) atomless measure space which has

no non-measurable subset. Recall that it is (relatively) consistent with ZFC that

no such measure space exists. However it is not known whether the existence of

such a measure space is inconsistent with ZFC. Thus, for sake of generality, we

do not want to exclude the possibility of such a measure space.

Lemma 10. Let (T , T , ν) be a finite measure space and let g : T → E be Pettis

integrable. Let S ∈ T and suppose that 2S ⊂ T . Then given ε > 0 there are an

S′ ⊂ S and an integer n > 0 such that ‖
∫
S′ g −

∫
S g‖ < ε and ‖g(t)‖ ≤ n for all

t ∈ S′. Moreover, given δ > 0, S′ can be chosen so that ν(S ØS′) < δ.

Proof. For every integer n > 0 let Sn = {t ∈ S : ‖g(t)‖ ≤ n}. Then the sequence

(Sn) is increasing and
⋃∞

n=1 Sn = S. By the hypothesis about S, each Sn belongs

to T ; in particular, ν(SØSn) is well defined for each n, and we have ν(SØSn) → 0

as n → ∞. Thus, according to the additivity and continuity properties of the

indefinite Pettis integral,
∫
Sn g →

∫
S g.

Lemma 11. Let (T , T , ν) be a finite measure space and suppose that E is an

order continuous Banach lattice with the PIP. Let g : T → E+ be a Pettis integrable

function, let S ∈ T , and let x ∈ E with 0 ≤ x ≤
∫
S g. Suppose that 2S ⊂ T and

that 1Sg is norm bounded. Then there is a Pettis integrable function h : T → E+
with

∫
S h = x and h(t) ≤ g(t) for all t ∈ S.

Proof. Clearly, we may assume without loss of generality that S = T (because

if h is a Pettis integrable function from the subspace (S, 2S , νS) into E+—where

νS is the restriction of ν to 2S—then 1Sh : T → E+ is Pettis integrable as well).

Now combine the next two lemmata, and recall for this that if X and Y are Riesz

spaces, then a positive linear operator θ : X → Y is called interval preserving if

θ([0, x]) = [0, θ(x)] for all x ∈ X+, and, if Y is endowed with some topology, is

called almost interval preserving if θ([0, x]) is dense in [0, θ(x)] for all x ∈ X+.
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Note that if θ is interval preserving, then, in fact, θ([a, b]) = [θ(a), θ(b)] for

any a, b ∈ X with a ≤ b, and that if θ is almost interval preserving then, for

any a, b ∈ X with a ≤ b, θ([a, b]) is dense in [θ(a), θ(b)]. Recall also that any

order continuous Banach lattice is σ -Dedekind complete.

Lemma 12. Let (T , T , ν) be a finite measure space with T = 2T and suppose

that E is an order continuous Banach lattice with the PIP. Let Z be the set of

all norm bounded Pettis integrable functions from T into E, endowed with the

pointwise ordering induced from the ordering of E; that is, if f , g ∈ Z then f ≥ g
if and only if f (t) ≥ g(t) for all t ∈ T . (Functions which agree almost everywhere

are not identified.) Let θ : Z → E be the operator defined by setting θ(z) =
∫

z dν
for z ∈ Z . Then

(a) Z is a σ -Dedekind complete Riesz space.

(b) θ is a positive linear operator which is almost interval preserving and has the

property that if zn ↑ z in Z then θ(zn) → θ(z) (in the norm of E).

(zn ↑ z means the sequence (zn) is increasing with z = sup{zn : n = 1, 2, . . .}.)

Proof. (a) Let Z̃ be the set of all norm bounded functions from T into E, endowed

with the pointwise ordering induced from the ordering of E. Since E is a σ -

Dedekind complete Banach lattice, it is clear that Z̃ is a σ -Dedekind complete

Riesz space. Since, by hypothesis, T = 2T and E has the PIP, every element of Z̃
is Pettis integrable. Thus Z̃ = Z , i.e. Z is a σ -Dedekind complete Riesz space.

(b) Obviously the operator θ is linear and positive. Suppose zn ↑ z in Z .

Then, by definition of the ordering of Z , we have zn(t) ↑ z(t) in E for each

t ∈ T . Hence zn(t) → z(t) in the norm of E for each t ∈ T since E is order

continuous. In particular, for every p ∈ E∗
+ , 〈p, zn(t)〉 ↑ 〈p, z(t)〉 for each t ∈ T .

By the monotone convergence theorem, it follows that for each p ∈ E∗
+ ,∫

〈p, zn(t)〉 dν(t) ↑
∫

〈p, z(t)〉 dν(t) .

That is, 〈p, θ(zn)〉 ↑ 〈p, θ(z)〉 for each p ∈ E∗
+ .

It is clear that the sequence (θ(zn)) in E is increasing and that θ(z) is an

upper bound of the set {θ(zn) : n = 1, 2, . . .}. Consider an arbitrary upper bound

of this set, say x. Then for each p ∈ E∗
+ , 〈p, θ(zn)〉 ≤ 〈p, x〉 for all n. Hence

〈p, θ(z)〉 ≤ 〈p, x〉 for each p ∈ E∗
+ , since 〈p, θ(zn)〉 ↑ 〈p, θ(z)〉 for such p.

Consequently we must have θ(z) ≤ x, whence θ(z) = sup{θ(zn) : n = 1, 2, . . .}.

Thus θ(zn) ↑ θ(z) and hence θ(zn) → θ(z) in the norm of E since E is order

continuous.

Finally to see that θ is almost interval preserving, pick any z ∈ Z+ and set

A = θ([0, z]). Clearly c` A ⊂ [0, θ(z)] since θ is positive. For the reverse in-

clusion, consider any x ∈ E+ with x ∉ c` A. Note that the set A is convex and
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hence so is c` A. Using the Hahn-Banach theorem, select a p ∈ E∗ such that

〈p, x〉 < inf〈p, A〉.

Since E is order continuous, order intervals in E are weakly compact. Thus

for each t ∈ T , inf〈p, [0, z(t)]〉 is attained at some point in [0, z(t)]. That is

(since any norm bounded function from T into E belongs to Z) there is a u ∈ Z
such that for each t ∈ T , u(t) ∈ [0, z(t)] and 〈p, u(t)〉 = inf〈p, [0, z(t)]〉. In

particular, ∫
〈p, u(t)〉 dν(t) = inf〈p, A〉

and

−〈p, u(t)〉 = 〈p−, z(t)〉 for each t ∈ T .

Using these observations, we conclude that

〈p−, x〉 ≥ −〈p, x〉 > − inf〈p, A〉

=
∫

−〈p, u(t)〉 dν(t)

= 〈p−, θ(z)〉.

Thus x ∉ [0, θ(z)], whence [0, θ(z)] ⊂ c` A. This completes the proof of the

lemma.

Lemma 13. Let Z be a σ -Dedekind complete Riesz space, let E be a Banach lattice,

and let θ : Z → E be a positive linear operator that is almost interval preserving

and such that if zn ↑ z in Z then θ(zn) → θ(z) (in the norm of E). Then θ is

interval preserving.

Proof. Pick any v ∈ Z+, with v 6= 0, and let b ∈ [0, θ(v)]. We have to show that

b = θ(z) for some z ∈ [0, v]. We first establish the following:

Claim: Given u ∈ [0, v] with θ(u) ≥ b and given ε > 0 there is a z ∈ [0, u]
such that θ(z) ≥ b and ‖θ(z) − b‖ ≤ ε.

Let u ∈ [0, v] with θ(u) ≥ b and ε > 0 be given. Since θ is almost interval

preserving, we can find a z0 ∈ [0, u] such that ‖θ(z0) − b‖ < ε. If θ(z0) ≥ b
we are done. If not, consider θ(z0) ∨ b. Since θ(z0) ∨ b ∈ [θ(z0), θ(u)] and θ
is almost interval preserving, given any ε′ > 0 there is a z1 ∈ [z0, u] such that

‖θ(z1) − (θ(z0) ∨ b)‖ < ε′. We have

‖θ(z1) − b‖ ≤ ‖θ(z1) − (θ(z0) ∨ b)‖ + ‖(θ(z0) ∨ b) − b‖

and

‖(θ(z0) ∨ b) − b‖ = ‖(θ(z0) − b)+‖ ≤ ‖θ(z0) − b‖ < ε.

Hence, since ε′ can be as small as we like, we can choose z1 in such a way that

both ‖θ(z1) − b‖ < ε and ‖θ(z1) − (θ(z0) ∨ b)‖ < 1. If θ(z1) ≥ b we are done. If

not, we repeat the construction in the following way. Consider θ(z1) ∨ b. Since

29



θ(z1) ∨ b ∈ [θ(z1), θ(u)] and θ is almost interval preserving, given ε′ > 0 there

is a z2 ∈ [z1, u] such that ‖θ(z2) − (θ(z1) ∨ b)‖ < ε′. We have

‖θ(z2) − b‖ ≤ ‖θ(z2) − (θ(z1) ∨ b)‖ + ‖(θ(z1) ∨ b) − b‖

and

‖(θ(z1) ∨ b) − b‖ = ‖(θ(z1) − b)+‖ ≤ ‖θ(z1) − b‖ < ε.

Hence, since ε′ can be as small as we like, we can choose z2 in such a way that

both ‖θ(z2) − b‖ < ε and ‖θ(z2) − (θ(z1) ∨ b)‖ < 1/2. If θ(z2) ≥ b we are done.

If not, we can proceed in this manner to obtain either after a finite number of

steps an element zn ∈ [0, u] which does the job, or an increasing sequence (zn)
in [0, u] such that for all n > 0,

‖θ(zn) − b‖ < ε

and

‖θ(zn) − (θ(zn−1) ∨ b)‖ < 1/n.

In this latter case, since Z is σ -Dedekind complete we must have zn ↑ z for

some z ∈ [0, u]. Thus, by the hypothesized properties of θ, θ(zn) → θ(z) in the

norm of E. Consequently ‖θ(z) − b‖ ≤ ε and ‖θ(z) − (θ(z) ∨ b)‖ = 0. Evidently

the latter equality implies θ(z) ≥ b. This establishes the claim.

Using the claim, we can find a decreasing sequence (zn) in [0, v] such that

‖θ(zn)−b‖ < 1/n for all n > 0. Since Z is σ -Dedekind complete, we have zn ↓ z
for some z ∈ [0, v].21 By the hypothesized properties of θ, θ(zn) → θ(z) in the

norm of E (since zn ↓ z is equivalent to −zn ↑ −z). It follows that θ(z) = b. This

completes the proof of the lemma.

4.5.2 Proof of Theorem 6

Let E be an atomless economy with commodity space E satisfying assumptions

(A1) to (A5), (A9) and (M2). Clearly W (E) ⊂ C(E). To prove the reverse inclusion,

let f ∈ C(E).

There is no loss of generality in assuming that the endowment mapping

t , e(t) is strongly measurable. Indeed, by hypothesis the commodity space E
is an order continuous Banach lattice with E+ containing quasi-interior points.

Thus, by the remarks at the beginning of Section 4.5.1, E is weakly compactly

generated and therefore measure-compact. Thus there is a strongly measurable

function e′ : T → E which is weakly equivalent to t , e(t). In particular, e′ is

Pettis integrable with
∫
S e′(t) dν(t) =

∫
S e(t) dν(t) for each S ∈ T . Hence f is

also a core allocation for the economy E′ that results if the endowment mapping

21zn ↓ z means the sequence (zn) is decreasing with z = inf{zn : n = 1, 2, . . .}.
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of the economy E under consideration is replaced by e′. Moreover, since for any

p ∈ E∗, 〈p, e′(t)〉 = 〈p, e(t)〉 for almost all t ∈ T (by definition of “weakly

equivalent"), if (p, f ) is a Walrasian equilibrium for E′ then (p, f ) is also a

Walrasian equilibrium for the original economy E. (Note also that by Lemma 2,

e′(t) ≥ 0 for almost all t ∈ T since e(t) ≥ 0 for all t ∈ T .) Thus we may as well

assume that the endowment mapping of E is strongly measurable.

Let α and β be strictly positive elements of E∗, chosen according to Assump-

tion (A9); in particular, α ≤ β. Denote by Γ the cone

Γ = {x ∈ E : α(x+) > β(x−)}.

Note the following facts about Γ . First, 0 ∉ Γ and Γ contains E+ Ø{0}, obviously.

Second, Γ is (norm) open by virtue of the continuity of the lattice operations.

Finally, Γ is convex. To see this, note that if x, y ∈ E then for some b ∈ E+,

(x + y)+ = x+ + y+ − b as well as (x + y)− = x− + y− − b. Thus whenever

x, y ∈ Γ then α
(
(x +y)+)

> β
(
(x +y)−)

, because α ≤ β and hence α(b) ≤ β(b)
for b ≥ 0.

Next, let ϕ : T → 2E be the correspondence given by

ϕ(t) = {x ∈ E+ : x �t f (t)} ∪ {e(t)}, t ∈ T .

The following part of the proof covers the case where every S ∈ T with ν(S) > 0

has a non-measurable subset. The other case is dealt with below. (As noted in

Section 4.5.1, it is consistent with ZFC that every non-trivial atomless measure

space has a non-measurable subset. Clearly, the non-existence of a non-trivial

atomless measure on the power set of any set implies that given any finite

atomless measure space, every measurable set with measure > 0 has a non-

measurable subset.)

Let A be the set of all strongly measurable Pettis integrable selections of the

correspondence ϕ and let

B =
{

z ∈ E : z =
∫

g for some g ∈ A.
}

Note that B is non-empty—e.g.
∫

e(t) dν(t) belongs to this set (because the map-

ping t , e(t) is assumed to be strongly measurable).

We claim that (
B −

{∫
e(t) dν(t)

})
∩ −Γ = ∅.

Suppose, if possible, otherwise. Then, since 0 ∉ Γ , and by virtue of the measur-

ability assumption M(2), there is a strongly measurable allocation g : T → E+
and an S ∈ T , with ν(S) > 0, such that g(t) �t f (t) for almost all t ∈ S
and

∫
S g(t) dν(t) −

∫
S e(t) dν(t) = −γ for some γ ∈ Γ . Suppose γ ≥ 0. Then

g̃ : T → E+, defined by g̃(t) = g(t) + (1/(ν(S)))γ for all t ∈ T , is an allocation
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with
∫
S g̃(t) dν(t) =

∫
S e(t) dν(t). Moreover, for all t ∈ S, g̃(t) �t g(t) by strict

monotonicity of preferences since γ 6= 0, whence g̃(t) �t f (t) for almost all

t ∈ S by transitivity of preferences. We thus have a contradiction to the prop-

erty of f being a core allocation. Consequently γ ≥ 0 cannot hold.

Suppose γ− 6= 0. Observe that we must have γ− ≤
∫
S g(t) dν(t) because∫

S g(t) dν(t) and
∫
S e(t) dν(t) are positive elements (and because −γ = γ− − γ+

and γ− ∧ γ+ = 0). Now since Γ is open and g is strongly measurable, an appeal

to Lemma 14 below and the fact that the indefinite Pettis integral
∫
(·) e(t) dν(t)

is ν-continuous shows that we can assume g to be actually a simple function.

Then the Riesz decomposition theorem can be used to find a measurable simple

function s : T → E+ with
∫
S s(t) dν(t) = γ− and s(t) ≤ g(t) for all t ∈ S.

For each t ∈ S, set

v(t) = β(s(t))
β(γ−)

γ+.

This is well defined because γ− is supposed to be 6= 0 and β is strictly positive;

in particular, v(t) ≥ 0 for each t ∈ S. Moreover, for all t ∈ S,

α(v(t)) = β(s(t))
β(γ−)

α(γ+) ≥ β(s(t))

with strict inequality in case s(t) 6= 0 since α(γ+) > β(γ−) by definition of Γ .

Hence, by choice of α and β, and because g(t) − s(t) ≥ 0 and v(t) ≥ 0 for all

t ∈ S, we have for almost all t ∈ S,

g(t) − s(t) + v(t) �t g(t) �t f (t)

in case s(t) 6= 0 and

g(t) − s(t) + v(t) = g(t) �t f (t)

otherwise. Consequently, if we define g̃ : T → E by

g̃(t) =

g(t) − s(t) + v(t) if t ∈ S

0 if t ∈ T ØS,

then g̃ is an allocation with g̃(t) �t f (t) for almost all t ∈ S by transitivity of

preferences, and we have∫
S

g̃(t) dν(t) =
∫

S
g(t) dν(t) −

∫
S

s(t) dν(t) +
∫

S
v(t) dν(t)

=
∫

S
g(t) dν(t) − γ− + 1

β(γ−)
γ+

∫
S

〈β, s(t)〉 dν(t)

=
∫

S
g(t) dν(t) − γ− + γ+

=
∫

S
e(t) dν(t)
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thus again getting a contradiction to the property of f being a core allocation.

Consequently,
(
B −

{∫
e(t) dν(t)

})
∩ −Γ = ∅ as claimed above.

Since Γ is open, we must in fact have
(
c` B −

{∫
e(t) dν(t)

})
∩ −Γ = ∅. By

Lemma 5, c` B is convex and hence so is c` B −
{∫

e(t) dν(t)
}
. Since, as noted

above, the cone Γ is convex, and since Γ and B are non-empty, it now follows

from the separation theorem that there is a p ∈ E∗, with p 6= 0, such that

inf
〈

p, c` B −
{∫

T
e(t) dν(t)

}�
≥ sup〈p, −Γ 〉.

Since Γ is a cone, this implies

(4) inf〈p, B〉 ≥
〈

p,
∫

T
e(t) dν(t)

�
≡

∫
〈p, e(t)〉 dν(t) .

Note also that p must be strictly positive because Γ is open and E+Ø{0} ⊂ Γ .

We claim:

(5) For any x ∈ E+, {t ∈ T : x �t f (t) and p(x) < p(e(t))} is a null set in T .

Indeed, pick any x ∈ E+ and let g : T → E+ be given by

g(t) =

x if x �t f (t) and p(x) < p(e(t))

e(t) otherwise.

From (M2), the set {t ∈ T : x �t f (t)} belongs to T , and because the mapping

t , e(t) is weakly measurable, so does the set {t ∈ T : p(x) < p(e(t))}. Hence,

g is Pettis integrable. Moreover, from the assumption (made at the beginning of

this proof) that the mapping t , e(t) is in fact strongly measurable, it follows

that g is strongly measurable. From the definition of B, then,
∫
T g(t) dν(t) ∈ B

and hence from (4),
∫

〈p, g(t)〉 dν(t) ≥
∫

〈p, e(t)〉 dν(t). Thus (5) must hold.

Let

S̃ = {t ∈ T : there is an x ∈ E+ with x �t f (t) and p(x) < p(e(t))}.

We are going to show that S̃ is a null set. Proceeding by contradiction, suppose

S̃ is a non-null set and let g : S̃ → E+ be a function with g(t) �t f (t) and

p(g(t)) < p(e(t)) for each t ∈ S̃.

Appealing to Lemma 9—which applies since E is order continuous and E+
contains quasi-interior points—select a family (xi, pi)i∈I of elements of E × E∗

such that:

(i) 〈pi, xj〉 6= 0 if and only if i = j.

(ii) The set {pi : i ∈ I} is a total subset of E∗.

(iii) Let Q denote the set of all (finite) linear combinations of the xi such that

the coefficients are rational. Then Q ∩ E+ is dense in E+.
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Then by continuity of preferences, we may assume that g(t) ∈ Q for each t ∈ S̃.

We claim that there are an S ⊂ S̃, with ν∗(S) > 0,22 and an a ∈ E such that for

each i ∈ I, 〈pi, g(t)〉 = 〈pi, a〉 for almost all t ∈ S.

To see this, first note that since every g(t) is a linear combination of the xi,

(i) implies that for every t ∈ S̃, {i ∈ I : 〈pi, g(t)〉 6= 0} is finite. By the fact that

a countable union of null sets is a null set, this means we can find an integer k
and a set S1 ⊂ S̃, with ν∗(S1) > 0, such that |{i ∈ I : 〈pi, g(t)〉 6= 0}| = k for all

t ∈ S1, where |·| stands for “cardinality."

Consider the following condition on pairs (S, F) where S ⊂ S̃ and F ⊂ I:

(∗) S ⊂ S1, ν∗(S) > 0, and for each i ∈ F , 〈pi, g(t)〉 6= 0 for all t ∈ S.

By choice of S1, if (S, F) satisfies (∗) then F is a finite set with |F| ≤ k. Let

L = {` ∈ N : ` = |F| for some (S, F) that satisfies (∗)}.

Clearly, (S1, ∅) satisfies (∗). Thus 0 ∈ L. Set ` = max L. If ` = 0, the claim holds

for S = S1 together with a = 0. If ` ≥ 1, choose S2 ⊂ S1 and F ⊂ I such that

(S2, F) satisfies (∗) and |F| = `. Then ν∗(S2) > 0 and, from the definition of `,

for each i ∈ I ØF , 〈pi, g(t)〉 = 0 for almost all t ∈ S2. Now since every g(t) is

a linear combination of the xi such that all coefficients are rational, it follows

from (i) above that for each i ∈ I and every t ∈ S̃, 〈pi, g(t)〉 = rt(i)〈pi, xi〉
for some rational number rt(i). But this fact combined with the facts that F
is finite and ν∗(S2) > 0 implies that there are an S3 ⊂ S2, with ν∗(S3) > 0,

and rational numbers r (i), i ∈ F , such that 〈pi, g(t)〉 = r (i)〈pi, xi〉 for all

t ∈ S3 and each i ∈ F (because the set of all functions from a finite set into the

set of rational numbers is countable, and because the union of countably many

null sets is a null set). Set a =
∑

i∈F r (i)xi. Another appeal to (i) above shows

that 〈pi, a〉 = r (i)〈pi, xi〉 for i ∈ F , and that 〈pi, a〉 = 0 for i ∈ I ØF . Finally,

since S3 ⊂ S2, for each i ∈ IØF we have 〈pi, g(t)〉 = 0 for almost all t ∈ S3. Thus

the claim holds for S = S3 together with a as just defined.

Choose and fix objects S and a as described in the claim. Recall that E is

weakly compactly generated. Hence by Lemma 3, (ii) above implies that in fact

for each q ∈ E∗, we have 〈q, g(t)〉 = 〈q, a〉 for almost all t ∈ S (applying

Lemma 3 to g : S → E given by g(t) = g(t) − a). In particular, then, for each

positive q ∈ E∗ we have 〈q, a〉 = 〈q, g(t)〉 for almost all t ∈ S and hence, by the

Hahn Banach theorem, we must have a ≥ 0 because g(t) ≥ 0 for all t ∈ S and

S is a non-null set.

Now, since S is a non-null set, S has a non-measurable subset, say S′ (accord-

ing to what has been hypothesized for this part of the proof; of course, it is

22As above, if A is any subset of T , then ν∗(A) denotes the outer measure of A.
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possible that already S itself is non-measurable). Let h : T → E be the function

defined by setting

h(t) =

a if t ∈ T ØS′

g(t) if t ∈ S′.

Then h(t) ≥ 0 for all t ∈ T . Moreover, h is Pettis integrable, because for each

q ∈ E∗, 〈q, h(t)〉 = 〈q, a〉 for almost all t ∈ T . Thus h is an allocation. Set

S1 = {t ∈ T : h(t) �t f (t)}

and

S2 = {t ∈ T : h(t) �t f (t) and 〈p, h(t)〉 < 〈p, e(t)〉}.

Then by Assumption (M2), S1 belongs to T , and hence so does S2. Set

Sa = {t ∈ T : a �t f (t) and 〈p, a〉 < 〈p, e(t)〉}.

Evidently S2 = S′ ∪ Sa. Since S2 is a measurable set but S′ is not, this shows that

Sa cannot be a null set. This contradicts (5) and proves that S̃ is a null set.

Since preferences are continuous and strictly monotone, and p is strictly

positive, the usual arguments now apply to show that in fact

{t ∈ T : there is an x ∈ E+ with x �t f (t) and p(x) ≤ p(e(t))}

is a null set, and that 〈p, f (t)〉 = 〈p, e(t)〉 must hold for almost all t ∈ T . Thus

the allocation f is Walrasian.

We show now how to proceed when it is not necessarily true that every S ∈ T
with ν(S) > 0 has a non-measurable subset. We first consider the pure case

where in fact T = 2T .

Let A′ be the set of all Pettis integrable selections of the correspondence ϕ
given by

ϕ(t) = {x ∈ E+ : x �t f (t)} ∪ {e(t)}, t ∈ T ,

and set

B′ =
{

z ∈ E : z =
∫

g for some g ∈ A′
}

.

Then B′ is non-empty—e.g. it contains
∫

e(t) dν(t). As noted at the beginning

of this proof, E is measure-compact, and thus by Lemma 6, c` B′ is convex and

hence so is c` B′ −
{∫

e(t) dν(t)
}
. We claim that

(
B′ −

{∫
e(t) dν(t)

})
∩ −Γ = ∅.

Suppose, if possible, otherwise. Then, because 0 ∉ Γ , there is an allocation

g : T → E+ and an S ∈ T , with ν(S) > 0, such that g(t) �t f (t) for almost

all t ∈ S and
∫
S g(t) dν(t) −

∫
S e(t) dν(t) = −γ for some γ ∈ Γ .

As above we see that γ ≥ 0 is impossible. Thus suppose γ− 6= 0 and note that

we must have γ− ≤
∫
S g(t) dν(t). Since Γ is open it follows from Lemma 10 and

the fact that the indefinite Pettis integral
∫
(·) e(t) dν(t) is ν-continuous that we
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can assume that 1Sg is norm bounded. Now since E is measure-compact, E has

the PIP (see the beginning of Section 4.5.1). Hence by Lemma 11, the fact that

1Sg is norm bounded implies that there is a Pettis integrable function h : T → E+
with

∫
S h(t) dν(t) = γ− and h(t) ≤ g(t) for all t ∈ S. We can now proceed

as above to get (with h in place of s) a contradiction to the property of f being

a core allocation. Thus
(
B′ −

{∫
e(t) dν(t)

})
∩ −Γ = ∅, as predicted. Since Γ is

open, it follows that also
(
c` B′ −

{∫
e(t) dν(t)

})
∩ −Γ = ∅.

The separation theorem now applies to provide a p ∈ E∗Ø{0} such that

(6) inf〈p, B′〉 ≥
〈

p,
∫

T
e(t) dν(t)

�
.

As above, p must be strictly positive. Again let

S̃ = {t ∈ T : there is an x ∈ E+ with x �t f (t) and p(x) < p(e(t))}.

We have S̃ ∈ T because T = 2T . Suppose ν(S̃) > 0 and let g̃ : S̃ → E+ be a

function such that g̃(t) �t f (t) and 〈p, g̃(t)〉 < 〈p, e(t)〉 for each t ∈ S̃. For

every integer n > 0 let Sn = {t ∈ S̃ : ‖g̃(t)‖ ≤ n}. Again since T = 2T , Sn ∈ T .

For some n, v(Sn) > 0, since the countable union of null sets is a null set.

Choose and fix such an n. Since E has the PIP and T = 2T , the function 1Sng̃ is

Pettis integrable. Hence so is the function g : T → E+ given by

g(t) =

g̃(t) if t ∈ Sn

e(t) if t ∈ T ØSn.

By definition of B′,
∫
T g(t) dν(t) ∈ B′. On the other hand, since ν(Sn) > 0,〈

p,
∫

T
g(t) dν(t)

�
≡

∫
T

〈p, g(t)〉 dν(t) <
∫

T
〈p, e(t)〉 dν(t) ≡

〈
p,

∫
T

e(t) dν(t)
�

.

Thus we have a contradiction to (6). Consequently S̃ must be a null set. By

continuity and strict monotonicity of preferences, together with the fact that

p is strictly positive, it follows that the pair (p, f ) is a Walrasian equilibrium.

Finally, we will address the “mixed situation" where

r := sup{r ∈ R : there is an S ∈ T with ν(S) ≥ r and 2S ⊂ T }

is > 0 but < ν(T ). Suppose this situation occurs. Then for each integer n > 0

there is a set Sn ∈ T with 2Sn ⊂ T and ν(Sn) > r − (1/n). Set T 1 =
⋃

n>0 Sn.

Then T 1 ∈ T and 2T 1 ⊂ T ; in particular, ν(T 1) = r , by the construction of T 1

and by definition of r . Set T 2 = T ØT 1. By construction, every subset S of T 2

with S ∈ T and ν(S) > 0 has a non-measurable subset.

Let A′′ be the set of all Pettis integrable selections g of the correspondence ϕ
such that 1T 2g is strongly measurable. Set

B′′ = {z ∈ E : z =
∫

g for some g ∈ A′′}.
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Then B′′ is non-empty—e.g.
∫
T e(t) dν(t) ∈ B′′ (recall: t , e(t) is strongly mea-

surable). According to Lemma 7, c` B′′ is convex, and so is c` B′′ −
{∫

e(t) dν(t)
}
.

We claim (
B′′ −

{∫
e(t) dν(t)

})
∩ −Γ = ∅.

For suppose otherwise. Then, since 0 ∉ Γ , and because of Assumption M(2), there

is a Pettis integrable function g : T → E+, with 1T 2g is strongly measurable, and

some S ∈ T with ν(S) > 0 such that g(t) �t f (t) for almost all t ∈ S and∫
S g(t) dν(t) −

∫
S e(t) dν(t) = −γ for some γ ∈ Γ . As earlier, we see that γ ≥ 0

is impossible, so suppose γ− 6= 0. We have

γ− ≤
∫

S
g(t) dν(t) =

∫
S∩T 1

g(t) dν(t) +
∫

S∩T 2
g(t) dν(t) .

The Riesz decomposition theorem asserts the existence of elements b1, b2 ∈ E+
with γ− = b1 + b2 and b1 ≤

∫
S∩T 1 g and b2 ≤

∫
S∩T 2 g.

Since Γ is open, we can assume both that 1T 2g is a simple function and

that 1S∩T 1g is norm bounded, appealing to Lemma 14, Lemma 10, and the fact

that the vector measure
∫
(·) e(t) dν(t) is ν-continuous. Then another appeal to

the Riesz decomposition theorem ensures that there is a measurable simple

function s : T → E+ with
∫
S∩T 2 s = b2 and s(t) ≤ g(t) for all t ∈ S ∩ T 2, and

Lemma 11 ensures that there is a Pettis integrable function h : T → E+ such that∫
S∩T 1 h = b1 and h(t) ≤ g(t) for all t ∈ S ∩ T 1.

Set h = 1T 1h + 1T 2s. Then h is Pettis integrable and we have
∫
S h = γ− and

0 ≤ h(t) ≤ g(t) for all t ∈ S. Arguing as in the first part of this proof (with h
in place of s) we get a contradiction to the property of f being in the core. Thus(
B′′ −

{∫
e(t) dν(t)

})
∩ −Γ = ∅ must be true, which implies that we also have(

c` B′′ −
{∫

e(t) dν(t)
})

∩ −Γ = ∅ because Γ is open.

Invoking the separation theorem again, we can now find a p ∈ E∗Ø{0} such

that

inf〈p, B′′〉 ≥
〈

p,
∫

T
e(t) dν(t)

�
.

As earlier, p is strictly positive. Also, just as in the first part of the proof it

follows (with B′′ in place of B) that (5) holds for p. Once again, let

S̃ = {t ∈ T : there is an x ∈ E+ with x �t f (t) and p(x) < p(e(t))}.

As before, S̃ must be a null set. Indeed, suppose that ν∗(S̃ ∩ T 2) > 0. Then,

since every S ⊂ T 2 with S ∈ T and ν(S) > 0 has a non-measurable subset,

we can proceed as in the first part of the proof—but starting with S̃ ∩T 2 in place

of S̃— to get a contradiction to (5).

Suppose that ν∗(S̃ ∩ T 1) > 0. Then since 2T 1 ⊂ T , we can proceed as in

the second part of the proof—but starting with S̃ ∩ T 1 in place of S̃—to get a

direct contradiction to the fact that inf〈p, B′′〉 ≥
〈

p,
∫
T e(t) dν(t)

〉
. (Note that if
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we construct g as in this second part of the proof, modulo that we start with

S̃ ∩ T 1 in place of S̃, we have g(t = e(t) for all t ∈ T 2. Thus 1T 2g is strongly

measurable because t , e(t) is assumed to be so, and consequently
∫
T g must

belong to B′′.)

Thus S̃ is a null set, and we conclude that the pair (p, f ) is a Walrasian

equilibrium. To complete the proof of the theorem, the following lemma, which

twice was invoked above, must be established.

Lemma 14. Let E be a Banach lattice and let E = [(T , T , ν), (X(t), �t, e(t))t∈T ]
be an economy with commodity space E satisfying assumptions (A2), (A4) and

(M2). Let f and g be allocations for E, let S ∈ T with ν(S) > 0, and suppose that

g(t) �t f (t) for almost all t ∈ S. Assume that g is strongly measurable. Then

given any real number ε > 0 there is a measurable simple function h : T → E+
and an S′ ∈ T with S′ ⊂ S such that ‖

∫
S′ h −

∫
S g‖ < ε and h(t) �t f (t) for

almost all t ∈ S′. Moreover, given δ > 0, S′ can be chosen so that ν(S ØS′) < δ.

Proof. Let ε, δ > 0 be given. According to Lemma 8, there is an S ∈ T with

S ⊂ S, ν(S) > 0, ν(S ØS) < δ/2, and such that 1Sg is Bochner integrable and∥∥∥∥∫
S

g −
∫

S
g

∥∥∥∥ < ε/2.

Set g = 1Sg. By definition of Bochner integrability, select a sequence (sn) of

simple functions from T into E such that
∫
T ‖g(t) − sn(t)‖ dν(t) → 0 and, pass-

ing to a subsequence if necessary, such that sn(t) → g(t) in the norm ‖·‖ of E
for almost all t ∈ T . For each n let hn : T → E+ be given by hn(t) = sn(t) ∨ 0,

t ∈ T . Then each hn is also a simple function, and by virtue of the continuity

of the lattice operations we have hn(t) → g(t) for almost all t ∈ T . Moreover,

‖hn(t)‖ ≤ ‖sn(t)‖ for all n and t (since ‖·‖ is a lattice norm). For each n set

Sn = {t ∈ S : hm(t) �t f (t) for all m ≥ n}

and note that Sn ∈ T by Assumption (M2). Evidently Sn ⊂ Sn+1 for all n, and

by continuity of preferences, for some null set N in S we have S ØN =
⋃∞

n=1 Sn.

Consequently (1Snhn)(t) → (1S g)(t) for almost all t ∈ T , and since

‖(1Snhn)(t)‖ ≤ ‖(1S hn)(t)‖ ≤ ‖sn(t)‖

for all t ∈ T (and
∫
T ‖g(t) − sn(t)‖ dν(t) → 0), an appeal to Vitali’s convergence

theorem shows that
∫
Sn hn(t) dν(t) →

∫
S g(t) dν(t).

Since ∥∥∥∥∫
Sn

hn −
∫

S
g

∥∥∥∥ ≤
∥∥∥∥∫

Sn
hn −

∫
S

g
∥∥∥∥ +

∥∥∥∥∫
S

g −
∫

S
g

∥∥∥∥
and ν(Sn) → ν(S), the lemma is proved.
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