WORKING PAPERS

Konrad Podczeck

On Core-Walras Equivalence in Banach Spaces when
Feasibility is defined by the Pettis Integral

March 2004

Working Paper No: 0403

DEPARTMENT OF ECONOMICS

UNIVERSITY OF VIENNA

All our working papers are available at: http://mailbox.univie.ac.at/papers.econ



On Core-Walras Equivalence in Banach Spaces when
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Abstract

The paper studies the core-Walras equivalence problem in the com-
modity space framework of Banach spaces, allocations being defined as
Pettis integrable functions. In particular, a core-Walras equivalence result
for a certain class of commodity spaces is established, without requiring
that the commodity space be separable. The class covered by this result
includes the L(n) spaces, 1 < p < oo, u being o-finite. On the other
hand, responding to objections made against some recent core-Walras non-
equivalence results in the Bochner integrable allocations setting, it is shown
that these latter results carry over to the Pettis integrable allocations set-
ting, unless additional restrictions on the heterogeneity of agents’ prefer-
ences are in force.

1 Introduction

This paper deals with the core-Walras equivalence problem in infinite dimen-
sional commodity spaces; in particular with the impact of the heterogeneity of
preferences which may appear in an economy with a continuum of agents when
the commodity space is large.

Several extensions of Aumann’s (1964) classical core-Walras equivalence the-
orem to infinite dimensional commodity spaces have been established in the lit-
erature. See, e.g., Bewley (1973), Gabszewicz (1968), Mas-Colell (1975), Mertens
(1970), Ostroy and Zame (1994), Rustichini and Yannelis (1991), Tourky and
Yannelis (2001), Zame (1986). In most of these results, the commodity space is
separable (at least in a topology for which preferences are continuous), and may
thus be interpreted as being “not too large" relative to the size of an economy
with a continuum of agents; in particular, agents’ preferences cannot be “too
dispersed.”

TFhanks to Mario Pascoa, Rabee Tourky, Nicholas Yannelis, and a referee for helpful discus-
sions and suggestions.
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In the seminal contribution of Tourky and Yannelis (2001), it was shown
that having a commodity space that is “not too large" indeed matters for the
core-Walras equivalence problem. In fact, these authors showed that given any
non-separable Hilbert space as commodity space, one can find an atomless econ-
omy such that, when feasibility of allocations is defined in terms of the Bochner
integral, core-Walras equivalence fails even though the usual standard assump-
tion are met. Subsequently, it was shown in Podczeck (2003) that a core-Walras
non-equivalence result like that of Tourky and Yannelis (2001) actually holds in
any non-separable Banach space, and in Podczeck (2002) related results for the
commodity space setting of Banach lattices were established.!

The interpretation of these results of Tourky and Yannelis (2001) and Pod-
czeck (2003, 2002) is that a large number of agents does not guarantee perfect
competition unless there are in fact “many more agents than commodities;” if
this latter condition does not hold, then a large number of agents means that
agents’ characteristics may be extremely dispersed, so that the standard theory
of perfect competition fails.?

The reason underlying core-Walras non-equivalence in non-separable Banach
spaces when feasibility is defined in terms of the Bochner integral can be viewed
as follows. Since Bochner integrable allocations must be essentially separably
valued, the property of an allocation being in the core is separably determined
in the sense that a feasible allocation is a core allocation already when it is a
core allocation relative to every separable subspace of the commodity space.
On the other hand, across the separable subspaces of the commodity space the
profile of agents’ preferences may be extremely dispersed. As a consequence,
since the property of an allocation being Walrasian is determined relative to
the entire commodity space, the core may be larger than the set of Walrasian
allocations—even when the economy in question is atomless.

This intuition, however, leads to an objection that has been made against the
analysis in Tourky and Yannelis (2001) and Podczeck (2003, 2002): Since allo-
cations are essentially separably valued, blocking possibilities are very limited
when the commodity space is non-separable, which makes the core “large” in
some sense, thus implying a bias in favor of core-Walras non-equivalence; there-
fore a notion of integrability weaker than Bochner integrability should be used
to define feasibility of allocations.

In this note we take up this objection and consider the core-Walras equiv-
alence problem in the Pettis integrable allocations setting. Our main result is

lIn the non-equivalence results of Tourky and Yannelis (2001) and Podczeck (2003), the
ordering of the commodity space is not taken as a priori given. Rather, it is constructed in the
proofs; in particular, it is not a lattice ordering.

2We refer to Tourky and Yannelis (2001) and Podczeck (2003) for a more detailed discussion
of this point.



that, in this setting, core-Walras equivalence indeed holds for some class of
commodity spaces regardless of whether or not the actual space is separable.
(See Theorem 6 in Section 3.2.) However it turns out that this is not due to the
Pettis integral by itself, but rather due to the interplay between defining allo-
cations to be Pettis integrable functions and measurability assumptions on the
profile of agents’ preferences.

It is well known that without such a measurability assumption core-Walras
equivalence can fail even in the setting of finitely many commodities. (See e.qg.
the example in Tourky and Yannelis (2001).) Now measurability of the profile
of agents’ preferences can be defined in several ways. Two of them are—where
(T, T,v) is the measure space of agents of an economy, and [dlenotes the
strict preference relation of agent t [T1

(M1) If x and y are any two consumption bundles then {t [Tt x [} is a
measurable set, i.e. it belongs to T .

(M2) If ¥ and g are any two allocations then {t [Tt f(t) [ d(t)} is a measur-
able set, i.e. it belongsto T .

If the commodity space is a separable Banach space, then, regardless of whether
allocations are defined to be Bochner integrable functions or to be just Pettis
integrable, (M1) and (M2) amount to the same condition (provided, of course,
that certain standard assumptions on preferences are in force).3 If allocations
are defined to be Bochner integrable functions, then regardless of whether the
commodity space is a separable or a non-separable Banach space, (M1) and (M2)
amount to the same condition, too. However, if allocations are defined to be
Pettis integrable and the commodity space is a nhon-separable Banach space, then
(M1) and (M2) need no longer be equivalent, and this indeed has consequences
in regard to the core-Walras equivalence problem. In fact, we show:

(1) The core-Walras non-equivalence results of Tourky and Yannelis (2001)
and Podczeck (2003, 2002) continue to hold when allocations are defined to be
Pettis integrable but only (M1) is required to be satisfied by the profile of agents’
preferences. Thus, defining feasibility in terms of the Pettis integral has, by it-
self, no e [eck for the core-Walras equivalence problem compared with defining
feasibility in terms of the Bochner integral.

(2) Even if (M2) is required to hold instead of only (M1), and allocations are
defined to be Pettis integrable, one can find non-separable commodity spaces in
which core-Walras equivalence fails.

(3) However, together with requiring (M2), defining allocations to be Pettis
integrable may have an e [ect: As will be shown, under these conditions, in the

3For this and the following sentence, see the proposition in Section 3.2.



commodity space setting of Banach lattices with an order continuous norm and
a weak unit, core-Walras equivalence holds, regardless of whether the commod-
ity space is separable or not.

Taken together, (1)-(3) say that defining allocations to be Pettis integrable
may indeed lead to di Lerknt conclusions for the core-Walras equivalence prob-
lem, compared with the results in Tourky and Yannelis (2001) and Podczeck
(2003, 2002), but only in connection with a strong version of a measurability
assumption concerning the profile of agents’ preferences.

The interpretation is that it is crucial for core-Walras equivalence to hold in
a large commodity space that preferences are not too dispersed across agents,
and that whether allocations are defined to be Bochner or just Pettis integrable
matters only in connection with this. If the restriction on the allowed hetero-
geneity of a profile of agents’ preferences is only as incorporated in the measur-
ability assumption (M1), then the core-Walras non-equivalence results for the
Bochner integrable allocations setting carry over to the Pettis integrable allo-
cations setting. On the other hand, for a non-separable commodity space, the
measurability assumption (M2) may imply a restriction on the allowed hetero-
geneity of preferences which, in the Pettis integrable allocations setting, goes
beyond that implied by (M1). Therefore, in that setting, core-Walras equivalence
may hold under (M2) even when the commodity space is non-separable.

We close the introduction by noting that non-separable Banach spaces, in
particular non-separable Banach lattices, indeed appear as commodity spaces
in the economic literature. An example is the model by Khan and Sun (1997) of
financial trading under uncertainty. In that model, the space of asset returns is
an Lp space over a sample space of uncertain states that is taken to be an atom-
less Loeb probability space. However, L, spaces on such probability spaces are
non-separable. (See, e.g., Jin and Keisler, 2000.) In Sun (1996) it was argued that
atomless Loeb probability spaces are indeed the most appropriate infinite ide-
alizations of a large finite set of uncertain states. But then non-separability has
to be taken into account in the context of L (1) spaces as models for economic
situations involving uncertainty. Note that the L () spaces, for 1 < p < oo and
M o -finite, are covered by our core-Walras equivalence result in Theorem 6.

Another example are models of commodity di LCerkntiation where the com-
modity space is M(Q), the space of all regular bounded Borel measures on
a compact Hausdor [—space Q. If Q is uncountable, then this space is non-
separable. The theory of thick and thin markets developed by Ostroy and Zame
(1994) uses this framework of commodity di Cerkntiation. As shown by these au-
thors, in order to have examples of thin markets, preferences must not be weak —
continuous (as frequently assumed in models of commodity di Lerentiation), but
just norm continuous, so that (norm) non-separability of M (Q) actually matters.



Let us remark here that, for the space M(Q), core-Walras equivalence holds
in the Pettis integrable allocations setting under assumption (M2). This can be
deduced from Theorem 6 in the present paper together with some arguments
from the proof of Theorem 2 in Podczeck (2002).* Actually, if Q is such that
for every regular Borel measure p on Q, L1(p) is separable (e.g. if Q = [0,1])
then core-Walras equivalence holds in M(Q) already in the Pettis integrable al-
locations setting under (M1) as well as in the Bochner integrable allocations
setting.®

Finally, we remark that if the commodity space is actually a dual Banach
space, then the notion of the Gelfand integral may be more appropriate than that
of the Pettis integral to define feasibility of allocations. This is so in particular
for the space M (Q) as model of commodity di Cerentiation. An investigation of
the core-Walras equivalence problem for dual Banach spaces in the Gelfand inte-
grable allocations setting will be the topic of future research. Note, though, that
for reflexive Banach spaces, the Gelfand and the Pettis integral coincide. Thus,
if only the measurability assumption (M1) is required to hold for the preference
mapping of an economy, then—for a dual Banach space—simply replacing “Pet-
tis” by “Gelfand” in the definition of allocations will not eliminate the possibility
of core-Walras non-equivalence.

2 Notation and Terminology

(1) If E is a Banach space, then E "denotes the dual space of E, i.e. the space
of all continuous linear functions from E into R. If x [Eland p [CEl;the value
p(x) of p at x will often be denoted by [p, x [(for notational convenience. E !
is always regarded as endowed with the dual norm. We write -1 for both the

4By applying Theorem 6 to the restriction of an economy to the norm closure of the order
ideal generated by the aggregate endowment, followed by applying Assumption (A9) (bounded
marginal rates of substitution) to get an equilibrium with respect to the entire commodity
space. For the first step one has to note that, for the space M(Q), if allocations are Pettis
integrable and consumption sets are the positive cone of the commodity space, then a feasible
allocation takes almost all of its values in the norm closure of the order ideal generated by the
aggregate endowment. For the second step, see the proof of Podczeck (2002, Theorem 2(i) L(iL))
for details.

SFor the Bochner integrable allocations setting, see Podczeck (2002, Theorem 2(i) [{iD)). The
arguments in the proof of that result can be adapted to deal, for the space M(Q), with the
Pettis integrable allocations setting under (M1). As shown in Podczeck (2002) for the Bochner
integrable allocations setting, if the commodity space is a Banach lattice, and the ordering
considered is the given lattice ordering, then separability properties of order ideals are relevant
for core-Walras equivalence, and not separability of the entire commodity space. This is not in
contradiction with the non-equivalence results in Tourky and Yannelis (2001) and Podczeck
(2003). For as noted above, in those non-equivalence results the ordering of the commodity
space is not taken as a priori given, but is constructed in the proofs, and in particular is not a
lattice ordering.



norm of E and the norm of E 5-We write o (E, E Dfor the weak topology of E,
and o (E &) for the weak “tbpology of E Finally, for a subset A of E:
int A denotes the (norm) interior of A.

(2) Let E be a Banach space, and let (T, T ,v) be a complete finite measure
space. A function s: T - E is called a measurable simple function if there are
X1,X2,...,Xn [Eand S1,Sy,...,S, [0 such that s = j=; Xjls;. Here and
later on, if S [CT1then 1s denotes the characteristic function of S, i.e. 1s(t) =1
if t CSland 15(t) = 0 if t COLCSIIfs = -, Xjls, is a measurable simple
antion from T into E and S [T then the integral of s over S is defined as
ssdv = =1 V(S n S)X;. A function ¥: T - E is said to be weakly measur-
able if the function t [CIq), f(t) Cis measurable for every q [CEX-—The function
f: T - E is said to be strongly measurable if T is the pointwise limit almost
everywhere of a sequence of measurable simple functions. Recall that according
to Pettis’s measurability theorem, f is strongly measurable if and only if f is
weakly measurable and essentially separably valued; the latter means that there
is a separable subspace F of E such that f(t) [CElfor almost all t [CT1 A weakly
measurable function £: T - E is said t%Pe Pettis integrable if for each S [Tl
there is an Xs EE]EJch that [ql xs[F @lf(t) Cdv(t) for all &] El~n this
case we write Xs = ¢ F(t)dv(t) or xs = T dv orsimply xs = ¢ T and call xs
the Pettis integral of ¥ over S. A strongly measurable function ¥: T - E is said
to be Bochner integrable if there eﬁsts a sequence (sp) of measurable simple
functions from T into E Is_ijch that [F(t) —sp(t)Av(t) - 0 as n - oo. In this
case for each S [T, lim g sp dv exists (and is independent of the special choice
of the sequence (sn)) and is called the Bochner integral of ¥ over S. Note that if
T is Bochner integrable then T is Pettis integrable, and the Pettis integral and the
Bochner integral OH coincide over any S [Tl. Thus if f is Bochner integrable,
we may also write g T to denote the Bochner integral of ¥ over S.

(3) By an ordered Banach space we mean a Banach space endowed with a
vector ordering such that the positive cone is closed. Let E be an ordered Banach
space.

(a) As usual, the ordering of E is denoted by =, and E+ denotes the positive
cone of E, i.e. Ex = {x [El x = 0}.

(b) E =ill always be regarded as endowed with the dual ordering; thus, in
particular:

Ef=2 {qg CEF-YH(x) =0 forall x CE1}.

(c) A linear functional q [CE1-i$ said to be strictly positive if g(x) > 0 when-
ever x [CE] [{Of}.

(4) Let F be a Riesz space (i.e. vector lattice).

(a) The ordering of F is again denoted by =, and F. denotes the positive cone
of F,i.e. F+ = {X [FE1x =0}. For x,y [Flthe expressions x*, x~, |X]|, x [¥]



X [y] and x [ylhave the usual lattice theoretical meaning.
(b) Let X,y [E1Then:
[x,y] denotes the order interval {z [F1x <z <y}
Ax denotes the order ideal in F generated by X. Thus, if X [CE] then
1
Ax = [-nx,nx] ={z [E1|z| < nx for some n [N}}.
n=1

(5) () C(Q) stands for the space of all continuous real valued functions on
some compact Hausdor [space Q, endowed with the supremum norm and the
usual pointwise ordering; thus C(Q) is a Banach lattice.

(b) By a “C(Q) space” we mean a Banach lattice that is isomorphic as a Banach
lattice to a concrete space C(Q). Recall that every Banach lattice whose positive
cone has a non-empty interior is a C(Q) space.

(6) Let E be any Banach lattice.

(a) A point x [CE] is said to be a quasi-interior point of E if A« isdense in E.
Recall that this can be equivalently expressed by saying that x is a quasi-interior
point of E if q(x) > 0 whenever g CEJE{0}.

(b) For a strictly positive q CEf—
o (E,Aq) denotes the weak topology of E with respect to the order ideal Aq.

(Note that when q is strictly positive, Aq separates the points of E.)

3 The model and the results

3.1 The model

Let E be an ordered Banach space. An economy E with commodity space E is a
pair [(T,T,v), (X(t), L. 8(t))crr] where

- (T, T,v) is a complete positive finite measure space of agents;

X (t) [CElis the consumption set of agent t;

[ ITXYt) < X (1) is the (strict) preference relation of agent t;

e(t) [CElis the initial endowment of agent t;

and where the endowment mapping e: T - E, given by t [e(l), is assumed to
be Pettis integrable. The economy E = [(T,T,Vv), (X(t), L 8(t))¢ ] is said to
be atomless if the measure space (T, T ,V) is atomless.

An allocation for the economy E is a Pettis integrable function ¥: T - E such

that £(t) [XIt) for almost all t [CT1 An allocation f is said to be feasible if
1 1

fF(O)dv(t) = e(t)dv(t).
T T



A Walrasian equilibrium for the economy E is a pair (p,f) where f is a
feasible allocation and p [CH™P{0} is a price system such that for almost
every t [T1

(i) 0P, F(t)=X [P, e(t)And
(i) if x [Xt) satisfies x [ (t) then [P, x = [P, e(t) ]

A feasible allocation f is said to be a Walrasian allocation if there is a
p [CEI“E{a} such that (p,f) is a Walrasian equilibrium. An allocation f is a
core allocation if it is feasible and if there does not exist a coalition S [T1 with
v (S) = 0 and a Pettis integrable function g: T - E4+ such that

(I (I
(i) sg(t)dv(t) = ge(t)dv(t),i.e. g is feasible for S, and
(i) g(t) A (t) for almost all t [S1

We denote by C(E) the set of all core allocations of the economy E, and by
W (E) the set of Walrasian allocations.
The following assumptions on agents’ characteristics are standard.

(A1) e(t) CE]J O} for every t [T1
(A2) X(t) =E+ foreveryt [T1
(A3) Lk irreflexive and transitive for every t [T1

(A4) For every t [T] [k continuous, i.e. for each x [CE1 the sets
{y [E}l:y R} and {y [CE}: x [y} are (norm) open in E..°

(A5) For every t [Tl, [k strictly monotone, i.e. whenever x,x™ [CEl, with
x = xHand x 8 xHthen x X

For our core-Walras non-equivalence results we will consider the following
strengthening of (A3).

(AB) For every t [Tl [k the asymmetric part of a reflexive, transitive, and
complete preference/indi Lerknce relation 1

Moreover, we will take into consideration the assumption that preferences are
convex.

(A7) For every t [CT] [ib convex, i.e. for each x [E1 the set
{y [CE}:y [ A}isconvex.

6For convenience of reference later on, (A4) as well as the following assumptions on prefer-
ences are formulated for consumption sets that are equal to E. since these assumptions will
be considered only in conjunction with Assumption (A2).




In the case where the commodity space E has the property that intE+ & 1
in particular if E is actually a C(Q) space, i.e. a Banach lattice with intEy+ 8 [1
we will take the following strengthening of (Al) into consideration.

(A8) e(t) CintE4 foreveryt [TI

In the general case where E is a Banach lattice whose positive cone E4+ may
have an empty interior, we will consider a condition on marginal rates of substi-
tution, which is taken from Zame (1986); see also Ostroy and Zame (1994).

(A9) There are strictly positive linear functionals a, B [EI*With a < B such
that for every t [CT] whenever X, u,v [E] satisfy u < x and a(v) = 3(u)
then X —u+v [XA.

Note that this is a requirement on preferences that is uniform over agents as
well as over the consumption set E.. We refer to Zame (1986) for a discussion
of this condition as well as for corresponding examples. (It may be seen that
(A9), together with (A3) and the convexity assumption (A7), is equivalent to the
following statement: “There are strictly positive elements a, B in E 5With a < B,
such that given any t [CTland x [EL} there is a p in the order interval [a, 3]
such that p(x) = p(y) for all y [CEL with y [X.” Thus, since supporting
price systems are measures of marginal rates of substitution, (A9) is indeed a
condition putting bounds on these rates.)

It is well known that if the commodity space is infinite dimensional and con-
sumption sets have empty interior, then—regardless of whether or not the com-
modity space is separable, and regardless of whether allocations are defined to
be Bochner or just Pettis integrable—one way in which core-Walras equivalence
can fail is through preferences displaying marginal rates of substitution that are
not properly bounded; cf. the example of a failure of core-Walras equivalence de-
scribed in Rustichini and Yannelis (1991). This reflects the general fact that if
consumption sets in an infinite dimensional commodity space have empty inte-
rior, then continuity of preferences by itself does not provide the appropriate
bounds on marginal rates of substitution in order for preferred sets to admit
supporting price systems. By requiring economies to satisfy (A9), we will rule
out this sort of failure of core-Walras equivalence, which is not the focus of this
note.

It should be remarked that some of the above assumptions (in combination)
may amount to an assumption on the commodity space E; or, to say it the other
way round, some of these assumptions can be satisfied only if E5-And hence
E, has certain properties. This is the case for (A9), which can hold only if E™
indeed possesses strictly positive elements. Similarly, if E is a C(Q) space then
(A2) to (A5) together with (A7) can hold simultaneously only when strictly posi-
tive linear functionals on E do exist. (Indeed, when these assumptions hold and



intE+ B L[ 1Hen, given any t [CTland x [EL, the set of all y [E} preferred
to x by t is supported by a positive p CEFE{0}, and when x actually belongs
to intE5 then p must in fact be strictly positive, by the usual argument.) Let us
remark here that strictly positive linear functionals exist on any separable Ba-
nach lattice as well as on any order continuous Banach lattice E whose positive
cone E4 contains quasi-interior points.

3.2 Results

We are going to present results showing that the crucial point for core-Walras
equivalence to hold in Banach spaces is not in the first line whether allocations
are defined to be Bochner or just Pettis integrable; rather, what matters are
restrictions on the heterogeneity of preferences across agents, as embodied in
measurability conditions on the profile of these characteristics.

As already noted in the introduction, without measurability assumptions on
the profile of agents’ preferences, core-Walras equivalence may fail even in the
setting of finitely many commodities. In this note we will consider the following
two measurability conditions, both being well known from the literature. Let E
be an ordered Banach space, and let E be an economy with commodity space E
satisfying Assumption (A2), i.e. consumption sets are equal to E-.

(M1) If x and y are any two consumption bundles then {t [Tt x M} is a
measurable set, i.e. it belongsto T .

(M2) If £ and g are any two allocations then {t [Tt f(t) [gd(t)} is a measur-
able set, i.e. it belongsto T .

We first summarize some more or less well known facts concerning the formal
relationship between these two conditions. Obviously (M2) implies (M1) under
(A2), regardless of how allocations are being defined. The following proposition
addresses the reverse implication. (See Section 4.1 for the proof.)

Proposition. Let E be any ordered Banach space and let E be an economy with
commodity space E satisfying assumptions (A2) to (A5). Then (M1) implies that
(M2) holds relative to the set of all allocations that are strongly measurable.’

Thus, under some standard assumptions, in the setting where allocations are
defined to be Bochner integrable, (M1) and (M2) are equivalent. According to the
Pettis measurability theorem, a weakly measurable function taking values in a

“If for each t [T, [k the asymmetric part of a reflexive, transitive, and complete pref-
erence/indi Lerence relation [, then the strict monotonicity assumption (A5) can be dropped
from the statement of this proposition. We have not checked whether this is possible in general.

10



separable Banach space is actually strongly measurable. Thus if E is separable,
then (M1) and (M2) are also equivalent in the Pettis integrable allocations setting.

Let us turn to the core-Walras equivalence problem. As noted in the introduc-
tion, an objection that was made against the core-Walras non-equivalence results
for non-separable Banach spaces by Tourky and Yannelis (2001) and Podczeck
(2003, 2002) is that these results are artifacts of the Bochner integrable allo-
cations setting, because Bochner integrable functions must be essentially sep-
arably valued and thus coalitional blocking possibilities are very limited when
the commodity space is non-separable. Indeed, one could conjecture that if al-
locations are defined to be Pettis integrable, so that blocking is not restricted
to separable subspaces of the commodity space, then these non-equivalence re-
sults would break down. However, as we will show now, this conjecture is false
if there is no restriction on the profile of agents’ preferences beyond that incor-
porated in the measurability assumption (M1). (Actually, in Tourky and Yannelis
(2001) and Podczeck (2003, 2002), (M2) is required to hold, but by what has been
noted in the previous paragraph, in the Bochner integrable allocations setting
(M1) and (M2) are equivalent given that certain standard assumptions are met.)

Our first theorem shows, in particular, that the core-Walras non-equivalence
results of Tourky and Yannelis (2001) and Podczeck (2003) carry over to the
Pettis integrable allocations setting when only (M1) is required to hold for an
economy. (For this theorem and the subsequent theorems and corollaries, note
that according to the definitions in the previous subsection, the Pettis integrable
allocations setting is in force in this paper.)

Theorem 1. Let E be any non-separable Banach space. Assume the continuum
hypothesis. Then there is an ordering = on E, under which E is an ordered Banach
space with intE+ & [_amd an atomless economy E with commodity space E such
that assumptions (A2), (A4) to (A8), and (M1) hold but such that C(E) I\ (E).

(See Section 4.2 for the proof. The continuum hypothesis which is assumed in
this theorem is also assumed in Tourky and Yannelis (2001) and Podczeck (2003,
2002).)

Let us turn to the commodity space setting of Banach lattices. (In particular,
the ordering of the commodity space is taken to be the given lattice ordering,
and is not an object of construction as in the previous theorem.) We will first
consider the case where the commodity space E is actually a C(Q) space, i.e.
a Banach lattice with intE+ & [ 1

For such spaces E, and the context of atomless economies satisfying assump-
tions (A2), (A4) to (A8), and (M1), the following condition on E, called property
(CD), was identified in Podczeck (2002) as the decisive condition on the com-
modity space in order for core-Walras equivalence to hold in the Bochner inte-
grable allocations setting.

11



(CD) Given any q [El-there is a countable subset D of E such that whenever
g CEfldhd g'¢d) = q(d) for all d [CDIthen q™= q.

(Note that this is a condition concerning only positive elements ¢, q~'[CEl5-4nd
that the set D in its statement may depend on q.) Clearly, every separable Banach
lattice has property (CD), but there are also non-separable Banach lattices satis-
fying (CD) (e.g. C(Q) where Q is the so called split interval; see Podczeck (2002)
for details). Examples of C(Q) spaces that do not satisfy (CD) are provided by
any infinite dimensional space L. () and, in particular, by [l (Again, see Pod-
czeck (2002) for details.) The following theorem points out that also in the Pet-
tis integrable allocations setting, core-Walras equivalence fails in C(Q) spaces
not satisfying property (CD) if the profile of agents’ preferences has to satisfy
only (M1).

Theorem 2. Let E be a C(Q) space with E =cbntaining strictly positive elements.
Suppose that E fails property (CD), and assume the continuum hypothesis. Then
there is an atomless economy E with commodity space E such that assumptions
(A2), (A4) to (A8), and (M1) are satisfied but such that C(E) II'\W (E).

(See Section 4.3 for the proof.) As just noted, infinite dimensional L () spaces
fail property (CD), and when the measure p is o-finite then the duals of these
spaces possess strictly positive elements. Thus:

Corollary 1. Assume the continuum hypothesis. Then there exist (non-separable)
C(Q) spaces E such that C(E) I (E) holds for some atomless economy E with
commodity space E satisfying assumptions (A2), (A4) to (A8), and (M1).

Let us turn to the general case where the commodity space is a Banach lat-
tice E whose positive cone E+ may have an empty interior. In the context of
atomless economies satisfying assumptions (Al) and (A2), (A4) to (A7), and (A9)
as well as (M1), the decisive condition on E for core-Walras equivalence to hold
in the Bochner integrable allocations setting was identified in Podczeck (2002)
to be the following condition, called here (SI).

(SI) For every e [El and every strictly positive q [El;the relativization of the
topology o (E, Aq) to Ac is separable.®

(See Podczeck (2002) for an intuition for this condition, as well as for corre-
sponding examples.) The following theorem for the Pettis integrable allocations
setting holds.

8Recall from Section 2 that given e [CEL and q [EL, A, denotes the order ideal in E gen-
erated by e, and Aq the order ideal in E “denerated by q; recall also that o (E, Aq) denotes the
weak topology of E with respect to Ag.
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Theorem 3. Let E be a Banach lattice with E "dontaining strictly positive ele-
ments. Suppose that E fails condition Sl, and assume the continuum hypothesis.
Then there is an atomless economy E with commodity space E such that assump-
tions (Al) and (A2), (A4) to (A7), and (A9) as well as (M1) are satisfied but such
that C(E) I\ (E).

(See Section 4.4 for the proof.) As shown in Podczeck (2002, Lemma 1), if E is a
o -Dedekind complete Banach lattice such that E+ contains quasi-interior points
and E Fcbntains strictly positive elements, then condition (SI) holds if and only
if E is separable. Thus Theorem 3 implies:

Theorem 4. Let E be any non-separable o-Dedekind complete Banach lattice
such that E+ contains quasi-interior points and such that E ~dontains strictly
positive elements. Assume the continuum hypothesis. Then there is an atomless
economy E with commodity space E such that assumptions (A1) and (A2), (A4) to
(A7), and (A9) as well as (M1) are satisfied but such that C(E) IW (E).

Every order continuous Banach lattice is o-Dedekind complete, and when
the positive cone of an order continuous Banach lattice contains quasi-interior
points then its dual contains strictly positive elements. Thus the following corol-
lary of Theorem 4 holds.

Corollary 2. Let E be any non-separable order continuous Banach lattice such
that E4+ contains quasi-interior points. Assume the continuum hypothesis. Then
there is an atomless economy E with commodity space E such that assumptions
(A1) and (A2), (A4) to (A7), and (A9) as well as (M1) are satisfied but such that
C(E) M (E).

Note that all the Lp () spaces, 1 < p < oo, the measure u o-finite, belong
to the class of order continuous Banach lattices with a positive cone containing
quasi-interior points. Thus for an important class of commodity spaces, core-
Walras equivalence fails also in the Pettis integrable allocations setting when
the commodity space is non-separable and just (M1) is required to hold for the
profile of agents’ preferences.

The results so far mean that defining allocations to be Pettis integrable,
rather than Bochner integrable, can have an e [eck in regard to the core-Walras
equivalence problem, compared with the non-equivalence results in Tourky and
Yannelis (2001) and Podczeck (2003, 2002), only in conjunction with a restric-
tion of preference heterogeneity across individuals that goes beyond that im-
plied by the measurability assumption (M1). Thus let us consider (M2).

It turns out that even (M2) not necessarily does the job. Indeed, by a result
due to Kunen (see Negrepontis, 1984, pp. 1123-1128) there exists, under the
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continuum hypothesis, a compact Hausdor [Cspace Q with the following proper-
ties: (a) Q is separable; (b) there is a point in Q at which Q is not first countable,
so that, in particular, C(Q) is non-separable; but (c) given any finite measure
space (T, T,Vv), every weakly measurable function from T into C(Q), hence ev-
ery Pettis integrable function from T into C(Q), is in fact strongly measurable.®
Because of (c¢), given an economy with commodity space C(Q) satisfying as-
sumptions (A2) to (A5), if (M1) holds then (M2) holds as well according to the
proposition above. On the other hand, (a) means that C(Q) “possesses strictly
positive elements, while (b) implies that C(Q) fails property (CD) as may readily
be seen. Consequently Theorem 2 implies:

Theorem 5. Assume the continuum hypothesis. Then there exist (non-separable)
C(Q) spaces E such that C(E) IIW (E) holds for some atomless economy E with
commodity space E satisfying assumptions (A2), (A4) to (A8), as well as (M2).

However, there are some non-separable commodity spaces for which (M2) in-
deed leads to core-Walras equivalence in the Pettis integrable allocations setting.
In fact, we have the following result.

Theorem 6. Let E be any order continuous Banach lattice with E+ containing
quasi-interior points. Then C(E) = W (E) holds for every atomless economy E
with commodity space E satisfying assumptions (Al) to (A5), (A9), and (M2).

Thus, in the Pettis integrable allocations setting, core-Walras equivalence holds
in particular for the important class of the L () spaces, 1 < p < oo, the mea-
sure u o-finite, regardless of whether the actual space under consideration is
separable or not, provided that (M2) and some other standard assumptions are
in force. (See Section 4.5 for the proof of Theorem 6. Note that in this latter
theorem, preferences are not assumed to be complete or convex, and that no
set theoretical assumption is involved.)

What drives Theorem 6, compared with Theorem 5, is the fact that for the
commodity spaces of Theorem 6 there is a plenty of allocations that are not
strongly measurable, so that (M2) indeed imposes a restriction on the hetero-
geneity allowed for a profile of agents’ preferences in an atomless economy,
which goes beyond the restriction implied by (M1).1°

®Properties (b) and (c) are not explicitly stated in Negrepontis (1984). However, Q is the
one-point compactification Q™ @} of a locally compact Hausdor [CSpace Q that is not Lindelof,
which implies that Q is not first countable at wg. On the other hand, C(Q) is Lindel6f in the
weak topology, which implies (c) because Q being separable means that C(Q) “cbntains a count-
able set separating the points of C(Q); for this latter implication, see Lemma 1 in Section 4.5.1.
100f course, this is so only when the measure space of agents has hon-measurable subsets.
However, it is consistent with ZFC that there is no non-trivial atomless measure on the power set
of any set, i.e. that every (non-trivial) atomless measure space has many non-measurable sub-
sets. In the proof of Theorem 6 we will take care of the possibility of an atomless measure space
of agents where every subset is measurable.

14



4 Proofs

4.1 Proof of the Proposition in Section 3.2

Note for the following that all consumption sets are equal to E+ according to
Assumption (A2). Let ¥, g: T - E+ be any two strongly measurable functions.
By definition of “strongly measurable,” there exist sequences (f}) and (g5)
of measurable simple functions from T into E such that for almost all t [T}
fi{t) - F(t) and g5{t) - g(t). Since f.] g5'are measurable simple functions,
there are, for each n = 1, measurable simple functions f,, gn: T - E+ such that

Fltt) — £, (t) [ dist(F (1), E+) + 1/n

for all t [CTlas well as

[gh{t) — gn(t) (= dist(g5{t),E+) + 1/n

for all t [CT] where dist(X, E+) = inf{[XI—y [y [E1l}. Consider the sequence
(fn). Foreach t 1]

[F(t) — Fn (t) T CF(t) — Fr(t) 3 FL{L) — Fn () ]

< [F(t) — £5¢t) C3 dist(F5(t),E+) + 1/n

< [OF(t) — F5¢t) C# (Fi¢t) — F (1) # 1/n
the latter inequality holding because f(t) [EL. Thus f,(t) - F(t) for almost
all t [CT1(because ert) - F(t) for almost all t [T]. Analogously it follows that
gn(t) - g(t) for almost all t [T1

Let T “be the set of all t [CT1for which f,(t) - F(t) as well as gn(t) - g(t).

Then T [THHs a null set, and since (T, T, V) is complete, it su [ced to show that
{t CTH g(t) A(t)} belongs to T. Thus we may as well assume that TF=T.
Fix any v [EL [{O}. Using transitivity, continuity, and strict monotonicity of
preferences, it is straightforward to check that

CIT1Tmw 1
{t LTt g(t) LA} = {t [Tt (1 - (17K)gn(t) L@/K)Vv + (1)}

kK m n=m
where k, m, n CNIC{O}. (To see that the set on the left is contained in that on
the right, note that continuity and strict monotonicity imply, in particular, that
whenever g(t) CcH(t) thereisa z [CE]1 such that g(t) 3 L Ai(t).)
Evidently (M1) implies that (M2) holds relative to the set of all allocations
that are simple functions. Hence, since (1 — (1/k))gn and (1/k)vit + f, k=1,
are measurable simple functions, the sets

{t [Tt (1 - (17K))gn(t) LA/K)v + T (D)}

are in T, and it follows that {t [Tt g(t) L #fi(t)} [Tl as well. This completes
the proof of the proposition.
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4.2 Proof of Theorem 1

We first construct an ordering on E, in the same way as in Tourky and Yannelis
(2001) and Podczeck (2003). Let Bg denote the closed unit ball in E. Pick some
u [CElwith = 3 and let C be the cone generated by {u} + Bg, i.e.

C={x [(Elx=A(u+y),y [Bi A=0}

Then C is convex, and since u [BE, C is closed and C n —C = {0}. Thus C
generates a vector ordering on E under which E becomes an ordered Banach
space with positive cone E+ equal to C.*! Evidently, intE+ & 1

Next, using the Hahn Banach theorem, select a d_1T_FlI"With [GI13 3 and
d@) = 9 (as is possible since M= 3). Then for each q CEI-With [GI = 1 and
eachy [Bg,

(@#Fu+y)=9+4)+q(u)+q(y)=9-3-3-1>0.

That is, for each q CEIl-wWith [GI = 1, = q is a strictly positive element of E -
In particular, d is strictly positive.

Since E is non-separable, and since the continuum hypothesis is assumed,
we may appeal to Podczeck (2003, Section 4.1, Proposition)!? to find a family
(@) a<w, of elements of E S -denoting by w; the first uncountable ordinal num-
ber, such that g5'& 0 and [} 1 for every ordinal a < w3, but such that
given any x [Elthere is an ordinal ax < w3 such that for each a [[diy, w1),
g5{x) = 0. For each a < w; set o = q5'+ d_Then, by what has been noted in
the previous paragraph, each qq is a strictly positive element of E “-Also, qq & d
for each a < w1, but given any x [Elthere is an ordinal ax < w; such that for
each o [[dix, w1), qa(X) = dX).

Let (T, T,v) be any non-trivial, atomless, complete, finite measure space. We
will construct an economy E with (T,T,v) as measure space of agents and E
as commodity space such that C(E) W (E) but such that all the assumptions
listed in the statement of Theorem 2 hold.

The continuum hypothesis, which is assumed, implies that there is no non-
trivial atomless measure on the power set of any set. Thus there must be an
S [CTwith v «€8) < v (3).12 Evidently this implies that there is an S [Tlsuch
that actually 0 = v (§) < v (3). Choose and fix such a set S.

111t is easily seen that the cone E. so constructed is normal, i.e. has not an excessive “width;”
in particular, order intervals are norm bounded, and every element of E ™% the di [erence of
two elements of EL-€f. Kelley and Namioka (1976, pp. 227 and 228).

12This proposition in Podczeck (2003) relies on a result due to Juhasz and Szentmikldssy
(1992) about transfinite sequences in compact spaces.

131f A is any subset of T, then v Q) denotes the inner measure of A and v -(A) denotes the
outer measure of A.
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Again since the measure space (T, S, v) is atomless, and since the continuum
hypothesis is in force, we can write T =  4<(,, Na Where (Ng)a<cw, is a family
of pairwise disjoint null sets in T, again denoting by w; the first uncountable
ordinal number. (Cf. Proposition 5.2 in Tourky and Yannelis, 2001.) Denote by
@: S - [0,w;) the mapping that takes a t [Slto that ordinal number o for
which t [Nk.

For each t [Slset q¢ = det)- Then (di), s4is a family of strictly positive
elements of E =sluch that

(1) gt & dfor all t CS1
but
(2) for any x [CE]qe(x) = d(k) for almost all t [S]

. L] 1 — 1
because for each ordinal number a < w1 we have @ 1 [0,a) =S n aZq Na5
each Ngois a null set, and for each a < w1 the set [0, a) is countable.

It is straightforward to verify that (1) and (2) together with the fact that

v ) > 0 imply:

- There is no p CET-such that for almost every t [S]
3

gt = A¢p for some real number A¢.

We now construct an economy with (T, T ,v) as measure space of agents
in the following way. Fix any interior point e of E+. For each agent t in T, we
let the consumption set be equal to E+ and the endowment e(t) be equal to €.
Then assumptions (A2) and (A8) are met. Further, since the measure v is finite,
the endowment mapping t [Ceis Pettis integrable, as required in our definition
of an economy.

Concerning preferences, for each t [Sllet a utility function u¢: E+ - R be
defined by

Ue(X) = qe(x), x LEI,

and for each t CTICS Jlet a utility function u¢: E+ - R be defined by

ut(X) = 4k), x CEL.

Clearly the family of preferences so defined satisfies all the assumptions from
(A4) to (A7). Moreover, using (2), given any x [EL we have u(x) = dqCk) for
almost all t [Tl Evidently this implies that (M1) holds because the measure
space (T, T ,V) is complete.

We have thus constructed an atomless economy E with commodity space E
such that the assumptions listed in the statement of Theorem 2 all hold.
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Consider the initial allocation t [CelSince € [iAdtE+ and consumption sets
are equal to E4, a glance at (3) shows that this allocation is not Walrasian. Thus
to finish the proof, it su [ced to show that the initial allocation t ek in C(E).

To this end, fix any coalition S CT1withv(S) >0andlet f: T - E+ be any
allocation (i.e. Pettis integrable function) such that u¢(f (t)) > u¢(€) for almost
all t CS1By the definition of the uy this means that for some null set N [(3 [S)

we have [GIF (t) = [diéFor all t [ (I [S)[NI]Let
st= {t CST [T (t) = (I8}

Then SHINOCSIn S. By definition of Pettis integrability, ¥ is weakly measurable
and thus S™ [T since (T,T,V) is complete. Hence S™ICN1 [T as well, and
because v(§) = 0 we must have v(S-CN) = 0 whence v(SYH = 0. That is,
[dl ¥ (t) = [dlé[Tor almost all t CSwhence T is not feasible for S. We conclude
that the initial allocation t [Ceihdeed belongs to C(E). This completes the proof
of the theorem.

4.3 Proof of Theorem 2

Since E fails property (CD) by hypothesis, and since the continuum hypothesis
is assumed, is follows by arguments from the proof of Theorem 1 in Podczeck
(2002) that there are a d_T_El--dnd a family (Qo)a<w, OF elements of Ef-las
earlier denoting by w; the first uncountable ordinal number—such that qo & 4
for each a but such that given any x [CElthere is an ordinal ax < w;j such
that for each a [[dy, w1), da(X) = dCX). Because E cbntains strictly positive
elements by hypothesis, it may be assumed that d_and each gy are actually
strictly positive (by adding, if necessary, a common strictly positive element
of Etb dand to each qq). The arguments of the proof of Theorem 1 from the
fourth paragraph upwards now verbatim apply to establish the theorem.

4.4 Proof of Theorem 3

Let (T, T,v) be any non-trivial, atomless, complete, finite measure space. The
hypotheses about E together with the continuum hypothesis guarantee, accord-
ing to the proof of Theorem 2 in Podczeck (2002), that there are an e [CE] [0},
strictly positive elements a, B, I ElWith a < B, and for each t [Tla gy [CE1—
such that:

(@) d I Td,B] and for each t [T]q¢ [CTd;, B].

(b) For each t [Tlthere is a z [AEk (depending on t) such that q¢(z) B d(2).
(Recall: Ag denotes the order ideal generated by €.)
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(c) For each x [CE]q¢(X) = d(xk) for almost all t [T1

By the arguments from the proof of Theorem 1, choose a set S [Tl with
0 =v€]) < v 9). Define an economy E with (T, T,v) as space of agents and
E as commodity space in the following way. For each t [T] let the consumption
set be equal to E. and the endowment be equal to €. For each t [S]let a utility
function u¢: E+ - R be given by

ue(X) = gi(x), x LEL,
and for t [CTICS Jet a utility function u¢: E+ - R be given by

ue(X) = 4X), x CEL.

The atomless economy E so defined satisfies all the assumptions listed in
the statement of Theorem 3. Indeed, this is clear for (Al), (A2), and (A4) to (A7).
(For (A5), recall that q¢, t [S)and ddre strictly positive.) Since dand q¢, t [S)
belong to the order interval [a, 3] and a, B are strictly positive, (A9) is also
satisfied as may readily be verified. (See the proof of Theorem 2 in Podczeck,
2002, for the details.) Finally, given any x [CE] we have u¢(X) = k) for almost
all t [T] and this implies that (M1) holds since the measure space (T, T,V) is
complete.

Now by virtue of the fact that v €§) = 0, it follows as in the proof of Theo-
rem 1 that the initial allocation t ek in C(E). Thus it remains to see that this
allocation is not Walrasian. To this end, let dJAz and g¢|Ag, t [S] denote the
restrictions to Ag of d_and q¢, respectively. Then, from above,

gt|As £ qJAs for each t 31

but
for any x [CAE, q¢]As(Xx) = dJAs(x) for almost all t [S1

By virtue of the fact that v {($) > 0, this implies that there is no p [EI*sSuch
that for almost every t [S] q¢|As = Atp|As for some real number A¢, as may
easily be verified.

Now suppose, if possible, that for some p [Elthe pair (p,t &)l were a
Walrasian equilibrium. Note that given any z [CAk, for some real number A > 0
we have e+Az = 0. Thus the equilibrium conditions would imply that for almost
every t [CS)Asnkerp [CKarqe,! or, equivalently, g¢|As = A¢tp|As for some real
number A¢. However, this contradicts the conclusion of the previous paragraph.
Hence the theorem has been established.

14ker p denotes the kernel of p, i.e. ker p = {x [El p(x) = 0}; similarly for ker q.
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4.5 Proof of Theorem 6
4.5.1 Preliminaries

In this subsection, E is a (real) Banach space and (T, T ,v) is a complete finite
measure space. We first fix some additional notation and terminology, and col-
lect some facts which will be used in the following proofs.

If A CEland p [CEl-then
- [[@l, ACdenotes the set {p(x): x A},

— c[CA denotes the (norm) closure of A;
— co A denotes the convex hull of A.

Recall that two weakly measurable functions f,g: T - E are said to be
weakly equivalent if for each q [CEF-1ql f(t) = [ql g(t) for almost all t [T]
the exceptional set of measure zero possibly depending on q.

Recall that a Banach space E is said to be weakly compactly generated if it
contains a weakly compact subset whose linear span is dense in E. A Banach
space E is measure-compact if given any finite measure space (T,T,V), every
weakly measurable function ¥: T - E is weakly equivalent to a strongly mea-
surable function g: T - E.!® The Banach space E is said to have the PIP (“Pet-
tis integral property") if given any finite measure space (T, T,V), every norm
bounded and weakly measurable function f: T - E is Pettis integrable.

We will use the following facts. If the Banach space E is weakly compactly
generated then E is measure-compact, and if E is measure-compact then E has
the PIP. Further, if E is weakly compactly generated then E & angelic in the
weak Ftbpology o (E 5B); that is, for a bounded set A [CElthe o (E 5#)-closure
of A is the set of o (E 5#)-limits of sequences from A. (For these facts, see Edgar,
1979, pp. 563.)

Finally, note that if E is an order continuous Banach lattice such that E.
contains quasi-interior points, then E is weakly compactly generated. (Indeed,
e being a quasi-interior point of E+ means, by definition, that the linear span of
the order interval [—e, e] is dense in E, and if E is order continuous then order
intervals in E are weakly compact.)

The following lemma was invoked in the discussion preceding the statement
of Theorem 5. We remark for that context that a Banach space that is Lindelof
in the weak topology is measure-compact. (Again, see Edgar, 1979, pp. 563.)

Lemma 1. Suppose E is measure-compact and that E “contains a countable set
separating the points of E. Then every weakly measurable function from T into E
is strongly measurable.

15The original definition of “measure-compact" for a Banach space is that every probability
measure on the Baire o -algebra generated by the weak topology is T-smooth; according to Edgar
(1977, Proposition 5.4), this definition is equivalent to the one presented here.
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Proof. Suppose f: T - E is weakly measurable. Since E is measure-compact,
there is a strongly measurable function g: T - E which is weakly equivalent
to f. But since E "dontains a countable set separating the points of E, the fact
that ¥ and g are weakly equivalent means that we must have f(t) = g(t) for
almost all t [CT1 Thus, since g is strongly measurable, T is strongly measurable
as well. O

The following lemmata will be needed in the sequel.

Lemma 2. Let A be a closed convex cone in E and let ¥: T - E be a Pettis inte-
grable function with £(t) [CAlfor almost all t [Tl Let g: T - E be a strongly
measurable function and suppose that g is weakly equivalent to . Then also
g(t) CAlfor almost all t [T1

Proof. Since g is strongly measurable, and since (T,T,v) is complete, g is
T—B(E) measurable'® and therefore we can consider the image measure on
(E,B(E)) of v under g; let us denote this measure by p. Another appeal to
the fact that g is strongly measurable shows that u has a support, denoted by
supp M in the sequel. (Indeed, select a closed separable subspace F of E such
that g(t) [CElfor almost all t [Tl In particular, then, u(E CEJ = 0. Note that
B(F) ={B [BIE): B [E} and let pg be the restriction of u to B(F). Since F is
separable, ur has a support. It follows that p has a support, too.)

For each p [CH et Hp denote the closed halfspace {x [EIl p[(i)lz 0}.
Further, let A== {p CEF:p(x) =0 for all x A} and note that A=, xihlp
by the Hahn-Banach theorem.

Now since g is weakly equivaleﬁ tofand f i&lPettis integrable, g is also
Pettis integrable, and in particular, ¢ g(t)dv(t) = ¢ T(t)dv(t) foreach S [Tl
%{ hypothesis, for each p CASF () [Hp for almost_all t [Tl and hence

s F(t)dv(t) CHL for all S [Tl Thus, for each p CAlS—5g(t)dv(t) [CHL for
all S [ whence g(t) [Hp for almost all t [Tl But since each set Hp is
closed, this implies that supp p [CH}, for each p CAISthat is, supppu Al Thus
H(E CA) = 0 whence g(t) [CAlfor almost all t [CT1 O

Lemma 3. Suppose E is weakly compactly generated and let G be a total subset
of E et A be any non-empty subset of T (not necessarily measurable) and let
f: A - E be any function (also not necessarily measurable). Suppose that for each
p Gl [P, f(t)=F 0 for almost all t [CAl Then for each p CEIS1p, F(t)[(F 0
for almost all t [CAl

Proof. Consider the set F [ Efl-defined as

F ={p CEI1p, f(t) = 0 for almost all t CA}.

16B(E) denotes the (norm) Borel o-algebra of E; similarly for B(F) below.
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Evidently, F is a linear subspace of E 'dontaining G. Hence F is weak —dense
in E~Hecause G is total. Observe next that if (pn) is any sequence in F that is
weak Febnvergent to some p CEI-then p must be in F, too. Consequently, since
the dual of a weakly compactly generated Banach space is angelic in the weak =
topology, F n B is weak "¢losed for each weak compact subset B of E "By the
Krein-Smulian theorem, it follows that F is weak ~closed, whence F = E “slince
F is weak dense in E & O

For the presentation of the next three lemmata we introduce the following
definition. Given a measurable space (T, T ) and any vector space X, we say that
a set A of functions from T into X has Property ( D_iF whenever ¥, g [CAland
S [Tl then also 1sf + 1759 [CAl

Lemma 4. Let A be a set of strongl% measurable Pettis integrable functions from
TintoE andletB = {z [CElz= f forsome f [CAE}. Suppose that (T,T,v) is
atomless and that A has Property ( [)_Then the (norm) closure of B is convex.

Proof. As shown by Zame (1986, Lemma D, p. 9-13), the (norm) closure of the
range of a vector measure defined by a Pettis integrable but strongly measurable
function!’ on an atomless measure space is convex. With this fact substituted
for the corresponding fact about the vector measure defined by a Bochner inte-
grable function, the arguments in the proof of Theorem 6.2 in Yannelis (1991,
p. 22) apply to yield the claim of the lemma. O

Lemma 5. Let ¢: T - 2F be a correspondence, A be the setlgr all strongly mea-
surable Pettis integrable selections of ¢, and B = {z [CE1z = ¥ for some f A}
If (T, T,v) is atomless then c[Blis convex.

Proof. Evidently A has Property ( D) Thus the lemma follows from the previous
one. U

Lemma 6. Let ¢: T - 2F be a correspondence, Elt C be the set of all Pettis
integrable selections of ¢, and let D = {z [Elz = g for some g [C}. Suppose
that (T, T ,v) is atomless and that E is measure-compact. Then c[[O is convex.

Proof. Let A be the set of all strongly measurable functions ¥ from T into E
such that f is weakly equivalent to some g [Cl Then every element of A is
Pettis integrable since every eEIment of C is. Moreover, A has Property (D) dince
C does. Let B = {z [Elz= F forsome f [AL. A glance at Lemma 4 shows
that c[Blis convex.

Now since E is measure-compact, every g [Clis weakly equivalent to some
strongly measurable function ¥ from T into E. Thus D = B and we may conclude
that c [0 is convex. O

(|
17].e. the vector measure W defined by W(S) = ¢ fdv, S [T, if f is the function in question.
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For convenience of reference, we also state the following trivial modification
of the previous lemma.

Lemma 7. Let ¢: T - 2F be a correspondence, let S [T, and let C be the set of
all Pettis integrakll_L? selections g of ¢ such that 1sg is strongly measurable. Let
D={z [El1z= g forsome g [CEk. Suppose that (T, T ,v) is atomless and that
E is measure-compact. Then c [ is convex.

Proof. The arguments of the proof of the previous lemma apply. O

Lemma 8. Let ¥: T - E be a Pettis integrable but strongly measurable function.
Then given any [ 0 and any S [T with v(S) > 0 there is an SY [T with
SHSIkuch that the mapping 1scf is Bochner integrable and such that

(-
;s F(t) dv(t) — SEIf(t) dv (t) % .

(In particular, the Pettis integral and the Bochner integral of 1scF coincide.) More-
over, given & > 0, S™tan be chosen so that v(S [S) < &.

Proof. Let S [T1, with v(S) > 0. For each integer n > 0, set
Sh={t 51 [F(t) (£ n}.

Then S, 1 S. Also, since T is strongly measurable, the mapping t [ TH{t) b
measurable, so S, [Tl for each n. Now by Diestel and Uhl (1977, Theorem
5, p.53), the indefinite Pettis intﬁpral of the Pettis integrable function f is a v-
continuous vector measure, so g T (t) dv(t) *EP since v (S ES% - 0. Hence,
by the additivity of the indefinite Pettis integral, g f(t)dv(t) - ¢Tf(t)dv(t).

Finally, by definition of the sets S, for each n the mapping 1s,f is norm
bounded, and therefore Bochner integrable since it is strongly measurable. [

Lemma 9. Suppose E is an order continuous Banach lattice such that E+ contains
quasi-interior points. Then there is a family (i, pi)i r@f elements of E x E Fslich
that:

(i) o, xj[EOifandonlyifi=j.
(ii) The set {p;j: i I} is a total subset of E "(i.e. separates the points of E).

(iii) Let Q denote the set of all finite linear combinations of the X; such that the
coe Lciehts are rational. Then Q n E+ is dense in E+.

(Thus the family (X;, pi)i cis a Markushevich basis for E with a special property.
Note that it is not claimed that the elements X; themselves belong to E+..)
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Proof.18 By a well known representation theorem (see Lindenstrauss and Tzafriri,
1979, p. 25, Theorem 1.b.14) we may assume that for some probability space

(Q, %, p):

(@) Lo(n) CEI LT (u) and the ordering of E is that induced from L1 ()
(i.e. is the “pointwise almost everywhere” ordering).

O 0) Lo cEFFOW.

1
(c) [P, x[F pxdu forall p CEland x CE]

In particular, then, the subspace L (1) of E separates the points of E “{because
L. (1) separates the points of L1 ()). That is, Lo () is [Clgddense in E. By the
continuity of the lattice operations in E this implies (since the ordering of E is
the “pointwise almost everywhere” ordering):

(1d) Leo (W) + is a [Igddense subset of E..

Assume (for the time being) that there is a family (Xxj, pi)i r—9of elements of
Lo (1) % Lo () such that:

O
(1) pixjduE0ifandonlyifi=j.

(2) The set {p;: 1 I} separates the points of L; ().

(1
(3) Let Q be the set of all finite linear combinations of X;’s with rational

coe [ciehts. Then Q n [0,1q] is [Mzddense in [0, 1] (where [0,1q] is
the order interval {xX [LL(N): 0=x <1p}).

Then by (la) and (Ib), (Xi, pi)i s actually a family of elements of E x E FBe-
cause of (Ic) and (111), it satisfies (i) of the theorem. Also, from (Ic) and (112), it is
clear that (ii) of the theorem holds. To see that (iii) holds as well, consider the
order interval [0,10] L (n) CILI(n) and set Q = Q n [0, 1q]. By (113), Qt is
o (L1, Ls)-dense in [0,10]. Now by (la), [0, 1q] is also an order interval in E. In
particular, [0, 10] is o (E, E H-tompact since E is order continuous. But from (Ib)
and (Ic), the topology o (E,E Dis, on [0, 1], at least as strong as the topology
0 (L1, Ls). It follows that both topologies agree on [0,10] and hence that Q1
is o (E,E D-Uense in [0, 10]. Evidently the [=Igiclosure of Q! is convex, and is
therefore the same as the closure of Q! for the topology o (E,E 5 Thus Q! is
in fact [gddense in [0, 1q]. It follows that Q N Lo (1) + is [1lgddense in Lo (1) +,

181n this proof, CIgwill refer to the norm of E; I _will refer to the usual L, () norm, and
[-T.1to the usual Lo () norm.
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and from this combined with (Id) that Q n E+ is [llgddense in E4+. Thus (iii) of
the theorem is satisfied by the family (X, pPi)i =

Thus we must show that a family (X;, pi)i—Pf elements of Lo (1) > Lo (1)
satisfying (1) to (3) of (ll) does exist.

Before proceeding with this task, we introduce some notational conventions.
Let S [XIwith p(S) = 0. Then s denotes the restriction of u to (S, Zs) where
s = {SYr=1 sYCS}. Also, to avoid confusion, in Li(us) the characteristic
function of S is denoted by 1s] while in L1 () the characteristic function of S is
denoted, following our general notation, by 1s. Further, let {—1, 1} denote the
two point measure space, each point in which has measure 1/2, and let {—1, 1}¥
denote the product measure space of K copies of {—1, 1}, where K is an arbitrary
non-empty index set.

Suppose we have a partition 11 of Q into sets S [ with p(S) > 0—in
particular, 1T is (at most) countable—such that for each S [ there is a family
(IRl ms1in Loo (Ms) % Leo (Ms) for which (11) holds with Ly (ps) in place of L1 ()
and [0, s} in place of [0, llill For each S [T, set Xj = 1sX;lknd pj = 1sp; for
all i [Igl Further, set | = ¢ ls (disjoint union). Then (Xj, pi)i s a family of
elements of Lo (1) < Loo (1), Isﬁhich satisfies (ll) as may readily be checked.

(For (1) of (II), note that p;x; du EIO if i Elgﬂndj [Id-with S & S5'and
that for 1, j belongiﬁg to the same Is, pixjdu = miXjdus. For (2) note that if
z [T (W) satisfies pjzdu =0 for all i CL1then for each S [l the restriction
of z to S is (almost everywhere in S) equal to zero since {311 [Igl} separates
the points of L1 (us), whence z = 0 because 1t is at most countable. Concern-
ing (3), note first that if z [JQ, 1o] then for each S [Tl zs []Q, 1s] where zs is
the restriction of z to S. Next note that if 1t is finite and for each S [1Tlwe have
a finitIe:Iirllear combination of X'k, i [1d, say 2, akS@S, which is in [0, £s1,
then spm =1 Oks Xiy IS @ finite linear combination of x;’s which is an element
olf_—[Ll),lg]; moreover, for any gi\%z 0,1 [(ZI- s k2q Olics Xiy g L=

seidz — 2, Olics Xiiyg L= sz8 — 2; O‘ks@S L1 For the case of an
infinite 1T, note that the set of all x [J0,1q] with 1sx = 0 for all but finitely
many S [dlis lzddense in [0, 1q].)

Now by Maharam’s theorem, there is a partition T of Q into sets S [3]
with p(S) = 0, such that for each S [Cmlthere is Banach lattice isomorphism Ts
from L1 (ps) onto either R or L1 ({—1, 1}Xs) for some infinite Ks, which satisfies
Ts(is) = 1,_; 13 in case it has range Li({—1,13}*s). Thus it is enough to
show that, given an arbitrary non-empty index set K, there is a family (Xi, pi)i
in Lo ({—1, 1}X) % Loo({—1, 1}¥) such that (11) holds, with L1 ({—1, 1}¥) in place
of Li(n) and [0, 1,4 13x] in place of [0,1q]. (Indeed, if (Xi, Pi)ims is such a

190f course, with the specification Ts(is) = 1113k, the isomorphism Ts need not be an
isometry since Hs is not a probability measure unless 1t = {Q}.
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family in Lo ({—1,1}%5) % Loo ({—1, 13%s) LI ({—1,1}5s) x Lo ({—1, 1}K9), then
setting X; = T *(x;) and pi = T (pi), i [I3-where TS5 the adjoint operator
of Ts—evidently provides a family (ki Jpi)i mg1in Lo (Ms) % Leo(Hs) for which (11)
holds with L1 (ps) in place of L1 () and [0, s] in place of [0, 10].)

Thus let {—1,1}¥ be given. In the following, t stands for a generic element
of {—1,1}, and ty, k Kl stands for the kth coordinate of t. Let F be the set
of all finite subsets of K. For each non-empty F [CHl let wg: {—1,1}¥ - {-1,1}
be the function given by

—1
We(t) = t, t 31,135,
k [E1
and let w—= 1113k, That is, (Wr)F r=1is the family of Walsh functions on
{—1,1}K.
According to a well known fact (see e.g. Negrepontis, 1984, p. 1076)

-
- e
VR it p 2 pO)

and thus, identifying each wg with its “equal almost everywhere” equivalence
class, (W, Wr)r rziis a family of elements of Lo ({—1, 1}¥) % Lo ({—1, 1}¥) which
satisfies (1) of (II).

Let W be the linear span of {wr: F [FEI} and let Y be the set of all elements
of L1({—1, 1}X) that are equivalence classes, modulo “equal almost everywhere,”
of functions depending on only finitely many coordinates.

Again by a standard fact, Y is [ZIi;ddense in L1({—1, 1}¥). Moreover, Y is a
sublattice of L1 ({—1, 1}¥) containing 1;-1,13x. Hence, considering the order in-
terval [0, 171 13x] in La({—1, 1}¥), we have that Y n [0, 1¢-1,13x] is [-zddense in
[0, 141 13x] by virtue of the continuity of the lattice operations in L ({—1, 1}5).

By another well known fact, every function on {—1, 1}X that depends on only
finitely many coordinates can be written as a finite linear combination of Walsh
functions. Hence, from the previous paragraph, W n [0, 1¢ ; ;3x] is [-Ii-dense
in [0, 171 13x].

Now since order intervals in the dual of a Banach lattice are weak “e¢bmpact
[0,1;_113«] is compact for the weak “tbpology 0 Le({—1,1}),L1({-1,1}%) ,
and it follows that this latter topology coincides on [0, 1;_; 13« ] with the weak
topology 0 L1({—1,1}), Lo ({—1,1}¥) . Thus W n[0, 1;_; 13x], being z3dense
and hence weakly dense in [0, 1,_; ;3«], is actually weak dense in [0, 1;_; 13x].2°
But [0, 171 13x] separates the points of L1 ({—1, 1}X), and consequently so does
Wn[O, 171 13x], being weak Ldensein [0, 1;-1,13x], whence so does {wg: F [E}.
Thus (2) of (1) is satisfied by the family (Wg, Wr)r r=a

= £ .
Dle. 0 Lo({—1,13), L1({—1,1}) -dense in [0, 1;_1 13x].
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Let Q be the set of all linear combinations of wg’s with rational coe [Lciehts.
Note that Q is [-Tl.tdense in W and hence Qn [T}t int[0, 171 13x] is [-lcldense
inW n Cleekint[0, 171 13x]. Now W n et int [0, 179 13x] B e, (1/2)1 4 13
belongs to this intersection. Hence W n [-l}int[0, 14 13x] is [lldense in
W n [0, 171 13x] (because if x 0,174 43x] and y [ Hletint[0, 14 13x] then
(1 =M)x+ Ay [IH}tint[0, 174 13x] for 0 < A < 1). Therefore the fact that
Q n LIt int[O, 11 13x] is [lotdense in W n [} int[0, 14 13« ] implies that
QN[O0, 1 13x] is [-lotdense in W n [0, 144 13x]. Consequently, QN [0, 144 13«]
is [-Mdense in [0, 14 13x], since W n [0, 11 13x] is [-Iz-dense in [0, 174 73]
and since X< X for x [CIl.({—1,1}X). Thus the family (Wr, WF)F =1
satisfies (3) of (Il). This completes the proof of the lemma. O

The following lemmata are needed only to cover the case of an economy
where the space of agents is a (non-trivial) atomless measure space which has
no non-measurable subset. Recall that it is (relatively) consistent with ZFC that
no such measure space exists. However it is not known whether the existence of
such a measure space is inconsistent with ZFC. Thus, for sake of generality, we
do not want to exclude the possibility of such a measure space.

Lemma 10. Let (T, T,v) be a finite measure space and let g: T - E be Pettis
integrable. Let S [Tl and suppose that EIS I:EhThen given [ = O there are an
SYCSland an integer n > 0 such that [Jeg — g% [Cand [g{t) % n for all
t CSH'Moreover, given & > 0, S™tan be chosen so that v(S [S) < 3.

Proof. For every integer n > 0 let S, = {t [S1 [g{t) & n}. Then the sequence
(Sn) isincreasing and ,—; Sh = S. By the hypothesis about S, each S\, belongs
to T ; in particular, v (S [Sg)) is well defined for each n, and we have v(S[Sg) - O
as N - oo. Thus, accordiﬁp to trE additivity and continuity properties of the
indefinite Pettis integral, s g - sg. O

Lemma 11. Let (T, T,v) be a finite measure space and suppose that E is an
order continuous Banach lattice with the PIP. Let qu - E+ be a Pettis integrable
function, let S [T1, and let x [CElwith 0 =< X < ¢g. Suppose that 25 1 and
that ilﬁg is norm bounded. Then there is a Pettis integrable function h: T - E4+
with ¢ h = x and h(t) < g(t) for all t [S]

Proof. Clearly, we may assume without loss of generality that S = T (because
if h is a Pettis integrable function from the subspace (S, 25, vs) into E+—where
vs is the restriction of v to 25—then 1sh: T - E. is Pettis integrable as well).
Now combine the next two lemmata, and recall for this that if X and Y are Riesz
spaces, then a positive linear operator ©: X - Y is called interval preserving if
0([0,x]) = [0,06(x)] for all x X}, and, if Y is endowed with some topology, is
called almost interval preserving if 8([0, x]) is dense in [0,0(Xx)] for all x X.
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Note that if © is interval preserving, then, in fact, 6([a, b]) = [6(a), 8(b)] for
any a, b [ Xlwith a < b, and that if 8 is almost interval preserving then, for
any a, b Xlwith a < b, 6([a, b]) is dense in [6(a), 6(b)]. Recall also that any
order continuous Banach lattice is o-Dedekind complete. O

Lemma 12. Let (T, T,Vv) be a finite measure space with T = 2T and suppose
that E is an order continuous Banach lattice with the PIP. Let Z be the set of
all norm bounded Pettis integrable functions from T into E, endowed with the
pointwise ordering induced from the ordering of E; that is, if f, g [Zlthen f =g
if and only if £ (t) = g(t) for all t [T1 (Functions which agree almost every\ﬂmre
are not identified.) Let 6: Z - E be the operator defined by setting 6(z) = zdv
for z [Z1 Then

() Z is a o-Dedekind complete Riesz space.

(b) 6 is a positive linear operator which is almost interval preserving and has the
property that if zn t z in Z then 8(zn) - 0(2) (in the norm of E).

(zn t z means the sequence (zp) is increasing with z = sup{zn: N =1,2,...})

Proof. (a) Let ZHe the set of all norm bounded functions from T into E, endowed
with the pointwise ordering induced from the ordering of E. Since E is a o-
Dedekind complete Banach lattice, it is clear that Z-is a o-Dedekind complete
Riesz space. Since, by hypothesis, T = 2T and E has the PIP, every element of Z!
is Pettis integrable. Thus 22 Z, i.e. Z is a o-Dedekind complete Riesz space.

(b) Obviously the operator 6 is linear and positive. Suppose zn t z in Z.
Then, by definition of the ordering of Z, we have zn(t) t z(t) in E for each
t [Tl Hence zh(t) - z(t) in the norm of E for each t [Tl since E is order
continuous. In particular, for every p CE}1p, zn (t) (A D, z(t) Cor each t [CT1

By the monotone convergence theorem, it follows that for each p CEJ,
1 1

P, zn(t) dv (t) + [Q, z(t) v (t).

That is, [, 8(zn) @ [, 6(z) (for each p CES}

It is clear that the sequence (8(zn)) in E is increasing and that 8(z) is an
upper bound of the set {6(z): n =1, 2,...}. Consider an arbitrary upper bound
of this set, say x. Then for each p [CEIL1p, 6(zn) X [P, x For all n. Hence
[, 8(z) = [P, x For each p [HL, 5ince [@,0(zn)[ [@,6(z) For such p.
Consequently we must have 6(z) < x, whence 8(z) =sup{6(znh): n=1,2,.. .}
Thus 6(zn) t 6(2) and hence 6(zn) - 8(2) in the norm of E since E is order
continuous.

Finally to see that O is almost interval preserving, pick any z [Zl and set
A = 0([0,z]). Clearly c[CA []D,06(z)] since B is positive. For the reverse in-
clusion, consider any x [CE} with x [cI"A. Note that the set A is convex and
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hence so is c[A. Using the Hahn-Banach theorem, select a p [CElI*Such that
[p, x = inf[p, AL

Since E is order continuous, order intervals in E are weakly compact. Thus
for each t [T, inf[Q, [0, z(t)] s attained at some point in [0,z(t)]. That is
(since any norm bounded function from T into E belongs to Z) thereisa u [Z1
such that for each t [Tl u(t) []J0,z(t)] and [P, u(t) & inflp, [0,z(t)]dn
particular, |

[(p, u(t) [dv (t) = inflp, Al

and
—[P, u(t) = [@, z(t) for each t [T1

Using these observations, we conclude that
P, x[= —[p, x> —|:i|anﬂ,AIZI
= —[p,u()dv(t)
=[p,6(z)L]

Thus x [JD,06(z)], whence [0,6(z)] CcIA. This completes the proof of the
lemma. O

Lemma 13. Let Z be a o-Dedekind complete Riesz space, let E be a Banach lattice,
and let ©8: Z - E be a positive linear operator that is almost interval preserving
and such that if z, 1 z in Z then 8(zn) - 6(z) (in the norm of E). Then 0O is
interval preserving.

Proof. Pick any v [Z}, with v & 0, and let b [J0,06(v)]. We have to show that
b =06(z) for some z [[Q,v]. We first establish the following:

Claim: Given u []0,v] with 6(u) = b and given [ & O there is a z []0, u]
such that 6(z) = b and [B{z) —b[= [

Let u []0,v] with 8(u) = b and [ 0 be given. Since 8 is almost interval
preserving, we can find a zg [0, u] such that [8{zp) — b [1f 08(z0) = b
we are done. If not, consider 6(zp) [[hlSince 6(zg) [Cb1[[®(z0),0(u)] and 6
is almost interval preserving, given any [ 0 there is a z; [[#¢, u] such that

B{z1) — (6(20) [h)F [(We have
[8(z1) — b [ [B{z1) — (6(z0) [B)[# [(B(z0) [B) —b[1

and
[(8(z0) [©) —b[Z [(B(z0) —b)" X [B(z0) —b[Z []

Hence, since [=tan be as small as we like, we can choose z; in such a way that
both [B{z1) —b[= [Aand B{z1) —(6(z0) (D) 1. I1f6(z1) = b we are done. If
not, we repeat the construction in the following way. Consider 6(z1) [ChlSince
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0(z1) CB1C[A(z1),0(u)] and 0O is almost interval preserving, given [=> 0 there
is a zo [J41,u] such that [B{z») — (8(z1) [h)[Z [(We have

[B{(z2) —b[= [B]z2) — (6(z1) LB)# [(B(z1) [B) —bL]

and
[(B(z1) [©) —b[Z [(B(z1) —b)"[X [B(z1) —b[Z []

Hence, since [Etan be as small as we like, we can choose z, in such a way that
both [A{z,) —b[F [@nd [B{z,) —(0(z1) (BJIF 1/2. If 6(z2) = b we are done.
If not, we can proceed in this manner to obtain either after a finite number of
steps an element z, [0, u] which does the job, or an increasing sequence (zn)
in [0, u] such that for all n > 0O,

[B(zn) — b ]

and
B{zn) — (6(zn-1) (D)Z 1/n.

In this latter case, since Z is o-Dedekind complete we must have z, t z for
some z [[Q, u]. Thus, by the hypothesized properties of 8, 8(z,) - 6(2) in the
norm of E. Consequently [B{z) —b[= [Cand [B{z) — (6(z) [b)[= 0. Evidently
the latter equality implies 8(z) = b. This establishes the claim.

Using the claim, we can find a decreasing sequence (zn) in [0, v] such that
[B{zn)—b[F 1/n for all n > 0. Since Z is o-Dedekind complete, we have z, | z
for some z [0, Vv].?! By the hypothesized properties of 8, 8(zn) - 6(z) in the
norm of E (since z | z is equivalent to —z, 1 —2z). It follows that 6(z) = b. This
completes the proof of the lemma. O

4.5.2 Proof of Theorem 6

Let E be an atomless economy with commodity space E satisfying assumptions
(A1) to (A5), (A9) and (M2). Clearly W (E) CCIE). To prove the reverse inclusion,
let f CCI(E).

There is no loss of generality in assuming that the endowment mapping
t [Ce() is strongly measurable. Indeed, by hypothesis the commodity space E
is an order continuous Banach lattice with E+ containing quasi-interior points.
Thus, by the remarks at the beginning of Section 4.5.1, E is weakly compactly
generated and therefore measure-compact. Thus there is a strongly measurable
function e~ T - E which is weakly eﬁlﬂivalent to t [e(t). In particular, e[is
Pettis integrable with ge'¢t)dv(t) = ge(t)dv(t) for each S [CT1. Hence T is
also a core allocation for the economy E “that results if the endowment mapping

21z, « z means the sequence (z,) is decreasing with z = inf{z,: n=1,2,...}.
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of the economy E under consideration is replaced by e=’Moreover, since for any
p CHSTp, et) = O, e(t) For almost all t [T (by definition of “weakly
equivalent"), if (p,f) is a Walrasian equilibrium for EMthen (p, f) is also a
Walrasian equilibrium for the original economy E. (Note also that by Lemma 2,
e¢t) = 0 for almost all t [TIsince e(t) = 0 for all t [CT1) Thus we may as well
assume that the endowment mapping of E is strongly measurable.

Let a and B be strictly positive elements of E 5-dhosen according to Assump-
tion (A9); in particular, a < 3. Denote by ' the cone

r={x CEla(x™) > B(x)}

Note the following facts about I'. First, 0 [Tland I' contains E4 {0}, obviously.
Second, I is (norm) open by virtue of the continuity of the lattice operations.
Finally, I is convex. To see this, note that if X,y [Elthen for some b [EL,
xX+y)" =x*+y*—bas V£|| as (X[T y)~ =X~ +y~ —b. Thus whenever
X,y [Tthena (x+y)* >pB (x+y)  ,because a < 3 and hence a(b) < B(b)
forb=0.

Next, let ¢: T - 2F be the correspondence given by

¢ (1) ={x [E}: x LA} d(D)}, t [T

The following part of the proof covers the case where every S [CT1with v(S) >0
has a non-measurable subset. The other case is dealt with below. (As noted in
Section 4.5.1, it is consistent with ZFC that every non-trivial atomless measure
space has a non-measurable subset. Clearly, the non-existence of a non-trivial
atomless measure on the power set of any set implies that given any finite
atomless measure space, every measurable set with measure > 0 has a non-
measurable subset.)

Let A be the set of all strongly measurable Pettis integrable selections of the

correspondence ¢ and let
1 1] 1
B= z [Elz= ¢ forsomeg [Al

O
Note that B is non-empty—e.g. e(t) dv(t) belongs to this set (because the map-
ping t [Ce(®) is assumed to be strongly measurable).

We claim that 1 [ [T
B— e(®)dv(®t) n-T=L"1

Suppose, if possible, otherwise. Then, since 0 [[T] and by virtue of the measur-
ability assumption M(2), there is a strongly measurable allocation g: T - E+
and ﬁ S [, Witrhv(S) > 0, such that g(t) LT (t) for almost all t
and gg(t)ydv(t) — ge(t)dv(t) = —y for some y L[T1Suppose y = 0. Then
d-1T - E4, defined by d(®) = g(t) + (1/(v(S)))y for all t [T] is an allocation
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with gﬂl) dv(t) = Ele(t) dv (t). Moreover, for all t CS]d@@) L d(t) by strict
monotonicity of preferences since y & 0, whence d(@) [T (t) for almost all
t [CSlby transitivity of preferences. We thus have a contradiction to the prop-
erty of T being a core allocation. Consequently y =0 cannlc_lf hold.

Suppose y~ @DO Observe that we must have y~ =< 5g(t)dv(t) because
sg(t)dv(t) and ge(t)dv(t) are positive elements (and because —y =y~ —y™
and y~ [yT = 0). Now since I is open and g is strongly measurat&?, an appeal
to Lemma 14 below and the fact that the indefinite Pettis integral . e(t) dv(t)
is v-continuous shows that we can assume g to be actually a simple function.
Then the Riesz decompoﬁion theorem can be used to find a measurable simple
functions: T - E+ with gs(t)dv(t) =y~ and s(t) < g(t) for all t [S1

For each t [S]set
_BGW) .

By™)
This is well defined because y~ is supposed to be & 0 and 3 is strictly positive;
in particular, v(t) = 0 for each t [SlMoreover, for all t CS]

B(s(t))
B(y™)
with strict inequality in case s(t) & 0 since a(y™) = B(y~) by definition of I'.

Hence, by choice of a and 3, and because g(t) —s(t) = 0 and v (t) = 0O for all
t CS]we have for almost all t CS])

v(t)

a(v() = a(y™) = B(s(1)

g(t) —s(®) +v(t) L g(t) LA (D)

in case s(t) 2 0 and

g(t) —s(t) +v(t) = g(t) LA(D)
otherwise. Consequently, if we define g-1T - E by

ot
_ ) —s(t) +v(t) ift CS1
M= 1 ift CTICS]

then d—ik an allocation with g() [ ¥ (t) for almost all t [Slby transitivity of

preferences, and we have
1 1 1 1

g dv(t) = gdv(t)— s)dv()+ v(t)dv(t)
S =] S ]

= OO -y - B(\l/‘)y+ B sy (D)
= g®)dv(t)—y +y*

5
= _e®dv()
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thus again gettliEP aﬂntradictio&ho the property of ¥ being a core allocation.
Consequently, B— e(t)dv(t) n-T = I:I_ITsIclaEiﬂed above.

Since I is open, we must in fact have CEB]_EI:I]e(t) dv(q:I n—I = By
Lemma 5, c[Blis convex and hence so is c[BI— e(t)dv(t) . Since, as noted
above, the cone I is convex, and since I and B are non-empty, it now follows

from the separation theorem that there is a p [CET;With p £ 0, such that
1 (i 111

inf p,c[BI— e(t)dv(t) = suplpl, —T ]
T

Since I is a cone, this implies
I | I

(4) inf(p, B[ p, e()dv() = I[p,e(t)dv(t).
T

Note also that p must be strictly positive because I' is open and E. [0} [T
We claim:

(5) Forany x [CEL, {t [Tt x A(t) and p(x) <p(e(t))}isanullsetinT.

Indeed, pick any x [E} and letg: T - E+ be given by
1
v if x LA (t) and p(x) < p(e(t))

oM = I-er:) otherwise.

From (M2), the set {t [Tt x L fi(t)} belongs to T, and because the mapping
t [Ce() is weakly measurable, so does the set {t [Tl p(x) < p(e(t))}. Hence,
g is Pettis integrable. Moreover, from the assumption (made at the beginning of
this proof) that the mapping t [—e(X) is in fact strongly measHable, it follows
that g is strongly mﬁsurable. From thEIdefinition of B, then, ; g(t)dv(t) Bl
and hence from (4), [P, g(t)dv(t) = [, e(t)dv(t). Thus (5) must hold.

Let

42 {t CT1 thereis an x [E} with x [ (t) and p(x) < p(e(t))}.

We are going to show that $-i§ a null set. Proceeding by contradiction, suppose
4k a non-null set and let g: 1. E, be a function with g(t) L_F(t) and
p(g(t)) < p(e(t)) for each t $H

Appealing to Lemma 9—which applies since E is order continuous and E.
contains quasi-interior points—select a family (xi, pi)i —9f elements of E x E
such that:

(i) [P, x;(E#Oifandonlyifi=j.
(i) The set {p;: i IR is a total subset of E -

(iii) Let Q denote the set of all (finite) linear combinations of the x; such that
the coe [ciehts are rational. Then Q n E+ is dense in E..
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Then by continuity of preferences, we may assume that g(t) CQIfor each t
We claim that there are an S C$Hvith v %(3) > 0,22 and an a [Elsuch that for
each i CL10p;, g(t) = [P}, alfor almost all t CS1

To see this, first note that since every g(t) is a linear combination of the Xj,
(i) implies that for every t C$-{i [I1[p;, g(t) & 0} is finite. By the fact that
a countable union of null sets is a null set, this means we can find an integer k
and a set S; C$Hith v 5(31) > 0, such that |{i I3 p}, g(t) & 0} = k for all
t [S4, where |-| stands for “cardinality.”

Consider the following condition on pairs (S,F) where S [C$3dnd F [

(D S CS4,v'™3) >0, and for each i CE] [}, g(t) & O for all t CS1
By choice of Sy, if (S,F) satisfies (D then F is a finite set with |F| < k. Let
L ={[INI = |F| for some (S, F) that satisfies ([Q)H

Clearly, (S1, D satisfies ([)_Thus O [L1Set = max L. If C2 0, the claim holds
forS = S; together with a = 0. If = 1, choose S, [CS] and F [Idsuch that
(S2, F) satisfies (Oand |F| = [CThen v %83,) > 0 and, from the definition of [
for each i [CITFE 10, g(t)F 0 for almost all t [CS3. Now since every g(t) is
a linear combination of the X; such that all coe [Cciehts are rational, it follows
from (i) above that for each i [Tland every t 3P, g(t) = re(i) [P, xi (I
for some rational number r¢(i). But this fact combined with the facts that F
is finite and v {($,) > 0 implies that there are an S3 [Sp, with v <(d3) > 0,
and rational numbers r (i), i [H, such that [P}, g(t) = r (i) [P}, x; For all
t [S3 and each i [CEl(because the set of all functions from a finite set into the
set of rational numbers is countable, and because the union of countably many
null sets is a null set). Set a = ; =1 (1)X;. Another appeal to (i) above shows
that [P, aF r (i) [P}, xj for i [F] and that [pj,alF 0 for i T EIFinally,
since Sz [[S4, for each i [CITF We have [pl, g(t) (= 0 for almost all t [CS4. Thus
the claim holds for S = S3 together with a as just defined.

Choose and fix objects S and a as described in the claim. Recall that E is
weakly compactly generated. Hence by Lemma 3, (ii) above implies that in fact
for each q [CHY%Swe have [, g(t)[= [g,alfor almost all t (applying
Lemma 3 to g: S - E given by g(t) = g(t) — a). In particular, then, for each
positive g CEl-we have [q, al= [ql g(t) Cfor almost all t CSland hence, by the
Hahn Banach theorem, we must have a = 0 because g(t) = 0 for all t Sland
S is a non-null set.

Now, since S is a non-null set, S has a non-measurable subset, say S™accord-
ing to what has been hypothesized for this part of the proof; of course, it is

22As above, if A is any subset of T, then v "(A) denotes the outer measure of A.
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possible that already S itself is non-measurable). Let h: T - E be the function

defined by setting ]
heO = = if t CTCSY
Lyt ift CsE

Then h(t) = O for all t [CT1 Moreover, h is Pettis integrable, because for each
g CEF gl h(t) = g, alfor almost all t [T1 Thus h is an allocation. Set

S1={t [Tt h(t) LA}

and

Sy ={t [Tt h(t) L H(t) and [P, h(t) = [P, e(t)
Then by Assumption (M2), S; belongs to T, and hence so does S. Set

Sa={t [Tt a #i(t) and [P, al = [P,e(t)H

Evidently S; = SHS3. Since Sy is a measurable set but SHs not, this shows that
Sa cannot be a null set. This contradicts (5) and proves that $-i$ a null set.

Since preferences are continuous and strictly monotone, and p is strictly
positive, the usual arguments now apply to show that in fact

{t 11 thereisan x [E]} with x [H(t) and p(x) < p(e(t))}

is a null set, and that [pl, ¥ (t) = [l e(t) Cohust hold for almost all t [T Thus
the allocation f is Walrasian.

We show now how to proceed when it is not necessarily true thatevery S [Tl
with v(S) > 0 has a non-measurable subset. We first consider the pure case
where in fact T =27,

Let ACbe the set of all Pettis integrable selections of the correspondence ¢
given by

$(t) ={x [El: x LA} {a()}, t [TJ

and set 1 1 1
B'= z CEl1z= g forsomeg LA .

Then BMis non-empty—e.g. it contains |:cle(t) dv(t). As noted at the beginning
of this proof, E is mﬁsure-com%ct, and thus by Lem 6, cDZIEisEEﬁnvex and
hence so is c[BI--  e(t)dv(t) . We claim that B e(t)dv(t) n—-T = [
Suppose, if possible, otherwise. Then, because 0 [Tl, there is an allocation
g: T - E+ aIH an S [, \ﬂth v(S) = 0, such that g(t) LT (t) for almost
all t CSland gg(t)dv(t) — se(t)dv(t) =—y for somey [Tl

As above we see F_jlat y = 0 is impossible. Thus suppose y~ & 0 and note that
we must have y~ = gg(t)dv(t). Sincel i&lopen it follows from Lemma 10 and
the fact that the indefinite Pettis integral (.ye(t) dv(t) is v-continuous that we
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can assume that 1sg is norm bounded. Now since E is measure-compact, E has
the PIP (see the beginning of Section 4.5.1). Hence by Lemma 11, the fact that
1sg iﬁorm bounded implies that there is a Pettis integrable function h: T - E4
with sh(t)dv(t) = y~ and h(t) < g(t) for all t Sl We can now proceed
as above to get (with h ilnjplacljej)f s)a conlt:&ldiction to the property of ¥ being
a core allocation. Thus B e(t).dv(t) nlj—:qu [ a3 predicted. Since T is
open, it follows that also c[BI-- e(t)dv(t) n-T = [_1

The separation theorem now applies to provide a p CEI-EP{0l} such that
I . 1

(6) inflp,B= p, e()dv(t)
T
As above, p must be strictly positive. Again let
42 {t Tt thereis an x [EJ with x LA (t) and p(x) < p(e(t))}.

We have 1T because T = 27. Suppose v(H!> 0 and let g1 E; be a
function such that g@) [ ¥ (t) and [P, d@) = [p,e(t) For each t SHFor
every integer n > 0 let S, = {t CHGM) X n}. Again since T =27, S, [Tl
For some n, v(Sn) > 0, since the countable union of null sets is a null set.
Choose and fix such an n. Since E has the PIP and T = 2T, the function 1s,d ik
Pettis integrable. Hence so is the function g: T - E+ given by

|
5 = Lgdt)y ift Csa
W oy it ros.

N 0_ .
By definition of BY' 1 g(t) dv(t) [B}'On the other hand, since v(Sp) > 0,
I | I 1 I | 1

P, T§('C)C|V('C) = TITDI,@(t)IIlv(t)< TIToJ,e(t)IEv(t)z P, Te(t)dV(t) :

Thus we have a contradiction to (6). Consequently $—ust be a null set. By

continuity and strict monotonicity of preferences, together with the fact that

p is strictly positive, it follows that the pair (p, ) is a Walrasian equilibrium.
Finally, we will address the “mixed situation" where

F:=sup{r CRt thereisan S CTlwith v(S)=r and 25 [TI}

is > 0 but < v(T). Suppose this situation occurs. Then for each integer n > 0
there is a set S, [CT1 with 250 [Tl and v(Sp) > T — (1/Nn). Set T = [, Sh.
Then T T and 27" [CT; in particular, v(T1) = T, by the construction of T?1
and by definition of ¥. Set T2 = T [T3. By construction, every subset S of T2
with S [Tl and v(S) > 0 has a non-measurable subset.

Let ATbe the set of all Pettis integrable selections g of the correspondence ¢

such that 1129 is strongly measurable. Set
1]

BU={z CE1z= g forsomeg CAI'Y.
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1
Then B™is non-empty—e.g. 1 e(t)dv(t) [BiM{recall: t &) is Iﬁﬁongly mea-_
surable). According to Lemma 7, ¢ [B™is convex, and so is c (BT e(t) dv (t) .

We claim 1 [ 111
BHL  e)dv(t) n-T=LC_1

For suppose otherwise. Then, since 0 [T Jand because of Assumption M(2), there
is a Pettis integrable function g: T - E4, with 129 is strongly measurable, and
ﬁme S wEh v(S) = 0 such that g(t) L ¥ (t) for almost all t [Sland
sg(®)dv(t) — se(t)dv(t) = —y for some y LTLIAs earlier, we see thaty =0

is impossible, so suppose y~ & 0. We have
1 1 1

y = g@®)dv()= g(t)dv(t) + g(t)dv(t).
S T SnT2

Sn

The Riesz decomposition theﬁrem asserts theﬁxistence of elements b1, by, [CEL
withy™ =bs+bsand by < g r1gand b = ¢, 120.

Since I is open, we can assume both that 129 is a simple function and
that 15,719 is norm bourﬁied, appealing to Lemma 14, Lemma 10, and the fact
that the vector measure (., e(t)dv(t) is v-continuous. Then another appeal to
the Riesz decompositionﬂheorem ensures that there is a measurable simple
function s: T - E+ with g.,72s = bz and s(t) = g(t) for all t [SIn T2, and

mma 11 ensures that there is a Pettis integrable function h: T - E+ such that
snrth =biand h(t) = g(t) forall t CSIn T .

Set h = 111:h + 1t2s. Then h is Pettis integrable and we have ¢h =y~ and
0 < h(t) < g(t) for all t [S1 Arguing as in the first part of this proof (with h
i&plaCEﬂf s) we geEEDcontradiction to the property of ¥ being in the core. Thus
I%Em_ dv (t) EIZI_ZIr = [Cmbst be true, which implies that we also have

c[BML e(t)dv(t) n —T = [Cbekause T is open.

Invoking the separation theorem again, we can now find a p CEI-E{0} such
that 11 1

inf(p, B = p, . e(t) dv (t)

As earlier, p is strictly positive. Also, just as in the first part of the proof it
follows (with B™in place of B) that (5) holds for p. Once again, let

42 {t [T thereis an x [E] with x LH(t) and p(x) < p(e(t))}.

As before, $+#ust be a null set. Indeed, suppose that v 5(3-4 T2) > 0. Then,
since every S [TP with S [T and v(S) > 0 has a non-measurable subset,
we can proceed as in the first part of the proof—but starting with $AT?2 in place
of $— to get a contradiction to (5).

Suppose that v (3A T1) > 0. Then since 27" [T, we can proceed as in
the second part of the proof—but starting with Qﬂl in place %Qto get a
direct contradiction to the fact that inf[p, B™= p, ; e(t)dv(t) . (Note that if
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we construct g as in this second part of the proof, modulo that we start with
44 T in place of $4ve have g(t = e(t) for all t [TP. Thus 11209 is strongly
measurable because t [Ce() is assumed to be so, and consequently g must
belong to B™

Thus 35 a null set, and we conclude that the pair (p, ) is a Walrasian
equilibrium. To complete the proof of the theorem, the following lemma, which
twice was invoked above, must be established.

Lemma 14. Let E be a Banach lattice and let E = [(T, T ,v), (X(1), [, 8(t)t ]
be an economy with commodity space E satisfying assumptions (A2), (A4) and
(M2). Let ¥ and g be allocations for E, let S [CT1with v(S) > 0, and suppose that
g(t) ¥ (t) for almost all t [S1 Assume that g is strongly measurable. Then
given any real number 3 O there is a raeasurﬁ)le simple function h: T - E4
and an SY T with SHYCSlsuch that [g-h — g% [Cand h(t) L F(t) for
almost all t CSH Moreover, given 3 > 0, S™an be chosen so that v(S [5) < &.

Proof. Let LB > 0 be given. According to Lemma 8, there is an S [Tl with
S [S1v(S) >0, v(S [S)I< &/2, and such that 15g is Bochner integrable and

I %
19— 9 [Z2.
S

Set g = 150. By definition of Bochner inEgrability, select a sequence (sp) of
simple functions from T into E such that | [g{t) — sn(t) Cdv(t) - O and, pass-
ing to a subsequence if necessary, such that sp(t) - g(t) in the norm I df E
for almost all t [CT1 For each n let hy: T - E+ be given by hy(t) = s (t) COJ
t [T1 Then each hy, is also a simple function, and by virtue of the continuity
of the lattice operations we have hh(t) - g(t) for almost all t [T1 Moreover,
[h} (1) = [s4(t) CIbr all n and t (since 1% a lattice norm). For each n set

il

wn

Sh = {t [S1 hy,(t) CH(t) for allm =n}

and note that S, 11 by Assumption (M2). Evidently S, [Sh+; for all nf and

by continuity of preferences, for some null set N in S we have S [NI= [_; Sn.
Consequently (1s,hn)(t) - (15 g)(t) for almost all t [CT] and since

[(As,hn) (1) [ [(Ag hn)(1) L= [S4(T) L]

O
forallt CTl(and + I_E(t) —sn(t) IE\)(T__)I - 0), an appeal to Vitali’s convergence
theorem shows that 5 hn(t)dv(t) - sg(t)dv(t).

Since ] 1 % (111 1 I 1 %
— hn— g — hn— _g 49— 9
Sn S Sn S S S
and v(Sn) - V(S), the lemma is proved. O
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