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A�������. The traditional model of sequential decision making, for

instance, in extensive form games, is a tree. Most texts define a tree as a

connected directed graph without loops and a distinguished node, called the

root. But an abstract graph is not a domain for decision theory. Decision

theory perceives of acts as functions from states to consequences. Sequential

decisions, accordingly, get conceptualized by mappings from sets of states to

sets of consequences. Thus, the question arises whether a natural definition

of a tree can be given, where nodes are sets of states. We show that, indeed,

trees can be defined as specific collections of sets. Without loss of generality

the elements of these sets can be interpreted as representing plays. Therefore,

the elements can serve as states and consequences at the same time.
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1. I����	
�����

Traditional decision theory under uncertainty is a genuinely static theory. The objects
of choice are either lotteries over consequences (von Neumann and Morgenstern [17]),
or functions from states to consequences, known as “acts” (Savage [21]), or functions
from states to lotteries over consequences (Anscombe and Aumann [3]). When such a
theory is used to model sequential decision making, the only adjustment is to restrict
the possible states and update the probability assignments according to Bayes’ rule.
Otherwise, each consecutive decision is treated like a single static decision problem.

This traditional concept of “sequential” decision making has come under attack,
because it rules out many features that one would think of as being relevant to
sequential decisions: a preference for flexibility (Kreps [15]), temptation and self-
control (Gül and Pesendorfer [10]), or unforeseen contingencies (Dekel, Lipman, and
Rustichini [9]). (For alternative approaches see Blume, Brandenburger, and Dekel
[6, 7].) These studies address such issues by introducing preferences defined over
subsets, rather than elements, of the space of possible consequences.

The best-known example is that of making a reservation at a restaurant. “Imagine
that the only way that restaurants vary is in the menu of meals which they will
serve. The individual is assumed to know the menus at all restaurants that he might
select. Eventually, the individual will choose a meal, but his initial choice is of a
restaurant/menu from which he will later choose his meal.” (Kreps [15], p. 565) Such
a two-stage set-up, of course, is for simplicity, not realism. Realistically, one expects
more “stages” and a long chain of consecutive decisions. But this requires a careful
specification of what the structure of the domain for preferences is.

There is another traditional model, that was invented as a domain for sequential
decision making: the tree of the extensive form representation of a game (Kuhn [16]).
Trees serve as a transparent graphical model of how consecutive decisions refine the
selection among possible outcomes. And they are closely related to collections of
subsets of an underlying space of consequences or outcomes - as already highlighted
by von Neumann and Morgenstern ([17], p. 65).

Yet, usually trees are defined as directed connected graphs without loops and with
a distinguished node, the “root,” that comes before any other node. Though this is an
intuitive concept, it is formally at variance with specifying sequential decisions over
(increasingly smaller) sets of outcomes. Thus, the issue arises whether arbitrary trees
can be recast into collections of subsets of some underlying space, thereby making
them an adequate domain for sequential decision theory.

The present paper addresses this issue in full generality. We start from the order-
theoretic concept of a tree (that encompasses the graphical model traditionally used
for extensive form games) and show that it can be represented as a set of sets with a
particular structure which we characterize. Yet, to be able to interpret the elements
of these sets as consequences/outcomes requires a bit more. In particular, (maximal)
chains of sets (called plays) need to identify elements that all sets in the chain contain.
In the language of the restaurant example, a menu needs to correspond to a collection
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of meals, because meals are what the decision maker will ultimately consume.
Accordingly, we show that every tree has a set representation which meets this

requirement. Characterizing these particular set representations of trees generates a
definition of set trees that lends itself naturally to a theory of sequential decision mak-
ing. For these set trees a node can be thought of as an event, just like in probability
theory, i.e. as a set of states. Moreover, when the elements of these sets/nodes rep-
resent plays (maximal chains of nodes), they correspond to outcomes/consequences,
thereby providing the adequate framework for the modern versions of sequential de-
cision theory mentioned above.

Essentially, the present paper represents the first step towards a general definition
of an extensive form as a framework for the application of truly sequential decision
theories of the aforementioned type. This is why we start with utmost generality,
rather than restricting to simple cases. Specifically, most of the traditional definitions
of trees use a discreteness property: for every node there is an immediate predecessor.
For instance, in von Neumann games ([17], Chapter II) the number of predecessors of
every node in an information set is required to be the same. In our set-up, however,
immediate predecessors may not even exist, and the number of predecessors may
not be finite. This allows us to consider examples as exotic as decision problems in
continuous time (“differential games”).

1.1. Overview. The investigation starts with the most general definition of a tree
and maps this into a collection of subsets (of some underlying set) with a particular
structure: its “set representation.” (This operation is always possible; see Proposition
1.) But it turns out that in a set-theoretic environment this structure can be “cleaned”
without affecting the properties of the trees. Thus, we “clean” the structure in
three steps, where each step corresponds to adding structure that enables increasingly
specific interpretations of the tree.

Section 2 is concerned with strengthening the characterizing properties of set
representations (of trees) to something that can only be obtained in a set-theoretic
framework. Section 2.1 begins by characterizing set representations of trees (Propo-
sition 2(a)) and reveals that the set-theoretic analog of the defining order-theoretic
structure can be modified such that unordered nodes correspond to disjoint sets,
without affecting the properties of the tree. We show that every tree indeed has a
set representation that satisfies such a stronger set-theoretic property, called “Trivial
Intersection” (Proposition 2(b)). As a leading example, a differential game tree (i.e.
the tree of a decision problem in continuous time) is presented.

Yet, general trees may contain trivial structures that serve no purpose for decision
theory. Ruling those out leads to “decision trees,” in Section 2.3. Again, characteriz-
ing set representations of decision trees (Proposition 3(a)) shows that, under Trivial
Intersection, the set-theoretic analog of the defining order-theoretic property of deci-
sion trees gets strengthened, to “Separability” (Lemma 4). Every decision tree has
a set representation that satisfies the two strong characterizing properties (Trivial
Intersection and Separability; see Proposition 3(b)).
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Moreover, it turns out, in Section 2.4, that every decision tree has a “canonical” set
representation, where the elements of the underlying set are plays (maximal chains),
as we show in Theorem 1. This set representation satisfies the strong versions of the
characterizing properties (by Lemma 5 and Corollary 1). This concludes the first step
of “cleaning” and yields the first milestone: “set trees.”

Thus, we turn next to the class of set trees, that satisfy the two strong properties,
Trivial Intersection and Separability. The goal of Section 3 is to give meaning to the
elements of the underlying set in such set trees. In particular, when can the elements
of the underlying set be perceived as representing plays, as suggested by Theorem
1? It turns out that this requires the underlying set to be neither too large nor too
small.

First, we construct in Section 3.1 a “reduced form” (Proposition 4) in which
redundancies in the underlying set are eliminated. In Section 3.2 we find that, in
this reduced form, the elements of the underlying set indeed correspond injectively
to plays (Proposition 5 and Lemma 8). This is, in fact, the first gain from using the
stronger set-theoretic properties: Trivial Intersection is equivalent to the property
that the elements of the underlying set in the reduced form map one-to-one into plays
(Proposition 5). Hence, elements of the underlying set (in the set representation)
could potentially serve as representatives of ultimate outcomes or states.

When is a set tree already in reduced form? In Section 3.3 we show that this is the
case if, roughly, no element of the underlying set can be dropped, i.e. if the set tree is
“irreducible.” Irreducibility is equivalent to the elements of the underlying set in the
reduced form being the singleton sets of the originally underlying set (Proposition 6).

This leads, in Section 3.4, to the notion of a “proper” order isomorphism; those
are the order isomorphisms between collections of sets that preserve the “strong”
properties (Lemma 12). This concept enables a characterization of set trees: a col-
lection of sets is a set tree if and only if it is properly isomorphic to its reduced
form and the latter is an irreducible set tree (Theorem 2). But Irreducibility of the
reduced form implies Irreducibility of the original set tree only if the order isomor-
phism has a reflection in the underlying set, i.e. if the two are “doubly isomorphic.”
Irreducible set trees are precisely those that are doubly isomorphic to their reduced
forms (Proposition 7). These considerations clarify when the underlying set (of a set
tree) is not too large.

It may, however, still be too small. Section 3.5 aims at characterizing when
the elements of the underlying set map also surjectively onto plays. The condition
that ensures this is “boundedness.” Achieving this involves, possibly, enlarging the
underlying set. Due to the stronger properties, Trivial Intersection and Separability,
irreducible set trees are precisely those, where elements can be added, so that every
play is represented by a distinct element of the underlying set (Proposition 8). Hence,
a set tree is bounded if and only if the elements of the underlying set in the reduced
form represent all plays (Proposition 9).

This yields the second milestone: “game trees,” defined as bounded irreducible set
trees. In Section 4.1 it is shown that game trees are precisely those for which there is a
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bijection between the elements of the underlying set and the set of plays; equivalently,
they are precisely those which are decision trees that are their own “canonical” set
representation by plays (Theorem 3). Hence, our results combine to the insight that
there is no loss of generality in assuming boundedness and Irreducibility when working
with set trees. Yet, once a tree has been turned into a game tree, we have arrived at
a representation that can serve as an “objective” description of a sequential decision
problem: nodes are (represented as) set of plays.

Section 4.2, finally, takes a modelling decision by entering “terminal nodes.”
Boundedness of a set tree does not necessarily imply that the singletons from the
underlying set belong to the set of nodes. But it is shown that adding the singletons
(from the underlying set) does not change any essential features of the tree, pro-
vided it is bounded and irreducible (Proposition 10). This yields the third and last
milestone: “complete game trees.” A set tree is a complete game tree if and only if
it is irreducible and every play has a minimum (Proposition 11). In the finite case
complete game trees are indeed very simple objects: they are collections of subsets
that contain all singletons and satisfy Trivial Intersection (Proposition 12).

In Section 5 we provide an application by showing that extensive forms can be
defined with game trees. The familiar strategy notions translate smoothly to this
general framework, and pure strategy combinations give rise to plays.

Some issues remain open, though. On the one hand, complete game trees are so
general that they even capture decision problems in continuous time. On the other
hand, this generality may be insufficient for important game theoretic structures.
For instance, alternating moves by different players, as in perfect information games,
cannot always be modelled in such a framework. Intuitively, this is because in such a
game tree a play may never “build up” by consecutive decisions, since these general
set trees may lack a discrete structure. Hence, for some purposes, this version of game
trees may be too general. How more structure can be added and what this simplifies
is, however, left for future research on discrete trees (Alós-Ferrer and Ritzberger [1],
in preparation). Section 6 discusses such directions for further research.

Proofs of major results are included in the text; proofs of selected Lemmata are
relegated to the Appendix. Straightforward proofs are omitted.

2. S�� R��������������

The following basic definitions are used throughout the paper.

Definition 1. A preordered set is a pair (N,≥) consisting of a nonempty set N
and a reflexive and transitive binary relation ≥ on N . A preordered set (N,≥) for
which the relation ≥ is antisymmetric is a (partially) ordered set (or a poset).

In particular, a V -poset is a poset (M,⊇) where M is a collection of nonempty
subsets of a given set V and ⊇ is set inclusion.

Definition 2. A nonempty subset c ⊆ N of a preordered set (N,≥) is a chain if
for all x, y ∈ c either x ≥ y or y ≥ x (or both), i.e. if the induced preorder on c is
complete.
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Given a preordered set (N,≥) and an element x ∈ N define the up-set (or order
filter) ↑x and the down-set (or order ideal) ↓x by1

↑x = {y ∈ N |y ≥ x} and ↓x = {y ∈ N |x ≥ y} (1)

Let ↓N = {↓x |x ∈ N } ⊆ 2N denote the set of all down-sets of (N,≥).

Definition 3. An order isomorphism between two preordered sets (N1,≥1) and
(N2,≥2) is a bijection ϕ : N1 → N2 such that

x ≥1 y if and only if ϕ(x) ≥2 ϕ(y) (2)

for all x, y ∈ N1. This last property is referred to as “order embedding.”

Remark 1. If (N1,≥1) is a poset, (N2,≥2) a preordered set, and ϕ : N1 → N2

an order embedding function, then ϕ is necessarily injective (one-to-one). For, given
x, y ∈ N1 such that ϕ (x) = ϕ (y), reflexivity of ≥2 implies ϕ (x) ≥2 ϕ (y) and ϕ (y) ≥2

ϕ (x) and hence x ≥1 y and y ≥1 x (by the “if”-part of (2)), together implying
x = y (by antisymmetry for ≥1). In particular, any order-embedding surjection
(onto function) between two posets is an order isomorphism.

Order isomorphism is an equivalence relation on the class of all preordered sets.
Two order-isomorphic preordered sets can be regarded as identical for all practical
purposes.

Definition 4. A preordered set (N,≥) admits a set representation if there is an
order isomorphism between (N,≥) and a V -poset (M,⊇).

Proposition 1. A preordered set (N,≥) admits a set representation if and only if it
is a poset. In that case a possible set representation is (↓N,⊇) with order isomorphism
given by ϕ (x) =↓x for all x ∈ N .

Proof. “if:” Suppose (N,≥) is a poset. Then ϕ : N →↓N as given in the statement

is onto by construction. Let x, y ∈ N and y ≥ x. Consider any z ∈↓ x. By transitivity

y ≥ x ≥ z implies z ∈↓ y, so ϕ(y) ⊇ ϕ(x). Conversely, let x, y ∈ N and ϕ(y) ⊇ ϕ(x).
Then x ∈↓ x = ϕ(x) ⊆ ϕ(y) =↓ y implies y ≥ x. Thus, y ≥ x ⇔ ϕ(y) ⊇ ϕ(x)
shows that ϕ is order embedding. By Remark 1 an order embedding surjection is an order

isomorphism.

“only if:” Let (N,≥) be a preordered set which admits a set representation. Let (M,⊇)
be the associated poset and ψ : N → M the order isomorphism. If both x ≥ y and y ≥ x
hold for some x, y ∈ N , then by (2) ψ(x) = ψ(y) ∈ M implies x = y, because ψ is

one-to-one. Hence, ≥ is antisymmetric.

Proposition 1 identifies an order isomorphism between N and ↓N . The resulting
set representation is referred to as the set representation by principal (order) ideals.
Similar results are known, for instance for finite arbitrary ordered sets (Davey and
Priestley [8], Theorem 8.19).

1In the context of sequential decision problems more appropriate names may be “past” (for the
up-set) and “future” (for the down-set).
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2.1. Trees and Subtrees. The following definition introduces the central object
of this study.

Definition 5. A tree is a poset (N,≥) such that ↑x is a chain for all x ∈ N . In a
tree the elements of N are called nodes. For nodes x, y ∈ N say that x precedes

(resp. follows) y if x ≥ y (resp. y ≥ x) and x 	= y. A tree is rooted if there is a node
xo ∈ N , called the root, such that xo ≥ x for all x ∈ N .

The definition could, of course, also be stated dually, i.e.with an element that is
not followed by other nodes (a “bottom” instead of a “top”) and ↓ x, but here the
opposite convention is preferred.2 With this caveat, this is the most general definition
of trees in order theory.

Remark 2. Definition 5 (stated dually) is given as an example of a poset by Davey
and Priestley ([8], p. 23). However, in order theory the word “tree” is usually re-
served for posets such that, additionally, the sets ↑ x are (dually) well-ordered: all
their subsets have a first element according to ≥ (see Koppelberg [13], Chapter 6).
This implies that immediate successors of non-terminal nodes are well-defined, but
is unrelated to the existence of immediate predecessors, except in finite cases (see
Alós-Ferrer and Ritzberger [1]). Koppelberg and Monk [14] dropped the well-ordered
requirement and called the resulting concept (which coincides with the dual of our
definition) a pseudotree. Order-theoretic analysis of pseudotrees, though, has con-
centrated on the analysis of the various (set) Boolean algebras that they give rise to:
Koppelberg and Monk [14] study the algebra of subtrees (down-sets, in our notation);
Baur and Heindorf [4] study the initial chain algebra (up-sets). For an order-theoretic
characterization of the concept of pseudotree, see [2].

The property of being a tree is preserved by order isomorphism, i.e., if a poset is
order isomorphic to a tree, then it is itself a tree. By Proposition 1, every tree (N,≥)
has a set representation by principal (order) ideals, (↓N,⊇). This is called the tree’s
set representation by subtrees. The name is motivated by the fact that for any x ∈ N
the ordered set (↓x,≥) is itself a tree.

The next Lemma, the proof of which is immediate, identifies an alternative defi-
nition of trees as abstract order-theoretic structures.

Lemma 1. A poset (N,≥) is a tree if and only if, for all x, y, z ∈ N

if y ≥ x and z ≥ x then y ≥ z or z ≥ y (3)

If this last property is translated into set-theoretic properties, two alternatives are
naturally identified.

2This convention is chosen to be able to associate the order relation ≥ on an abstract tree with

set inclusion ⊇ on its set representation.
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Definition 6. A V -poset (M,⊇) satisfies Trivial Intersection if, for all a, b ∈ M

if a ∩ b 	= ∅ then a ⊂ b or b ⊆ a (4)

A V -poset (M,⊇) satisfies Weak Trivial Intersection if for all a, b, c ∈ M

if c ⊆ a ∩ b then a ⊂ b or b ⊆ a (5)

Of course, Trivial Intersection implies Weak Trivial Intersection. If Weak Trivial
Intersection is written in terms of an abstract partial order≥, property (3) is obtained.
Trivial Intersection, on the other hand, cannot be translated back into arbitrary
posets, since there is in general a difference between an intersection of two nodes
being empty and not containing any other node.

The next result makes use of these properties to give a full characterization of set
representations of trees.

Proposition 2. (a) A V -poset (M,⊇) is a tree if and only if it satisfies Weak Trivial
Intersection.

(b) A poset (N,≥) is a tree if and only if its set representation by principal ideals
(↓N,⊇) satisfies Trivial Intersection.

Proof. (a) It suffices to notice that Weak Trivial Intersection is equivalent to prop-

erty (3) and apply Lemma 1.

(b) “if:” If (↓N,⊇) satisfies Trivial Intersection, then it satisfies Weak Trivial Intersec-

tion and by part (a) it is a tree. By isomorphism (N,≥) is a tree.

“only if:” Let (N,≥) be a tree and let x, y ∈ N such that ↓ x∩ ↓ y 	= ∅. Let

z ∈↓ x∩ ↓ y. It follows that ↓ z ⊆↓ x∩ ↓ y. By isomorphism and part (a), (↓N,⊇)
satisfies Weak Trivial Intersection, and hence either ↓x ⊂↓y or ↓y ⊆↓x.

Any set representation of a tree is necessarily a tree (by order isomorphism), and,
hence, Proposition 2(a) characterizes all set representations of trees as the V -posets
satisfying Weak Trivial Intersection. Still, Trivial Intersection is more appealing.
(Intuitively, we think of unordered nodes as disjoint entities.) Proposition 2(b) es-
tablishes that trees can also be characterized as those posets whose set representations
by principal ideals satisfy Trivial Intersection. The implication is rather natural if one
observes that, for (↓N,⊇), there is no difference between an intersection of two nodes
being empty and not containing any other node, i.e.Weak Trivial Intersection and
Trivial Intersection are the same property for this particular set representation. Still,
there may be set representations of a tree which satisfy Weak Trivial Intersection but
not Trivial Intersection.

Example 1. Let (M,⊇) be the {1, 2, 3}-poset given by

M = {{1, 2, 3} , {1, 2} , {2, 3}}
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Trivial Intersection fails, because {1, 2}∩{2, 3} 	= ∅ and neither of the nodes contains
the other. But Weak Trivial Intersection holds, because its hypothesis is void (for
{1, 2} and {2, 3}). The set representation by subtrees is given by

M ′ = {{s1, s2, s3} , {s2} , {s3}}

where s1 = {1, 2, 3}, s2 = {1, 2}, and s3 = {2, 3}. Now {s2} ∩ {s3} = ∅, because
nodes are elements of 2M rather than M .

But this set representation is still not satisfactory. Intuitively, one would like to
remove the redundant element 2 from V and obtain a set representation in terms of
a {1, 3}-poset (M ′′,⊇) with M ′′ = {{1, 3} , {1} , {3}}.

This points to a fundamental question. In M ′ the primitives are the nodes, i.e.,
M ′ is formed by subsets of an underlying set (of sets). By contrast, in M ′′ only
ultimate “outcomes” are elements of an underlying set of which the elements of M ′′

are subsets.

2.2. Example: Differential Game (tree). The various concepts of trees that
will be considered, starting with Definition 5, are quite general. We will allow for all
classical examples from game theory, from finite trees to the infinite ones underlying
repeated games, or Rubinstein’s [20] bargaining game. The purpose of the following
example, that will repeatedly be referred to, is to illustrate that our concepts go even
further. They include as examples the trees of so-called “differential games” (decision
problems in continuous time).

To see this, let V be the set of functions f : R+ → A, where A is some given set
of “actions,” containing at least two elements, and let

N = {xt(g) |g ∈ V, t ∈ R+} where

xt(g) = {f ∈ V |f(τ ) = g(τ ), ∀τ ∈ [0, t)}

for any g ∈ V and t ∈ R+.
Intuitively, at each point in time t ∈ R+ a decision at ∈ A is taken. The “history”

of all decisions taken in the past (up to, but exclusive of, time t) is a function f :
[0, t) → A, i.e. f(τ) = aτ for all τ ∈ [0, t). A node at “time” t is the set of all functions
which coincide with f on [0, t), all possibilities still open for their values thereafter.

We claim that (N,⊇) is a V -poset satisfying Trivial Intersection, and hence a tree
by Proposition 2(a). To verify this claim, let xt(g) and xτ(h) be two arbitrary nodes,
with g, h ∈ V and t, τ ∈ R+. If xt(g)∩ xτ (h) 	= ∅, then there is some f ∈ V such that
f(s) = g(s) for all s ∈ [0, t) and f(s) = h(s) for all s ∈ [0, τ). If, say, τ � t, then
g(s) = f(s) = h(s) for all s ∈ [0, τ ), implying that xt(g) ⊆ xτ(h) as required.

In this tree, there is no “point in time” where the decision between two distinct
nodes xt(g) and xt(h) for which g(τ) = h(τ ) for all τ ∈ [0, t), but g (t) 	= h (t), is
actually “taken.”3 However, the definition is operational in the sense that, in each

3Suppose the convention in the specification of nodes would be changed such that for two functions

to belong to the same node they would have to agree on the closed interval [0, t]. Then there would

be no “point in time” when the decision actually “becomes effective.”
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node xt(g), the decision that an agent has to take is clear (his action at time t),
and the history up to that point is clearly specified (by the function g on [0, t)).
Ultimately, a function f ∈ V becomes a complete description of all decisions taken
from the beginning to the end. The classical name for such descriptions is “plays.”

2.3. Decision Trees. For a poset (N,≥) a chain c ∈ 2N is maximal if there is
no x ∈ N \ c such that c ∪ {x} is a chain. To see that every chain is contained in
a maximal chain, recall the Hausdorff Maximality Principle, which is an equivalent
form of the Axiom of Choice and, hence, Zorn’s Lemma (see Birkhoff [5], Chapter
VIII, or Hewitt and Stromberg [11], Chapter 1).

Hausdorff Maximality Principle. Let (N,≥) be a poset and c ⊆ N a chain in N .
Then there exists a maximal chain w in N such that c ⊆ w.

Definition 7. For a tree (N,≥) a play w is a maximal chain in N . Denote by W
the set of all plays. Given a node x ∈ N , let W (x) = {w ∈ W |x ∈ w} be the set of
all plays passing through x.

The next result identifies key properties of the mapping W : N → W . Its proof
is straightforward and omitted (notice, e.g., that part (a) follows directly from the
Hausdorff Maximality Principle).

Lemma 2. For any tree (N,≥) and all nodes x, y ∈ N :
(a) The set W (x) of plays passing through x is nonempty,
(b) if x ≥ y then W (x) ⊇ W (y).

Any chain is a tree. But in a chain nodes that follow a given node do not represent
alternatives, because there is only one play for the whole tree. To model decisions, a
given node should be followed by several others which are not related by ≥ . The idea
is that ≥ expresses “history,” while nodes not related by ≥ model decisions among
alternative “histories.” If every node represents a decision, the following definition is
obtained.

Definition 8. A decision tree is a tree (N,≥) such that for all x, y ∈ N

if W (x) = W (y) then x = y (6)

A decision tree is a tree without irrelevant nodes, where a node is irrelevant if
it is followed only by one other node. The presence of irrelevant nodes would make
it impossible to recover nodes as sets of plays, since the plays passing through two
different nodes may be identical. Since irrelevant nodes serve no purpose for decision
theory, Definition 8 rules them out and demands that, every time a node is reached,
there must have been another alternative. An alternative definition of decision trees,
relying explicitly on this intuition, is given next.
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Lemma 3. A tree (N,≥) is a decision tree if and only if for all x, y ∈ N

if x ≥ y and y 	≥ x then there is z ∈ N
such that x ≥ z, y 	≥ z, and z 	≥ y

(7)

Since property (7) is given purely in terms of the partial order ≥, it is easy to
conclude that the property of being a decision tree is preserved by order isomorphism.
That is, if a poset is order isomorphic to a decision tree, it must itself be a decision
tree. The translation of (7) into set-theoretic terms gives rise to the following two
concepts.

Definition 9. A V -poset (M,⊇) satisfies Separability if, for all a, b ∈ M

if b ⊂ a, then there is c ∈ M such that c ⊆ a and b ∩ c = ∅ (8)

A V -poset (M,⊇) satisfies Weak Separability if, for all a, b ∈ M,

if b ⊂ a, there is c ∈ M such that c ⊆ a but c \ b 	= ∅ and b \ c 	= ∅ (9)

Clearly, Separability implies Weak Separability. If Weak Separability is written
in terms of an abstract partial order ≥, property (7) is obtained. Separability, on
the other hand (analogously to Trivial Intersection), cannot be translated back into
arbitrary posets. However, as the next (immediate) lemma shows, the difference only
exists in the absence of Trivial Intersection.

Lemma 4. Let (M,⊇) be a V -poset satisfying Trivial Intersection, and let b, c ∈ M .
Then,

b \ c 	= ∅ and c \ b 	= ∅ if and only if b ∩ c = ∅

In particular, under Trivial Intersection, Weak Separability holds if and only if Sep-
arability holds.

It follows that Separability and Weak Separability are equivalent for the set rep-
resentation by subtrees, but not necessarily for arbitrary set representations of trees.
The next result makes use of these properties to give a full characterization of set
representations of decision trees.

Proposition 3. (a) A V -poset (M,⊇) is a decision tree if and only if it satisfies
Weak Trivial Intersection and Weak Separability.

(b) A poset (N,≥) is a decision tree if and only if its set representation by subtrees
(↓N,⊇) satisfies Trivial Intersection and Separability.

Proof. (a) It suffices to notice that Weak Separability is equivalent to property (7)

and apply Lemma 3 and Proposition 2(a).
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(b) “if:” If (↓N,⊇) satisfies Trivial Intersection and Separability, then it satisfies Weak

Trivial Intersection and Weak Separability and by part (a) it is a decision tree. By isomor-

phism (N,≥) is a decision tree.

“only if:” Let (N,≥) be a decision tree. By Proposition 2(a), (↓N,⊇) satisfies Trivial
Intersection. But, by isomorphism, (↓N,⊇) is a decision tree and by part (a) satisfies

Weak Separability. By Lemma 4, we have that (↓N,⊇) satisfies also Separability.

This result is the analogous to Proposition 2 for decision trees. Any set represen-
tation of a decision tree is necessarily a decision tree (by order isomorphism), and
hence Proposition 3(a) characterizes all set representations of decision trees as the
V -posets satisfying Weak Trivial Intersection and Weak Separability. Proposition
3(b) establishes that decision trees can also be characterized as those posets whose
set representations by principal ideals satisfy Trivial Intersection and Separability.

Since the set (of sets) M in the set representation of a decision tree can be arbi-
trary, there may be set representations of a decision tree for which Separability fails,
but then, by Lemma 4, Trivial Intersection must also fail.

Example 2. Consider again the {1, 2, 3}-poset (M,⊇) from Example 1. Separability
(8) does not hold, because {1, 2} ⊂ {1, 2, 3} and yet the only other node contained
in {1, 2, 3}, that is, {2, 3}, has a nonempty intersection with {1, 2}. However, Weak
Separability (9) holds. Neither of the nodes {1, 2} and {2, 3} contains the other.

Example 3. The differential game tree example from Section 2.2 above is a decision
tree. For, let xt(g) and xτ(h) be two nodes, with g, h ∈ V and t, τ ∈ R+, such that
xt(g) ⊂ xτ(h). Then, τ < t. Choose any f ∈ V such that f(s) = h(s) for all s ∈ [0, τ )
and f(τ ) 	= g(τ ). Then, for any s with τ < s < t, we have that xs(f) ⊆ xτ(h) but
xs(f) ∩ xt(g) = ∅, verifying Separability. Since this example also satisfies Trivial
Intersection, it follows from Proposition 3(a) that this tree is a decision tree.

2.4. Representation by Plays. The arbitrariness of the V -poset representing a
tree makes it difficult to interpret the elements of V . In this subsection, it is shown
that every decision tree (N,≥) admits a set representation (M,⊇) where M ⊆ 2W is
a collection of nonempty sets of plays, i.e., every decision tree can be represented by
a W -poset.

Intuitively, one should be able to take plays and nodes alternatively as the prim-
itives of a tree. If nodes are the primitives, plays are derived as maximal chains.
If plays are the primitives, nodes are recovered as sets of plays sharing a common
history.

Definition 10. For a tree (N,≥) its image in plays is the tree (W (N),⊇), where

W (N) = {W (x)}
x∈N

=
{
a ∈ 2W |∃ x ∈ N : a = W (x)

}

and ⊇ is set inclusion.
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It is easy to see that a tree’s image in plays satisfies Trivial Intersection, and,
hence, is itself a tree (by Proposition 2(a)).

Lemma 5. Let (N,≥) be a tree. Its image in plays (W (N),⊇) satisfies Trivial
Intersection.

Definition 11. A tree (N,≥) can be represented by plays if the mapping4 W :
N → W (N) is an order isomorphism between (N,≥) and its image in plays (W (N),⊇).
The latter is then called the tree’s (set) representation by plays.

The image in plays is the natural candidate for a “canonical” set representation.
An arbitrary tree, though, need not be order isomorphic to its image in plays.

Theorem 1. A tree (N,≥) can be represented by plays if and only if it is a decision
tree.

Proof. “if:” Let W be the set of plays. The set W (N) and its elements are non-

empty by Lemma 2(a). The mapping W : N → W (N) is one-to-one by (6) and onto by

construction. Next, it is verified that the bijection W is order embedding.

Let x, y ∈ N . If y ≥ x, then by Lemma 2(b) W (x) ⊆ W (y). Conversely, suppose

W (x) ⊆ W (y). Choose w ∈ W (x) ⊆ W (y). Since x, y ∈ w, either x ≥ y or y ≥ x. In

the first case, the previous argument would imply W (x) = W (y) and, therefore, x = y,
because W is one-to-one. Since ≥ is reflexive, in both cases y ≥ x. Hence, y ≥ x ⇔
W (x) ⊆ W (y) for all x, y ∈ N , i.e.W (·) is an order isomorphism.

“only if:” Let x, y ∈ N . If W (x) = W (y), then x = y because the mapping W is

one-to-one.

The set representation by plays of a decision tree is itself a decision tree (by
isomorphism) which satisfies Trivial Intersection by Lemma 5 and Weak Separability
by Proposition 3(a). Hence, it also satisfies Separability (by Lemma 4).

Corollary 1. If (N,≥) is a decision tree then its image in plays (W (N),⊇) satisfies
Separability.

Hence, the set representation by plays of a decision tree satisfies Trivial Intersec-
tion and Separability, and is order-isomorphic to the decision tree. These results can
also be understood as follows. The properties that characterize set representations of
decision trees, Weak Trivial Intersection and Weak Separability, have order-theoretic
analogues, that are preserved by order isomorphisms. Trivial Intersection and Separa-
bility, on the other hand, make sense only for V -posets and, hence, are not preserved
by order isomorphisms. However, both the set representation by subtrees and the set
representation by plays of a decision tree satisfy Trivial Intersection and Separability

4No confusion should arise between the mapping W (·) assigning to each node x the set of plays

passing through x and the set W of all plays.
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and can be taken as “canonical.” The former gives a particularly “bulky” represen-
tation, while the latter conforms to our intuition, according to which we should be
able to take either nodes or plays as primitives. Besides, it will be seen that the
representation by plays satisfies stronger properties.

Example 4. Let (M,⊇) be a decision tree with M = {{1, 2, 3} , {1, 2} , {3}}. This
tree satisfies Trivial Intersection and Separability, but a decision between 1 and 2 is
never taken, i.e., there is a redundant element in the underlying set. Its set represen-
tation by subtrees is given by

M ′ = {{s1, s2, s3} , {s2} , {s3}}

where s1 = {1, 2, 3}, s2 = {1, 2}, and s3 = {3}. In this representation there is also an
irrelevant element in the underlying set, because no decision is ever taken to select
s1. The representation by plays of (M,⊇) is given by M ′ = {{w1, w2} , {w1} , {w2}},
where w1 = {{1, 2, 3} , {1, 2}} and w2 = {{1, 2, 3} , {3}}. In a sense, the redundant
element 2 has disappeared.

This example shows that the representation by plays “reduces” the underlying set,
eliminating irrelevant elements. What is still missing is a further separation property
which guarantees that, given two elements of the underlying set, there is always a
decision to distinguish between them.

Example 5. Since the differential game tree example of Section 2.2 is a decision tree,
it can be represented by plays. Given a node xt(g), the set of plays passing through
it is given by

W (xt(g)) =
{
{xτ(f)}τ∈[0,∞) |f ∈ V with f(τ) = g(τ )∀ τ ∈ [0, t)

}
.

3. S�� T����

In this section we consider decision trees which are V -posets satisfying the two key
properties of the set representations by plays and by subtrees.

Definition 12. A V -poset (M,⊇) is a V -set tree if it satisfies (4) and (8), i.e., for
all a, b ∈ M

(Trivial Intersection) if a ∩ b 	= ∅ then either a ⊂ b or b ⊆ a, and
(Separability) if b ⊂ a then ∃ c ∈ M such that c ⊆ a and b ∩ c = ∅.

A V -set tree is rooted if V ∈ M .

As we have seen, an example of a V -set tree is given by the differential game
(decision) tree from Section 2.2. All V -set trees are decision trees, but not all V -
posets, that are decision trees, are also V -set trees, (see Proposition 3(a)). However,
given a decision tree (N,≥), we can find two alternative set representations which
turn out to be V -set trees. The first is the set representation by subtrees, which is
a ↓N -set tree (where ↓N is the set of subtrees of (N,≥)) by Proposition 3(b). The
second (by Theorem 1) is the image in plays, which is a W -set tree (where W is the
set of plays of (N,≥)) by Lemma 5 and Corollary 1.
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3.1. Reduced-Form Posets. Intuitively, Separability for a V -set tree (M,⊇)
ensures that there are no redundant nodes in M . Yet, there may still be redundant

elements in V . Roughly, an element v ∈ V is redundant, if it can be deleted without
affecting the structure of the tree. But there are two meanings for when an element
of V is redundant.

Example 6. Let V = {1, 2, 3, 4, 5} and M = {{1, 2, 3, 4} , {1, 2} , {3}}. Then (M,⊇)
satisfies Trivial Intersection (4) and Separability (8). For, if b ⊂ a then a = {1, 2, 3, 4},
so that there always is c ∈ M \ {a, b} such that c ⊂ a and b ∩ c = ∅. On the other
hand, V contains redundant elements for two reasons.

First, 4 /∈ {1, 2}∪{3}, but 4 ∈ a ∈ M implies a = {1, 2, 3, 4} so that {1, 2}∪{3} ⊂
a; hence, there is no b ∈ M with v ∈ b \ a for v = 1, 2, 3. Intuitively, element 4 ∈ V
is not separable. Similarly, since there is no a ∈ M with 5 ∈ a, there are no a, b ∈ M
such that 5 ∈ a \ b and v ∈ b \ a for v = 1, 2, 3, 4. Second, 1 	= 2, but 1 ∈ c ∈ M if
and only if 2 ∈ c ∈ M . Intuitively, elements 1, 2 ∈ V are duplicates.

In this example we attribute the first redundancy to the two elements 4, 5 ∈ V not
being separable. The structure of the tree (M,⊇) would not be affected by eliminating
elements 4 and 5 from V . The second redundancy we attribute to elements 1, 2 ∈ V
being duplicates. If one of them were eliminated (or they would be identified), the
structure of the tree (M,⊇) would not be affected.

To pin down these redundancies, extend the definition of the up-set to elements
of the underlying set as follows. Let (M,⊇) be a V -poset, v ∈ V , and define

↑{v} = {a ∈ M | v ∈ a} (10)

If {v} ∈ M , this coincides with the previously defined up-set. With this convention,
the aforementioned redundancies can be tackled.

We start with duplicates. Define the equivalence relation ∼ on V by

v ∼ v′ if ↑{v} =↑{v′} (11)

that is, if, for all a ∈ M , v ∈ a ⇔ v′ ∈ a. Note that v ∈ a ⇔ [v] ⊆ a for all a ∈ M
and all v ∈ V , where [v] denotes the equivalence class (with respect to ∼) to which
v belongs. In Example 6 we have 1 ∼ 2, so [1] = [2] = {1, 2}, but [v] = {v} for
v = 3, 4, 5. By definition, it is now justified to write ↑ [v] =↑{v}.

Obviously, any V -poset (M,⊇) can be identified with a (V/∼)-poset, where V/∼
is the quotient set, and this representation will contain no duplicate elements.

Turning to separable elements, consider the subset S (V ) of the quotient space
V/∼ defined by

S (V ) =
{
[v] ∈ V/∼

∣∣ ∩a∈↑[v]a = [v]
}

(12)

which will be referred to as the set of separable equivalence classes. In Example 6
we have ↑ [4] = {{1, 2, 3, 4}} and ↑ [5] = ∅, so [4] , [5] /∈ S(V ), while ∩a∈↑[v]a = [v] for
v = 1, 2, 3. The following justifies the use of the word “separable” for these classes.
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Lemma 6. Let (M,⊇) be a V -poset. The equivalence class [v] ∈ V/∼ is separable,
i.e. [v] ∈ S(V ), if and only if for all v′ ∈ V \ [v] there is a ∈ M such that [v] ⊆ a and
v′ /∈ a, i.e.V \ [v] = V \ ∩a∈↑[v]a = ∪a∈↑[v] (V \ a)

This result characterizes separable equivalence classes as those which can be “sep-
arated” from other classes by nodes. The next result shows that the intersection of
any two elements from a V -poset (M,⊇) contains at least one separable equivalence
class.

Lemma 7. Let (M,⊇) be a V -poset. If a, b ∈ M are such that a ∩ b 	= ∅ (not
necessarily a 	= b) then there is [v] ∈ S (V ) such that [v] ⊆ a ∩ b.

Definition 13. For a V -poset (M,⊇) its reduced form is the S (V )-poset (M∗,⊇)
given by

M∗ = {a∗ ⊆ S (V ) | ∃ a ∈ M : [v] ∈ a∗ ⇔ [v] ⊆ a}

For instance, S(V ) = {[1], [3]} and M∗ = {{[1], [3]} , {[1]} , {[3]}} in Example 6.

Proposition 4. If the V -poset (M,⊇) is a V -set tree, then it is order isomor-
phic to its reduced form with order isomorphism ϕ : M → M∗ given by ϕ (a) =
{[v] ∈ S (V ) |[v] ⊆ a}.

Proof. We first show that the mapping ϕ, as defined in the statement, is onto. Let

a∗ ∈ M∗. Then there is a ∈ M such that [v] ∈ a∗ if and only if [v] ⊆ a, i.e.a∗ = ϕ (a)
and ϕ is onto.

Let a, b ∈ M be such that a ⊆ b. Then a ⊇ [v] ∈ S (V ) implies b ⊇ [v] ∈ S (V ),
so ϕ (a) ⊆ ϕ (b). Conversely, if a, b ∈ M are such that ϕ (a) ⊆ ϕ (b), then [v] ∈ ϕ (a)
implies [v] ∈ ϕ (b), so a ⊇ [v] ∈ S (V ) implies b ⊇ [v], hence, a ∩ b 	= ∅. By Trivial

Intersection, either a ⊆ b or b ⊂ a. If b ⊂ a, then by Separability there is c ∈ M such

that c ⊆ a and b ∩ c = ∅. By Lemma 7, we can choose [v′] ∈ S (V ) such that [v′] ⊆ c.
Then ϕ (c) ⊆ ϕ (a) ⊆ ϕ (b) implies [v′] ⊆ b, in contradiction to b ∩ c = ∅. Hence, a ⊆ b
must hold and ϕ is order embedding. By Remark 1, the statement is verified.

That the hypothesis of a V -set tree (rather than a V -poset) is necessary for
Proposition 4 is illustrated by the following example.

Example 7. Reconsider Example 1. There, ↑ {1} = {{1, 2, 3} , {1, 2}}, ↑ {2} =
{{1, 2, 3} , {1, 2} , {2, 3}} = M , and ↑ {3} = {{1, 2, 3} , {2, 3}}, so all equivalence
classes with respect to∼ are singletons, but only 2 ∈ V is separable, i.e.S (V ) = {[2]},
and [2] ⊆ a for all a ∈ M . Therefore, M∗ = {{2}} cannot be order isomorphic to
(M,⊇). This is due to a violation of Trivial Intersection.

Yet, this example does not mean that Proposition 4 can be strengthened to a
characterization. The next example shows that there are V -posets (in fact, trees)
that are order isomorphic to their reduced form, but are not V -set trees. The crucial
point is the step from Weak Trivial Intersection to Trivial Intersection.
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Example 8. Let V = {1, 2, 3} and M = {{1, 2, 3} , {1, 2} , {2, 3} , {1, 3}}. Then,

↑ {1} = {{1, 2, 3} , {1, 2} , {1, 3}} and ∩a∈↑{1} a = {1} = [1] ,

↑ {2} = {{1, 2, 3} , {1, 2} , {2, 3}} and ∩a∈↑{2} a = {2} = [2] ,

↑ {3} = {{1, 2, 3} , {2, 3} , {1, 3}} and ∩a∈↑{3} a = {3} = [3] ,

so all equivalence classes are singletons and all elements of V are separable, i.e.,
S (V ) = {[1] , [2] , [3]}. Therefore,

M∗ = {{[1] , [2] , [3]} , {[1] , [2]} , {[2] , [3]} , {[1] , [3]}} ,

so (M,⊇) and (M∗,⊇) are order isomorphic by ϕ (a) = {[v] ∈ S (V ) |[v] ⊆ a}.

This example also shows that without Trivial Intersection (but still with Separa-
bility) it may not be possible to find a subset V ′ ⊆ V such that Trivial Intersection
holds for (M ′,⊇) with

M ′ = {a′ ⊆ V ′ | ∃ a ∈ M : a′ = a ∩ V ′}

and (M ′,⊇) is order isomorphic to (M,⊇). For, if 1 ∈ V ′ then 1 ∈ {1, 2} ∩ V ′ and
1 ∈ {1, 3}∩ V ′. So, if (M ′,⊇) satisfies Trivial Intersection, then 1 /∈ V ′. Therefore, if
{1, 2} ∩ V ′ 	= ∅, it follows that 2 ∈ V ′ and 2 ∈ {1, 2} ∩ V ′. But then 2 ∈ {2, 3} ∩ V ′

contradicts Trivial Intersection on (M ′,⊇). Hence, (M ′,⊇) cannot satisfy Trivial
Intersection and be order isomorphic to (M,⊇) at the same time.

3.2. Reduced Form and Plays. In this subsection the relation between sepa-
rable classes and plays (maximal chains of nodes) is explored.

Recall that, by Lemma 7, for a V -poset (M,⊇) every element a ∈ M contains at
least one separable equivalence class. Reciprocally, if for a V -poset (M,⊇) and v ∈ V
there exists some a ∈ M such that a ⊆ [v], then [v] ∈ S(V ). For, a ⊆ [v] implies
a = [v] (because v′ ∈ [v] implies v′ ∼ v and, therefore, v′ ∈ a and [v] ⊆ a) so that
a ∈↑ [v] and a = [v] ⊆ b for all b ∈↑ [v] imply that a = ∩b∈↑[v]b = [v], as required.

That there is a ∈ M such that a ⊆ [v] is, therefore, sufficient for [v] ∈ S(V ). But
it is not necessary, as the next example shows.

Example 9. Let V = [0, 1] and M =
{
({v})v∈(0,1] , (xt)

∞
t=1

}
, where xt =

[
0, 1

t

]
for

all t = 1, 2, ... Then ∩a∈↑[0]a = {0} = [0], but there is no a ∈ M such that a = [0].

Hence, there are more separable equivalence classes than those which coincide
with a node without a successor.5 The significance of separable equivalence classes is
revealed by the next result.

5Notice that a Cantor-set construction would allow to build an example with infinitely many

such classes.
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Proposition 5. A V -poset (M,⊇) satisfies Trivial Intersection if and only if ↑[v] ∈
W for all [v] ∈ S (V ), where W denotes the set of plays (maximal chains) for (M,⊇).

Proof. “if:” Let W be the set of maximal chains for (M,⊇) and assume that

↑ [v] ∈ W for all [v] ∈ S (V ). If a, b ∈ M are such that a ∩ b 	= ∅ then by Lemma 7 there

is [v] ∈ S (V ) such that [v] ⊆ a ∩ b, i.e., a, b ∈↑ [v]. But then ↑ [v] ∈ W implies either

a ⊂ b or b ⊆ a, verifying Trivial Intersection.

“only if:” By Trivial Intersection ↑ [v] is a chain for all [v] ∈ S (V ). Suppose there is

a ∈ M\ ↑ [v] such that ↑ [v] ∪ {a} is a chain. If there would be some b ∈↑ [v] such that

b ⊆ a, then [v] ⊆ a in contradiction to a /∈↑ [v]. Thus, if ↑ [v] ∪ {a} is a chain, then a ⊂ b
for all b ∈↑ [v]. Then a ⊆ ∩b∈↑[v]b = [v], i.e.a = [v], again in contradiction to a /∈↑ [v].

Even for arbitrary V -posets, on S (V ) the mapping [v] �→↑ [v] is one-to-one (in-
jective). For, if ↑ [v] =↑ [v′] then [v] = ∩a∈↑[v]a = ∩a∈↑[v′] = [v′].

Lemma 8. Let (M,⊇) be a V -poset. For all [v] , [v′] ∈ S (V ), if ↑ [v] =↑ [v′] then
[v] = [v′].

Hence, we have seen that on the set of separable equivalence classes S (V ) for a
V -poset satisfying Trivial Intersection the mapping [v] �→↑ [v] defines an injection
into the set of plays W (by Lemma 8). And if ↑ [v] ∈ W for all [v] ∈ S (V ), then the
V -poset (M,⊇) satisfies Trivial Intersection, by Proposition 5.

Proposition 5 could be simply re-stated as follows: Trivial Intersection is equiva-
lent to {↑ [v] |[v] ∈ S(V )} ⊆ W . The reverse inclusion, though, is not true, as a slight
modification of the last example shows.

Example 10. Let V = (0, 1] and M =
{
({v})v∈(0,1] , (xt)

∞

t=1

}
, where xt =

(
0, 1

t

]
for

all t = 1, 2, ... Then w = {xt}
∞

t=1 is a play that corresponds to no separable class.

The problem in this example is that V itself is not large enough, since intuitively
a play fails to lead to an ultimate outcome (even in the limit).

3.3. Irreducible Set Trees. Proposition 5 suggests that separable equivalence
classes in S (V ) can be used to represent plays for a V -set tree. If the elements of
S (V ) would correspond to singletons in V , this would yield an interpretation of the
elements of V as representatives of plays. In this subsection V -set trees (M,⊇) are
identified for which all separable equivalence classes are singletons of V .

Definition 14. A V -poset (M,⊇) satisfies Irreducibility, or is irreducible, if, for
all v, v′ ∈ V

if v 	= v′ then ∃ a, b ∈ M such that v ∈ a \ b and v′ ∈ b \ a (13)
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Remark 3. By Lemma 4 it follows that, if a V -poset (M,⊇) satisfies Trivial Inter-
section, then Irreducibility holds if and only if Strong Irreducibility holds:6 for all
v, v′ ∈ V

if v 	= v′ then ∃ a, b ∈ M : v ∈ a, v′ ∈ b, and a ∩ b = ∅ (14)

Under Trivial Intersection, Irreducibility implies Separability. The proof of this
implication is straightforward and omitted.

Lemma 9. If a V -poset (M,⊇) satisfies Trivial Intersection and Irreducibility, then
it satisfies Separability.

The converse of Lemma 9 is not true. The trivial V -set tree ({V } ,⊇) satisfies
Separability, because the hypothesis is void, but it fails Irreducibility, whenever V is
not a singleton set.

The set representation by plays of a decision tree satisfies Trivial Intersection by
Lemma 5. It is easy to show that it also satisfies Irreducibility and, therefore, is
an irreducible set tree.7 Hence, every decision tree (N,≥) is order isomorphic to an
irreducible W -set tree. But the hypothesis of a decision tree is only required to make
the image in plays a set representation.

Lemma 10. Let (N,≥) be a tree. Its image in plays (W (N),⊇) is an irreducible
tree.

Recall that, by Lemma 6, separable equivalence classes can be “separated” from
other classes by choosing appropriate elements of M . This immediately implies the
following:

Lemma 11. Let (M,⊇) be a V -poset. Its reduced form (M∗,⊇) is irreducible.

Finally, a V -poset is irreducible if and only if the elements of S(V ) are the singleton
subsets of V .

Proposition 6. A V -poset is irreducible if and only if S (V ) = {{v}}
v∈V

.

Proof. “if:” If S (V ) = {{v}}
v∈V

then by Lemma 11 Irreducibility holds for all

v, v′ ∈ V (the set tree and its reduced form must then be identical).

“only if:” To see the converse, let (M,⊇) be an irreducible V -poset and consider any

v ∈ V . By Irreducibility for any v′ ∈ V \ {v} there are a, b ∈ M such that v ∈ a \ b and

v′ ∈ b \ a, implying that [v] 	= [v′] and, therefore, [v] = {v} for all v ∈ V . That is, all

equivalence classes are singletons. We still have to show that they are separable.

6Observe the formal analogy of Strong Irreducibility with the definition of a Hausdorff space in

topology.
7The set representation by subtrees of a decision tree cannot satisfy Irreducibility. For, if x �= y

and x ≥ y then ↓y ⊆↓x, so that x ∈↓z and y ∈↓z′ for z, z′ ∈ N implies ↓x ⊆↓z and ↓y ⊆↓z′ and,

therefore, y /∈↓z′\ ↓z.
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Consider any class [v] = {v}. If [v] ⊂ ∩a∈↑[v]a then there exists v′ 	= v such that

v′ ∈ a for all a ∈↑ {v}. This contradicts Irreducibility, because the latter requires the

existence of some a ∈↑ {v} and b ∈ M such that v′ ∈ b \ a. Hence, [v] = ∩a∈↑[v]a,
i.e. [v]={v} ∈ S (V ).

This implies {{v}}v∈V ⊆ S (V ). Since all equivalence classes are singletons, the reverse
inclusion follows.

Hence, for irreducible V -set trees the set S (V ) of separable equivalence classes
simply consists of the collection of all singleton subsets of V . Therefore, for an
irreducible V -set tree the mapping v �→↑ {v} on V is a one-to-one function into the
set W of plays (by Proposition 5 and Lemma 8).

Example 11. The differential game tree of Section 2.2 satisfies (Strong) Irreducibil-
ity. For, if g, f ∈ V and g 	= f , then there is some t ∈ R+ such that f(t) 	= g(t).
For any τ with t < τ it then follows that xτ(f) ∩ xτ(g) = ∅ (because elements of
V are functions), verifying (14). Moreover, every g ∈ V uniquely induces the play
↑{g} = {xt(g)}t∈[0,∞).

3.4. Proper Order Isomorphisms. Set trees are not only decision trees, but
have more structure. In this subsection we study when the “strong” properties, Trivial
Intersection and Separability, are preserved by order isomorphisms. This will shed
more light on Irreducibility.

Definition 15. Let (M,⊇) be a V -poset, (M ′,⊇) a V ′-poset, and ϕ : M → M ′ an
order isomorphism between the two. The order isomorphism ϕ is proper if

ϕ (a) ∩ ϕ (b) = ∅ implies a ∩ b = ∅ for all a, b ∈ M (15)

Note that properness need not be symmetric. That (M,⊇) is properly isomorphic
to (M ′,⊇) does not necessarily imply that (M ′,⊇) is properly isomorphic to (M,⊇).
Yet, a proper order isomorphism is necessary and sufficient to preserve the strong
properties, as the next result states.

Lemma 12. Let (M,⊇) be a V -poset, (M ′,⊇) a V ′-poset, and ϕ : M → M ′ an
order isomorphism between the two.

(a) If (M,⊇) satisfies Trivial Intersection, then ϕ is proper.
(b) If (M ′,⊇) satisfies Trivial Intersection, then (M,⊇) satisfies Trivial Intersec-

tion if and only if ϕ is proper.
(c) If (M ′,⊇) is a V ′-set tree, then (M,⊇) is a V -set tree if and only if ϕ is proper.

Consider a decision tree (M,⊇). Its image in plays, (W (M),⊇), is order isomor-
phic to (M,⊇) by Theorem 1. Still, the order isomorphism is not necessarily proper.
To see why, recall that decision trees are characterized only by Weak Trivial Inter-
section and Weak Separability (Proposition 3(a)), while (W (M),⊇) is a W -set tree
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by Lemma 5 and Corollary 1. Hence, the concept of proper order isomorphism adds
further structure.

On the other hand, if both (M,⊇) and (M ′,⊇) satisfy Trivial Intersection, then
all order isomorphism between them and their inverses are trivially proper. Thus,
the following characterization says that set trees are precisely those posets (of sets)
that are properly order isomorphic to their reduced forms, provided the latter are
irreducible set trees.

Theorem 2. A V -poset (M,⊇) is a V -set tree if and only if its reduced form (M∗,⊇)
is an irreducible S (V )-set tree and (M,⊇) is properly (order) isomorphic to (M∗,⊇).

Proof. The “if”-part is immediate from Lemma 12. For the “only if”-part, note

that Irreducibility of (M∗,⊇) follows from Lemma 11. That (M,⊇) is order isomorphic

to its reduced form follows from Proposition 4. That the order isomorphism ϕ (a) =
{[v] ∈ S (V ) |[v] ⊆ a} from Proposition 4 is proper follows from Lemma 7. For, if a∩b 	= ∅,
for some a, b ∈ M , then by Lemma 7 there is [v] ∈ S (V ) such that [v] ⊆ a ∩ b, hence
[v] ∈ ϕ (a) ∩ ϕ (b) by the construction of ϕ.

Intuitively, Theorem 2 shows that any V -set tree is properly order-isomorphic to
an irreducible set tree, obtained by appropriately shrinking the underlying set V (to
the set of separable equivalence classes). Moreover, by Proposition 5 for any V -set
tree the mapping [v] �→↑ [v] on S (V ) is an injection into the setW of plays (by Lemma
8). If this mapping were onto (surjective), W and S (V ) could be identified. (Recall,
though, Example 10.) In particular, if this mapping were onto for an irreducible V -set
tree, then there would be no distinction between W and V (rather than S (V )), due
to Proposition 6. This discussion motivates the following.

Definition 16. Let (M,⊇) be a V -poset and (M ′,⊇) a V ′-poset. An order isomor-
phism ϕ : M → M ′ is an isomorphic embedding if there is an injection f : V → V ′

such that

f (a) = {v′ ∈ V ′ |∃ v ∈ a : v′ = f (v)} ⊆ ϕ (a) for all a ∈ M (16)

If (M,⊇) is isomorphically embedded in (M ′,⊇) and, moreover, f is also onto (sur-
jective) and satisfies f (a) = ϕ (a) for all a ∈ M , then (M,⊇) and (M ′,⊇) are doubly
(order) isomorphic.

It is trivially true that every isomorphic embedding is a proper order isomorphism.
For, if (M,⊇) is isomorphically embedded in (M ′,⊇) and a, b ∈ M are such that
v ∈ a ∩ b, then f (v) ∈ ϕ (a) ∩ ϕ (b) implies ϕ (a) ∩ ϕ (b) 	= ∅. The converse is not
true: By Theorem 2 a V -set tree is properly order isomorphic to its reduced form, the
latter is irreducible, but the former may not be. But, as the next lemma establishes,
only irreducible V -posets can be isomorphically embedded in irreducible V ′-posets.

Lemma 13. Let (M,⊇) be a V -poset which is isomorphically embedded in a V ′-
poset (M ′,⊇). If (M ′,⊇) satisfies Irreducibility, then so does (M,⊇).
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In other words, like other “strong” properties, Irreducibility (which refers to the
underlying set and, hence, cannot be stated in purely order-theoretic terms) is in-
herited by V -posets isomorphically embedded in irreducible V ′-posets. Therefore,
irreducible set trees are precisely those that are doubly isomorphic to their reduced
forms.

Proposition 7. A V -set-tree is irreducible if and only if it is doubly isomorphic to
its reduced form.

Proof. The “if”-part follows from Lemmata 11 and 13. For the “only if”-part, let

(M,⊇) be an irreducible V -set tree. By Theorem 2 it is properly order isomorphic to its

reduced form. By Proposition 6 S (V ) = {{v}}
v∈V

and the mapping f, given by f(v) =
[v], is a bijection such that ϕ (a) = {[v] ∈ S (V ) |[v] ⊆ a} = f(a) for all a ∈ M .

This clarifies the status of Irreducibility. It is equivalent to the property that a
set tree is not only properly order isomorphic to its reduced form, but the underlying
sets, V for the set tree and S (V ) for its reduced form, also “look alike.”

3.5. Bounded Set Trees. Proposition 5 says that certain plays for a V -set tree
(M,⊇) can be represented by elements of S (V ). According to Proposition 6 equiv-
alence classes in S (V ) have to be used to represent plays, because V may be “too
large.” If the V -set tree were irreducible, V could be used directly.

But even Irreducibility does not ensure that all plays for (M,⊇) can be rep-
resented by elements of V . The problem is that for some play w ∈ W the set
{v ∈ V |v ∈ a, ∀a ∈ w} may be empty, so that not every play is represented by some
v ∈ V , i.e., the given set V may be “too small.” This was the case in Example 10
and is so in the following.

Example 12. (Infinite Centipede) Let V = {1, 2, ...} be the set of natural numbers,
define at = {τ ∈ V |t � τ } for all t = 1, 2, ..., and let M = {({t})∞

t=1
, (at)

∞

t=1
}. Since

aτ ⊆ at ⇔ τ ≥ t and {τ} ⊆ at ⇔ t � τ , for all τ , t = 1, 2, ..., Trivial Intersection
holds. Moreover, τ 	= t, say, t < τ , implies that t ∈ {t}, τ ∈ aτ , and {t} ∩ aτ = ∅, so
Irreducibility also holds. Therefore, (M,⊇) is an irreducible V -set tree.

The set W of plays for (M,⊇) consists of sets of the form
{
{aτ}

t

τ=1
, {t}

}
for

all t = 1, 2, ... plus the play {at}
∞

t=1
. Every play of the form

{
{aτ}

t

τ=1
, {t}

}
can be

represented by the natural number t, for all t = 1, 2, ..., but the play {at}
∞

t=1
cannot

be represented by a natural number. Yet, if the element “∞” is added to V , the
latter play can be represented by this added element.

This suggests that for an irreducible V -set tree (M,⊇) the underlying set V could
be used to represent all plays, provided V is “large enough.” If this holds, then for
any V -set tree with “large enough” V the separable equivalence classes S (V ) could
be used to represent all plays. The next criterion makes precise what “large enough”
V means.
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Definition 17. A V -poset (M,⊇) is bounded (from below) if every chain in M has
a lower bound in V , i.e., if for all chains c ∈ 2M there is v ∈ V such that v ∈ a for all
a ∈ c.

The image in plays of a tree (N,≥) is bounded. For, if c ⊆ W (N) is a chain,
then there is a chain c′ ⊆ N such that x ∈ c′ implies W (x) ∈ c. By the Hausdorff
Maximality Principle there is a play w ∈ W for (N,≥) such that c′ ⊆ w. Therefore,
w ∈ W (x) for all W (x) ∈ c. It follows from Theorem 1 that the set representation
by plays of any decision tree is bounded (and irreducible by Lemma 10). Another
example of a bounded set tree is as follows.

Example 13. The differential game tree from Section 2.2 is bounded. For, consider
any chain c ∈ 2N and let xt(g), xτ(h) ∈ c. If τ � t, then (since c is a chain)
xt(g) ⊆ xτ (h), and it follows that g(s) = h(s) for all s ∈ [0, τ). Hence, the mapping
fc : R+ → A given by

fc(t) =

{
f(t) if there exists xτ(f) ∈ c with τ > t
ao ∈ A otherwise

(17)

is a well defined function. By construction, fc ∈ xτ(f) for all xτ(f) ∈ c, which proves
the claim.

For a V -poset that satisfies Trivial Intersection, to be bounded (from below) can
be expressed by a useful double implication encompassing both Trivial Intersection
and Boundedness.

Lemma 14. A V -poset (M,⊇) satisfies Trivial Intersection and is bounded (from
below) if and only if

c ∈ 2M is a chain if and only if ∃ v ∈ V : v ∈ a, ∀a ∈ c (18)

Condition (18) implies that ∩a∈ca 	= ∅ for any chain c, thus preventing the situa-
tion in Examples 10 and 12. It will now be shown that there is no loss of generality
in assuming that an irreducible V -set tree is bounded. To do this, the underlying set
V gets enlarged to an appropriately constructed superset VB such that a new VB-set
tree is obtained, that is bounded and properly order isomorphic to the original tree.
The idea of enlarging the underlying set is captured by an isomorphic embedding,
where the mapping f : V → VB is simply the identity.

Since by Theorem 2 every V -set tree is order isomorphic to an irreducible set tree,
any V -set tree is order isomorphic to a bounded and irreducible set tree.

Proposition 8. A V -poset (M,⊇) is an irreducible V -set tree if and only if it is
isomorphically embedded in some bounded irreducible VB-set tree (MB,⊇).
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Proof. Since the “if”-part follows from Lemmata 12 and 13, it suffices to demonstrate

the “only if”-part. Let (M,⊇) be an irreducible V -set tree. By Proposition 6 S (V ) =
{{v}}

v∈V
and by Proposition 5 the mapping v �→↑{v} on V is an injection into the setW of

plays. LetW ∗ = {↑{v} |v ∈ V } and define the superset VB of V by VB = V ∪(W \W ∗).
By construction, this union is disjoint.

For any a ∈ M let φ(a) = a ∪ (W (a) \W ∗) ⊆ VB. By construction φ(a) ∩ V = a
(and, therefore, a ⊆ φ(a)). Let

MB = φ(M) = {b ⊆ VB |∃ a ∈ M : b = φ(a)}

It follows that φ : M → MB is onto and also one-to-one, because if a, b ∈ M are such

that φ(a) = φ(b), then a = φ(a) ∩ V = φ(b) ∩ V = b. Moreover, φ(a) ⊆ φ(b) implies

a = φ(a) ∩ V ⊆ φ(b) ∩ V = b for all φ(a), φ(b) ∈ MB. Conversely, if a, b ∈ M are such

that a ⊆ b then by Lemma 2(b) W (a) ⊆ W (b) which implies (by the construction of φ)
that φ(a) ⊆ φ(b). Hence, φ is an order isomorphism.8 To verify that φ is an isomorphic

embedding, let f : V → VB be given by the identity f (v) = v for all v ∈ V , so that (16)

holds trivially.

To establish that (MB,⊇) is a bounded irreducible VB-set tree, the following is needed.

Claim. If a ∩ b = ∅ then φ(a) ∩ φ(b) = ∅ for all a, b ∈ M .

To see this, note that, because VB = V ∪ (W \W ∗) and the union is disjoint, if

φ(a)∩φ(b) 	= ∅ and a∩ b = ∅, then there exists w ∈ W (a)∩W (b), in contradiction

to a ∩ b = ∅.

To verify Trivial Intersection for (MB,⊇), let a′, b′ ∈ MB be such that a′ ∩ b′ 	= ∅
and a, b ∈ M such that a′ = φ(a) and b′ = φ(b). By the Claim a ∩ b 	= ∅. By Trivial

Intersection for (M,⊇) it follows that either b ⊂ a or a ⊆ b. Therefore, because φ is order

embedding, either b′ = φ(b) ⊂ a′ = φ(a) or a′ = φ(a) ⊆ b′ = φ(b).
Next, we verify Irreducibility on VB. (By Lemma 9 this will imply that (MB,⊇) is

both a VB-set tree and irreducible.) If v′, w′ ∈ VB are such that v′ 	= w′, there are three

possibilities.

If v′, w′ ∈ V , Irreducibility for (M,⊇) implies that there are a, b ∈ M such that

v′ ∈ a \ b and w′ ∈ b \ a. It follows that v′ ∈ φ(a) \ φ(b) and w′ ∈ φ(b) \ φ(a).
If v′ ∈ V and w′ ∈ VB\V (and analogously for the reciprocal case), then w′ is a play for

(M,⊇). If v′ ∈ a for all a ∈ w′, then w′ =↑ {v′} ∈ ∪v∈V ↑ {v}, a contradiction. Hence,

there exists a ∈ w′ such that v′ /∈ a. Therefore, w′ 	=↑{v′}, i.e., they are two different plays
in (M,⊇). Let a, b ∈ M such that a ∈↑{v′} \w′ and b ∈ w′\ ↑{v′}. Then v′ ∈ a, because
a ∈↑{v′}. And v′ /∈ b, because b ∈ w′\ ↑{v′}, i.e., v′ ∈ a\b = a\φ(b) ⊂ φ(a) \ φ(b). On
the other hand, because b ∈ w′ ∈ VB\V , it follows that w′ ∈ W (b)\ (∪v∈V ↑{v}) ⊂ φ(b).
Since a /∈ w′, we have that w′ /∈ φ(a) and hence w′ ∈ φ(b) \ φ(a).

Finally, if v′, w′ ∈ VB\V = W \ (∪v∈V ↑{v}), then v′ and w′ are two different plays in

(M,⊇). Let a, b ∈ M such that a ∈ v′\w′ and b ∈ w′\v′. It follows that v′ ∈ φ(a) \ φ(b)
and w′ ∈ φ(b) \ φ(a).

8Clearly, φ has inverse φ−1 :MB →M given by φ−1(a) = a ∩ V for all a ∈MB.
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This shows that Irreducibility holds for all v′, w′ ∈ VB. In other words, the modified

VB-poset (MB,⊇) continues to satisfy Trivial Intersection and Irreducibility and, therefore,

is an irreducible VB-set tree.
To establish that the irreducible VB-set tree (MB,⊇) is bounded from below, consider

any chain c′ in MB. By Irreducibility and the Claim above,

c = φ−1(c′) ≡ {a ∈ M |∃ a′ ∈ c′ : a′ = φ(a)}

is a chain in M . By the Hausdorff Maximality Principle, there exists a play w in M such

that c ⊆ w. If w ∈ ∪v∈V ↑ {v}, let v ∈ V ⊂ VB be such that w =↑ {v}. Then

v is a lower bound for c and, therefore, for c′. If w ∈ W \ ∪v∈V ↑ {v} ⊂ VB, then
w ∈ W (a) \ (∪v∈V ↑{v}) = φ(a) for all a ∈ c and, hence, is a lower bound for c′.

Combining this with Theorem 2 it follows that any V -set tree is properly order
isomorphic to an irreducible set tree which itself is isomorphically embedded in a
bounded irreducible set tree. In this sense, there is no loss of generality in assuming
Irreducibility and Boundedness when working with set trees.

What Boundedness achieves is that the set S (V ) of separable equivalence classes
maps surjectively onto the set W of plays.

Proposition 9. A V -set tree (M,⊇) is bounded if and only if the mapping [v] �→↑ [v]
on S (V ) is onto W , where W is the set of plays for (M,⊇).

Proof. “if:” Suppose the mapping [v] �→↑ [v] on S (V ) is onto W . Let c ∈ 2M be

a chain in M . By the Hausdorff Maximality Principle there is a play w ∈ W such that

c ⊆ w. By hypothesis there is [v] ∈ S (V ) such that w =↑ [v]. Therefore, v ∈ a for all

a ∈ c ⊆ w.
“only if:” Let (M,⊇) be a bounded V -set tree and w ∈ W a play. By hypothesis there

is v ∈ V such that v ∈ a for all a ∈ w. By Trivial Intersection and the fact that w is a

maximal chain, ↑ [v] = w and [v] = ∩ {a |a ∈ w}, and, hence, [v] ∈ S (V ).

Combining the last result with Proposition 6 it follows that for a bounded irre-
ducible V -set tree the mapping v �→↑ {v} is a bijection from V onto the set W of
plays. This result is particularly transparent in the differential game example from
Section 2.2.

4. G��� T����

Theorem 2 and Proposition 8 show that every set tree can be modified into a bounded
irreducible set tree by appropriately shrinking and enlarging the underlying set. The
advantage of assuming a bounded and irreducible V -set tree is that the underlying
set V and the set W of plays can be identified (by Propositions 5 and 9 and Lemma
8). Then, the underlying set can be taken to be the set of plays, and the mapping W
from nodes to (sets of) plays passing through them becomes the identity.
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Definition 18. A game tree is a W -poset (N,⊇) that satisfies

c ∈ 2N is a chain if and only if ∃w ∈ W : w ∈ x, ∀x ∈ c (19)

and for all w,w′ ∈ W

if w 	= w′ then ∃ x, y ∈ N such that w ∈ x \ y and w′ ∈ y \ x (20)

By Lemma 14 condition (19) holds if and only if Trivial Intersection holds and
every chain inN has a lower bound inW . Since condition (20) is simply Irreducibility,
a W -poset (N,⊇) is a game tree if and only if it is a bounded irreducible W -set tree.

4.1. A Characterization. As pointed out earlier, the underlying set W in a
bounded irreducible set-tree (i.e. a game tree) can then be taken to be the set of
plays, and a bounded irreducible tree becomes its own set representation by plays.
Yet, when precisely is a set tree its own set representation by plays? The idea is that,
not only the set of plays W and the underlying set V are bijective, but, additionally,
this bijection can be used to reconstruct the plays passing through a node from the
elements which the node contains. This can be formalized as a double isomorphism.

Definition 19. A V -poset (M,⊇) is its own set representation by plays if there
exists a bijection ψ : V → W such that ψ(a) ≡ {ψ(v)}v∈a = W (a) for all a ∈ M ,
where W : M → W (M) is the mapping assigning plays passing through a node, given
by W (a) = {w ∈ W |a ∈ w}.

Remark 4. Let 2ψ : 2V → 2W be the trivial extension of ψ to the power set given
by 2ψ(a) = ψ(a) for all a ⊆ V . Let iM : M → 2V be the immersion of M into
the power set of V (given by iM(x) = x for all x ∈ M) and iW : W (M) → 2W

the analogous immersion of W (M) into the set of sets of plays. Then, the previous
definition amounts to the following diagram being commutative:

2V � 2W
�

M � W (M)

�2ψ

W (·)

iM iW

A first, straightforward consequence of the definition is the following.

Lemma 15. If a tree (M,⊇) is its own representation by plays, then it is a decision
tree.
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By Theorem 1, a tree can be represented by plays if and only if it is a decision
tree. Combining this fact with the previous Lemma shows that a tree is its own

representation by plays if and only if it is doubly isomorphic to its image in plays via

the natural order isomorphism.

The Infinite Centipede from Example 12 shows that Trivial Intersection and Ir-
reducibility are not sufficient for (M,⊇) to be its own set representation by plays.
This is purely due to the fact that the underlying set V is given, and is unrelated
to properties of the decision tree. That the underlying set V is large enough to con-
tain a lower bound for every chain in M is expressed by adding the converse to the
implication in Trivial Intersection, as in condition (19).

The “only if”-part of condition (19) in Definition 18 is purely a convention on
how the set representation is chosen. That is, by contrast to its “if”-part (viz. Trivial
Intersection) and Irreducibility, (20), it has no impact on the corresponding decision
tree (N,≥), by Proposition 8.

The next Theorem shows that game trees are precisely those decision trees which
are their own set representation by plays.

Theorem 3. For any V -poset (M,⊇) the following statements are equivalent:

(a) (M,⊇) is a game tree.

(b) (M,⊇) is a tree and its own representation by plays.

(c) ψ(v) =↑{v} defines a bijection from the set V to the set W of maximal chains
in M .

Proof. “(a) implies (b):” By Proposition 6 S (V ) = {{v}}v∈V , and by Proposition

5, for every v ∈ V , the set ↑{v} ≡ {a ∈ M |v ∈ a} ⊆ M is a play (a maximal chain with

respect to set inclusion).

Define ψ : V → W by ψ(v) =↑ {v} for all v ∈ V . By Lemma 8 this function is

one-to-one and by Proposition 9 it is onto. Hence, it is a bijection. Moreover, it follows

that ψ−1 (w) is given by the only element in ∩a∈wa = {v ∈ V |v ∈ a, ∀a ∈ w}.
Next, it is verified that ψ (a) ≡ {ψ(v)}v∈a = W (a) for all a ∈ M . For a ∈ M

the plays passing through are W (a) = {w ∈ W |a ∈ w}, as usual. Let w′ ∈ W (a) and
v′ = ψ−1 (w′). Since a ∈ w′ = ψ(v′) = {a′ ∈ M |v′ ∈ a′}, it follows that v′ ∈ a. Hence
w′ ∈ ψ(a). Conversely, let w′ ∈ ψ(a). Then there is v′ ∈ a such that ψ(v′) = w′. Since

w′ = ψ(v′) = {a′ ∈ M |v′ ∈ a′}, it follows that a ∈ w′. Hence, w′ ∈ W (a). In summary,

ψ(a) = W (a) for all a ∈ M , as required by Definition 19.

“(b) implies (c):” Suppose that (M,⊇) is a decision tree and that there exists some

bijection ψ̃ : V → W such that ψ̃(a) ≡
{
ψ̃(v)

}
v∈a

= W (a) for all a ∈ M . Since

(W (M),⊇) is a decision tree by Lemma 10, it follows from Lemmata 12 and 13 that

(M,⊇) is an irreducible V -set tree.

Consequently, by Propositions 5 and 6, ψ(v) = ↑ {v} is a play for all v ∈ V . It

now suffices to show that ψ(v) = ψ̃(v) for all v ∈ V . Let v ∈ V and consider any
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a ∈ ψ(v) =↑ {v}. Then v ∈ a implies that ψ̃(v) ∈ ψ̃(a) = W (a) and, hence, a ∈ ψ̃(v).

It follows that ψ(v) ⊆ ψ̃(v) and, since both ψ(v) and ψ̃(v) are plays, ψ(v) = ψ̃(v) by

maximality.

“(c) implies (a):” Suppose there is v ∈ V such that v ∈ a for all a ∈ c for some c ∈ 2M .

Then c ⊆ ψ(v) = ↑{v} ∈ W implies that c is a chain. This verifies the “if”-part of (19).

If c ∈ 2M is chain, by the Hausdorff Maximality Principle there is a maximal chain

c′ ∈ W such that c ⊆ c′. Since ψ is onto, there is v ∈ V such that ψ(v) = c′ ∈ W . Then

v ∈ b for all b ∈ c′ implies v ∈ a for all a ∈ c. This verifies the “only if”-part of (19).

Let v, v′ ∈ V be such that v 	= v′. Then ψ(v) and ψ(v′) are distinct plays, because ψ
is one-to-one. If for every a ∈ ψ(v) also v′ ∈ a would hold, then ψ(v) ⊆ ψ(v′) would imply

the contradiction ψ(v) = ψ(v′) by maximality. Hence, there is a ∈ ψ(v) such that v′ /∈ a.
A symmetric argument shows that there is b ∈ ψ(v′) such that v /∈ b. Thus v ∈ a \ b and
w ∈ b \ a verifies (20).

Along the way it has been shown that it is justified to call the mapping ψ : V → W
defined by ψ (v) =↑ {v} the canonical mapping. After all, the proof of “(b) implies
(c)” shows that the bijection from the underlying set to the set of plays is unique.

Corollary 2. For any game tree (N,⊇) the bijection in Definition 19 from V to the
set W of plays is unique and given by ψ(v) =↑{v} for all v ∈ V .

In a game tree, by Theorem 3, the sets V and W can be identified. The bijection
ψ : V → W becomes the identity on all of V = W , and then ψ(a) = W (a) for all
a ∈ M , i.e., a node can be identified with the set of plays that pass through it. Game
trees are those trees for which it is inconsequential whether nodes or plays are taken
to be the primitives.

4.2. Complete Game Trees. As the Infinite Centipede from Example 12 shows,
even for a game tree some plays may not end at nodes. As will be seen, Theorem
3 implies that one can always add terminal nodes (singletons) without altering the
structure of the tree. Hence, having all plays ending at nodes or not becomes a mod-
elling decision, and we choose to include terminal nodes in the following definition.

Definition 20. A game tree (N,⊇) is complete if {w} ∈ N for all w ∈ W (where
W is the underlying set). A complete game tree is rooted if W ∈ N .

A W -poset (N,⊇) is a complete game tree if and only if (19) holds and {w} ∈ N
for all w ∈ W , because then Irreducibility, (20), holds trivially for all w,w′ ∈ W .
Theorem 3 implies that every game tree can be completed to a complete game tree
by adding all singletons {w} for w ∈ W to N without affecting the set of plays:

Proposition 10. If the V -poset (N,⊇) is a game tree and Z = {{v} | v ∈ V } is
the collection of singleton sets, then (N ∪ Z,⊇) is a complete game tree. Moreover,
φ(w) = w ∪

{{
ψ−1(w)

}
∩ Z

}
defines a bijection between the set of plays for (N,⊇)

and the set of plays for (N ∪ Z,⊇).
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Proof. Let W be the set of plays for the game tree (N,⊇) and W ′ the set of plays

for (N ′,⊇) where N ′ = N ∪ Z. Let ψ : V → W be the canonical mapping, defined by

ψ(v) = {x ∈ N |v ∈ x} = ↑{v}. Define φ : W → W ′ by φ(w) = w ∪
{{

ψ−1(w)
}
∩ Z

}
.

We show that φ is a bijection.

Let w′ ∈ W ′ and w = w′ ∩ N . Then w ∈ W , ψ−1(w) ∈ V , and φ(w) = w′ ∈ W ′.

Hence, φ is onto (surjective). If φ(w) = φ(ŵ) for w, ŵ ∈ W then

w = φ(w) ∩N = φ(ŵ) ∩ N = ŵ

Thus, φ is one-to-one (injective). It follows that W and W ′ are set-isomorphic (bijective).

By Theorem 3 (applied to (N,⊇)), ψ is bijective and hence ψ′ ≡ φ ◦ ψ : V → W ′ is also

bijective. But

ψ′(v) = {x ∈ N |v ∈ x} ∪ {{v′ ∈ V |v′ ∈ x, ∀x ∈ ψ(v)} ∩ Z} = {x′ ∈ N ′ |v ∈ x′}

because {v′ ∈ V |v′ ∈ x, ∀x ∈ ψ(v)} =
{
ψ−1 (ψ(v))

}
= {v} by Theorem 3. Therefore,

Theorem 3 now implies that (N ′,⊇) is a complete game tree.

In Proposition 10, all singletons are added to N . But some of the singletons
may already have to belong to N , due to Irreducibility, (20). The following example
illustrates this.

Example 14. (Twins) Let V = [0, 1] and N =
{
({v})v∈V , (xt)

∞

t=1

}
, where

xt =

[
0,

1

t + 1

]
∪

[
t

t + 1
, 1

]
for all t = 1, 2, ...

Because {v} ∈ N for all v ∈ V , the poset (N,⊇) is a complete game tree. The set
c∞ = {xt ∈ N |t = 1, 2, ...} is not a play (because c∞ ∪ {0} is a chain), nor is any set
ct = {xτ ∈ N |τ = 1, ..., t} (for the same reason). The set of plays is given by

W =
{(

(ct ∪ {v})
v∈( 1

t+2
, 1

t+1 ]
, (ct ∪ {v})

v∈[ t

t+1
, t+1
t+2)

)
∞

t=1
, c∞ ∪ {0} , c∞ ∪ {1}

}
Hence, V and W are naturally isomorphic by the bijection ψ : V → W , where
ψ(v) = ct(v) ∪ {v} and t(v) is the largest integer such that t(v) � (1− v) /v for all
v ∈ (0, 1/2], ψ(v) = ct(v)∪{v} and t(v) is the largest integer such that t(v) � v/ (1− v)
for all v ∈ (1/2, 1), ψ(0) = c∞ ∪ {0}, and ψ(1) = c∞ ∪ {1}.

The singletons {0} and {1} could not have been added, as in Proposition 10, to
a game tree. For, if originally, say {0} would not be a node, then the original tree
fails Irreducibility, (20). This is, because, without {0}, there would not be any node
that separates 0 ∈ V from 1 ∈ V (i.e. that 0 ∈ V belongs to a node would imply
that 1 ∈ V belongs to this node). Only if the underlying set is modified to become
V ′ = (0, 1], the resulting ordered set (N \ {{0}} ,⊇) would be a game tree; but then
{0} could not be added. Hence, the class of singletons that can truly be added (i.e.
without already being there), as in Proposition 10, forms a particular subset of the set
of all singletons. To unveil what special subset that is, however, takes extra concepts
that are deferred to a separate paper (Alós-Ferrer and Ritzberger [1]).
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Since every game tree can be completed by adding all singletons without changing
any essential features of the tree, by Proposition 10, the transition from game trees
to complete game trees is a pure modelling decision.

By Lemma 5 the representation by plays of a decision tree is an irreducible set tree.
By Proposition 8 every irreducible set tree can be modified - by adding elements to
the underlying set V - to become a bounded irreducible tree, i.e. a game tree. (Hence,
every decision tree is order isomorphic to a game tree.) By Proposition 10 every game
tree can be modified - by adding nodes - to become a complete game tree. Neither
of these modifications changes any essential features of the tree.

The next result gives a characterization of complete game trees in terms of minima
of plays.

Proposition 11. Let (N,⊇) be a V -set tree. Then, (N,⊇) is a complete game tree
if and only if it is irreducible and every play has a minimum.

Proof. “if:” Let (N,⊇) be an irreducible V -set tree for which every play has a

minimum. Then (N,⊇) is a game tree by Theorem 3. For any v ∈ V let ψ (v) = ↑{v} =
w ∈ W be the play associated to v by the canonical mapping. By hypothesis w has a lower

bound z ∈ w and, by the definition of w, we have that v ∈ z.
If there is v′ ∈ z with v′ 	= v, then by Irreducibility there are x, x′ ∈ N such that

v ∈ x \ x′ and v′ ∈ x′ \ x. Since v ∈ x, we have x ∈ w. Since v′ ∈ z and z ⊆ x (because

z ⊆ y for all y ∈ w), it follows that v′ ∈ x, a contradiction. Therefore, z = {v} ∈ N .

“only if:” If (N,⊇) is a game tree, then it is irreducible, because {v} ∈ N for all

v ∈ V . If w ∈ W then by (19) there is v ∈ V such that v ∈ x for all x ∈ w. By definition

x ⊇ {v} ∈ N for all x ∈ w, so w ⊆↑{v}. Since ↑{v} ∈ W by Theorem 3(c), maximality

implies w =↑{v}. Therefore, if z ∈ N is such that z ⊆ x for all x ∈ w, then, in particular,

z ⊆ {v} implies z = {v}. Since, moreover, {v} ∈ w the play w =↑{v} has the minimum

{v} ∈ N .

In one important special case a complete game tree is characterized by a much
simpler condition than the combination of (19) and (20).

Proposition 12. If (N,⊇) is a V -poset such that all chains in N are finite, then
(N,⊇) is a complete game tree if and only if it satisfies Trivial Intersection and
{v} ∈ N for all v ∈ V .

Proof. “if:” If v, v′ ∈ V are such that v 	= v′ then, because {v̂} ∈ N for all v̂ ∈ V ,

v ∈ {v} \ {v′} and v′ ∈ {v′} \ {v} verifies (20). If c ∈ 2N is a chain, then by hypothesis

it is finite, so that ∩x∈cx 	= ∅ implies that there is v ∈ ∩x∈cx ⊆ V . Since the chain c is

arbitrary, is bounded. By Lemma 14, (19) holds, and (N,⊇) is a game tree.

“only if:” If (N,⊇) is a game tree, then Trivial Intersection follows from (19) and

Lemma 14. For any v ∈ V the chain ↑{v} is finite by hypothesis and, therefore, contains a

smallest node x∗ ∈ N such that v ∈ x∗ (i.e. v ∈ y ∈ N ⇒ x∗ ⊆ y). If there is v′ ∈ V \{v}
such that v′ ∈ x∗, then by (20) there are x, y ∈ N such that v′ ∈ x \ y and v ∈ y \ x. But
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v ∈ y implies v ∈ x∗ ⊆ y in contradiction to v′ /∈ y. Hence, there is no v′ ∈ V \ {v} such

that v′ ∈ x∗ and, therefore, {v} = x∗ ∈ N .

Note also that all game trees with underlying finite set V are necessarily complete
game trees. Without finiteness, however, a game tree as in Definition 20 is quite
general. It obviously includes, as we intended, all classical examples from game theory,
e.g. finite trees, the trees of infinitely repeated games, Rubinstein’s [20] bargaining
game, and the discrete trees defined by Osborne and Rubinstein [18], provided those
are decision trees. Moreover, it includes the trees of decision problems in continuous
time, like the differential game example from Section 2.2.

Example 15. As shown before, this differential game tree is irreducible and bounded,
and hence a game tree, where the plays w ∈ W can be identified with the underlying
elements (functions) f ∈ V . To turn this game tree it into a complete game tree, it is
enough to add the singletons as nodes (applying Proposition 10), e.g. simply allowing
t to be infinite in the definition of xt(g) and N .

Since V = xo(g) for any g ∈ V , V belongs to N and every chain for a differential
game tree has an upper bound in N (which is true in any rooted tree). Note, however,
that no play for these trees has a lower bound in N , but only a lower bound in V ,
unless the singletons have been added.

Infima of chains, on the other hand, are easy to identify. Suppose that the tree is
completed by adding the nodes {f} for all f ∈ V . Let c be a chain. If, for all t, there
exists xτ(f) ∈ c with τ > t (which is true for instance for plays), then {fc}, where fc
is defined in (17), is an infimum for c. If there exists t such that the chain contains
no node xτ (f) with τ > t, then let t∗ be the infimum over all such t. The node xt∗(fc)
is an infimum for the chain. To see this, take any node xτ (f) ∈ c; necessarily, τ � t∗

and xt∗(fc) ⊆ xτ(f).
However, xt∗(fc) /∈ c in general, i.e., the chain does not have a minimum. Consider

a fixed f ∈ V and take the chain {xt(f) |t < t∗} for a given t∗. Obviously, xt∗(fc) is
the infimum of the chain, but is not an element of the chain. This means that this
tree fails a condition called “down-discreteness” (see Alós-Ferrer and Ritzberger [1])
and that all nodes (but the root) are “infinite.” Intuitively, this says that no node
other than the root can be reached in a finite number of “steps” from the root.

The last observation raises the issue whether or not a game tree has enough
structure to serve as the “objective” description of what may happen in the course
of an extensive form game. The next section tackles this issue.

5. E�������� F�	
�

In this Section it will be shown that game trees can be used as part of a definition
of an extensive form. Such a definition requires a specification of the players’ choices
on top of the specification of the tree. This is also true in the traditional definition
of an extensive form: choices of players (and, thereby, the information structures of
players) have to be specified separately. The concept of an “information set” (the set
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of nodes, where a certain menu of choices is available), however, need not make sense
in the general setting: information sets may not exist.

5.1. A Definition. Let T = (N,⊇) be a game tree with set of plays W and
X = {x ∈ N |∃ z ∈ N : z ⊂ x} the set of moves. For a set a ⊆ W of plays let
↓a = {x ∈ N |x ⊆ a} be its down-set and define the set of (immediate) predecessors
of a as

P (a) = {x ∈ N |∃ y ∈↓a : ↑x =↑y\ ↓a} (21)

Since every node x ∈ N is a set of plays, nodes too may, but need not have immediate
predecessors. Say that a set a of plays is available at the move x ∈ X if x ∈ P (a).

Definition 21. An extensive form with player set I is a pair (T, C), where T =
(N,⊇) is a game tree with set of plays W and C =

(
C0, (Ci)i∈I

)
is a system consisting

of a collection C0 (the set of chance’s choices) and collections Ci (the sets of personal
players’ choices) of nonempty unions of nodes (hence, sets of plays) for all i ∈ I, such
that

(i) if P (c)∩P (c′) 	= ∅ and c 	= c′ then P (c) = P (c′) and c∩c′ = ∅, for all c, c′ ∈ Ci

and all i ∈ I;

(ii) x ∩
[
∩i∈J(x)ci

]
	= ∅ for all (ci)i∈J(x) ∈ × i∈J(x)Ai (x) and all x ∈ X;

(iii) if y, y′ ∈ N satisfy y ∩ y′ = ∅ then there are i ∈ I ∪ {0} and c, c′ ∈ Ci such that
y ⊆ c, y′ ⊆ c′, and c ∩ c′ = ∅;

(iv) if x ⊃ y ∈ N then for every i ∈ J (x) there is c ∈ Ai (x) such that y ⊆ c, for all
x ∈ X;

where Ai (x) = {c ∈ Ci |x ∈ P (c)} are the choices available to i at x for all i ∈ I∪{0}
and the set of decision makers at x, J (x) = {i ∈ I ∪ {0} |Ai (x) 	= ∅}, is required to
be nonempty for all x ∈ X.

An extensive form is determined by common probabilistic beliefs if a func-
tion p (the belief function) is given, that maps the set of moves X into the set ∆(C0)
of probability measures (on a σ-algebra containing C0) that have supports in C0, such
that, for all x ∈ X and all c ∈ C0,

x ∈ P (c) if and only if c ∈ supp (p (x)) (22)

What is added to the tree to obtain an extensive form are collections of “choices”
c ∈ Ci (i.e. collections of sets of plays) for all personal players i ∈ I and for “chance”
i = 0 (for events that are not under the control of personal players). These sets of
choices Ci have to satisfy four constraints.

First, property (i) stands in for information sets. If two distinct choices are avail-
able at a common move, then their immediate predecessors are identical and the
choices are disjoint. Thus, the player cannot infer from the available menu of choices



T���� ��� D�������� 32

at which move (in the common set of predecessors, i.e. information set) she chooses.
And, two choices that are simultaneously available cannot overlap.

Second, property (ii) ensures that any combination of available choices yields
something nonempty. If a combination of choices (one for each decision maker) is
available at a common move, then the combination has a nonempty intersection that
is contained in the move.

Third, property (iii) deals with the “residual” that remains after personal players
have “made their choices.” If two nodes differ, then at some point someone (possibly
chance) takes a decision that separates them. It will be shown below that this implies
that the intersection of all choices, belonging to personal players or to chance, that
contain a particular play, yields precisely this play. Hence, “in the end” whatever is
not decided by personal players will be decided by chance.

Fourth, property (iv) implies the traditional exclusion of absent-mindedness (Kuhn
[16]). In the absence of such a condition a play may cross an information set more
than once (Piccione and Rubinstein [19]) or, in the present formalism, the same
choice may be available more than once along the same play. It will be shown below
(Proposition 13) that (iv) implies “no-absent-mindedness.”

The following examples serve to verify that conditions (i)-(iv) are independent.

Example 16. (Two-sided absent-minded driver paradox) Let W = {w1, ..., w4},
N =

{
W, {w3, w4} , ({w})w∈W

}
, I = {1}, C0 = {{w1, w2} , {w3, w4}}, and C1 =

{{w1, w3} , {w2, w4}} (see Figure 1). That P ({w1, w3}) = {W, {w3, w4}} = P ({w2, w4})
verifies (i). Because J (W ) = {0, 1} and J ({w3, w4}) = {1} and c0 ∩ c1 	= ∅ for all
(c0, c1) ∈ C0× C1, property (ii) also holds. Since for two nodes to be disjoint requires
at least one of them not to be a move and none of them to be the root, the hypothesis
of (iii) applies only if either y = {w3, w4} and y′ = {w} for some w ∈ {w1, w2} or both
y and y′ are singletons. For pairs of singletons y, y′ ∈ N there clearly is always a dis-
joint pair of choices of the same decision maker that separates them. Furthermore, the
singletons {w1} and {w2} are separated from {w3, w4} by the two choices of chance.
Hence, (iii) also holds true. But (iv) fails, as 1 ∈ J (W ) and x = W ⊃ y = {w3, w4},
but there is no c ∈ A1 (W ) = C1 such that {w3, w4} ⊆ c.

Example 17. Let W = {w1, w2, w3}, N =
{
W, ({w})

w∈W

}
, I = {1}, C0 = {W},

and C1 = {{w1, w2} , {w3}}. As P ({w1, w2}) = P ({w3}) = W , property (i) holds
true. As X = {W} and J (W ) = {1}, condition (ii) is also satisfied. Since for every
singleton {w} ∈ N \X there is c ∈ C1 such that {w} ⊆ c, condition (iv) also holds.
But (iii) fails, because {w1} ∩ {w2} = ∅, but either {w1, w2} ⊆ c or {w1, w2} ∩ c = ∅
for all c ∈ C0 ∪ C1.

Example 18. Let W = {w1, w2, w3}, N =
{
W, ({w})

w∈W

}
, I = {1, 2}, C0 = {W},

C1 = {{w1, w2} , {w3}}, and C2 = {{w1} , {w2, w3}}. Then P (c) = {W} for all
c ∈ C1 ∪ C2 verifies (i). If y, y′ ∈ N are such that y ∩ y′ = ∅, both y and y′ must be
singletons. But for every pair of singletons there exists a disjoint pair of choices of
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Figure 1: Rounded boxes represent personal player’s choices, dashed boxes chance’s
choices. As choices are sets of plays, the choice {w3, w4} includes the node {w3, w4}.

the same personal player that separates the two singletons. Hence, (iii) holds true.
Since X = {W} and J (W ) = {1, 2}, condition (iv) is also fulfilled. But property (ii)
fails, as W ∩ {w1} ∩ {w3} = ∅.

Example 19. Let W = {w1, ..., w5},

N =
{
W, {w1, w2, w3} , {w4, w5} , ({w})w∈W

}
,

I = {1}, C0 = {{w1, w2, w3} , {w4, w5}}, and C1 = {{w1, w4} , {w2} , {w3, w5}}. Then
J (W ) = {0}, J ({w1, w2, w3}) = J ({w4, w5}) = {1}, A1 ({w1, w2, w3}) = C1, and
A1 ({w4, w5}) = C1 \ {{w2}} show that (ii) holds. Verification of (iii) and (iv) is
direct (though tedious). Yet, the first part of (i) fails, as {w1, w2, w3} ∈ P ({w2}) ∩
P ({w1, w4}), but {w4, w5} ∈ P ({w1, w4}) \ P ({w2}).

Example 20. Let W = {w1, ..., w4}, N =
{
W, ({w})

w∈W

}
, I = {1}, C0 = {W},

and
C1 = {{w1, w2} , {w3, w4} , {w2, w3} , {w1, w4}}

Then X = {W}, J (W ) = {1}, and A1 (W ) = C1. Properties (ii), (iii), and (iv) are
trivially satisfied. But the second part of (i) fails, as, say, {w1, w2} ∩ {w2, w3} 	= ∅.

Remark 5. If every chain in N has a lower bound in N , then condition (ii) can be
written as follows: For all (ci)i∈J(x) ∈ × i∈J(x)Ai (x),

∃ y ∈ ↓x \ {x} : y ⊆ x ∩
[
∩i∈J(x)ci

]
, (23)

For, let w ∈ x∩
[
∩i∈J(x)ci

]
. As choices are unions of nodes, there are zi ∈ N such that

w ∈ zi ∈ ↓ ci for all i ∈ J (x). Because T is a game tree, (the “if”-part of) condition
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(19) implies that the collection {zi |i ∈ J (x)} is a chain. By hypothesis this chain
has a lower bound y ∈ ↓ x. If y = x would hold, then y = x ⊆ ci would contradict
x ∈ P (ci) for all i ∈ J (x). Therefore, x ⊃ y ∈ N , as desired.

The condition that every chain in N has a lower bound in N is, in fact, without
loss of generality. Since every game tree can be completed by adding the singletons
without changing the tree (by Proposition 10), and in a complete game tree every
chain has a lower bound (the singleton in its intersection), condition (ii) is equivalent
to (23) for all practical purposes.

Definition 21 captures the following quasi-operational specification of an extensive
form. At every move x ∈ X each personal player i ∈ I is told (by an “umpire”) which
choices c ∈ Ci she has available (in the sense that x ∈ P (c), c ∈ Ci) and asked to
select one of those. No other information is released to players. Given the decisions
by all personal players, taking the intersection gives a nonempty set of plays, by (iii).
From this a “chance move” selects how the game will continue. As will be seen below
(Theorem 4), by (iii) this process will ultimately select a particular play.

What drives chance moves is, however, left open at first. In a classical probabilis-
tic set-up one may want to “spin roulette wheels.” That is, chance moves may be
determined by a function p that assigns probability measures over chance’s choices:
a common probabilistic belief. Such a function p has to satisfy that chance only
“chooses” available choices - the “if”-part of (22) - and that all available choices have
positive probability - the “only if”-part of (22).9 Note that chance is free to condition
on the move at which it chooses, i.e., (ii) does not apply to chance.

5.2. Implications. The next result shows that Definition 21 yields an extensive
form, in which the players’ decisions (together with chance) ultimately lead to the
realization of a play, owing to (iii).

Theorem 4. Let (T, C) be an extensive form with player set I. Then,

∩ {c ∈ C0 ∪ (∪i∈ICi) |w ∈ c} = {w}

for all plays w ∈ W .

Proof. If N = {W}, i.e. the tree is trivial, there is nothing to prove. In nontrivial

cases all plays pass through at least two nodes.

Let C (w) = {c ∈ C0 ∪ (∪i∈ICi) |w ∈ c} and note that this set is nonempty by (iii).

For, let x, y ∈ N be such that w ∈ x∩y and x ⊃ y. Since a game tree satisfies Separability,

there is a third node z ∈ N such that x ⊃ z and y ∩ z = ∅. By (iii) there is i ∈ I ∪ {0}
and disjoint choices c, c′ ∈ Ci such that y ⊆ c and z ⊆ c′. Since w ∈ y ⊆ c, c ∈ C (w)
verifies that C (w) is nonempty.

9The latter is the assumption that zero-probability branches of the tree are pruned. If this is not
desired, the “only if”-part of (22) can be dropped.
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That w ∈ ∩c∈C(w)c follows from the definition. Suppose there is w′ ∈ W \ {w} such

that w′ ∈ ∩c∈C(w)c. Because T is a game tree, there are x, x′ ∈ N such that w ∈ x,
w′ ∈ x′, and x ∩ x′ = ∅ (by Irreducibility). By (iii) there are i ∈ I ∪ {0} and c, c′ ∈ Ci

such that x ⊆ c, x′ ⊆ c′, and c ∩ c′ = ∅. Since w ∈ x ⊆ c, the choice c belongs to C (w),
so that by hypothesis w′ ∈ c. But w′ ∈ x′ ⊆ c′ contradicts c ∩ c′ = ∅.

This result shows that plays “build up” from consecutive decisions by players
(and/or chance) on sets of plays (or ultimate outcomes). Hence, the framework
achieves what it was designed for.

An important feature of the present definition of an extensive form is that in-
formation sets need not exist. If they do, they are given by the set of immediate
predecessors of available choices. But at this level of generality nothing ensures that
all choices have immediate predecessors. Still, in the following version of the dif-
ferential game example information sets do exist and are merely singleton sets of
moves.

Example 21. Turn the tree of the differential game from Section 2.2 into an exten-
sive form, say, with two personal players, as follows. Let the set of actions A be a
product set A = A1 × A2. Given any function f ∈ V , denote f = (f1, f2). The
interpretation is as follows. At any point in time the two players i = 1, 2 simulta-
neously decide on an action ai ∈ Ai for i = 1, 2. Up to that moment, they know
the entire history, but cannot anticipate the decision taken by the other player at
t. Choices are of the form c = cit (f) = {g ∈ V |g ∈ xt (f) , gi (t) = fi (t)} for some
f ∈ V , some t ∈ R+, and i = 1, 2. (If player i were not to observe previous decisions
by the other player, but recalls her own, choices would be defined only by the prop-
erty that gi (τ) = fi (τ) for all τ ∈ [0, t], rather than g ∈ xt (f).) When two players
decide their choices at t by picking, say, cit(f

i) ∈ Ci for i = 1, 2, their intersection,
c1t (f

1)∩ c2t (f
2) = {g ∈ V |(g1 (τ) , g2 (τ )) = (f1 (τ ) , f 2 (τ)) , ∀τ ∈ [0, t]}, keeps track

of both decisions while leaving all possibilities open for the future. That choices are
unions of nodes follows from cit (f) = ∪τ>t ∪g∈cit(f) xτ (g).

The current definition of an extensive form encompasses most traditional ones plus
some exotic cases–but not cases of absent-mindedness (see Piccione and Rubinstein
[19]), where a play crosses an information set more than once (the same choice is
available more than once along a play). Because in the present framework players
choose among sets of ultimate outcomes, condition (iv) rules out that they “choose
not to choose,” that is, pick a choice that will become available once more, later on.

The argument relies on the definition of immediate predecessors, (21) and condi-
tions (i) and (iv). It demonstrates that an extensive form as in Definition 21 satisfies
“no-absent-mindedness”, i.e., if a choice is available at two distinct moves, then these
moves cannot be ordered (by set inclusion).

Proposition 13. Let (T, C) be an extensive form with player set I as in Definition
21. Then, for all x, y ∈ X,

Ai (x) ∩ Ai (y) 	= ∅ and y ⊆ x imply y = x for all i ∈ I (24)
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Proof. Suppose for some i ∈ I there are c ∈ Ci and x, y ∈ N such that x, y ∈ P (c),
i.e. c ∈ Ai (x) ∩ Ai (y), and y ⊆ x. By y ∈ P (c) there is y′ ∈↓c such that ↑y =↑y′\ ↓c.
Hence, y′ ⊂ y ⊆ x and y \ c 	= ∅. If y ⊂ x would hold, then by (iv) there would be

c′ ∈ Ai (x) such that y ⊆ c′, implying that c 	= c′ from y\c 	= ∅. But then x ∈ P (c)∩P (c′)
would imply that c ∩ c′ = ∅ by (i), in contradiction to y′ ⊆ c ∩ c′. Hence, y ⊆ x must

imply y = x, as desired.

Remark 6. In the presence of (i) condition (iv) implies the following “partition”
property:

(iv’) for all x ∈ X the collection {x ∩ c |c ∈ Ai(x)} is a partition of x, for all i ∈ J (x).

For, if two choices are available at x, then by (i) they must be disjoint. But, for
any play w ∈ x, because x ∈ X, there is a node y ∈ N such that w ∈ y ⊂ x. By (iv)
y (and hence w) must be contained in a choice c ∈ Ai (x) available at x. If (iv) is
weakened to (iv’), though, some examples of absent-mindedness would be feasible, as
Example 16 shows. There, conditions (i)-(iii) hold, while (iv) fails. But (iv’) holds,
as the choices of the personal player partition W (see Figure 1). This illustrates the
implications of (iv): by imposing that all successors of a given node (where a player
has choices available) be contained in some available choice, players cannot “jump
ahead” in the tree and select a node skipping an intermediate step. As it turns out,
this simple intuition rules out absent-mindedness.

5.3. Strategies. What remains is whether the usual strategy notions can be de-
fined in the present framework. To fix this, let Xi = {x ∈ N |Ai (x) 	= ∅} denote
player i’s decision points and define a pure strategy for player i ∈ I as a function
si : Xi → Ci such that, for all c ∈ si (Xi) = ∪x∈Xi

si (x),

si (x) = c if and only if x ∈ P (c) (25)

The “if”-part of (25) say that, if a choice c ∈ Ci is selected at all (i.e. if c ∈ si (Xi)),
then at every move x, where c is available, strategy si picks this choice c. Hence, si
picks the same choice at all moves, where this choice is available. The “only if”-part
of (25) says that, if c ∈ Ci is chosen by si, then it is chosen only where it is available.

Similarly, a behavior strategy for player i ∈ I is a function ρi from Xi to the
set of probability distributions on (a σ-algebra containing) Ci such that, for all b ∈
ρ
i
(Xi) = ∪x∈Xi

ρ
i
(x),

ρ
i
(x) = b if and only if x ∈ ∩c∈supp(b)P (c) (26)

Again, the “if”-part of (26) says that the same probability distribution b over choices
is selected by ρ

i
at all moves, where choices in the support of b are available. For, if b

is a probability distribution over choices for which two choices c and c′ in its support
do not have precisely the same predecessor set, then by (i) their predecessor sets are
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disjoint; hence, there is no move x ∈ X such that x ∈ P (c)∩P (c′). Thus, ρi can only
assign a distribution for which all choices in its support have the same predecessor
sets, i.e., ρ

i
assigns distributions supported on choices that are available at the same

moves. If b is such a distribution, x, x′ ∈ ∩c∈supp(b)P (c), ρi (x) = b, and ρi (x
′) = b′,

then the “if”-part of (26) implies b = b′. Likewise, by the “only if”-part of (26), if
ρi (x) = b, then x ∈ P (c) for all choices c ∈ Ci in the support of b, i.e., ρi assigns to
moves x ∈ Xi only distributions supported on choices that are available at x.

These specifications illustrate that the familiar strategy notions can be defined
naturally for the present concept of an extensive form. There remains, of course, a
measurability issue whether (pure or behavior) strategy combinations (one strategy
for each personal player) do induce (together with the belief function p) well defined
probability distributions on plays.10 For the purpose of completing an extensive form
to a full-fledged game, this can be bypassed by defining payoff functions directly on
the space of strategy combinations. In any case, this is beyond the scope of the
present paper.

There remains, though, a more important point regarding the use of game trees
in extensive forms. In particular, with this generality nodes need not have immediate
predecessors (even if choices do), as it is the case, for instance, in the differential
game example (Section 2.2). This poses certain problems. For instance, how to
define alternating moves, as they appear in games of perfect information. In the
differential game example with two players, one could let A2 be the set of functions
from A1 to an ultimate action space for player 2, modelling that player 2’s decision
conditions on what player 1 has chosen. But, in the tree, the two players’ decision
would formally be taken simultaneously. Ideally, one would like to let player 1 move
at the immediate predecessor of player 2’s decision points, thus separating the two
decisions. In the absence of immediate predecessors this is precluded.

There are two possible reactions to this observation. One is to insist on a discrete
structure imposed on the tree - this is what we study in the companion paper (Alós-
Ferrer and Ritzberger [1]). The other is to view the presence of alternating moves as a
property of the situation that is to be modelled by the tree, so that the tree inherits a
discrete structure from what it models. That extensive forms can be defined without
recourse to immediate predecessors shows that both possibilities do exist.

6. D���������

This paper studies how arbitrary trees can be represented by a collection of sets.
The purpose of such a representation is to provide a domain for sequential decision
theory. To do this requires two things: First, a node should be an event in the sense of
probability theory, i.e. a set of states. Second, the elements of the nodes/sets should
have meaning as representatives of ultimate outcomes. We show that both desiderata
can be met without any substantial loss of generality by the current definition of a
game tree: a collection of subsets of an underlying set (of plays) such that (i) a

10For instance, consider the well-known problem with the law of large numbers arising if a player
tosses a coin repeatedly in continuous time (e.g. Judd [12]).
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family of those subsets is a chain if and only if all its elements (nodes) contain a
common element (play), and (ii) for any two distinct elements (plays) threre are two
sets (nodes) such that the first set (node) contains the first element (play), but not
the second, and the second set (node) contains the second element (play), but not
the first. (A game tree is rooted if the union of all its nodes belongs to it.)

This is the most general definition of a (set) tree available up to date. It is essen-
tially equivalent to the order-theoretic notion of a decision tree, i.e., all requirements
that enter on top of the property of being a set representation of an (order-theoretic)
decision tree are purely modelling conventions. The definition is so general that it
even encompasses “differential games” (decision problems in continuous time).

As an application we show that game trees are sufficient to define extensive forms
by adding sets of choices for all players. The traditional strategy notions can then be
translated into this general framework.

A problem remains open for further research, though. Some strategic situations,
even as simple ones as games of perfect information, may require more structure on
the tree. In particular, to model how players alternate in deciding, requires for each
node an identification of its immediate predecessor. In a companion paper (Alós-
Ferrer and Ritzberger [1]) we show that this can be tackled by adding a discreteness
property. This property characterizes set trees for which every node (but the root) has
an immediate predecessor. The latter then greatly simplifies the formalism required
to define extensive form games and reintroduces familiar objects, that are potentially
missing from the general framework, like information sets.

A. A����	�


Proof of Lemma 3. “if:” Let (N,≥) be a tree and x, y ∈ N such thatW (x) = W (y).
Then, for any w ∈ W (x) = W (y), that x, y ∈ w implies either x ≥ y or y ≥ x (or both),

because w ∈ W is a chain. Assume, without loss of generality, that x ≥ y. Suppose

y 	≥ x. Then, by (7) there exists z ∈↓x such that z 	≥ y and y 	≥ z. Since W (z) ⊆ W (x)
by Lemma 2(b), y /∈ w for all w ∈ W (z). Hence, W (y) ⊆ W (x) \ W (z) contradicts

W (x) = W (y). Therefore, also y ≥ x must hold, so that x = y (by antisymmetry) verifies

(6).

“only if:” Let (N,≥) be a decision tree, and let x, y ∈ N such that x ≥ y and

y 	≥ x. By Lemma 2(b), W (x) ⊇ W (y). By (6), W (x) ⊃ W (y), i.e. there exists w ∈
W (x) \W (y). For any z ∈ w, either z ≥ x or x ≥ z. If z ≥ x, transitivity implies z ≥ y.
Hence, there must be some z ∈ w such that x ≥ z and both z 	≥ y and y 	≥ z hold. For,

otherwise for all z ∈ w either z ≥ y or y ≥ z, which implies that w ∪ {y} is a chain. By

maximality of w ∈ W , it follows that y ∈ w and w ∈ W (y), a contradiction.

Proof of Lemma 6. First, let [v] ∈ V/∼ be such that ↑ [v] = ∅. Then, ∩a∈↑[v]a =
∅, i.e. [v] is not separable. Since there is no a ∈ M such that [v] ⊆ a, the property is false,

verifying the equivalence in this case.

Let now [v] ∈ V/∼ be such that ↑ [v] 	= ∅. Note that [v] ⊆ ∩a∈↑[v]a whenever ↑ [v] 	= ∅.
Then, [v] is separable if and only if [v] = ∩a∈↑[v]a, or, equivalently, V \ [v] = V \∩a∈↑[v]a =
∪a∈↑[v] (V \ a), which proves the claim.
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Proof of Lemma 7. For all v ∈ a∩b we have [v] ⊆ ∩c∈↑[v]c 	= ∅. If there is v ∈ a∩b
such that ∩c∈↑[v]c ⊆ [v] the statement is verified. Hence, suppose that [v] ⊂ ∩c∈↑[v]c for all
v ∈ a∩b. But then a∩b = ∪v∈a∩b [v] ⊂ ∪v∈a∩b

(
∩c∈↑[v]c

)
⊆ a∩b yields a contradiction.

Proof of Lemma 12. (a) Assume that (M,⊇) satisfies Trivial Intersection and

let a, b ∈ M be such that a ∩ b 	= ∅. Then Trivial Intersection implies either a ⊆ b
or b ⊂ a; hence, by order isomorphism, (2), either ϕ (a) ⊆ ϕ (b) or ϕ (b) ⊂ ϕ (a), i.e.
ϕ (a) ∩ ϕ (b) 	= ∅.

(b) Suppose (M ′,⊇) satisfies Trivial Intersection. If is ϕ proper and a ∩ b 	= ∅, for
a, b ∈ M , then by (15) ϕ (a)∩ϕ (b) 	= ∅. Therefore, either ϕ (a) ⊆ ϕ (b) or ϕ (b) ⊂ ϕ (a);
hence, by order isomorphism, (2), either a ⊆ b or b ⊂ a. The converse implication follows

from (a).

(c) By (b) and Lemma 4 it is enough to establish Weak Separability, under the hypothe-

sis that (M ′,⊇) is a V ′-set tree. But Weak Separability is preserved by order isomorphism.

Hence, this is immediate.

Proof of Lemma 13. Assume that (M,⊇) is isomorphically embedded in (M ′,⊇).
Let v,w ∈ V such that v 	= w. Since the mapping f is one-to-one, f(v) 	= f(w). By

Irreducibility for (M ′,⊇), there are a′, b′ ∈ M ′ such that f(v) ∈ a′\b′ and f(w) ∈ b′\a′.
Let a, b ∈ M such that a′ = ϕ(a) and b′ = ϕ(b), where ϕ is the order isomorphism. Since

f(v) ∈ a′ and f is one-to-one, it follows that v ∈ a. Since f(v) /∈ b′, it follows that v /∈ b.
Hence, v ∈ a\b and, analogously, w ∈ b\a.

Proof of Lemma 14. “if:” Suppose that (M,⊇) satisfies that c ∈ 2M is a chain

if and only if there is v ∈ V such that v ∈ a for all a ∈ c. Then, for any chain c ∈ 2M the

“only if” part implies that there is v ∈ V which forms a lower bound on c. Furthermore, if

a, a′ ∈ M are such that a∩ a′ 	= ∅, then that there is v ∈ a∩ a′ implies from the “if” part

that {a, a′} ∈ 2M is a chain, i.e., either a′ ⊂ a or a ⊆ a′, verifying Trivial Intersection (4).

“only if:” Suppose (M,⊇) satisfies Trivial Intersection (4) and every chain in M has a

lower bound in V . Then if c ∈ 2M is a chain, there is v ∈ V such that v ∈ a for all a ∈ c.
On the other hand, if v ∈ a for all a ∈ c for some arbitrary c ∈ 2M , then if a, a′ ∈ c that
v ∈ a ∩ a′ implies from Trivial Intersection (4) either a′ ⊂ a or a ⊆ a′, i.e., c ∈ 2M is a

chain.
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