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Abstract

This paper considers a dynamic adjustment process in a society
with a continuum of agents. Each agent takes an action upon entry
and commits to it until he is replaced by his successor at a stochastic
point in time. In this society, rationality is common knowledge, but
beliefs may not be coordinated with each other. A rationalizable fore-
sight path is a feasible path of action distribution along which every
agent takes an action that maximizes his expected discounted payoff
against another path which is in turn a rationalizable foresight path.
An action distribution is accessible from another distribution under ra-
tionalizable foresight if there exists a rationalizable foresight path from
the latter to the former. An action distribution is said to be a stable
state under rationalizable foresight if no rationalizable foresight path
departs from the distribution. A set of action distributions is said
to be a stable set under rationalizable foresight if it is closed under
accessibility and any two elements of the set are mutually accessible.
Stable sets under rationalizable foresight always exist. These concepts
are compared with the corresponding concepts under perfect foresight.
Every stable state under rationalizable foresight is shown to be stable
under perfect foresight. But the converse is not true. An example is
provided to illustrate that the stability under rationalizable foresight
gives a sharper prediction than that under perfect foresight.

Keywords: Nash equilibrium, evolution, rationalizability, ratio-
nalizable foresight, perfect foresight, stability under rationalizable fore-
sight (RF-stability), stability under perfect foresight (PF-stability).
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1 Introduction

For a long time game theory has centered around the concept of equi-
librium introduced by Nash (1951). In spite of its dominance as a theory of
rational agents, the equilibrium theory leaves one question to be answered:
how do agents coordinate their beliefs? When an agent makes a decision in
a strategic situation, he does not know other agents’ strategies, and there-
fore, often makes some conjecture about them. Equilibrium requires that
this conjecture be correct. In many cases, the coordination of beliefs re-
quires that agents be not only rational but also omniscient. In particular,
this problem becomes acute if there are multiple equilibria as it entails the
problem of equilibrium selection.

In response to the claim that requiring the coordination of beliefs among
agents goes beyond their rational decision making abilities, two theories have
been proposed: one is the theory of rationalizability, and the other is the
evolutionary game theory.

The concept of rationalizability was proposed by Bernheim (1984) and
Pearce (1984) to cope with a one-shot situation in which, while rationality
is common knowledge, agents do not know which strategies the opponents
are going to take. The conjectures formed by the agents do not have to be
correct, but consistent with common knowledge of rationality, and therefore,
the actual decisions need not be best responses to each other. Although the
theory of rationalizability provides us with new insights, it has not served
useful tool to analyze economic problems since it gives less sharper predic-
tions than the equilibrium theory.1

The evolutionary game theory, on the other hand, has gained game theo-
rists’ attention as a theory of unsophisticated agents since the seminal work
of Maynard Smith and Price (1973).2 This theory typically considers a
dynamic adjustment process in a large and anonymous population, examin-
ing the stability of behavior pattern. Agents therein are not sophisticated
enough to make rational decisions due to informational constraints and/or
the lack of ability. Instead, their behavior is gradually adjusted according
to some rule. Again, their failure to take best responses to each other is a
natural consequence of the environment, unless the process is at some equi-
librium state. The evolutionary game theory, however, has been criticized
as it ignores the rationality of human decision makers. That is to say, it has
abandoned not only the coordination of beliefs, but also the rationality of
human beings and/or their knowledge on the structure of the society.

In the present paper, we synthesize the ideas of rationalizability and
evolution in a dynamic environment in which rational agents, who are neither

1Pearce (1984) showed that rationalizability in extensive form games may refine the
set of equilibrium outcomes. See also Battigalli (1997).

2See, e.g., Fudenberg and Levine (1998), Hofbauer and Sigmund (1998), Vega-Redondo
(1996), Weibull (1997), and Young (1998).
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genes nor omniscient beings, use their reasoning abilities in determining their
actions. We then demonstrate that rationalizability combined with evolution
can have more predictive power than equilibrium.

We study infinite horizon societal games in which a continuum of agents
are randomly matched to play a normal form game repeatedly. Each agent
stays in the society for a stochastic time period to be replaced by a new
entrant. Each entrant inherits certain knowledge about the current action
distribution, takes an action to maximize his expected discounted payoff,
and commits to it through the rest of his life.3 While the structure of the
society as well as the rationality of the agents is common knowledge, beliefs
about the future path of action distribution are not necessarily coordinated
among them. We postulate that each agent forms his belief in a rationaliz-
able manner. We call the process induced by such agents the rationalizable
foresight dynamics.

In bold strokes, the main concept of rationalizable foresight path is in-
ductively defined in the following way. First, given the set of (physically)
feasible paths of action distribution, Φ0, define its subset Φ1 as the set of
paths along which each agent takes an optimal action against some path
in Φ0. Here, we allow different agents to optimize against different paths.
Then given this newly defined set Φ1, define its subset Φ2 of paths along
which each agent takes an optimal action against some path in Φ1. We re-
peat this procedure inductively and take the limit of these sets: this limit is
called the set of rationalizable foresight paths. Indeed, along a rationalizable
foresight path each agent optimizes against another—typically different—
rationalizable foresight path.

We use the rationalizable foresight paths to define stability concepts as in
Gilboa and Matsui (1991). An action distribution is accessible under ratio-
nalizable foresight from another distribution if there exists a rationalizable
foresight path from the latter to the former. A set of action distributions is
said to be a stable set under rationalizable foresight, or an RF-stable set, if
it is closed under accessibility and any two elements of the set are mutually
accessible. The situation we have in mind is the one in which the behavior
pattern is subject to fluctuation through rationalizable, but not necessarily
correct, beliefs formed by new entrants. An RF-stable set is stable in the
sense that no rationalizable foresight drives the behavior pattern away from
it. If an RF-stable set is a singleton, its element is said to be a stable state
under rationalizable foresight, or an RF-stable state.4

We study the relationship between the stability concepts under ratio-
nalizable foresight and the corresponding concepts under perfect foresight.

3We do not have to take literally that a new entrant makes a life-time decision. One
may interpret this as a certain commitment for a random short period of time.

4In Gilboa and Matsui (1991), the set-valued and the point-valued stability concepts
under the best response dynamics are called ‘cyclically stable sets’ and ‘socially stable
strategies’, respectively.
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The concept of perfect foresight embodies the concept of equilibrium in our
dynamic framework. A perfect foresight path is defined to be a path of
action distribution to which every entrant takes a best response. A stable
set and a stable state under perfect foresight (a PF-stable set and a PF-
stable state) are defined analogously to those under rationalizable foresight.
As in a one-shot game, a perfect foresight path is a rationalizable foresight
path, but not vice versa. Therefore, for a given state, it is easier to escape
from the state under rationalizable foresight than under perfect foresight.
Using this logic, we show that every RF-stable state is a PF-stable state.
The converse, however, is not true in general. We construct an example in
which the stability under rationalizable foresight provides a sharper predic-
tion than that under perfect foresight: in this example, the set of RF-stable
states is a proper subset of the set of PF-stable states, and no other stable
set exists.

In our analysis, inertia plays a key role.5 If there is no inertia, the behav-
ior pattern may jump around, and there is no hope for sharp prediction. To
see this, we introduce the notion of rationalizability for static societal games
where agents are randomly matched to play a given normal form game only
once. In this environment, a rationalizable strategy distribution is defined in
such a way that every pure strategy taken by some agents, i.e., contained
in the support of this strategy distribution, is a best response to another
rationalizable strategy distribution. We then show that as inertia vanishes,
the unique RF-stable set of the dynamic societal game converges to the set
of rationalizable strategy distributions of the static societal game.

Our stability concepts are related to the notion of p-dominance (Morris,
Rob, and Shin (1995)). An action pair in a two-player game is said to be a p-
dominant equilibrium if each action is the unique best response to any belief
that the other player takes the action in this pair with a probability greater
than p. It is shown that if the stage game has a p-dominant equilibrium
with p < 1/2, which is a risk-dominant equilibrium in 2× 2 games, then it
is always contained in an RF-stable set.

A full characterization of the stability concepts is given for the class of
2×2 games. In the games with two strict Nash equilibria, the risk-dominant
equilibrium is always contained in an RF-stable set, but the risk-dominated
equilibrium may not, depending on the rate of time preference. In the games
with a unique symmetric Nash equilibrium, which is completely mixed, the
unique RF-stable set is a set of states that contains non-equilibrium states as
well as the equilibrium state (independently of the rate of time preference).
This fact is to be contrasted with the PF-stable set, which consists of the
unique equilibrium state.

5We deal with a specific environment in which an adjustment cost is infinite after one
chooses his action. We can modify this assumption to accommodate other environment
such as the one with a finite adjustment cost.

3



The stability concepts of the present paper share the basic idea with
those of Gilboa and Matsui (1991). In that paper, a best response path is
defined to be a feasible path along which agents change their actions to the
ones that are best responses to the current action distribution. An action
distribution is accessible from another (under the best response dynamics)
if there exists a best response path from the latter to the former. A stable
set is a set of action distributions which is closed under accessibility and
any two distributions in which are mutually accessible. The assumption
that an action increases its frequency only when it is a best response to
the current action distribution is equivalent to assuming myopia of decision
makers. Indeed, the dynamics studied in the present paper becomes close
to the best response dynamics if the agents are sufficiently impatient.

Our dynamic framework incorporates the same type of inertia as the one
introduced in the perfect foresight dynamics, studied by Krugman (1991)
and Matsuyama (1991) in the context of development economics, and Matsui
and Matsuyama (1995) for societal games.6 While discussing the possibility
of escapes from locally stable states by way of agents’ forward looking abili-
ties, these papers consider the perfect foresight paths, and therefore, do not
bear the idea of miscoordination of beliefs.

The present paper is also related to Burdzy, Frankel, and Pauzner (2001).
They consider a continuum of rational agents who are repeatedly and ran-
domly matched to play a 2× 2 coordination game, with Poisson action revi-
sion opportunities, but whose payoffs are stochastically changed over time.
They show that if there are the region of possible payoffs where one action
is strictly dominant and the other region where the other action is in turn
strictly dominant, then the unique outcome is chosen by way of eliminating
strictly dominated strategies, which shares the idea with that of rationaliz-
ability. In their model, the existence of dominance regions is essential for
the iterated elimination method to operate.

Another related work is conducted by Lagunoff and Matsui (1995), who
construct a model in which finitely many agents are stochastically entitled
to make decisions in the problem of public good provision. In that model,
the coordination of beliefs among the agents is not assumed as in the present
model. Each agent maximizes his expected discounted payoff against some
feasible, but not necessarily rationalizable foresight, path. Under some con-
dition, cooperation emerges as the unique outcome of this process.

The rest of the paper is organized as follows. Section 2 gives our basic
framework. Section 3 defines the rationalizable foresight paths and stability
concepts under rationalizable foresight (RF-stable sets and states) and shows
the existence of RF-stable sets. Section 4 compares the RF-stability with
the stability under perfect foresight (PF-stable sets and states) and demon-

6See Hofbauer and Sorger (1999, 2002) and Oyama (2000) for more recent develop-
ments.
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strates by example that the RF-stability provides a sharper prediction than
the PF-stability. Section 5 discusses some properties of the rationalizable
foresight paths. Section 6 examines the relationship between the static ra-
tionalizability and the rationalizable foresight dynamics. Section 7 relates
the RF-stability to the notion of p-dominance. Section 8 completely char-
acterizes RF-stable sets for the class of 2×2 games. Section 9 concludes the
paper.

2 Framework

We consider a symmetric two-player game with n ≥ 2 actions. The set of ac-
tions and the payoff matrix, which are common to both players, are given by
A = {a1, . . . , an} and (uij) ∈ Rn×n, respectively, where uij (i, j = 1, . . . , n)
is the payoff received by a player taking action ai against an opponent play-
ing action aj . The set of mixed strategies is identified with the (n − 1)-
dimensional simplex, denoted by ∆, which is a subset of the n-dimensional
real space endowed with a norm | · |. We say that x∗ = (x∗1, . . . , x

∗
n) ∈ ∆

is an equilibrium state if (x∗, x∗) is a Nash equilibrium, i.e., for all x =
(x1, . . . , xn) ∈ ∆,

∑
ij x
∗
i uij x

∗
j ≥

∑
ij xi uij x

∗
j . We denote by [ai] the ele-

ment of ∆ that assigns one to the ith coordinate (and zero to others).
The above game is played repeatedly in a society with a continuum of

identical anonymous agents. At each point in time, agents are matched
randomly to form pairs and play the game. Each agent is replaced by his
successor according to the Poisson process with parameter λ > 0. These
processes are independent across the agents. Thus, during a time interval
[t, t + h), approximately a fraction λh of agents are replaced by the same
size of entrants. Each agent is entitled to choose his action only upon entry
to the society, i.e., one cannot change his action once it is chosen. An
interpretation of this assumption is that there exists a large switching cost.7

A path of action distribution, or simply a path, is described by a function
φ : [0,∞)→ ∆, where φ(t) = (φ1(t), . . . , φn(t)) is the action distribution of
the society at time t, with φi(t) denoting the fraction of the agents playing
action ai. Since during a time interval [t, t+h), only entrants of fraction λh
change their actions, φi(·) is Lipschitz continuous with Lipschitz constant
λ, which implies that it is differentiable at almost all t ∈ [0,∞).

Definition 1 A path of action distribution φ : [0,∞) → ∆ is feasible if it
is Lipschitz continuous with Lipschitz constant λ and satisfies the condition
that for almost all t, there exists α(t) ∈ ∆ such that

φ̇(t) = λ(α(t)− φ(t)). (2.1)

7Another interpretation is that each agent lives forever and revises his action only
occasionally at random points in time which follow the Poisson process with the parameter
λ, and his belief may change as well when his revision opportunity arises.
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The above condition is equivalent to the condition that for all i =
1, . . . , n,

φ̇i(t) ≥ −λφi(t) a.e. (2.2)

Note, for example, that φ̇i(t) = −λφi(t) implies that (almost) all the en-
trants at time t take actions other than ai. Note also that φ̇i(t) ≥ −λφi(t)
together with φ(t) ∈ ∆ implies φ̇i(t) ≤ λ(1−φi(t)). The set of feasible paths
is denoted by Φ0.

An entrant anticipates a future path of action distribution and chooses
an action that maximizes the expected discounted payoff. For a given antic-
ipated path φ, the expected discounted payoff for an entrant at time t from
taking action ai is calculated as

Vi(φ)(t) = (λ+ θ)
∫ ∞

0

∫ t+s

t
e−θ(z−t)

n∑

k=1

φk(z)uik dz λe−λs ds

= (λ+ θ)
∫ ∞
t

e−(λ+θ)(s−t)
n∑

k=1

φk(s)uik ds,

where θ > −λ is the common rate of time preference while λ+θ > 0 is viewed
as the effective discount rate. Note that this expression is well defined since
φk(·) is bounded for each k. We write Vi(·) = Vi(·)(0).

Given a feasible path φ, let BR(φ)(t) be the set of best responses in pure
strategies to φ at time t, i.e.,

BR(φ)(t) = {ai ∈ A |Vi(φ)(t) ≥ Vj(φ)(t) for all j}.

We write BR(·) = BR(·)(0). Note that two games (uij) and (vij) are equiv-
alent in terms of their best response properties if there exist α > 0 and
(wi) ∈ Rn such that uij = αvij + wi holds for all i and j. The analyses
below are invariant under positive affine transformations of this form.

Finally, we denote the degree of friction by δ = θ/λ > −1.

3 Rationalizable Foresight and Stability Concepts

After a certain history, changes in behavior pattern depend on what beliefs
agents form and how they behave under these beliefs. We assume that the
agents form their beliefs in a rationalizable manner. In particular, they do
not necessarily coordinate their beliefs with each other.

To express this idea, we define rationalizable foresight paths. First, let
Φ0 be the set of all feasible paths, i.e., the set of Lipschitz continuous paths
satisfying (2.2). Then for a given positive integer k, let Φk be the set of the
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paths in Φk−1 along which every agent takes a best response to some path
in Φk−1. Formally, define Φk as

Φk =
{
φ ∈ Φk−1 | ∀ i :

[
φ̇i(t) > −λφi(t)

⇒ ∃ψ ∈ Φk−1 : ψ(t) = φ(t) and ai ∈ BR(ψ)(t)
]

a.e.
}
.

In this definition, φ̇i(t) > −λφi(t) implies that at least some positive fraction
of the entire population take ai at time t upon entry.

From this definition, it is easy to verify that Φk ⊂ Φk−1 holds and that
Φk = Φk−1 implies Φk+1 = Φk. Let Φ∗ =

⋂∞
k=0 Φk.

Definition 2 A path in Φ∗ is a rationalizable foresight path.

A path in Φ∗ is rationalizable in the sense that each agent can construct
an infinite hierarchy of beliefs which are consistent with the “rationality
hypothesis”. Note that every path that rests at a one-shot equilibrium state
is always in Φk’s, and therefore, it is in Φ∗. The existence of one-shot
equilibrium states thus implies the nonemptiness of Φ∗. The following claim
simply states this observation.

Claim 3.1 If x∗ ∈ ∆ is an equilibrium state, then the path φ such that
φ(t) = x∗ for all t is a rationalizable foresight path.

The action distribution is subject to fluctuation through, say, belief
changes. Still, it is conceivable that the action distribution stays in a cer-
tain set and never goes out of it no matter how beliefs may change. To
incorporate this point, we introduce stability concepts under rationalizable
foresight.

We first define the notion of accessibility in a recursive manner. A state
y ∈ ∆ is defined to be accessible under rationalizable foresight from another
state x ∈ ∆ if one of the following conditions is satisfied:

( i ) there exists a rationalizable foresight path φ such that φ(0) = x and
φ(t) = y for some t ≥ 0;

(ii) there exists a sequence of states {yk} converging to y such that yk is
accessible under rationalizable foresight from x for all k; and

(iii) y is accessible under rationalizable foresight from some z which is in
turn accessible under rationalizable foresight from x.
Using this concept of accessibility, we define the following stability concepts.

Definition 3 A nonempty subset F ∗ of ∆ is a stable set under rationaliz-
able foresight, or an RF-stable set, if for any x in F ∗, y is accessible from x
under rationalizable foresight if and only if y is in F ∗.

An action distribution x∗ ∈ ∆ is a stable state under rationalizable fore-
sight, or an RF-stable state, if {x∗} is a stable set under rationalizable fore-
sight.
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An RF-stable set F ∗ is stable in the sense that once the action distribu-
tion falls into F ∗, another action distribution may be realized if and only if
it is contained in F ∗.

It is a direct application of Matsui (1992) to show the existence of stable
sets.

Theorem 3.2 Every game has at least one RF-stable set.

Proof. For each x ∈ ∆, we define R(x) to be

R(x) = {y ∈ ∆ | y is accessible from x under rationalizable foresight}.
Observe that R(x) is closed and x′ ∈ R(x) implies R(x′) ⊂ R(x) by the defi-
nition of accessibility. The nonemptiness of R(x) will be shown in Section 5.

We consider the partially ordered set ({R(x)}x∈∆,⊂). Take any totally
ordered subset of {R(x)}x∈∆ and denote it by {R(x)}x∈∆′ . Since for each
x ∈ ∆′, R(x) is a closed and nonempty subset of a compact set,

⋂
x∈∆′ R(x)

is nonempty. Choose any y ∈ ⋂x∈∆′ R(x). Since R(y) ⊂ R(x) holds for all
x ∈ ∆′, R(y) is a lower bound of {R(x)}x∈∆′ in {R(x)}x∈∆. Therefore, by
Zorn’s lemma, there exists a minimal element R∗ = R(x∗) in {R(x)}x∈∆.

We claim that R∗ is an RF-stable set. Indeed, for any x ∈ R∗, R(x) ⊂ R∗
holds, and since R∗ is a minimal set, R(x) = R∗ holds. It follows that no
state outside R∗ is accessible from any state in R∗, and every state in R∗ is
accessible from any state in R∗ under rationalizable foresight.

On the other hand, as Example 3.1 shows, RF-stable states do not always
exist.

By utilizing an argument analogous to the proof of Theorem 3.2, we also
have the following.

Theorem 3.3 Let F∗ be the family of all the RF-stable sets. For every
x0 ∈ ∆, there exists y ∈ ⋃F ∗∈F∗ F

∗ such that y is accessible from x0 under
rationalizable foresight.

Proof. Take any x0 ∈ ∆. It is sufficient to show that there is an RF-stable set
that is contained in R(x0), where R(x0) is defined in the proof of Theorem
3.2.

Define R = {R(x) |x ∈ ∆, R(x) ⊂ R(x0)}. By an argument analogous
to the proof of Theorem 3.2, R has a minimal element R∗, which is an
RF-stable set and satisfies that R∗ ⊂ R(x0).

Example 3.1 A 2× 2 Game

We present an example in which the unique RF-stable set contains non-
equilibrium states. Consider the following 2× 2 game:

(uij) =
(

0 1
1 0

)
. (3.1)
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We divide our analysis into two cases, δ > 0 and −1 < δ ≤ 0. If −1 < δ ≤ 0,
then the entire space is the unique RF-stable set. If, on the other hand,
δ > 0, then we need the following preparation.

For a given δ > 0, let α∗ = α∗(δ) be the unique solution to

1 + δ

2 + δ
(1− α∗) +

1
2 + δ

(α∗)2+δ

(1− α∗)1+δ
=

1
2
, 0 < α∗ <

1
2
. (3.2)

The left hand side of (3.2) is the expected discounted payoff to a1 at time
0 along the path that moves from (α∗, 1 − α∗) towards [a1] until it reaches
(1− α∗, α∗), and then stays there, i.e., the path φ with φ(0) = (α∗, 1− α∗)
such that

φ(t) =
{

[a1]− ([a1]− φ(0)) e−λt if t < T ∗,
(1− α∗, α∗) if t ≥ T ∗, (3.3)

where T ∗ is given by e−λT ∗ = α∗/(1 − α∗). Since V1(φ)(t) + V2(φ)(t) = 1
holds for the game (3.1), equation (3.2) represents that V1(φ) = V2(φ) holds.
Using α∗ defined above, we identify the unique RF-stable set.

Proposition 3.4 Let the stage game be given by (3.1). For a given δ > −1,
the unique RF-stable set is

F ∗(δ) =
{ {(α1, α2) ∈ ∆ |α∗(δ) ≤ α1 ≤ 1− α∗(δ)} if δ > 0,

∆ if −1 < δ ≤ 0.

Proof. See Appendix.

[a1] [a2]
(

1
2 ,

1
2

)

(1− α∗, α∗) (α∗, 1− α∗)

Figure 1: RF-stable set for δ > 0

This RF-stable set contains non-equilibrium states for any δ > −1. In
this example, one needs a rationalizable foresight path along which agents
constantly misforecast in order to reach a non-equilibrium state. If δ > 0,
such a path can be constructed in the following manner. From a state in
F ∗, suppose that newborns expect that the action distribution will move
towards [a1] until it reaches (1−α∗, α∗), and will stay there. Under such an
expectation, a2 is a best response, and therefore, the newborn will take a2.
If the new generations keep believing that the path moves towards [a1], then
they keep taking a2 until it reaches (α∗, 1−α∗). Beyond this state, nobody is
willing to take a2 even if he expects the action distribution to move towards
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[a1]. Notice that along this path, agents constantly misforecast the future.
By a symmetric argument, a1 is a best response to the path that moves
towards [a2] until it reaches (α∗, 1 − α∗), and stays there. In sum, at each
state in F ∗, the left-moving path and the right-moving path rationalize each
other.

If δ ≤ 0 holds, then at any state, a1 (resp. a2) is a best response to the
path that moves to [a2] (resp. [a1]). Thereby every state can be accessible
from any other state under rationalizable foresight.

Now we state the following comparative statics result.

Proposition 3.5 α∗(δ) is increasing in δ; α∗(δ) ↘ 0 as δ ↘ 0, and
α∗(δ)↗ 1/2 as δ ↗∞.

Proof. See Appendix.

This proposition states that as the degree of friction goes to zero from
above, the stable set expands to the whole space ∆, and that as the degree of
friction goes to infinity, the stable set shrinks to the singleton {(1/2, 1/2)}.
Intuition behind this result is as follows. The further the action distribution
is away from (1/2, 1/2), the larger is the instantaneous gain from taking the
action that is not taken by the majority. If the degree of friction is small,
the future state is relatively more important than the current state, and
therefore, it is relatively easy for the action distribution to move around.
On the other hand, if the degree of friction is sufficiently large, the gain
from taking the action of the minority dominates any future loss, which
implies that the path moves towards (1/2, 1/2) without fail.

4 Rationalizable Foresight versus Perfect Foresight

This section discusses some properties of the rationalizable foresight dynam-
ics in comparison with the perfect foresight dynamics. A perfect foresight
path is defined to be a feasible path to which every entrant takes a best
response.

Definition 4 A feasible path φ is a perfect foresight path if for all i =
1, . . . , n and almost all t ≥ 0, φ̇i(t) > −λφi(t) implies ai ∈ BR(φ)(t).

Oyama (2000, Theorem 1) proved the existence of perfect foresight paths.
We state an immediate, but important observation for reference.

Claim 4.1 A perfect foresight path is a rationalizable foresight path.

We define stability concepts under perfect foresight in a similar manner:
we say that a state y ∈ ∆ is accessible under perfect foresight from another
state x ∈ ∆ if one of the following conditions is satisfied:

( i ) there exists a perfect foresight path φ such that φ(0) = x and φ(t) = y
for some t ≥ 0;
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(ii) there exists a sequence of states {yk} converging to y such that yk is
accessible under perfect foresight from x for all k; and

(iii) y is accessible under perfect foresight from some z which is in turn
accessible under perfect foresight from x.

Note that the notion of accessibility makes more sense in the rationaliz-
able foresight dynamics than in the perfect foresight dynamics. In particular,
if two paths are concatenated, the new path itself becomes a rationalizable
foresight path as long as the original paths are rationalizable, but this is
not necessarily the case for perfect foresight paths. In the case of the ratio-
nalizable foresight dynamics, concatenation simply implies that the beliefs
and the behavior pattern change at the point of concatenation because fore-
cast error is allowed, while in the case of the perfect foresight dynamics, old
agents no longer optimize against the altered future path.

Definition 5 A nonempty subset F ∗∗ of ∆ is a stable set under perfect
foresight, or a PF-stable set, if for any x in F ∗∗, y is accessible from x under
perfect foresight if and only if y is in F ∗∗.

An action distribution x∗∗ ∈ ∆ is a stable state under perfect foresight,
or a PF-stable state, if {x∗∗} is a PF-stable set.

The same logic as that in the existence proof of RF-stable sets is applied
to show the existence of PF-stable sets. It is thus stated without a proof.

Theorem 4.2 Every game has at least one PF-stable set.

Since the set of rationalizable foresight paths contains the set of perfect
foresight paths from Claim 4.1, an RF-stable set is closed under accessibility
in the perfect foresight dynamics. Accordingly, repeating the existence proof
of RF-stable sets, but now using {R(x)}x∈F ∗ in place of {R(x)}x∈∆ where
F ∗ is an RF-stable set in question, we have the following.

Theorem 4.3 Every RF-stable set contains at least one PF-stable set.

It follows from this theorem that if an RF-stable set is a singleton, then
it must be a PF-stable set.

Corollary 4.4 An RF-stable state is a PF-stable state.

Since an RF-stable state is an action distribution from which no ratio-
nalizable foresight path, a fortiori no perfect foresight path, departs, it is
also a PF-stable state.

The converse of Corollary 4.4 is not true in general. Examples are (sym-
metric) potential games for δ > 0. A PF-stable state is known to uniquely
exist for a δ close to zero.

Fact 4.5 (Hofbauer and Sorger (1999)) Assume that uij = uji, a for-
tiori, that the stage game is a potential game. Suppose that x∗ is the unique
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maximizer of the potential function p(x) = (1/2)
∑

ij xi uij xj over ∆. Then
x∗ is a PF-stable state if δ > 0. If the degree of friction is sufficiently close
to zero, then no other states are contained in any PF-stable set.

However, there exist potential games such that the unique maximizer
of the potential function is not RF-stable independently of the degree of
friction. Indeed, in the potential game example of Example 3.1, there exists
no RF-stable state for any degree of friction.

The converse of Theorem 4.3 is not true, either. We have the following
counter-example.

Example 4.1 A 3× 3 Game

Since the set of rationalizable foresight paths is larger than the set of per-
fect foresight paths, it is conceivable that there are some states from which
the action distribution escapes under rationalizable foresight but not under
perfect foresight. Using this logic, we construct an example in which the ra-
tionalizable foresight dynamics serves a sharper prediction than the perfect
foresight dynamics.

Consider the following 3× 3 game:

(uij) =




1 −1 1
0 0 1
0 1 0


 . (4.1)

We show that for some degree of friction δ, the set of RF-stable states is a
proper subset of the set of PF-stable states, and no other stable set exists.

Proposition 4.6 Let the stage game be given by (4.1). Then there exists
a nonempty open set of the degrees of friction for which

(a) {[a1]} and {(0, 1/2, 1/2)} are PF-stable sets, and no other PF-stable
set exists; and

(b) {[a1]} is the unique RF-stable set.

Proof. See Appendix.

As in Proposition 3.4, it can be verified that the equilibrium state (0, 1/2, 1/2)
is not an RF-stable state. But there may exist an RF-stable set that contains
this state. A natural candidate is

{(α1, α2, α3) ∈ ∆ |α1 = 0, α∗ ≤ α2 ≤ 1− α∗},

where α∗ ∈ (0, 1/2) is given by (3.2). We would like to show that such a
set is not RF-stable for some appropriate degree of friction. Looking at the
payoff matrix given by (4.1), one may realize that if the action distribution
moves from (0, 1/2, 1/2) towards [a3], it is more likely than otherwise that a1
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[a1]

[a2] [a3](
0, 1

2 ,
1
2

)

O

-

(0, α∗, 1− α∗)

Figure 2: An escape path from (0, 1/2, 1/2)

becomes a best response on condition that some other agents are expected
to take a1 as well. A rationalizable foresight path performs this task (see
Fig. 2), i.e., it brings the action distribution near (0, α∗, 1−α∗). At this state,
if the agents are reasonably patient, they may start taking a1 if they form a
belief that others will do the same. A direct departure from (0, 1/2, 1/2) is
harder than that from (0, α∗, 1− α∗) since the agents taking a1 incur more
loss in the beginning along the path from (0, 1/2, 1/2) to [a1] than along the
path from (0, α∗, 1− α∗) to [a1]. Thus, we can find an open interval of the
degrees of friction for which (0, 1/2, 1/2) remains PF-stable, but belongs to
no RF-stable set.

5 Properties of Rationalizable Foresight Paths

This section provides two characterizations of the set of rationalizable fore-
sight paths. First, we have the following intuitive, but nontrivial statement.

Proposition 5.1 A feasible path φ is contained in Φ∗ if and only if for all
i and almost all t such that φ̇i(t) > −λφi(t), there exists a path ψ in Φ∗

such that ψ(t) = φ(t) and ai ∈ BR(ψ)(t).

This proposition states that one can construct an infinite hierarchy of
beliefs under which agents behave in a “rationalizable” manner if and only
if the path is in Φ∗. This statement is nontrivial since φ ∈ Φ∗ =

⋂∞
k=0 Φk

merely implies that for all k, for all i, and for almost all t, there exists
ψk−1 ∈ Φk−1 that satisfies a certain condition; that is to say, ψk’s are
different in general, and therefore, they may not be in Φ∗. In order to
construct a desirable path ψ ∈ Φ∗ by taking a subsequence of ψk’s, we need
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to show that Φ∗ is compact and the payoff function is continuous, which we
demonstrate in Appendix.

Proof. See Appendix.

Another property of rationalizable foresight paths is that we can view a
point in ∆ as a state variable, so that irrespective of the past history, only the
present action distribution determines a possible future course of evolution.
This is obvious once we observe that the environment is stationary and that
newborns’ beliefs are not bound by the past history.

The above observation suggests another way of constructing Φ∗. First,
define correspondences H0 : ∆→ ∆ and Ψ0 : ∆→ Φ0 as

H0(z) = ∆,

and

Ψ0(z) = {φ ∈ Φ0 |φ(0) = z}.

For k = 1, 2, 3, · · · , define Hk and Ψk recursively as

Hk(z) = {α ∈ ∆ |αi > 0⇒ ∃ψ ∈ Ψk−1(z) : ai ∈ BR(ψ)},

and

Ψk(z) = {φ ∈ Ψk−1(z) |φ(0) = z and

φ̇(t) = λ(h(t)− φ(t)), h(t) ∈ Hk(φ(t)) a.e.}.

Repeating this procedure inductively and taking the limit to obtain H∗(z) =⋂∞
k=0H

k(z), we immediately have the following.

Proposition 5.2 A feasible path φ is a rationalizable foresight path with
initial state x0 ∈ ∆ if and only if φ(0) = x0, and

φ̇(t) = λ(h(t)− φ(t)), h(t) ∈ H∗(φ(t)) a.e. (5.1)

For each z ∈ ∆, H∗(z) is nonempty and compact, sinceHk(z) is nonempty
and compact, and Hk+1(z) ⊂ Hk(z) holds. Moreover, H∗ is upper semi-
continuous and convex-valued as Hk’s are. Therefore, by the existence
theorem for differential inclusion (see, e.g., Theorem 2.1.4 in Aubin and
Cellina (1984, p. 101)), for each x0 ∈ ∆, there exists at least one rationaliz-
able foresight path φ with φ(0) = x0.
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6 Rationalizability in Static Societal Games

This section examines the relationship between the static rationalizability
and the rationalizable foresight dynamics in a large population. We show
that as δ goes to −1, i.e., as inertia vanishes, the RF-stable set becomes
unique and coincides with the set of rationalizable strategy distributions.

Given a symmetric game (uij) played in a large population, construct
inductively the set of rationalizable strategy distributions as follows. Let
H

0 = ∆. Given H
k−1 (k = 1, 2, 3, . . . ), define Hk to be

H
k =

{
x ∈ Hk−1 | ∀ i :

[
xi > 0⇒ ∃ y ∈ Hk−1 : ai ∈ BR(y)

]}
,

where BR(y) is the set of one-shot best responses to y in pure strategies,
i.e.,

BR(y) =
{
ai ∈ A

∣∣∣
n∑

k=1

ykuik ≥
n∑

k=1

ykujk for all j
}
.

Let H∗ =
⋂∞
k=0H

k. A strategy distribution in H
∗ is called a rationalizable

strategy distribution in the static societal game. Note that a strategy dis-
tribution is rationalizable if and only if every pure strategy in the support
survives iterated strict dominance. Note also that H∗ is the convex hull of
the pure rationalizable strategy distributions.

We now have the following result.8

Proposition 6.1 For all generic (symmetric) games, there exists δ̄ > −1
such that for all δ ∈ (−1, δ̄), an RF-stable set uniquely exists and coincides
with H∗.

Proof. In order to show that H∗ is the unique RF-stable set, it is sufficient
to verify that for δ sufficiently close to −1, any two strategy distributions in
H
∗ are mutually accessible under rationalizable foresight. It is easy to see

that no distribution outside H∗ is contained in any RF-stable set.
Take any [ai] ∈ H∗. Then, we can take a strategy distribution zi ∈ H∗

such that BR(zi) = {ai}, due to the genericity of the payoffs. Take any
w ∈ ∆, and consider the linear path ψi from w to zi given by ψi(t) =
(1− e−λt)zi + e−λtw, t ≥ 0. As δ goes to −1, Vj(ψi) converges to

∑
k z

i
kujk.

Therefore, by way of the choice of zi, vi(w|δ) = Vi(ψi) − maxj 6=i Vj(ψi)
converges to a positive number as δ goes to −1. Since the set of such
functions {vi(·|δ)}i,δ is equicontinuous and each function is defined on a
compact set, there exists δ̄ > −1 such that for all δ ∈ (−1, δ̄), vi(w|δ) > 0
holds for all [ai] ∈ H∗ and all w ∈ ∆. Take such a δ.

8We say that a certain property holds for all generic (symmetric) games if for any open
set S of games in Rn×n, there exists a game (uij) ∈ S that satisfies this property.
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Take any two x, y ∈ H
∗. Consider a path from x to y: φ(t) = (1 −

e−λt)y + e−λtx. We show that any such path is a rationalizable foresight
path. For each t and each i with yi > 0, let ψi,t be a path given by ψi,t(τ) =
(1 − e−λτ )zi + e−λτφ(t), where zi satisfies {ai} = BR(zi). By way of the
choice of δ, ai ∈ BR(ψi,t)(t). Thus, φ is in Φ1. Since φ is a path from x to
y where x and y are arbitrarily chosen, every such path is in Φ1. Repeating
this procedure, we establish that every path connecting two distributions
in H

∗ is in Φk for all k, and hence, in Φ∗. Thus, every distribution in H
∗

is accessible from any distribution in H
∗, which implies that the unique

RF-stable set is identical with H
∗.

Consider an agent anticipating a path ψ that moves from x to y. If δ
is close to −1, then he puts almost all weight on the distant future, i.e.,
Vi(ψ) is approximated by

∑
k ykuik. The above proof essentially utilizes

this observation. Note also that as δ goes to infinity, Vi(ψ) converges to∑
k xkuik, and that if δ is close to zero, Vi(ψ) is approximated by the average

of the one-shot payoffs along the trajectory; in particular, Vi(ψ) is close to∑
k((xk + yk)/2)uik if the path moves straight towards y from x.
Recall that along a rationalizable foresight path, each agent believes that

a single path of action distribution will realize with probability one, and
chooses a pure strategy. Still, mixed action distributions can be observed
in the society since there are a continuum of agents who entertain different
beliefs. In this way, mixed strategies and mixed beliefs in the standard
rationalizability (Bernheim (1984) and Pearce (1984)) are replaced by the
population distributions of actions and beliefs.

Note that our definition of rationalizable strategy distributions is differ-
ent from the standard definition of rationalizable strategies. In the definition
of the standard rationalizability, Hk’s are replaced by Ĥ0 = ∆ and

Ĥk =
{
x ∈ Ĥk−1 | ∃ y ∈ co Ĥk−1 :

[
xi > 0⇒ ai ∈ BR(y)

]}

for k ≥ 1, where the symbol “co” stands for convex hull.
Because of this difference, the set of rationalizable strategy distributions

may not be the same as the set of standard rationalizable strategies. Let us
consider the game:

(uij) =




3 0 0
0 3 0
2 2 2


 . (6.1)

The mixed strategy, or strategy distribution, (1/2, 1/2, 0) is a rationalizable
strategy distribution in the societal game, but not a standard rationalizable
strategy. In the societal game, it is rationalizable since the half of the
population believe that action a1 will be chosen, while the other half believe
that action a2 will be chosen. On the other hand, it is not rationalizable in
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the standard definition since there is no mixed strategy to which (1/2, 1/2, 0)
is a best response.

7 p-Dominance and RF-Stability

This section relates the RF-stability to p-dominance. The notion of p-
dominance, introduced by Morris, Rob, and Shin (1995), is a generalization
of risk-dominance for games with more than two actions.9

Definition 6 Action profile (ai, ai) is a p-dominant equilibrium10 of sym-
metric n× n game (uij) if for all j 6= i, and all π ∈ ∆ with πi > p,

n∑

k=1

πkuik >

n∑

k=1

πkujk.

The following proposition provides some sufficient conditions under which
a p-dominant equilibrium corresponds to an RF-stable state.

Proposition 7.1 Suppose that (ai, ai) is a p-dominant equilibrium of the
stage game.

(a) If p < (1 + δ)/(2 + δ), then {[ai]} is an RF-stable set.
(b) If p ≤ 1/(2 + δ), then [ai] is contained in the unique RF-stable set.
(c) If p < min{(1 + δ)/(2 + δ), 1/(2 + δ)}, then {[ai]} is the unique RF-

stable set.

The condition in (a) assures that there is no rationalizable foresight path
away from [ai], while the condition in (b) implies that [ai] is accessible under
rationalizable foresight from any state in ∆. The condition in (c) combines
these two conditions.

Proof. (a) The proof is a direct application of Lemma 2 in Oyama (2000)
to the rationalizable foresight dynamics.

We first show that H1([ai]) = {[ai]}. Take any feasible path ψ with
ψ(0) = [ai]. It is sufficient to show that if p < (1+δ)/(2+δ), then BR(ψ) =
{ai}.

The expected discounted payoff to action aj at time 0 along the path ψ
is written as

Vj(ψ) =
n∑

k=1

πkujk,

9In 2 × 2, a p-dominant equilibrium with p < 1/2 coincides with a risk-dominant
equilibrium.

10This is called a strict p-dominant equilibrium in Kajii and Morris (1997, Definition
5.4).
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where π ∈ ∆ is given by

πk = (λ+ θ)
∫ ∞

0
e−(λ+θ)sψk(s) ds.

Since ψ(0) = [ai] holds, we have ψi(s) ≥ e−λs, and therefore,

πi ≥ (λ+ θ)
∫ ∞

0
e−(λ+θ)se−λs ds

=
1 + δ

2 + δ
> p.

It follows that Vi(ψ) > Vj(ψ) for all j 6= i from the assumption that (ai, ai)
is a p-dominant equilibrium.

We then have Hk([ai]) = {[ai]} for k = 2, 3, . . . , so that H∗([ai]) = {[ai]}.
Therefore, the unique rationalizable foresight path from [ai] is the path φ
such that φ(t) = [ai] for all t.

(b) This follows from Lemma 1 in Oyama (2000), which exhibits that
if p ≤ 1/(2 + δ), then [ai] is accessible from any state in ∆ under perfect
foresight, a fortiori under rationalizable foresight.

(c) This follows from (a) and (b).

Proposition 7.1 implies that a p-dominant equilibrium with p < 1/2 is
always contained in some RF-stable set.

8 Complete Characterization for 2× 2 Games

This section completely characterizes RF-stable sets for the class of games
with two actions:

(uij) =
(
a b
c d

)
. (8.1)

If one action weakly dominates the other, the state in which every agent
takes the dominant action constitutes the unique RF-stable set as well as
the unique PF-stable set. Also, if a = c and b = d hold, then the entire
space becomes a stable set under either dynamics.

There are two nontrivial cases to consider: (i) a > c and d > b, i.e.,
coordination games; and (ii) a < c and d < b, i.e., games with a unique
symmetric Nash equilibrium.

8.1 Coordination Games

This subsection studies coordination games. In this case, (8.1) can be nor-
malized to

(uij) =
(
a 0
0 d

)
, a > 0, d > 0. (8.2)
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Let µ = d/(a + d). Note that (a1, a1) is µ-dominant. We assume without
loss of generality that µ ≤ 1/2. The following is a direct application of
Proposition 7.1, where (a) makes use of the connectedness of RF-stable sets
as well.

Proposition 8.1 Let the stage game be given by (8.2). Suppose that µ =
d/(a+ d) ≤ 1/2. Then we have the following:

(a) If δ > (1− 2µ)/µ, then {[a1]} and {[a2]} are RF-stable sets, and no
other RF-stable set exists.

(b) If −(1 − 2µ)/(1 − µ) < δ ≤ (1 − 2µ)/µ, then {[a1]} is the unique
RF-stable set.

(c) If −1 < δ ≤ −(1− 2µ)/(1− µ), then ∆ is the RF-stable set.

If the degree of friction, δ, is large, both strict Nash equilibrium states
are RF-stable. If the friction is not too large, but still positive (or negative
but close to zero), then the rationalizable foresight dynamics selects [a1], the
risk-dominant equilibrium, over [a2] provided that µ < 1/2. If the agents
care more about the future than the present, i.e., θ is close to −λ, then the
action distribution moves around and the entire space becomes the unique
RF-stable set.

8.2 Games with a Unique Symmetric Equilibrium

This subsection considers the case where a < c and d < b. In this case, (8.1)
can be normalized to

(uij) =
(

0 b
c 0

)
, b > 0, c > 0. (8.3)

We assume without loss of generality that b < c holds.11 Denote by x̂ =
(x̂1, x̂2) ∈ ∆ the unique equilibrium state, i.e.,

(x̂1, x̂2) =
(

b

b+ c
,

c

b+ c

)
.

Note that x̂1 < 1/2 < x̂2.
The RF-stable set is of the form:

{(x1, x2) ∈ ∆ | α̂ ≤ x1 ≤ 1− β̂}.

Our task is to determine the endpoints (α̂, 1− α̂) and (1− β̂, β̂). The state
(α̂, 1 − α̂) (resp. (1 − β̂, β̂)) is the closest to [a2] (resp. [a1]) such that a2

(resp. a1) is a best response to the path that starts there, moves towards
to [a1] (resp. [a2]) at the maximum speed, and stays at (1 − β̂, β̂) (resp.
(α̂, 1− α̂)) once reached.

11The case of b = c has already been analyzed in Example 3.1.
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For this purpose, let F and G be two functions from [0, x̂1]× [0, x̂2] into
R defined as:

F (α, β) =
1 + δ

2 + δ
(1− α)2+δ +

1
2 + δ

β2+δ − x̂2(1− α)1+δ,

G(α, β) =
1 + δ

2 + δ
(1− β)2+δ +

1
2 + δ

α2+δ − x̂1(1− β)1+δ.

The sign of F (α, β) is identical with that of the payoff difference V1(φ)−V2(φ)
along the path φ that starts with (α, 1 − α), moves towards [a1] at the
maximum speed, and stays at (1 − β, β) once reached. Similarly, G(α, β)
has the same sign as the payoff difference V2(ψ)−V1(ψ) where ψ is the path
that starts with (1− β, β), moves towards [a2] at the maximum speed, and
stays at (α, 1− α) once reached.

Let (α?, β?) ∈ (0, x̂1)× (0, x̂2) be the unique solution to:

F (α?, β?) = 0,
G(α?, β?) = 0,

(8.4)

if it exists (see Fig. 3(a)).12 If it does not, then solve the following system
(see Fig. 3(b)):

F (0, β??) ≤ 0,
G(0, β??) = 0.

(8.5)

In the latter case, we have a unique solution β?? = 1− x̂1(2 + δ)/(1 + δ) ∈
(0, x̂2) to (8.5) if and only if δ > −(1− 2x̂1)/(1− x̂1). Write

δ?? = −1− 2x̂1

1− x̂1
.

If δ ≤ δ??, then F (0, 0) < 0 and G(0, 0) < 0, so that the entire space ∆
becomes the RF-stable set.

12It can be verified that F (x̂1, x̂2) = G(x̂1, x̂2) = 0 holds. We also have

∂F

∂α
= −(1 + δ)(1− α)δ(x̂1 − α),

which is negative for α ∈ (0, x̂1), and

∂F

∂β
= β1+δ > 0.

Let α̂(β) satisfy F (α̂(β), β) = 0. Then, one can verify that α̂ is well defined for β ∈ (0, x̂2),
that

dα̂

dβ
= − (∂F/∂β)(α̂(β), β)

(∂F/∂α)(α̂(β), β)

is positive, and that α̂(β) is convex in β with α̂′(0) = 0 and limβ→x̂2 α̂
′(β) =∞.

Similarly, let β̂(α) satisfy G(α, β̂(α)) = 0. In a similar manner, one can verify that β̂ is
well-defined, and that it is increasing and convex in α with β̂′(0) = 0 and limα→x̂1 β̂

′(α) =
∞.
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Figure 3: Graphs of F (α, β) = 0 and G(α, β) = 0

Let δ? be the unique solution to

F

(
0, 1− x̂1

2 + δ?

1 + δ?

)
= 0. (8.6)

Indeed, it can be verified that F (0, 1 − x̂1(2 + δ)/(1 + δ)) is increasing in
δ, and has a negative value, −2(x̂2 − 1/2)(1− x̂2), at δ = 0, and a positive
value, 1− x̂2, in the limit as δ →∞. Observe that (8.4) has the solution in
(0, x̂1)× (0, x̂2) if and only if δ > δ?.

Proposition 8.2 Let the stage game be given by (8.3). Suppose that b < c.
Then we have the following:

(a) If δ > δ?, then the unique RF-stable set is

{(x1, x2) ∈ ∆ |α? ≤ x1 ≤ 1− β?}.

(b) If δ?? < δ ≤ δ?, then the unique RF-stable set is

{(x1, x2) ∈ ∆ | 0 ≤ x1 ≤ 1− β??}.

(c) If −1 < δ ≤ δ??, then the unique RF-stable set is ∆.

We omit the proof of this proposition since it is essentially the same as,
albeit a little more complicated than, that of Proposition 3.4. As in Example
3.1, the RF-stable set always contains non-equilibrium states, and one needs
a rationalizable foresight path that is not a perfect foresight path in order to
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escape from the equilibrium state. It is worth noting that {x̂} is the unique
PF-stable set for any degree of friction. This follows from the facts that
independently of the friction, x̂ is accessible under perfect foresight from
any state in ∆, and that there exists no perfect foresight path that escapes
from x̂, which can be proved in the same way as the proof of Lemma A.2 in
Appendix.

9 Conclusion

We have proposed the rationalizable foresight dynamics and defined the
stability concepts under the dynamics. We have then discussed its prop-
erties, including the existence of stable sets. The rationalizable foresight
dynamics is intended to overcome, albeit in limited situations, some of the
shortcomings that three theories, the equilibrium theory, the theory of ra-
tionalizability, and the evolutionary game theory, have in different ways. By
introducing the concept of rationalizable foresight, we have abandoned the
requirement that agents’ beliefs should be coordinated as assumed in the
equilibrium theory. We have reclaimed the notion of rationality that the
evolutionary game theory had discarded. Finally, we have mitigated the
poor performance of the theory of rationalizability as prediction device by
incorporating inertia into the system as in the evolutionary game theory.

We have illustrated by way of an example that the RF-stability gives a
sharper prediction than the PF-stability. A key observation for this result
is that, in general, it is easier to escape from an action distribution under
rationalizable foresight than under perfect foresight. Accordingly, there may
exist a state from which a rationalizable foresight path escapes but no perfect
foresight path does.

In our analysis, inertia plays a key role. If there is no inertia, then the be-
havior pattern may jump around, and there is no hope for sharp prediction.
Indeed, for a sufficiently small effective discount rate, the unique RF-stable
set coincides with the set of rationalizable strategy distributions of the cor-
responding static societal game. Note here that mixed strategies and mixed
beliefs in the standard rationalizability are replaced by the distributions of
actions and beliefs.

We have limited our analysis to a special class of dynamic environments
since our aim is to present a conceptual framework that allows us to examine
the situations in which rationality is common knowledge among infinitesimal
agents, but beliefs may not be coordinated with each other, as opposed to
providing a universal framework. How the present analysis can be extended
to general situations remains to be seen in the future.
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Appendix

A.1 Proofs of Propositions 3.4 and 3.5

Proof of Proposition 3.4. We divide the proof into two cases, (i) δ > 0 and
(ii) −1 < δ ≤ 0.
(i) δ > 0: We would like to show that H∗(·) is given by

H∗(z) =




{[a1]} if z1 < α∗,
∆ if α∗ ≤ z1 ≤ 1− α∗,
{[a2]} if z1 > 1− α∗,

where α∗ satisfies (3.2). For this purpose, it suffices to show that

Hk(z) =




{[a1]} if z1 < αk,
∆ if αk ≤ z1 ≤ 1− αk,
{[a2]} if z1 > 1− αk

(A.1)

holds for all k = 0, 1, 2, . . . , where {αk}∞k=0 is given by α0 = 0 and

1 + δ

2 + δ
(1− αk) +

1
2 + δ

(αk−1)2+δ

(1− αk)1+δ
=

1
2
, 0 < αk <

1
2
, (A.2)

and that limk→∞ αk = α∗.
Let H0(·) ≡ ∆, and let Hk(·) be given by (A.1). We construct Hk+1

from Hk for k = 0, 1, 2, . . . . By symmetry, we consider only those z’s with
z1 ∈ [0, 1/2]. Take any such z = (z1, z2).

Consider first the path ψ ∈ Ψ0(z) given by

ψ(t) =
{

[a1]− ([a1]− z) e−λt if t < T1,(
1
2 ,

1
2

)
if t ≥ T1,

where T1 satisfies z2 e
−λT1 = 1/2. Since V1(ψ) ≥ V2(ψ) holds, [a1] is always

in Hk+1(z).
We then check if there exists a path to which a2 is a best response. The

best scenario for a2 is expressed by the path ψ such that

ψ(t) =
{

[a1]− ([a1]− z) e−λt if t < T2,
(1− αk, αk) if t ≥ T2,

(A.3)

where T2 ∈ (0,∞] is given by

(1− z1) e−λT2 = αk.
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The expected discounted payoffs along this path are calculated as:

V1(ψ) = (λ+ θ)
∫ T2

0
e−(λ+θ)s z2 e

−λs ds+ (λ+ θ)
∫ ∞
T2

e−(λ+θ)s αk ds

=
1 + δ

2 + δ
(1− z1) +

1
2 + δ

(αk)2+δ

(1− z1)1+δ
;

V2(ψ) = (λ+ θ)
∫ T2

0
e−(λ+θ)s {1− (1− z1)} e−λs ds

+ (λ+ θ)
∫ ∞
T2

e−(λ+θ)s (1− αk) ds

= 1− 1 + δ

2 + δ
(1− z1)− 1

2 + δ

(αk)2+δ

(1− z1)1+δ
.

It follows that V1(ψ) ≤ V2(ψ) if and only if z1 ≥ αk+1, where αk+1 ∈ (0, 1/2)
is given by

1 + δ

2 + δ
(1− αk+1) +

1
2 + δ

(αk)2+δ

(1− αk+1)1+δ
=

1
2
.

Note that the left hand side is decreasing in αk+1 ∈ (0, 1/2). Thus, we have
proved that (A.1) holds for all k = 0, 1, 2, . . . .

We now show by induction that α0 < α1 < · · · (< 1/2), and hence,
{αk}∞k=0 has the limit, which is equal to the unique solution α∗ to (3.2).
First, α0 = 0 < α1 = δ/(2 + 2δ). Suppose next that αk−1 < αk. For
(α, β) ∈ [0, 1/2]× [0, 1/2], define

f(α, β) =
1 + δ

2 + δ
(1− α) +

1
2 + δ

β2+δ

(1− α)1+δ
− 1

2
.

Recall that f(αk+1, αk) = 0. Since f(α, β) is increasing in β,

f(αk, αk) > f(αk, αk−1) = 0,

so that f(αk, αk) > f(αk+1, αk) (= 0). Since f(α, β) is decreasing in α, we
have αk < αk+1.
(ii) −1 < δ ≤ 0: It suffices to verify that [a1] is accessible from [a2] and vice
versa. Similarly as above, at any z ∈ ∆, a1 (resp. a2) is a best response to
the path ψ given by ψ(t) = [a2]− ([a2]− z) e−λt (resp. ψ(t) = [a1]− ([a1]−
z) e−λt).

Proof of Proposition 3.5. We show that α∗(δ) is increasing in δ. Define

g(α, δ) = (1− α)
{

1 + δ

2 + δ
+

1
2 + δ

(
α

1− α
)2+δ

− 1
2(1− α)

}
.
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α
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g(α, δ)

1
2

α∗

1+δ
2+δ − 1

2

Figure 4: Graph of g(α, δ)

Recall that, by (3.2), α∗(δ) satisfies g(α∗(δ), δ) = 0. We have

∂g

∂α
(α, δ) = −1 + δ

2 + δ
+
(

α

1− α
)1+δ

+
1 + δ

2 + δ

(
α

1− α
)2+δ

,

which is increasing in α. Since g(1/2, δ) = 0, (∂g/∂α)(0, δ) < 0, and
(∂g/∂α)(1/2, δ) > 0, we have

∂g

∂α
(α∗(δ), δ) < 0,

as depicted in Fig 4.
On the other hand,

∂g

∂δ
(α, δ) =

(1− α)
(2 + δ)2

[
1−

(
α

1− α
)2+δ{

1− (2 + δ) log
(

α

1− α
)}]

> 0

for all δ > 0 and all α ∈ (0, 1/2), since
(

α

1− α
)−(2+δ)

> 1− (2 + δ) log
(

α

1− α
)
. (A.4)

It follows that

dα∗(δ)
d δ

= − (∂g/∂δ)(α∗(δ), δ)
(∂g/∂α)(α∗(δ), δ)

> 0. (A.5)

Next, due to g(0, 0) = 0, the continuity of g, and (A.5), we have

lim
δ→0

α∗(δ) = 0.

Finally, we have

lim
δ→∞

α∗(δ) =
1
2
,

since from the proof of Proposition 3.4, α1 < α∗(δ) < 1/2 and α1 = δ/(2 +
2δ)→ 1/2 as δ →∞.
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A.2 Proof of Proposition 4.6

In order to prove Proposition 4.6, we need a few lemmata, which are given
below.

Lemma A.1 If δ > 1, then [a1] is both PF-stable and RF-stable.

Proof. This lemma follows from Proposition 7.1.

Lemma A.2 Any perfect foresight path φ with φ2(0) = φ3(0) satisfies
φ2(t) = φ3(t) for all t > 0.

Proof. Take any perfect foresight path φ with φ2(0) = φ3(0). We suppose
that φ2(t0) < φ3(t0) for some t0 > 0. Define t to be

t = inf{t < t0 | ∀ s ∈ (t, t0) : φ2(s) < φ3(s)}.

Note that t < t0 and φ2(t) = φ3(t) due to the continuity of the perfect
foresight path.

Claim A.1. There exists t ∈ (t, t0) such that V2(t) ≤ V3(t).
If V2(t) > V3(t) for all t ∈ (t, t0), then

φ2(t0) ≥ φ2(t) e−λ(t−t),

φ3(t0) = φ3(t) e−λ(t−t),

implying that φ2(t0) ≥ φ3(t0). This contradicts the definition of t0, com-
pleting the proof of Claim A.1.

We denote by T 1 such a t in Claim A.1, i.e., T 1 ∈ (t, t0), and

V2(T 1)− V3(T 1) ≤ 0. (A.6)

Claim A.2. There exists t > t0 such that φ2(t) ≥ φ3(t).
Suppose the contrary. Then φ2(t) < φ3(t) for all t > T 1. It follows that

V2(T 1)− V3(T 1) = (λ+ θ)
∫ ∞
T 1

e−(λ+θ)(s−T 1) (φ3(s)− φ2(s)) ds > 0.

This contradicts (A.6), completing the proof of Claim A.2.

Define t (> t0) to be

t = sup{t > t0 | ∀ s ∈ (t0, t) : φ2(s) < φ3(s)},

which is finite due to Claim A.2. Note again that φ2(t) = φ3(t).

Claim A.3. There exists t ∈ (t0, t) such that V2(t) ≥ V3(t).
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If V2(t) < V3(t) for all t ∈ (t0, t), then

φ2(t) = φ2(t0) e−λ(t−t0),

φ3(t) ≥ φ3(t0) e−λ(t−t0),

implying that φ2(t0) ≥ φ3(t0). This contradicts the definition of t0, com-
pleting the proof of Claim A.3.

We denote by T 2 such a t in Claim A.3, i.e., T 2 ∈ (t0, t), and

V2(T 2)− V3(T 2) ≥ 0. (A.7)

Since φ2(t) < φ3(t) for all t ∈ (T 1, T 2),

V2(T 1)− V3(T 1) = (λ+ θ)
∫ ∞
T 1

e−(λ+θ)(s−T 1) (φ3(s)− φ2(s)) ds

= (λ+ θ)
∫ T 2

T 1

e−(λ+θ)(s−T 1) (φ3(s)− φ2(s)) ds

+ e−(λ+θ)(T 2−T 1)(V2(T 2)− V3(T 2))

> e−(λ+θ)(T 2−T 1)(V2(T 2)− V3(T 2)) ≥ 0,

where the last inequality follows from (A.7). This contradicts (A.6).

Lemma A.3 If δ > 1, then (0, 1/2, 1/2) is a PF-stable state.

Proof. Take any perfect foresight path φ with φ(0) = (0, 1/2, 1/2). Due to
Lemma A.2, it must satisfy φ2(t) = φ3(t) for all t. Hence,

V1(φ) = (λ+ θ)
∫ ∞

0
e−(λ+θ)s φ1(s) ds

≤ (λ+ θ)
∫ ∞

0
e−(λ+θ)s (1− e−λs) ds =

1
2 + δ

,

and

V2(φ) = V3(φ) = (λ+ θ)
∫ ∞

0
e−(λ+θ)s φ2(s) ds

≥ (λ+ θ)
∫ ∞

0
e−(λ+θ)s 1

2
e−λs ds =

1
2
· 1 + δ

2 + δ
,

so that V1(φ) < V2(φ) = V3(φ) for δ > 1. It follows that φ1(t) = 0 and,
therefore, φ2(t) = φ3(t) = 1/2.

Lemma A.4 There exists δ > 1 such that if 1 < δ ≤ δ, then no RF-stable
set contains (0, 1/2, 1/2).
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Proof. Using the same logic as the one in Example 3.1, we can verify that
(0, α∗(δ), 1−α∗(δ)) is accessible under rationalizable foresight from (0, 1/2, 1/2).
It is therefore sufficient to show that the linear path φ from (0, α∗(δ), 1 −
α∗(δ)) to [a1] is a rationalizable foresight path for a δ > 1 sufficiently close
to 1. Here, α∗ = α∗(δ) is given by g(α∗, δ) = 0, where

g(α, δ) =
1 + δ

2 + δ
(1− α) +

1
2 + δ

(α)2+δ

(1− α)1+δ
− 1

2
, 0 < α <

1
2
. (A.8)

Recall from the proof of Proposition 3.5 that g(α, δ) < 0 if and only if
α∗ < α < 1/2. Along the path φ,

V1(φ) = 1− 2α∗
1 + δ

2 + δ
,

V2(φ) = (1− α∗) 1 + δ

2 + δ
,

V3(φ) = α∗
1 + δ

2 + δ
.

It is sufficient to demonstrate that there exists δ such that if 1 < δ ≤ δ, then
V1(φ) ≥ V2(φ), or equivalently,

α∗ ≤ 1
1 + δ

. (A.9)

We find the range of δ (> 1) such that g(1/(1 + δ), δ) ≤ 0. Since

g
( 1

1 + δ
, δ
)

= − 1
(1 + δ)(2 + δ)

{
(1 + δ)(2− δ)

2
− δ−(1+δ)

}
,

g(1/(1 + δ), δ) ≤ 0 if and only if

(1 + δ)(2− δ)δ1+δ − 2 ≥ 0.

Write

h(δ) = (1 + δ)(2− δ)δ1+δ − 2.

Then, we have

h′(δ) = δδ{δ(1 + δ)(2− δ) log δ − (−2− 4δ + 2δ2 + δ3)}. (A.10)

Since h(1) = 0 and h′(1) > 0, there exists δ > 1 such that for all δ ∈ (1, δ],
h(δ) ≥ 0, i.e., g(1/(1 + δ), δ) ≤ 0. Thus, for such a δ, the linear path from
(0, α∗(δ), 1− α∗(δ)) to [a1] is a rationalizable foresight path. From Lemma
A.1, no RF-stable set contains (0, 1/2, 1/2).

Proof of Proposition 4.6. Combining these lemmata, we complete the proof
of the proposition.
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A.3 Proof of Proposition 5.1

We introduce a Banach space X, the set of bounded functions f : [0,∞)→
Rn with the norm

‖f‖r = sup
t≥0

e−rt|f(t)|

for r > 0.

Lemma A.5 Φ0 ⊂ X is compact.

Proof. Observe first that due to the Ascoli-Arzelà theorem,

K = {φ : [0,∞)→ ∆ ⊂ Rn |φ is Lipschitz with constant λ}

is a compact subset of X. Thus, it is sufficient to show that Φ0, which is a
subset of K, is closed.

Take a sequence {φm} such that φm ∈ Φ0 for all m, and assume φm → φ.
Suppose that there exist i and t such that

φ̇i(t) < −λφi(t).

Then, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄], (φi(t + ε) − φi(t))/ε <
−λφi(t). It follows that for a sufficiently large m, (φmi (t + ε)− φmi (t))/ε <
−λφmi (t), or

φmi (t+ ε) < φmi (t)(1− λε). (A.11)

On the other hand, since φ̇mi (s) ≥ −λφmi (s) holds for any s and any m,
we have

φmi (t+ ε) ≥ φmi (t) e−λε

> φmi (t)(1− λε),

which contradicts (A.11).

Lemma A.6 For all k, Φk is closed.

Proof. First, by Lemma A.5, Φ0 is closed. Suppose next that Φk−1 is closed.
Let {φm} be such that φm ∈ Φk for all m, and assume φm → φ. Take any
i and t such that φ̇i(t) > −λφi(t). Observe that for any ε > 0, there exists
M such that for all m ≥M ,

φ̇mi (tm) > −λφmi (tm)

holds for some tm ∈ (t − ε, t + ε). Take a sequence {ε`} such that ε` > 0
and ε` → 0. Then we can take a subsequence {φm`} of {φm} such that
φ̇m`i (t`) > −λφm`i (t`) holds for some t` ∈ (t− ε`, t+ ε`). For each φm` , since
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it is contained in Φk, there exists ψ` ∈ Φk−1 such that ψ`(t`) = φm`(t`)
and ai ∈ BR(ψ`)(t`). Since Φ0 is compact and, by the hypothesis, Φk−1 is
closed, a subsequence (again denoted by) ψ` converges to some ψ ∈ Φk−1,
which satisfies ψ(t) = φ(t). Moreover, since the payoff V (·)(·) is continuous,
and hence, BR(·)(·) is upper semi-continuous, we have ai ∈ BR(ψ)(t), so
that φ ∈ Φk.

Proof of Proposition 5.1. Take any φ ∈ Φ∗, and any i and t such that φ̇i(t) >
−λφi(t). Since φ ∈ Φk for all k, we can take a sequence {ψk} with ψk ∈
Φk (⊂ Φ0) such that ψk(t) = φ(t) and ai ∈ BR(ψk)(t). Since Φ0 is compact
due to Lemma A.5, a subsequence (again denoted by) ψk converges to some
ψ ∈ Φ0 with ψ(t) = φ(t). For each k, {ψk′}k′≥k is contained in Φk, so
that the limit ψ is in Φk since Φk is closed due to Lemma A.6. Therefore,
ψ ∈ Φ∗ (=

⋂∞
k=0 Φk). Moreover, due to the upper semi-continuity of BR, we

have ai ∈ BR(ψ)(t).
Conversely, take any φ /∈ Φ∗. Then, φ /∈ Φk for some k. For such a

k, there exist i and t such that no path ψ ∈ Φk (⊃ Φ∗) with ψ(t) = φ(t)
satisfies ai ∈ BR(ψ)(t).

References

Aubin, J.-P., and A. Cellina (1984): Differential Inclusions. Spinger-
Verlag, Berlin.

Battigalli, P. (1997): “On Rationalizability in Extensive Games,” Jour-
nal of Economic Theory, 74, 40–61.

Bernheim, B. D. (1984): “Rationalizable Strategic Behavior,” Economet-
rica, 52, 1007–1028.

Burdzy, K., D. M. Frankel, and A. Pauzner (2001): “Fast Equilibrium
Selection by Rational Players Living in a Changing World,” Econometrica,
69, 163–189.

Fudenberg, D., and D. K. Levine (1998): The Theory of Learning in
Games. MIT Press, Cambridge.

Gilboa, I., and A. Matsui (1991): “Social Stability and Equilibrium,”
Econometrica, 59, 859–867.

Hofbauer, J., and K. Sigmund (1998): Evolutionary Games and Popu-
lation Dynamics. Cambridge University Press, Cambridge.

Hofbauer, J., and G. Sorger (1999): “Perfect Foresight and Equilibrium
Selection in Symmetric Potential Games,” Journal of Economic Theory,
85, 1–23.

30



(2002): “A Differential Game Approach to Evolutionary Equilib-
rium Selection,” International Game Theory Review, 4, 17–31.

Kajii, A., and S. Morris (1997): “The Robustness of Equilibria to In-
complete Information,” Econometrica, 65, 1283–1309.

Krugman, P. (1991): “History versus Expectations,” Quarterly Journal of
Economics, 106, 651–667.

Lagunoff, R., and A. Matsui (1995): “Evolution in Mechanisms for
Public Projects,” Economic Theory, 6, 195–223.

Matsui, A. (1992): “Best Response Dynamics and Socially Stable Strate-
gies,” Journal of Economic Theory, 57, 343–362.

Matsui, A., and K. Matsuyama (1995): “An Approach to Equilibrium
Selection,” Journal of Economic Theory, 65, 415–434.

Matsuyama, K. (1991): “Increasing Returns, Industrialization, and Inde-
terminacy of Equilibrium,” Quarterly Journal of Economics, 106, 617–
650.

Maynard Smith, J., and G. R. Price (1973): “The Logic of Animal
Conflicts,” Nature, 246, 15–18.

Morris, S., R. Rob, and H. S. Shin (1995): “p-Dominance and Belief
Potential,” Econometrica, 63, 145–157.

Nash, J. (1951): “Non-Cooperative Games,” Annals of Mathematics, 54,
286–295.

Oyama, D. (2000): “p-Dominance and Equilibrium Selection under Perfect
Foresight Dynamics,” forthcoming in Journal of Economic Theory.

Pearce, D. G. (1984): “Rationalizable Strategic Behavior and the Problem
of Perfection,” Econometrica, 52, 1029–1050.

Vega-Redondo, F. (1996): Evolution, Games, and Economic Behavior.
Oxford University Press, Oxford.

Weibull, J. W. (1997): Evolutionary Game Theory. MIT Press, Cam-
bridge.

Young, P. (1998): Individual Strategy and Social Structure. Princeton Uni-
versity Press, Princeton.

31


