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Summary: We consider the problem of estimating measures of precision of
shrinkage-type estimators like their risk or distribution. The notion of
shrinkage-type estimators here refers to estimators like the James-Stein
estimator or Lasso-type estimators, as well as to "thresholding" estimators
such as, e.g., Hodges’ so-called superefficient estimator. While the
precision measures of such estimators fypically can be estimated consistently,
we show that they cannot be estimated uﬂiformly consistently (even locally).
This follows as a corollary to (locally) uniform lower bounds on the
performance of estimators of the precision measures that we obtain in the
paper. These lower bounds are typically quite large (e.g., they approach 1/2
or 1 depending on the situation considered). The analysis is based on some
general lower risk bounds and related general results on the (non)existence of

uniformly consistent estimators alsc obtained in the paper.

AMS 2000 Subject Classifications. Primary 62J07; secondary 62C0S, 62F1i0,
62F12.

Keywords and Phrases. Shrinkage-type estimators, Bridge-estimator, James-Stein
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1. Introduction and Overview

In virtually any statistical application one is not only interested in a
point-estimate of an unknown parameter by itself, but also in a measure of the
precision of the estimate. For example, one would like to obtain information
on the risk or on the distribution of the estimator. As these quantities
often depend on unknown parameters, one frequently has to be content with
estimates of the risk or the distribution. In the present paper we are
concerned with the estimation of the risk or the distribution of
shrinkage-type estimators. Under the umbrella of shrinkage-type estimators we
subsume well-known estimators like the James-Stein estimator or Hodges’
superefficient estimator, as well as penalized maximum likelihood (least
squares) estimators including recent proposals like the Lasso-type and Bridge
estimators (cf. Tibshirani (1996), Knight and Fu (2000), Frank and Friedman
(1993)) or the SCAD-estimators recently introduced by Fan and Li (2001).
Furthermore, any estimator based on some sort of a (soft or hard) thresholding
rule falls into this category.

While it is typically not difficult to construct consistent estimators
for the risk or the distribution of shrinkage-type estimators, the results we
obtain imply that any such estimator of the risk or the distribution
necessarily has very poor performance in the sense that the maximum
probability of the estimation error exceeding a certain threshold remains
large even in large samples. To illustrate, we now sketch a simple special
case of the results in Section 2. Let 6 be a shrinkage-type estimator (as

considered in Sections 2.2-2.3) for a parameter vector eeRk, and let F e(t) =
n

’

Pn e(nl/Z(B—e)St) be its cdf at sample size n. Then there exists a 8>0 such

that for any consistent estimator Fn(t) of Fn 9(t) the relation

SUP| g | <MPn, 0l IFn(t) = F g(t}1>3) — 1 (1.1)

holds for n—w. That is, while the probability Pn e(IFn(t) - Fn 6(t)|>5)



converges to zero for every given 6 by consistency, relation (1.1) shows that
it does not do so uniformly in 6. It follows that %n(t) can never be
uniformly consistent (not even when restricting consideration to compact
subsets of the parémeter space). Hence, a large sample size does not
guarantee a small estimation error with high probability when estimating the
risk or distribution of shrinkage-type estimators. As a consequence, reliably
assessing the precision of shrinkage-type estimators constitutes an
intrinsically hard (if not unsolvable) problem. It is interesting to note
that the non-uniformity phenomena like (1.1) arise near the origin which is
precisely that region of the parameter space where shrinkage-type estimators
typically have the greatest advantage over the maximum likelihood estimator.
Apart from results like (1.1), we also provide minimax lower bounds for the
performance of arbitrary (not necessarily consistent) estimators of the risk
or the distribution of shrinkage-type estimators. For example, we show that
there exists a 8>0 such that

11m1nfn 1nf§ (t)sup||9||<M Pn’e(an(t) - Fn’e(t)|>6) =c>0 (1.2)
n

holds, where the lower bound c is typically large and can be computed. In
fact, we show that in (1.1)-(1.2) the balls ||@||<M can be replaced by
(suitable) balls shrinking at the rate n 2. For related results in the
context of model selection see Leeb and Pdtscher (2002).

The results on shrinkage-type estimators mentioned above share a common
mathematical structure which is investigated in a more abstract framework in
Section 3. The results in that section are roughly as follows: We consider

an (abstract) set B of parameters indexing a set {P BeB} of probability

nB’

measures, and a functional of interest, wn:B—eR say, that is to be estimated.

Note that we need to allow the functional ¢ to depend on sample size in order
n

to be able to subsume the results relating to shrinkage-type estimators

mentioned earlier. (This feature also allows the results of Section 3 to be



applied to the derivation of bounds on convergence rates in geheral, cf.
Remark 3.5(v)). We then provide conditions on the estimand wn(B) and the set
of probability measures implying the existence of a &>0 such that any
consistent estimator ;n of wn(B) satisfies

SuPBeBPn,B(l‘:’n - ¢ (B)1>8) — 1 (1.3)
for n—wo. This relation implies nonexistence of uniformly consistent
estimators for wn(B), but certainly is much stronger. The results we obtain
in Section 3 are actually more general than (1.3) as the supremum over B in
(1.3) may be replaced by a supremum over suitably "shrinking" subsets Bn, and
¢_ may take values in a metric space. Furthermore, we also provide --
analogously to (1.2) -- minimax lower bounds for the performance of arbitrary
(not necessarily consistent) estimators.

The remainder of the paper is organized as follows: Estimation of the
risk of the James-Stein estimator is discussed in Section 2.1. Sections
2.2-2.3 treat estimation of the finite-sample distribution of Lasso-type
estimators and of Hodges’ superefficient estimator, respectively; the latter
is analyzed as a prototypical yet simple instance of an estimator that is
obtained by "hard thresholding" and that has the so-called "oracle property"
in the sense of Fan and Li (2001). The techniques used for establishing these
results are the subject of Section 3. In this section we study in an abstract
framework lower bounds for the performance of estimators and, in particular,
the existence/nonexistence of uniformly consistent estimators for
sample-size-dependent functionals of interest. All proofs are relegated to
appendices.

Some words on notation: The cumulative distribution function (cdf) of a
normally distributed random vector with mean zero and covarlance matrix Z is

denoted by ¢, while the cdf of a standard normally distributed random

z)
variable is denoted by ® as usual. The transpose of a matrix A is denoted by

A’. The largest eigenvalue of a symmetric matrix A is represented by A (A).
max



The symbol ||.|] is used as a generic symbol for a norm on a vector space

(e.g., in Section 3), or to denote the Euclidean norm (e.g., in Section 2).

2. Lower Bounds for the Estimation of the Risk or of the Distribution of

Shrinkage-Type Estimators

In this section we provide lower bounds on the performance of estimators
of the risk or of the distribution of shrinkage-type estimators. 1In
particular, it follows that these objects cannot be estimated uniformly
consistently, not even over (suitable) shrinking subsets of the parameter
space (and hence a fortiori not over all compacta). This is in stark contrast
to the situation where the least squares estimator is employed instead. We
furthermore note that all results in this section also hold for randomized
estimators, cf. Lemma 3.6. All results in this section are derived for
Gaussian models. However, this is not really a restriction, since the results
a fortiori also hold for any more general statistical model containing the

Gaussian models of Sections 2.1-2.3, respectively.

In order to assess the actual variability of the James-Stein estimator an
estimator of its risk is desirable. The problem of estimating the risk of the
James-Stein estimator has been considered, e.g., in Jennrich and Oman (1986),
Sen (1986), Adkins (1990, 1992), and Venter and Steel (1990). (A related
strand of literature treats estimation of the loss; see Lu and Berger (1989),
Wan and Zou (2002), and the references in these papers.) For example, Sen
(1986) shows that various jackknife estimators for the risk do not work
properly near the origin. In the following we establish that this is in fact

true for any estimator of the risk of the James-Stein estimator.



Consider observations Yi, i21, that are independent and identically
distributed as N(G,Ik), where Ik denotes the k-dimensional identity matrix.

Let P denote the distribution of the sample Yl,...,Yn of size n, and let
n

,8
E 6 denote the corresponding expectation. Given an estimator 6 for 6 we
n!
consider the quadratic risk

R (6;6) = nE _(6-8)'(8-6).

n n, 0
It is well-known that for k=3 the James-Stein estimator BJS given by

&= (1—(1<—2)/(1rmem_eml)eML
dominates the maximum likelihood estimator BML = n_lz?_lYi; more precisely,
R (BJS;G) <R (GML;B) = k holds for every 6eR® and every nzl. This follows
n n
immediately from the well-known result

R (8 ;8) = k-(k-2)’exp(-no’0)F,_ (ne’0)’ (Jt (k-2+25))7", (2.1)
cf., e.g., Judge and Bock (1978), egs. (8.3.6), (8.3.7). The improvement of
er over GML is substantial when the true parameter 6 is close to zero.
Indeed, if n;/ze is small, then (2.1) shows that Rn(BJS;e) is close to
Rn(BJS;O)=2, which is substantially smaller than Rn(GML;9)=k. For large 6 the
risk of 8 is close to the risk of 6 ; 1in fact, R (8 __;8) converges to k
Js ML n Js’
for every 6#0 and n—w. (To see this, observe that
exp(-nB’9)2‘;’_“%1(nG’G)J(j!(k—2+2j))-1 < (k+2m)”!. This inequality furthermore
also shows that that Rn(er;e) is continuous in 6.)
Turning to estimation of the risk R (BJS;G), it is easy to construct
n
consistent estimators for Rn(BJS;G): E.g., estimate the risk by 2 if
|{e_ |l<c and by k if ||6_ ||izc , where c_ is a sequence of positive numbers
ML n ML n n

2y, Obviously this estimator is not very useful

satisfying ¢ — and c'n=0(n~1
and will perform poorly in finite samples when n'?e is close to but different
from zero. The poor performance of this estimator is not accidental, but is a
genuine feature of the estimation problem and affects any estimator of the

risk as the following result shows. For convenience we introduce for k=3 the

function A(x) = 2_1(k-2)[1-(k—2)exp(—x2)zo;:0x2j(j! (k-2+23))"']. It is easy to



see that A is continuous and strictly increasing for x=0, satisfies A(0)=0 and

lim A(x)=(k=-2)/2.
X—>00

Theorem 2.1: Suppose k=3. Then any consistent estimator Rn for the risk
R (OJS;G) of the James-Stein estimator satisfies
n

P - - H > = .
11m1nfn_$msup||9||<pn>1/2 Pn,e(an Rn(BJS,e)I 8) =1 (2.2)

for every pair (8,p) with 0<p<w and 8<A(p). Furthermore,

; : o o o 1 a(A"l N
1nfn211nfﬁ Sup||6||<pn_1/2 Pn'e(an Rn(GJS,6)|>6) = 1-¢(A "(8)) = 1-8(p) > O

n
(2.3)
holds for every pair (8,p) with 0<p<w and 8<A(p), where the inner infimum

extends over all estimators Rn of the risk Rn(BJS;B). Moreover, for every p>0

sup6>omfnaimf},i sup

n

||9|l<pn'1/2 Pn,B(IRn - Rn(eJS;B)I>6) =z 1/2 (2.4)

holds.

The above theorem implies that the risk of the James-Stein estimator is
difficult to estimate; in particular, it can not be estimated uniformly
consistently over balls around the origin. It is interesting to note that
this difficulty arises precisely in that region of the parameter space where
the James-Stein estimator has the biggest advantage over the maximum

likelihood estimator in terms of risk.

Remark 2.1: The range of & for which (2.2)-(2.3) hold for some p>0 is given by
8<(k-2)/2. This is quite natural, since for 82(k-2}/2 the trivial estimator

Rn=(k+2)/2 satisfies SUPg Rk Pn,B(IRn - Rn(GJS;O)I>8) = 0 for every nzl.

2.2 Estimating the Cdf of Lasso-Type Estimators

Consider the linear model Yi=Xi9+ui for izl1, where X is a non-stochastic
1



1xk vector of regressors (kzl), © is an unknown kxl1 parameter vector, and the
errors ui are i.i.d. normal with mean zero and unit variance. Furthermore,
assume that nflzlex;xi converges to a finite positive-definite matrix Q. For
eemk, let Pn,e denote the distribution of the sample (Yl,...,Yn)'. We are
interested in the estimator éL that is obtained by minimizing the penalized
least-squares criterion
T, (Y, X8)* + AT e | (2.5)

over BeRk. The constants hn are assumed to be positive and to satisfy
n"“zxn——m with 0<A<w as n—o. (The solution to the minimization problem
(2.5) is unique provided z:=1X;Xi is positive-definite as (2.5) is then
strictly convex. Hence, except possibly for finitely many n, the estimator éL
is well-defined; it is also measurable as is easily seen.) This estimator is
referred to as a Lasso-type estimator in Knight and Fu (2000), since it is
closely related to the Lasso of Tibshirani (1996). It is a member of the
class of Bridge estimators introduced by Frank and Friedman (1983). Knight
and Fu (2000) also note that in the context of wavelet regression minimizing
(2.5) is known as "basis pursuit", cf. Chen, Donoho, and Saunders (1999). 1In
fact, in case z:zlx;xi is diagonal, the Lasso-type estimator reduces to
soft-thresholding of the coordinates of the maximum likelihood (least squares)
estimator.

Knight and Fu (2000) have studied the asymptotic distribution of the

172,

Lasso-type estimator 6 - Let Fn 6 denote the cdf of n (GL—G), i.e.,

F _(t) = Pn

/2,7
n 8 (n (eL-a)St).

6

172

and consider local perturbations 6n=6+vn- of 8. Then Knight and Fu (2000)

show that Fn converges weakly to a cdf Fm which is given by

e ,6,v
n
Fm,e,v(t) = P(argmlnuemk VB,V(U) = t). (2.6)
Here the random function V9 V(u) is given by
VS,V(U) = -2u’W + u’Qu + hzjzejioujsgn(ej) + Azj:6j=oluj+vj|, (2.7)



where W is a k-dimensional normally distributed random vector with mean zero
and covariance matrix Q. (The argmin of Ve,v is unique by strict convexity;
it is clearly also measurable.) This result is established in Theorem 5(a) of
Knight and Fu (2000) under assumptions slightly different from ours.
Inspection of the proof, however, reveals that the result continues to hold
under the assumptions of this subsection.

More explicit expressions for the asymptotic distribution (2.6) can be
obtained in special cases and will be useful later. For example, 1if k=1

simple but tedious calculations show that for 8#0

Fm,e,v(t) = @Q—1(t AQ "sgn(e)/2), (2.8)
where ¢Q—1 denotes the cdf of a N(O,Q-l) distribution. For 6=0 one obtains
_ -1
Fm,O,v(t) = @Q—1(t+AQ sgn(t+v)/2) (2.9)
if t#-v and
_ B -1
Fm,O,v(_V) = ¢Q—1( pv+AQ /2). (2.10)

In particular, F v puts mass & —1(—v+AQ—1/2)—¢ -1(—v—AQ_1/2) at t=-v. If

®,0, Q Q

k>1 and Q=diag(q_j) is diagonal, the components of the Lasso-type estimators

j
are asymptotically independent, since minimizing (2.7) can be done
coordinatewise and the components of W are independent. Explicit formulas for

Fm 6 v(t) then immediately follow from (2.8)-(2.10):

pre;v(t) = H];:].Fm,ej,]).(tj)’ (2.11)
J

where the marginal cdfs Fm v (tj) are given by (2.8)-(2.10) with q;; taking

’9 b
S

the roéle of Q-l. Note that Foo v(t) puts positive mass on the hyperplanes

»8,

tj=—vj for which 9j=0. In the case k>1 and Q not necessarily diagonal, it is

also easy to see that F'°° v(t) is again given by (2.8) provided that 6 has

)9)
only non-zero coordinates and sgn(8) is interpreted as the column vector with
i-th coordinate equal to sgn(ei). However, if some coordinates of B are zero,

the asymptotic distribution is not know explicitly for non-diagonal Q. (We

conjecture that, similar to the case of diagonal Q, it puts mass on the above



mentioned hyperplanes and that Fm,e,v(t) coincides with the cdf of a normal
distribution for t not falling on any of these hyperplanes where the mean of
the normal distribution depends on the position of t relative to the
hyperplanes). Cf. the discussion following Theorem 3 in Knight and Fu (2000).

Suppose now we are interested in estimating the finite-sample cdf of the
Lasso-type estimator 8L. Knight and Fu (2000) propose a bootstrap procedure
for this purpose. They show (under their assumptions) that the proposed
procedure provides an asymptotically valid approximation to the finite-sample
cdf Fn’e for any 6 that has only non-zero coordinates, but fails to work
otherwise. Knight and Fu (2000, p.1371) then sketch a modification of the
bootstrap procedure that may work asymptotically for all 6, but also express
doubts about the usefulness of this modification in finite samples, especially
if some coordinates of @ are zero or close to zero. (An alternative estimator
for the finite-sample cdf of the Lasso-type estimator 6L that is consistent is
sketched in Remark 2.2 below. The same caveat regarding its finite-sample
merits in case some coordinates of 8 are zero or close to zero applies also to
this estimator.) That such doubts are well-founded not only for the
particular procedure suggested in Knight and Fu (2000), but in fact for any
estimator of the finite-sample distribution of the Lasso-type estimator éL,
transpires from the following theorems. For simplicity, we shall use in the
following -- for given teR* -- the notation ﬁn(t) to denote an arbitrary
estimator of Fn’e(t). This notation should not be taken as implying that the
estimator is obtained by evaluating an estimated cdf at the argument t, or
that it is constrained to lie between zero and one. For the remainder of this
subsection let A(t) be given by

A(t) = 2 'max{® -1(t—AQ'le/Z)—%-a(t—AQ‘lf/z): e, fe{-1,1}*},

Q

which is always nonnegative.

Theorem 2.2: Suppose teR® is given and assume that A(t) is positive. Then



for every 8<A(t) there exists a p>0, which depends only on & and t, such that

any consistent estimator Fn(t) of F B(t) satisfies

)

imi - - t - > = . .
11m1nfn SUP | 9| |<pn 172 Pn,B(an( ) Fn,e(t)l §) =1 (2.12)
Moreover, for every pair (8,p) as above
- 1/2
imi i - - > > -
11m1nfn inf . Sup||6||<pn 1/2 Pn‘9(|pn(t) Fn’e(t)l S) 1 é(pAmaX(Q))

F (t)
n

(2.13)
holds, where the infimum extends over all estimators Fn(t) of Fn 6(t).

Furthermore, there exists a p>0, which depends only on t, such that

Supg,gliminf _ inf. — sup g 172 P pUIF (£) = F ,()1>8) = 172

" F (t) ’
n
(2.14)
holds, where again the infimum extends over all estimators gn(t) of Fn’e(t).

The above theorem maintains the assumption that A(t) is positive. For
k=1 or, more generally, for diagonal Q this assumption is obviously always
satisfied. For non-diagonal Q it will be satisfied in most cases. For
example, it is satisfied for all teR® if the matrix Q_1 possesses at least one
column with only nonnegative entries (to see this, represent this column as
Q—le, set f=-e, and exploit monotonicity of ¢Q—1). More generally, A(t) is
positive for all teRk if Q_1 admits a linear combination of its columns with
weights *1 such that this linear combination has only nonnegative entries.

For diagonal Q we obtain a result stronger than (2.13) and (2.14) in
Theorem 2.3 below. We believe that a similar result could also be established
for non-diagonal Q. We also conjecture that for general Q results similar to
Theorems 2.2 and 2.3 hold not only over shrinking neighborhoods of zero but of
any parameter value that has at least one zero coordinate. This is quite
straightforward to prove for diagonal Q, but establishing these results for

the non-diagonal case would require a more detailed analysis of the structure

of Fm 0. v which is beyond the scope of the paper.

10



Theorem 2.3: Suppose Q is diagonal and teR is given. Then

- . _ _ 58) = _
11m1nfn 1nf§ (t)SUP||9||<pn 172 Pn,B(IFn(t) Fn,e(t)l 3) = 1/2 (2.15)
n

holds for every 8<[¢Q-1(t+AQ_1/2]—¢Q—1(t-AQ_l/Z)]/Z and for every p>||t]].

Here again the infimum in (2.15) extends over all estimators Fn(t) of Fn 9(t).

’

Remark 2.2: An estimator F (t) that is consistent for F e(t) at least if t
n

n,

has only non-zero coordinates can be obtained quite easily from the asymptotic
distribution. We sketch such a construction in the following. (Of course,
this estimator is also subject to the criticism expressed in Theorems 2.2 and
2.3 above.) Aéply a (strongly) consistent model selection procedure (e.g.,
Schwarz’ Bayesian information criterion or a collection of hypothesis tests
with suitable sample-size dependent significance levels) to determine which
coordinates of 6 are zero and which are not. For the latter coordinates
estimate sgn(ej) by sgn(gj), where 6 is a (strongly) consistent estimator for
0 (e.g., least-squares). Plug this information into the formula (2.7) for

v also replacing Q by rfiz: lx;xi, W by Wn~N(0,rfJZ: 1Xin), and A by
= = 1

6,0’

n—bqhn, with wn chosen independently of the data. The resulting function V
n

now converges weakly to V for every ueRk and for almost every realization

6,0

of the data. By convexity it follows that argminuERkV (u) converges weakly to
n

argmin (u) almost surely. Define the estimator F (t) =
n

«€R*’0,0

P(argminuE kVn(u)St), where P represents the probability measure governing W.

R
It follows that Fn(t) converges almost surely to F_ 0 O(t) for all t for which

the latter cdf is continuous, and hence that %n(t)—Fn’e(t) — 0 almost surely
for such values of t. Lemma A.3 shows that any t with only non-zero
coordinates is a continuity point of Fm’e’o(t) for all 8eR". (Whether or not
ﬁn(t) is consistent for all teR* is an open (but in light of the above results

somewhat moot) question. Note that Lemma A.3 also shows that Fn(t)—F 9(t) —
n,

11



0 almost surely for all te[Rk provided 0 has only non-zero coordinates.)

2.3 Estimating the Cdf of a Hard Thresholding Estimator

In this subsection we are interested in estimating the finite-sample cdf

of Hodges’ so-called "superefficient" estimator. (In fact, we shall consider

a slightly more general class of estimators.) We focus on Hodges’ estimator
mainly because it is a simple instance of a "thresholding”" estimator, a class
of estimators having gained prominence in the wavelet literature in recent
years. It should perhaps be noted though that such estimators have already
been studied earlier under the heading "pre-test" estimators in the statistics
and econometrics literature (e.g., Judge and Bock (1978), Bauer, Potscher,
and Hackl (1988)).

Consider observations Yi, izl, that are independent and identically

distributed as N(6,1). Let Pn denote the distribution of the sample

,8

Y1""’Yn of size n. The class of estimators considered is then given by 9H=0

/acn and by 9H=? if l?|>n_chn, where Y represents the arithmetic

if |¥i=n""

/

s -1/2
mean of the sample and c¢ satisfies ¢ >0, ¢ —» and n ¢ —0 for n—w.
n n n n

Hodges’ estimator (in its simplest form) corresponds to the case c =n'% 1t
n

is well-known and easy to see that P 9(9H=o)—a1 if 6=0 and that P 9(9H=?)—91
n,

’

if 8#0 as n—w. This immediately implies that the asymptotic distribution of

~

GH is pointmass at zero if 6=0 and coincides with the asymptotic distribution
of Y, the (unrestricted) maximum likelihood estimator, otherwise. This
property of the asymptotic distribution is often referred to as
"superefficiency" of the estimator.

Let Gn denote the finite-sample distribution of the (scaled and

,0
centered) estimator 6, i.e., G .(t)=P _(n'"?(6 -0)=t) for teR. It is easy
H n, 0 n, 0 H

to see that G _(t) is given by G _(t)=0(t) if t<-c -n*"%6 or t>c —n1/29, by
n,0 n,8 n n

/2

G _(t)=#(-c -n'"®8) for -c -n""®e=t<-n'"%@, and by G _(t)=¢(c -n'"%0) for
n,0 n n n, 8 n

12
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-n /zestsc -n 8. From the previous paragraph we know that Gn converges
n ’

(2]
(t)=0€t) if 6#0 and G _(t)=1(0st) if
(2] w0, 8

b 3

weakly to Gm’6 for every 6¢€R, where G°°

0=0. The formulas for the finite-sample cdf even show that Gn (t) converges

0

to Gm e(t) for every teR and 8eR. It is now easy to construct a consistent

estimator for G e(t) for any given teR: Put Gn(t)=¢(t) if 6H¢O; otherwise

’

define an(t)=1(05t). Alternatively, one can obtain a consistent estimator for
Gn’e(t) by plugging 8H into the formula for G ’e(t) given above. While both
estimators are consistent, it is quite obvious that their performance will be
poor if O is close to but different fromkzero. That this is not only a

property of these two particular estimators, but is a genuine feature of the

estimation problem, is shown in the following theorem.

Theorem 2.4: Suppose teR is given. Then any consistent estimator Gn(t) of

G e(t) satisfies

n,

11m1nfn_emsup|el<pn71/2 Pn’e(IGn(t) - Gn,e(t)l>6) =1 (2.16)
for every 8<1/2 and every p>|t|. Moreover, for every n=1
1nfa (t)suP|9|<pn71/2 Pn’e(lGn(t) - Gn,e(t)|>6) z 1/2 (2.17)
n

holds for every 6<[¢(cn+t) - ¢(—cn+t)]/2 and every p>|t|, where the
infimum extends over all estimators Gn(t) of G 9(t). In particular,
n

11m1nfn 1nf6 (t]SUPl9|<pn_1/2 Pn’e(IGn(t) - Gn,e(t)|>8) = 1/2 (2.18)
n

holds for every 8<1/2 and every p>|t].

Remark 2.3: (i) The "superefficiency" property of Hodges’ estimator, i.e., the
fact that its asymptotic distribution coincides with the asymptotic
distribution of the restricted or unrestricted maximum likelihood estimator
depending on whether the parameter satisfies the restriction 6=0 or not, is
also shared by post-model-selection (pre-test) estimators based on a

consistent model selection procedure (cf., Pdtscher (1991), Lemma 1). The
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recently introduced SCAD estimators (Fan and Li (2001), Theorem 2) exhibit a
similar property: The asymptotic distribution of these estimators remains
unchanged, whether or not (valid) zero-restrictions are imposed. This
property has (somewhat unfortunately) been dubbed "oracle" property in Fan and
Li (2001). Also other penalized least-squares estimators like some (but not
all) members of the class of Bridge estimators (cf. Knight and Fu (2000),
p.1361) have this property for certain choices of the regularization
parameter. (It is not shared for example by the Lasso-type estimator as
considered in the previous subsection.) It is likely that results similar to
Theorem 2.4 can be obtained for SCAD estimators or other estimators satisfying
the "oracle" property, although this is beyond the scope of this paper.

(ii) Although of no importance for the present paper, we feel compelled to
point out that the "oracle" property is only a pointwise asymptotic concept.
In view of the lessons learned from Hodges’ estimator and its
"superefficiency" one should hence be aware that the "oracle" property may

give a very misleading impression of the actual performance of an estimator.

3. Lower Bounds on the Performance of Estimators and the (Non)Existence of

Uniformly Consistent Estimators: Some General Results

In this section we establish some general lower bounds on the performance
of estimators; in particular, we provide conditions for the (non)existence of
uniformly consistent estimators. These results form the basis for the results
in the preceding section, but are also of independent interest. Consider a
sequence of statistical experiments described by a (non-empty) set B, the
parameter space, which indexes a set ?n = {Pn,B: BeB} of probability measures
for every nzl. Typically (but not necessarily), n represents sample size and
describes the distribution of the sample of size n. For each n, the

Pn,B

measures P are defined on some measurable space (Qn,?n). The quantity of

n?B

14



interest to be estimated at sample size n is given by wn(B), where e is a
function on B taking its values in a metric space (M,d). Often M will be the
real line or Euclidean space. An estimator ;n for ¢n(B) is an M-valued
function on Qn that is measurable w.r.t. 9n and the Borel o-field on M.
A sequence of estimators ;n for ¢n(B) is said to be consistent (on B) if
for every BeB and every 8>0
P (d(p ¢ (8))>8) — 0 (3.1)

n, 3

holds for n—w. Furthermore, e is said to be uniformly consistent (on B) if

for every 8>0
>
supﬁeBPn’B(d(wn,wn(B)) 8) - 0 (3.2)
holds for n—w. For later use we note that (3.2) is equivalent to requiring

that (3.1) holds along sequences of parameters Bn, i.e., that

P (d(¢n,¢n(ﬁn))>6) — 0 holds for every sequence BneB and n—w.

n,B

n

The classical paper on (non)existence of (uniformly) consistent
estimators is LeCam and Schwartz (1960), which provides a characterization of
existence in the context of an i.i.d. model and in case ¢ =¢ does not depend
on sample size n. Related results can be found in Yatracos (1985), Pfanzagl
(1998), and P&Stscher (2002), the latter allowing for dependent and
non-identically distributed data. Roughly speaking, the common theme in these
papers 1s that the existence of uniformly consistent estimators is tied to
(appropriate) continuity properties of the estimand ¢(B). In the following
we provide conditions for the (non)existence of uniformly consistent
estimators allowing in particular for sample-size-dependent estimands wn(B) as
well as for dependent and non-identically distributed data. (For a discussion
contrasting these results with the results in case wnEw see Remark 3.5(iv)
below.) In the course of this, we also provide lower bounds for the
performance of estimators, i.e., for the l.h.s. of (3.2).

If Bn is a sequence of (non-empty) subsets of B, we define the
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oscillation1 of A over Bn as

(1)

w(tpn.Bn)=sup(B(1)’B(z))eBnXBnd(,pn(B )»wn(B(Z))}.

Informally speaking, given that the measures P for BeBn are "close" to one

n,B

another in an appropriate sense (e.g., picture Bn as suitably "shrinking"
sets), the existence of estimators that are "consistent uniformly over Bn"
depends crucially on the behaviour of the oscillation w(wn,Bn) as n—w. This

is formalized in the following two .lemmata.

Lemma 3.1: Let Bn, nzl, be a sequence of subsets of B with non-empty

intersection and let a be an element of n:_an. Suppose that the sequence
P is contiguous w.r.t. P for every sequence BneB .2
n

n»B n,o

n

(a) If s - liminf w(lp ,B ) > 0, then any estimator ¢ for ¢ (B) satisfying
n—>o n n n n

P a(d(¢n,¢n(a))>6) —> 0 for every 8>0 and n—» (e.g., any consistent

?

estimator) satisfies

p (d(;n,qpn(B)ba) =1 (3.3)

11m1nfn supBEBn n, B

for every 5<6*/2; furthermore,
llmlnfn 1nf¢nsupﬁeBnPn’B(d(¢n,wn(B))>6) >0 (3.4)
holds for every 6<6*/2, where the infimum in (3.4) extends over all

estimators ¢n for wn(B).3 In particular, no uniformly consistent estimator

! This notion of oscillation is different from the one used in Potscher

(2002).

2 Let Qn and Rn be probability measures defined on (Q ,¥ ). The sequence
n n

Q is said to be contiguous w.r.t. the sequence R if lim R (F )=0 implies
n n n—» n n
lim Q (F )=0 whenever F €% .
n— n n n n
3 While & in (3.1)-(3.2) has to be positive, this is obviously not
necessary in statements like (3.3), (3.4), or (3.7) below. Moreover, 8 could

be allowed to be zero in Lemma 3.1(a) or Lemma 3.2, although this leads only

16



for ¢ (B) exists (neither on B nor on U:_an).
n =
» = . ~ t- f 3
(b) If llmsupn w(wn,Bn) 0, then any estimator ® for wn(B) satisfying
P a(d(w ,¢ ())>8) — O for every 8>0 and n—w» (e.g., any consistent
n, n n
estimator) satisfies

p (d(q;n,<pn(l3))>6) =0 (3.5)

llmsupm__msupBEBn n,B

for every &>0.

Remark 3.1: (Extensions of Lemma 3.1) If limsup w(p ,B >0 but

—_ e = n—>3a n n

liminf wlep ,Bn)=0 holds, applying Lemma 3.1 to appropriate subsequences

n—®0 n

shows that (3.3)-(3.4) hold for 6<limsupn_emw(¢n,8n)/2 provided the limit

inferior in (3.3)-(3.4) is replaced by a limit superior; similarly, (3.5)

holds for every &>0 provided the limit superior is replaced by a limit

inferior. In particular, it follows that the condition limsup wlp ,B) =0
n— n n

is not only sufficient but also necessary for (3.5) to hold for every &>0.

A result somewhat related to (3.3) above is established in Pfanzagl
(1998, Corollary 3.1) for i.i.d. models and for the case wnEw under a
considerably stronger assumption on the functional ¢. The next lemma provides
a lower bound on the performance of arbitrary estimators that improves upon
(3.4). This result is based on the total variation distance as a notion of
"closeness" between probability measures, and is closely related to Lemma 1 in
Chen (1997). As Chen (1997) notes, the basic inequality underlying this lemma
has been used in the literature before (e.g., in Donoho and Liu (1987)}), at
least implicitly. The lemma is also similar in spirit to ideas used in Le Cam
(1973). Recall that the total variation distance between finite measures Q

and R defined on a measurable space (Q,¥) is given by IIQ—RIITV =

to completely trivial results.
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supFEng(F)-R(F)I.

Lemma 3.2: Let B, nzl, be a sequence of (non-empty) subsets of B. Suppose
n

that the diameters of the sets {Pn,B: BeBn} w.r.t. total variation distance
satisfy
1imsupn—+msuP(B(1),8(2))EanBnlan,B(l) - Pn,B(Z)llTv =T (3.6)
with T<1. If & - liminf _ w(p ,B) > 0, then |
liminfn_aminf; supBEB Pn,B(d(;n,wn(B)0>5) =z (1-T)/2 > 0 (3.7)
n n

holds for every 5<6*/2, where the infimum in (3.7) extends over all estimators
¢ for ¢ (B). In particular, no uniformly consistent estimator for wn(B]
n n

exists (neither on B nor on U:_an).

Remark 3.2: (Finite-sample lower bounds) Lemma 3.2 is at its core actually a
finite-sample result: Let A be a non-empty subset of N. (Of primary interest
is the case A=N or the case where A contains only one element.) If the limit
superior in (3.6) is replaced by the supremum over A and if the limit inferior
in the definition of & 1is replaced by the infimum over A, then (3.7) holds
with the limit inferior replaced by the infimum over A. (This follows either
from inspection of the proof of the lemma or from applying the lemma for every
meA to ¢; and (P;,B: BeB;} given by ¢;=¢m, P;,B=Pm,3’ and B;=Bm for all nz1.)
Observe that the l1.h.s. of (3.7) decreases if the sets Bn are replaced by
smaller subsets, whereas the r.h.s. increases. This suggests that for a given
sequence Bn and a given 6<6*/2, the lower bound in (3.7) can often be improved
by the following strategy: Try to find CnSBn such that the sets {PH,B: BeCn}
have diameter w.r.t. total variation distance as small as possible, subject to
the requirement that 6<1/211minfn~%mw(wn,cn) holds. (Often a natural choice
is Cn={Pn’

1),P (2)} where B(l), B(Z) in B are such that P (1) and
n,f3 n n n . n,f3

n n ) n

B
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P _(2) are as close as possible in the total variation distance, subject to

n,B

n

. s (1) (2) .
the requirement that llmlnfn_emd(wn(ﬁn ),q)n(Bn ))>28 holds.) A (typically)

improved bound for the l.h.s. of (3.7) is then obtained by applying Lemma 3.2
with C replacing B . A slightly refined version of this strategy is

n n
formalized in Lemma B.1 in Appendix B. This strategy gives rise to the

following useful results.

Corollary 3.3: Assume B is equipped with a metric m such that the maps

B—P 8 are asymptotically continuocus at a€B, 1l.e.,
n,

[P 1., — 0

su - P
P n,fB n,&x TV

n(e,B)<c
n

holds for some sequence cn—eo, cn>0. Suppose pn=¢, and ¢ is discontinuous at

o. Suppose further that the sets BnQB contain o as an interior point for

every n=l. Define n=inwa(w,U) where the infimum extends over all open balls

U in B with center «. Then m is positive and

(d(wn,w(B))>6) =z 1/2 (3.8)

11m1nfn lnf¢nsuPB€BnPn,B

holds for every 8<%/2, where the infimum in (3.8) extends over all estimators

° for ¢n[B).

In the next corollary, cn will typically (but not necessarily) be a

sequence that converges to zero.

Corollary 3.4: Let B be a subset of a normed vector space (V,|].]]) and let «

be an interior point of B. Suppose the sets Bn, nzl, are given by the open

balls B(a,cn) = {BeV: IIB—a||<Cn} for some sequence Cn>0, and suppose B €B
n
holds. Suppose further that the maps y—aPn a+yl (defined on G =
’ n
{yeV: |l7l1<1}) are asymptotically uniformly equicontinuous on G, i.e.,
satisfy

limsupn—»msup{(y,a)erG:||7—6]l<c}||Pn,a+zcn—Pn,a+6§nlITv — 0 for c—0.
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*
= 1imi N
(a) If & 11m1nfn w(wn,Bn) 0 holds, then

sup8>01imlnfn*%minf;nsupBeBnPn'B(d(wn,wn(B])>6) = 1/2 (3.9)

where the infimum in (3.9) extends over all estimators ® for wn(B).
(b) Suppose there exists a 8,>0 such that for every €>0 there exist Bn1(€)

and Bn 2(8) in Bn satisfying

1imsupn_9m|IBn’1(€) - Bn’z(e)ll/cn < e (3.10)
and

liminfn_ewd(wn(ﬁn’l(e)),wnIBn’z(e))) z3,. (3.11)
Then

1iminfn_Aminf;nsupBeBnPn’B(d(wn,¢n(B))>6] = 1/2 (3.12)

~

holds for 8<8,/2, where the infimum in (3.12) extends over all estimators ¢
. n

for wn(B). (If one of Bni(s) can always be chosen equal to «, then the

asymptotic uniform equicontinuity condition can be weakened to asymptotic

equicontinuity at ¥=0.)

Remark 3.3: (Finite-sample lower bounds) Let A be a non-empty subset of N.
(Of primary interest is the case A=N or the case where A contains only one
element.)

(i) Suppose the asymptotic continuity condition in Corollary 3.3 is replaced

by continuity of the maps B—aPn at « for every neA. Then (3.8) continues to

B

hold provided the 1limit inferior is replaced by the infimum over neA. (This
follows from Lemma B.1 together with Remark B.1 upon observing that the

assumed continuity property of B—aPn allows one to choose open balls C kSB
n n

B
centered at o such that Fk—+0 for k—w, and from the fact that w(¢,C k)zn>0
N
holds for neA and all k=z1.)
(ii) Suppose the asymptotic uniform equicontinuity condition in Corollary 3.4

is replaced by the condition

| IP || — 0 for c—0.

sup n,x+yC _Pn,a+6§ v
n n

neAS"P{ (¥, 8)eGxG: | |¥-5] | <c}
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Then (a) and (b) of that corollary continue to hold if at every occurrence a
limit inferior (superior) is replaced by an infimum (supremum) over n€A. The
proof is similar to the proof of Corollary 3.4 using Remark B.1 instead of

Lemma B.1.

Remark 3.4: Suppose the assumptions of Corollary 3.4 are satisfied with
C =p€ , p>0. For 0<p’=p consider the sets Bn(p’)=B(a,p’€n)§Bn(p)=Bn. If now
n n : )
* »* * P 7
not only & =8 (p)>0, but also & (p )—llmlflfn w(wn,Bn(p ))>0 holds for all
0<p’=p, we may apply Lemma 3.2 to the sequence Bn(p’). Observe that T'(p’) =

1y =P _(]]|__ goes to zero for
n v

limsuPn—%msuP(B(l),B(Z))GBn(p')XBn(p')Ian,B B
p’—0 in view of the asymptotic equicontinuity assumption in Corollary 3.4.
Since Bn(p')an(p)=Bn, the lower bound (3.9) immediately follows. However,
the assumption in Corollary 3.4(a) that 6*=6*(p)>0 does not in general imply
8*(p')>0 for all p’, 0<p’=p. (Just imagine a situation where the oscillation
of ¢_ occurs near the boundary of Bn(p) and ® is "flat" inside of Bn(p/2),
say.) Corollary 3.4(a) now shows that the condition 6*(p’)>0 for all p’,
0<p’=p, is in fact unnecessary for (3.9) to hold. This comes in handy in
applications where 6*(p') can be zero for some p’<p or where we can only

establish the existence of a p such that 6*(p) is positive but where we do not

have information on Sﬁ(p’) for arbitrarily small p’; cf. the proof of (2.14).

The somewhat abstract conditions imposed on the statistical experiment in
the above results are satisfied in a wide variety of situations. For example,
if B is an open subset of Euclidean space, the asymptotic uniform
equicontinuity condition in Corollary 3.4 can be shown to be satisfied if the
experiment satisfies a LAN-condition (and the radii cn of the balls B(a,cn)
are essentially the reciprocal of the rate appearing in the definition of
LAN.) Furthermore, under the LAN-condition and if Bn=B(a,§n), the contiguity

requirement in Lemma 3.1 is satisfied, and the l.h.s. of (3.6) can be
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evaluated explicitly.

In the important special case where the sets Bn are (typically shrinking)
balls with a common center, also simple sufficient conditions for the
assumptions in Lemmata 3.1-3.2 and Corollary 3.4 regarding the oscillation of

the estimands ¢ can be given.

Lemma 3.5: Let B be a subset of a normed vector space (V,||.]]|) and let a be
an interior point of B. Suppose the seﬁs Bn, nzl, are given by the open balls
B(a,{n) = {BeV: IlB—a||<Cn} for some sequence cn>0, and suppose BnSB holds.
Assume that there is a non-empty subset G0 of G and a function ww,a:Go~eM such
that the functions z—ewn(u+7cn) converge to wm,a(r) for every yeGo and n—w.
(a) If o, a0 is non-constant on Go’ then 6*=liminfn_9mw(¢n,8n) is positive.

*
More precisely, & Zw(ww,a’Go) holds.
(b) Suppose there exists a 8,>0 such that for every €>0 one can find elements
71(8), 72(8) in G0 satisfying ||71(8)-72(€)||<8 and d(wm,a(vl(e)),wm’a(wz(e)))
= §,. Then the conditions on @ in Corollary 3.4(b) are satisfied.
(c) If wm'a is discontinucus at some 7OEGO, then the conditions on A in
Corollary 3.4(b) are satisfied (for every O<6*<nm, where nm=inf{w(¢m,m,u):
7OEU§G0, U relatively open in GO} is positive).
(d) If wm,a is constant on G0=G and if ¢n(a+.cn) converges to ¢_ a uniformly

>

*
on G =G, then & =liminf w(p ,B ) equals zero.
0 n— n n

The choice of the set G0 in Lemma 3.5 will depend on the particular
situation in which the lemma is being applied. Often one will choose G0=G (if
this is feasible), or one will choose Go as the largest subset of G on which
the maps 7—a¢n(a+y§n) have a limit. But sometimes other choices are

convenient, cf. the proof of Theorem 2.2 or 2.3.

Remark 3.5: (i) The lower bound of 1/2 in (3.8), (3.9), and (3.12) can not be
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improved in general.
(ii) It is easy to see that the condition in Corollary 3.4(b) is equivalent

to the condition that there exist Bnl

and Bn,z in Bn such that

limsupn_)ml 'Bn,1 - Bn,zl |/cn =0 and'11m1nfn_)md(¢pn(;3n,1),wn(fsn,z)) > 0 hold.
(iii) The results in this section concern the performance measures
Pn,B(d(;n,wn(B))>5), which can be viewed as the risk corresponding to the
loss-function 1([x|>8). Quite similar results can also be obtained for a wide
variety of other risk functions.

(iv) In case the sets Bn are shrinking balls with a common center and the
estimand A does not depend on n, i.e., wnEw, the cause for a positive lower
bound on the performance measure for estimation is discontinuity of ¢. The
situation is more complex in case the estimand depends on n. Examples can be
given where each e is continuous, but a lower bound like (3.7) holds.
Conversely, estimation problems can be constructed, such that ¢n(B) is
discontinuous (and even converges to a discontinuous limit), but where a
uniformly consistent estimator for wn(B) exists. Lemma 3.5 shows that what
matters are not so much continuity properties of ¢n(B) or of its limit, but
properties of the limit wm’a obtained after rescaling the parameter.

(v) The results in this section are also useful for obtaining bounds on
convergence rates of estimators: Suppose wn(B) is to be estimated, with @n
denoting corresponding estimators. Setting ¢n(B)=an¢n(B) and ;n=an@n for a
sequence a , an application of the results in this section can be used to show
that no estimator ;n for wn(B) can converge faster than a;l in a minimax
sense.

(vi) All results in this section with the exception of Lemma 3.5 continue to
hold if (M,d) is allowed to depend on n and/or to be a pseudo-metric space.

(Lemma 3.5(b)-(d) continues to hold if (M,d) is a pseudo-metric space but does

not depend on n.)
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The next result shows that Lemmata 3.1 and 3.2 (and hence all results in
this paper) also apply to randomized estimators. To this end let Q:=an5n and
?:=?n®§n where (En,gn) is a measurable space for every nzl. The randomization
mechanism is described by a Markov-kernel Kn defined on angn. For each BeB

define P _ via
n,
Pn,B(F ) = IIIF*(w,E)Kn(w,dE)Pn’B(dw).

A randomized estimator for ¢n(B) is»then a function w::Q:—eM that is

measurable w.r.t. ?: and the Borel o-field on M.

Lemma 3.6: (a) For any aneB, BneB, contiguity of the sequence P w.r.t.

n:B

n

»
P implies contiguity of P
n,& n

t. P
,B w.Ir.tc. n,

n n n

* »
(b) |IP

- = - >
n, o Pn,Bll | {P P ||Tv for any aeB, BeB, and n=1.

v n,a n,B

In some applications, cf. Leeb and PStscher (2002), it is necessary to
transfer the results of this section from a given statistical experiment to
one that is obtained by conditioning. Results pertaining to this case are

given in Appendix C.

Appendix A: Proofs for Section 2

Lemma A.1: Consider the linear model Yi=X_e+u_ for izl, where X 1is a
1 1 1
non-stochastic 1xk regressor matrix (1z1,k=1), @ is an unknown kx1 parameter
vector, and the errors u, are i.i.d. normal with mean zero and covariance
1

matrix I, the Ixl identity matrix. For @eR‘, let P denote the
n,

(¢]
distribution of the sample (Y;,...,Y;)’. Then
, , _ 1/2 _
(@) 1IP g =P oIl =20([(8-8)'F} X'X (6-8)17°/2) - 1 =
1/2

2@(||6—6||?\]n (Z;ﬂX;Xi)/Z) - 1, where ¢ is the standard normal distribution

aXxX

function.
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-1/2

. . -1 , .
(b) Pn,'B is contiguous w.r.t. Pn’e ) and n Z?:lxixi is

n n

bounded.

if 8 -9 =0(n
n n

Proof: (a) Since P and P are mutually absolutely continuous we can
frooi n,

n, o ¢

write the total variation distance as

9
/dPn,ﬁ) > 0) - Pn’.,&(log(dPn’

| IP -P |l =Pn,9(dpn,6/dpn,

> - > =
n,© n,® TV 1) Pn,ﬁ(dPn, /dP 1)

(2] n,®

> .
Pn’ 0 (log (dPn, /dPn,ﬂ) 0)

e e

Set A = (e—ﬂ)'z“_lx'ixi(e—a), and assume first that A>0. The log-likelihood

i=

ratio log(dP /le’lrl 19) is then distributed as N(A/2,A) under Pn 0 and as
n, s

»

2]

N(-A/2,A) under Pn as is easily seen. Elementary calculations then show

8

that P _(log(dP__/dP ) > 0) = 1-8(-A""?/2) and P _(log(dP _/dP _) > 0)
n,B n, n, % n,® n, n,d

e

()
= 1-8(A'"?/2). The result then follows for A>0. If A=0, clearly X =X o for
1

i=1,...,n holds, implying Pn B=Pn 5 Since #(0)=1/2, the result again

follows.

(b) Since 8 -9 =0(n"1"2
n n

) and n_lf_:_IX‘iXi is bounded, any subsequence contains
a further subsequence such that along this subsequence nl/z(e -8 ) and
n n

n—lz? IX;X, converge. By LeCam’s first lemma (cf. van der Vaart (1998), Lemma
= i

6.4) it thus suffices to show that dPn 6 /clPn 5

n n

converges in distribution

under Pn o to a random variable that is almost surely positive, provided that

H
n

nllz(en—ﬁn) —> x and n-IZ?_1X;Xi — C. The same calculations as in the proof

of part (a) show, that log(dPn 0 /dPn 5 ) is distributed as N(-A /2,A ) under
» » n n

n n

P , where A =(6 -9 )'Y" X’X (0 -9 ). Here we use the convention that
n, % n n n i=t"1 i n n

n

N(-A /2,A ) denotes point-mass at zero if A =0. Hence, log(dP /dP )
n n n n,0 n, v

n n

converges in distribution under Pn to Z~N(-A/2,A), where A=y’'Cy. It

, 0
n
follows from the continuous mapping theorem that dP 6 /dP g converges in
n, n,
n n
distribution under Pn 5 to exp(Z2) which is always positive. [ ]

n
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Proof of Theorem 2.1: We apply the results of Section 3 with B=Rk, B=0,

~ ~ 2z k -1/2
= . = = : < .
¢n(B) Rn(ejs,e), 0 R , and Bn {6eR": |l06l{<pn }

, We first compute the
n
oscillation of R (GJS;B) over B: It is easy to see that the risk is a
n n
strictly increasing and continuous function of 6’6. Hence, the oscillation is

-1/2)—R (BJS;O) which equals 2A(p), where A was defined
n

given by Rn(er;pn
prior to Theorem 2.1. Note that A(p) is positive. Applying Lemma A.1(b) with

for every sequence 0 €B .
n n

6

X =I shows that P
i 'k n, ,0

is contiguous w.r.t. P
B n
n ,

Lemma 3.1(a) then gives (2.2). From Lemma A.1(a) we obtain

Sup(e,«s)esnxsn' P g = Poolly = 2201,

since Z:=1X2Xi=nlk. Lemma 3.2 together with Remark 3.2 now imply that

the 1.h.s. of (2.3) is not less than 1-®(p) for every 0<p<o satisfying 8<A(p),
or equivalently A—1(6)<p. Since the 1.h.s. of (2.3) is nonincreasing and the
lower bound 1-®(p) is increasing when p decreases to A-l(é), the result (2.3)

follows. ™

Lemma A.2: Let F be a cdf on Rk, k>1, and let U be an open subset of Rk.
Then F is continuous on U if and only if for every t=(t1,...,tk]’eU and every

i, 1=i=k, the map ui—aF(tl,..,t_ ,u ,t. ,..,tk) is continuous at u =t .
1 1

Proof: One direction is trivial. To prove the other one, fix teU and let
t (n)eR* denote a sequence converging to t. For sufficiently small £ >0 we
1
have " [t -e ,t +¢ ] € U and
i=1 i i i i
F(tl—el,...,tk—ek)SF(t(n))SF(t1+el,...,tk+ek)
for nzN(el,...,ek). Hence also limsupnF(t(n)) and liminf F(t(n)) are
n
sandwiched between these bounds. Since (tl—el,...,tk—ek)eu, it follows that

F(tl—s R > ,tk—ek) converges to F(t1_£1""’t - 1,tk) for ek—ao.

1 k-1 k-1 k-1 k-

t )

imi + +
Similarly, F(t1+el, ,t sk—l’tk sk) converges to F(t1+81,...,tk_1+ek_1, «

k-1

for ek—ao. This shows that limsupnF(t(n)) and liminan(t(n)) are both
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Lot

sandwiched between F(t1—£1

,tk) and F(t1+£1,...,t +e ,tk).

it
k-1 k-1 k-1 k-1

Observing that the arguments of the latter two functions are elements of U, we
may repeat the argument until we arrive at the conclusion that F(t) =

1iminan(t(n)) = limsupnF(t(n]) = F(t). =

Lemma A.3: Let 6, v, and t be elements of Rk and let I(0) denote the set {i:

6 =0}. Then the cdf F v given by (2.6) is continuous at t provided that
i s - .

,0
t #-v_ holds for all iel(8). In particular, F°° 6. v is continuous on all of R®
1 1 B » Vs
if 8 has only non-zero components; furthermore, F°° 0.v is continuous at t for

all 6 if t.¢—vi holds for all i, 1=i=k.
1

Proof: We only need to prove the first claim. The case k=1 as well as the
case k>1 and I1(8)=0 follow immediately from (2.8)-(2.10) and the attending
discussion. Hence assume k>1 and I(8)#@ in the sequel. Choose an open
neighborhood U of t, such that any seU also satisfies si#:—vi for iel(e).

Assume now that F is not continuous at t. Lemma A.2 then implies the

existence of an element s*eU and of an index m, 1=m=<k, such that the function

* »*

»*
taking s into F (s,...,s. ,s,s
m m

»* *
, ,..-,8 ) is not continuous at s =s
©0,0,r 1 m-1 k m m

m+1
Since this function is cadlag, it follows that it has a jump of positive
*
height at s =s*. Hence, the event A, that Tm equals s , has positive
m m m

\' (u). We

probability, where T denotes the m~th coordinate of T=argmin _x
m ueR 8,v

can now find a subset JSI(8), J possibly empty, such that the event B=B(J)
defined as the intersection of A with the event {T1=—vi for ieJ and Ti$—vi for
iel(8)\J} has positive probability. By possibly reducing B further, we can
even achieve that the sign of Ti+vi is constant over B for all ieI(6)\J,
without loosing the property that B has positive probability. Let ul[J] denote
the vector obtained from u by deleting the coordinates for ieJ. Note that meJ
since s;#—vm by construction and since s; equals Tm on the event B. Let

0

' V(u[J]) denote the function resulting from V9

6 (u) after replacing u with
s 1 %4 i
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v, for ieJ. Observe that on the event B the function Vg v(u[J]) is a

differentiable function in a neighborhood of its argmin, the coordinates of

V. (u) for ieJ by !

which coincide with the coordinates of argmin ok 6,v

construction. Hence, the first derivative of V; v(u[J]) must be zero at its

argmin. This leads to a system of equations of the form

—zwi * széqujTj = Ci

for ieJ, where Wi is the i-th coordinate of the random vector W appearing in
(2.7) and c, is a constant on B depénding only on Q, v, and 8. Now on B we
have m¢J and Tm=s;, a fixed constant, implying that the distribution of
(Tj:jeJ) puts positive mass on an hyperplane of dimension k-card(J)-1.
Together with the above system of equations, this contradicts the fact that

the distribution of (Wi:ieJ) is a non-singular multivariate normal. ]

Lemma A.4: Suppose BeR" is given and yeG satisfies y #0 for all i€l(0), where
1
G={7eRk: Iyl 1<1} and I(8)={i: 91=O}. Then for any teR* we have

1i F (£) = F__ (t) = ~1(t-2Q 'sgn (%) /2)

m ¢
p—x °°p9»P7 0, X Q

where xeRk is given by xi=ei for iglI(@) and X,=, for iel(B8) and sgn(y)

denotes the vector with i-th coordinate equal to sgn(x. ).
1

Proof: From (2.6)-(2.7) one sees that F (t) can equivalently be

,0,p7

»*
expressed as P(argmlnueRk Ve,py(u) = t), where

»
Ve’py(u) = -2u’W + u’Qu + AZJQI(G)ujsgn(GJ) + Azjel(e)(luj+p7jl—lp7j|)

For p—o the random function V; pv(u) converges for every ueR* and every value
of W to
-2u’W + u’Qu + AZJéI(e)ujsgn(ej) + Azjel(e)ujsgn(zj)

which is nothing else than VX O(u]. In view of Geyer (1996), it follows that

F . s .
m,e,py( ) converges weakly to the cdf of argmin ok vx,O(U) for p—w, which

is given by ¢ —1(.—AQ-lsgn(x)/2). Since any teR* is a continuity point of the

Q

latter distribution, the lemma follows. n
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Proof of Theorem 2.2: We again apply the results of Section 3 and use the

~

following identifications: B=V=R*, B=0, ¢ (B)=F_ (), ¢ =F (),
B ={9€Rk: ||9||<pn71/2}, where p>0 will be chosen later, and
n
k
= i i inR. T in i i
ww,o(y) Fm,O,py(t) with yeG, the open unit ball in o obtain information

on the oscillation of F 9(t) over Bn, we wish to apply Lemma 3.5(a) with «=0,

72 and Go={e/(2k“2): ee{-1,1}*}. Observe that lim _F -1/2(t) =

g =pn”
o P —>® n, P¥N

F (t) for all 7eG_ and all p>(2k1/2]max(|t,I:1Sisk}. This follows from
©,0, p7 0 . i

the weak convergence of the finite-sample cdf and the fact that Fm 0,p7 is

continuous at t by Lemma A.3 (applied with 8=0) whenever p satisfies

ip/(Zkl/z);ﬁti for all i. Hence the general assumptions of Lemma 3.5 are

satisfied for such a choice of p. The oscillation of Fm 0 py(t) over GO now
satisfies
llmp w(Fm,o’pW(t),G0)=11m maX{IFm,O,py(t)—Fm,O,py’(t)l: 7.7 eG0}=2A(t)

by Lemma A.4. Lemma 3.5(a) now implies that
11m1nfp_9wl1m1nfn_%mw(Fn’e(t),Bn) z 2A(t) (A.1)
holds. This further implies that for every 8<A(t) we can find a p large
enough (depending on t and 8), such that 8<liminf w(F _(t),B )/2 holds and
n—>0 n,0 n
that the r.h.s. is positive (because A(t) is so by assumption). Now fix this

8 and p (and hence Bn). Since Lemma A.1(b) with 1=1 implies that P o 1s
n,
n

contiguous w.r.t. P for any sequence 8 €B , we may apply Lemma 3.1(a) to
n n

n,0
obtain (2.12). From Lemma A.1(a) we also obtain

. 1/2
llmsuPn—)ﬁosup(e,'@)GanBnl IPn,e Pn,'l?' |TV = 2"b(p;\max(Q))ml < 1.

Lemma 3.2 now implies (2.13). Finally, (A.1) shows that we can find a p large
enough such that liminf w(F _(t),B) is positive. Lemma A.1(a) shows that
n—y00 ,0 n

the asymptotic uniform equicontinuity condition of Corollary 3.4 is satisfied

for Bn. Corollary 3.4(a) now implies (2.14). n
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Proof of Theorem 2.3: We again apply the results of Section 3 using the same

identifications as in the proof of Theorem 2.2, except that now p satisfies

p>litl|. We now wish to apply Lemma 3.5(b) with a=0, §n==pn_1/2 and

GO=G\{-t/p}. Observe that llmn—eth,pyn_l/Z(t) = Fm,o’py(t) for all 7eG0 by

weak convergence and the fact that F00 0,py is continuous at t as long as

t#-py, cf. (2.9)-(2.11). This shows that wn(u+rcn)=Fn pyn—bq(t) converges to

P 0(7)=F (t) for all 7EG0. Now (2.9)-(2.11) furthermore show that

w,0, p7
-1(t-AQ"1/2) for

(t) equals ®.-1(t+AQ ' /2) for y>-t/p and equals &

Q Q

y<-t/p, where the relation < is to interpreted coordinatewise. Define

Fuv,(),mr

6*=¢Q—1(t+AQ—1/2)—¢Q—1(t—AQ'l/Z) and note that 8, is positive. Since -t/peG,
which is open, it now follows that for every £>0 we can find yi(e)eGo, i=1,2,
such that |71(€)—72(€)|<8 and Iwm,0(71(£))_¢m,0(72(8))Iza* hold, hence the
assumptions of Lemma 3.5(b) are satisfied. Applying Corollary 3.4(b) and

observing that Lemma A.1(a) implies the asymptotic uniform equicontinuity

condition in Corollary 3.4 completes the proof. ]

Proof of Theorem 2.4: We again apply the results of Section 3 and use the

identifications B=R, B=6, ¢ (B)=G _(t), and ¢ =G (t). We first prove (2.17).
n n, n n

(]

For given p>|t| and nz1, the sets Cn(e)={—n-h?t, -n"'?(t+e)} are subsets of

Bn={9: |e|<pn_1/2} provided, e.g., 0<e<(p-|t|)/2 holds. From the formula for
Gn 0 given in Section 2.3 we obtain that the oscillation satisfies
w(G _(t),C (e)) = |®(c +t) - &(-c +t+e)| (A.2)
n,B n n n
whenever € also satisfies e<cn. Furthermore, Lemma A.1 implies that the total

variation distance between the measures Pn eeCn(s), is 29(e/2)-1. Applying

.0’
the finite-sample version of Lemma 3.2 given in Remark 3.2 with A={n} for

fixed n, gives

inf

p E’(I(A; (t) - G (£)1>8) = 1-8(e/2)
G_(t) " o

Supeecn (e) 'n,

for all a<|¢(cn+t) - ¢(—cn+t+s]l/2 and for all O<e<min{c , (p-|t])}/2}.
n
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Observing that C (¢)SB holds and letting € go to zero establishes (2.17),
n n
from which we immediately obtain (2.18) by letting n go to infinity.

"2} The

To prove (2.16), we apply Lemma 3.1 with Bn={GER: le|<pn
contiguity condition in that lemma follows immediately from Lemma A.1(b).

Choose a sequence € satisfying 0<sn<min{cn,(p—|t|]/2}. Then using (A.2) we
n

obtain
* . -
3 = llmlnfn w(Gn’e(t),Bn) ; 11m1nfn w(Gn,e(t),Cn(en))
= liminf _ |®(c +t) - &(-c +t+e )| = 1,
n—®@ n n. n
which completes the proof of (2.16). n

Appendix B: Proofs for Section 3

Proof of Lemma 3.1: (a) By definition of 5*, we can find sequences B(“EB
n n

and B'?eB such that liminf _d(p (B'")),p (B'®))=8". Fix a 8<5 /2. Since
n n n—> n n n

n

1) (2) (1)

dlp (B:),0_(B:¥)) = dle (B:),0 (x)) + d(wn(BLZ)),¢n(a)), (B.1)

it follows for any &8’ satisfying 6<6’<6*/2 that at least one of the terms on
the r.h.s. of (B.1) exceeds &’ for sufficiently large n. Thus we can find a
sequence B €B (in fact B E{B(l),B(z)}) such that

n n n n n

11m1nfn_9md(wn(6n),¢n(a))26 . For any &'’ satisfying 8<8’’<8’ we have

P (d(wn(Bn),wn(a))>6") = Pn

n,B (d(wn,wn(a))>6"—a].

8 (dt&n,¢n(3n))>a1 + P g

n n n

(B.2)

By construction, the l.h.s. of (B.2) converges to one. By contiguity, by the

~

assumption on ® and because 8’’-8>0, the second term on the r.h.s. of (B.2)
converges to zero. Hence, the first term on the r.h.s. of (B.2) converges to

one, which completes the proof of (3.3). Assume now that (3.4) is not true.

~

Then we can find a sequence of estimators ¢ and a subsequence n(i)—w, such
n

that

~

Pn“),B(d(wn“),wn“)(ﬁ))>6) — 0.

supBeBn( i)
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It follows that Pnr) a(d(¢ " (a))>6) —> 0 along this subsequence.
1},

Observe that the statistical experiment corresponding to the subsequence n(i)

and the estimators ¢ satisfy the requirements of Lemma 3.1(a). Applying

n(i)

the already established result (3.3) to this experiment we conclude that

> i i ction.
SuPBeBn() nli), B( (¢ . U)(B)) 8) — 1, which leads to a contradiction
(b) It suffices to show that P B (d(¢n,¢n(Bn))26) — 0 for every >0 and

n

every sequence BneBn. Since d(wn(Bﬁ)’wﬁ(a)) = w(¢n,Bn) holds, this follows

from the assumption on P from contiguity, and from

PD,B (d(wn,¢n(Bn))>6) = Pn,B (d(wn,wn(a))>6/2) + Pn,B

n n n

(d(wn(a),wn(Bn))>6/2). n

Inspection of the proof shows that Lemma 3.1 continues to hold if « is

replaced by aneBn at every occurrence in the formulation of the lemma.

Proof of Lemma 3.2: Again we can find sequences B;l)eBn and B;Z)EB such that
n

(1 (2)
) ))=5

liminf d(w (B ), e (B For every given 5<5 /2 and for every

~

estimator ¢_we then have

(1) (2) (1)

P"'Bil)(d(w (B ), ¢ (B ))>28) = n B(l)(d(¢ P (B 1)>8) +
2 (1)
Pn B(i)(d(w R (B ))>8) =P 3(1)(d(¢ P (B 1)>8) +
(2)
Pn’Biz)(d(w P (B ))>8) + IIPH,B:‘H ’B(mll
an,B (d(wn.wn(ﬁn))>6) + lIPn,B(1 ,B<2)|] (B.3)

n

for an appropriate choice Bne{B ,B(Z)}CBn, the choice possibly depending on
d and ¢ Now for every €>0 there exists no=n0(6,s) such that for nznO the

left-most side of (B.3) equals one and ||P _(1)-P _(||_<T+e. Hence,
n,Bn n,f3 TV

n

~

P (d{e ,¢ (B ))>8) =z (1-T-€)/2 holds for nzn_ and every estimator ¢ . It
D,Bn n n n [o] n

follows that

(d(;n,wn(ﬁ))>6) = inf; Pn 8 (d(;n,wn(ﬁn))>a) = (1-T-g)/2,

n n

1nfw supBEB Pn,B
n n
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holds for n=n_, which implies (3.7). ]

Lemma B.1: Let B, nzl, be a sequence of (non-empty) subsets of B. For every
- - n
k=1, nz1, let C « be a (non-empty) subset of Bn. Def ine
n
IIP (B.4)

I = limsup (y - P
k n n,

2
n. B B()IITV

SuP(B(l),B(Z))EC %C
nk nk
* 3 - s
and assume that Fk<1 holds for every k. Suppose Bk—llmlnfn w(wn,an) is
positive for every k. Then

sup6>olim'1nfn (d(wn,wn(ﬁ))>6) = (1—1nkok)/2 >0 (B.5)

1nf¢ SUPBEB Pn,B
n n
holds. If, additionally, 6*'=1nfka: is positive, then even

1im1nfn—ewlnf¢nsuPBeBnP (d(wn,wn(B))>6) z (1—1nkok)/2 >0 (B.6)

nyB

holds for every 6<6**/2. In particular, if infkrk=0, then the lower bound in

(B.5)-(B.6) reduces to 1/2.

Proof: Applying Lemma 3.2 to Cn N and noting that Cn kSBn we obtain

liminfn (d(wn,wn(ﬁ))>6) = (1—Fk)/2

1nf¢ SUPBEB Pn,B
n n
for every 6<6:/2 and for every k=1. Inequality (B.6) is then an immediate

consequence, and (B.5) follows since the 1l.h.s. of the above inequality is

nonincreasing in 8. ™

Remark B.1: (Finite-Sample Version) Let A be a non-empty subset of N. If
the limit superior in (B.4) is replaced by the supremum over A and if the
limit inferior in the definition of 6: is replaced by the infimum over A, then

(B.5)-(B.6) hold with the limit inferior replaced by the infimum over A.

Proof of Corollary 3.3: Since « is interior to Bn, we may without loss of

generality set Bn = {BeB: u(a,B)(Cn} for sufficiently small { that are
n

positive and decrease to zero. By further reducing Cn if necessary, we may —-

b

in view of the asymptotic continuity of the maps S—P B at « and the triangle
n
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inequality -- conclude that (3.6) holds with I'=0. Since w(w,Bn) =z 7 clearly
holds, 5* defined in Lemma 3.2 is not less than 7, which is positive due to
discontinuity of ¢ at «. An application of Lemma 3.2 then completes the

proof. - [ ]

Proof of Corollary 3.4: (a) We first construct, for every k21, sequences Béki

and B;k; in Bn satisfying

(%) (k)
-B Il

n,1 n,

LB = 2¢ /k (B.7)

for every nzl and

(k) (k)

liminf_ d(p (8)).¢ (B))) > & /(2K). (B.8)

Since 6*>O is assumed, we can obviously find B;li and B;I; in Bn such that

(B.8) holds for k=1. The triangle inequality applied to Bili, 6;1;, and «

(k) . (1)

shows that also (B.7) is satisfied for k=1. For k>1 define X (i) = B .t
n,
(i/k)(B(l)'B(l)), 0=i<k, and observe that x(k)(i)eB by convexity of B .
n,2 n,l n n n
Since

(k)
n

(1) (1)

dlp (B¢ (B ') = L dlp (x (1)), (x(1+1))),

there exists an index in, Osin<k, such that

(1)

) Yoo (B 7)) /k.
n n,2

(1)
d(‘pn(xn

n,1

(1 )),0 ™1 +1))) = d(g (B
n n n n n

2

Define 8™ =x" (i ) ana g'¥
n, n n n,

= ’-x:"(inn). Relation (B.8) immediately

2—- =
follows, and (B.7) follows since |18 - 8™ | = 118} = 8| |/k holds by
n,1 n,2 n,1 n,2

construction.

(k)

Define the sets an={B;ki,B 2} and apply Lemma B.1: Clearly, 6: =

n,

liminf w(p ,C ) is not less than 6*/(2k) and hence is positive for every
n—>® n nk

k=1. Furthermore, ' reduces to limsup [P _(x)-P
k n—>® n

B ’B(k) | ITV which

n,1 n,2

converges to zero for k—w in view of (B.7) and the asymptotic uniform
equicontinuity assumption. Hence Fk<1 holds at least for kao. The result
now follows from (B.5).

(b) Define an={Bn,1(k_l),Bn’z(k_l)} and apply Lemma B.1: Observe that

* »*
6k26*>0, and hence 6* 25, holds in view of (3.11). Furthermore, Fk converges
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to zero for k—sm in view of (3.10) and the asymptotic uniform equicontinuity

assumption. The result then follows from (B.6). n

Proof of Lemma 3.5: (a) For every:e>0 we can find 71, 72 in GO such that

d(@m,a(gl),¢m’a(y2)) > w(¢m'a,Go)—s. From pointwise convergence it follows

that S*Zw(ww'a,Go)-e, and hence S*Zw(ww,a,Go) because £ was arbitrary. The
oscillation w(wm’a,Go) is positive, sipce ¢m,a is non-constant on Go'

(b) Define Bn’i(e) = a+1i(s)§n. Then (3.10]—(3.11) are obviously satisfied.
(c) Discontinuity implies that n, is positive. Now, for every O<6*<noo we can
find yl(e), 72(8) in GO (near 70) satisfying the assumptions of part (b).

(d) Follows trivially from uniform convergence. ]

Proof of Lemma 3.6: (a) Assume P: o (F:)—eO. This can be rewritten as

»
n

E (f )—>0, where f is given by f (w)=]1_*(w,€)X (w,d€) and £ denotes
n,an n n n Fn n n,an

expectation w.r.t. P: Clearly, Osfnsl holds. For every £€>0 we have

’
n

E (f )ZaP‘ (f ze), implying P (f ze)—>0. By contiguity also
n,an n n,an n n,an n

P* (f 2ze)—>0. Because of OsE* (f )se+P*
n n n’Bn

n,B n,Bn

n

(fnZe), we obtain

limsup _E . (f )=e. But this proves P. _ (F)=E
n—0 n n,

*
n,B n n,f
n n

8 (fn)—eo.
n
(b) By specializing to the events FxEn with Fe?n, one immediately sees that

the 1.h.s. in (b) is not less than the r.h.s. The reverse inequality is

proved, e.g., in Pdtscher (2002), Remark 2.1. [

Appendix C
In this appendix we show how the results in Section 3 can be easily

transferred from a given statistical experiment to a derived experiment

obtained by conditioning. We start with the following lemma.

35



Lemma C.1: (a) Let Q and R be probability measures defined on some measurable
space (Q,%), and let Ee¥ satisfy Q(E)>0 and R(E)>0. Then ||Q(.|E)-R(.|E)||Tv
= 2|IQ—RiITV/(max(Q(E),R(E)).
(b) For nzl1, let Q and R be probability measures defined on measurable
n n
spaces (Q ,¥ ) and let E €¥ satisfy Q (E )>0 and R (E )>0 for each n>1.
n n n n n n n n
Suppose liminf R (E )>0 holds. If R is contiguous w.r.t. Q , then
n—> n n . . n n

¢

R (.|E ) is contiguous w.r.t. Q (.|E ).
n n n n

Proof: (a) For arbitrary Ae¥ we have

|Q(AIE)-R(AIE)| = |R(E)Q(ANE)-Q(E)Q(AnE)+Q(E)Q(ANE)-Q(E)R(ANE) |/ (Q(E)R(E)) =
IQ(E)-R(E) IQ(ANE)/(Q(E)R(E)) + |Q(AnE)-R(AnE)|/R(E) = ZIIQ—RllTv/R(E).
Reversing the réles of Q and R we obtain |Q(A|E)-R(A|E)| = 2!|Q-RIITV/Q(E).
(b) If Qn(FnIEn)—eO then Qn(anEn)—eO. Contiguity gives Rn(anEn)—eO. Since

liminf R (E )>0 holds, R (F |E )—0 follows. n
n—»0 n n n n n

For the rest of this appendix we use the notation of Section 3. In
particular, let Bn, nzl, denote a sequence of (non-empty) subsets of B, and

let Ene?n satisfy Pn (En)>0 for every BneBn and nzl. The first corollary

B

follows immediately from Lemma C.1.

Corollary C.2: Suppose

M=l1m1nfn 1nfB€B:2hB(En)>O (C.1)
holds.
(a) If the sequence Pn B is contiguous w.r.t. P « for sequences « €B and
’ n, n n
n n
B eB, then P (.1E ) is contiguous w.r.t. P (.1E ).
n n n,Bn n n,otn n

(b) If {Pn g’ BeBn} satisfies (3.6), then {Pn (.lEn): BeBn} satisfies (3.6)

B
with T replaced by 2I'/M.

36



A simple sufficient condition for (C.1) is that liminf P (E }>0 for
n—o o n

some sequence o« €B , and that P is contiguous w.r.t. P for all
n n n

, o n,f3

n n

sequences BneBn.

Corollary C.3: Let mneBn, nzl, be a given sequence and assume that

m=liminf P {(E )>0 holds. 1If {P
o n n

: BeB } satisfies (3.6), then
n—® n, n IB n

{P B(.IEn): BeBn} satisfies (3.6) with T replaced by 4I/m.
n,

Proof: Applying the triangle inequality and Lemma C.1 we obtain for B,yeBn

1P, gCIE)-P CIED I, = 2[1P =P 1l

n

n,f » 7

|IP -P |l _ 1/P (E ). Taking the supremum over B xB followed by the
n,an n,y TV n,an n n n

limsup, leads to the bound 4I'/m. . ™

Remark C.1: The asymptotic continuity condition in Corollary 3.3 immediately
carries over from the measures P to the conditional measures P |E )

nB a8l 1By

provided liminf P (E )>0 holds. The same is true for the asymptotic
n—® n,X n

uniform equicontinuity condition in Corollary 3.4 provided condition (C.1) is

satisfied.
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