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Abstract

In a (generalized) symmetric aggregative game, payoffs depend
only on individual strategy and an aggregate of all strategies. Players
behaving as if they were negligible would optimize taking the aggregate
as given. We provide evolutionary and dynamic foundations for such
behavior when the game satisfies supermodularity conditions. The
results obtained are also useful to characterize evolutionarily stable
strategies in a finite population.
JEL Classification Numbers: C72, D41, D43.
Keywords: aggregative games, evolutionarily stable strategy, price-
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1 Introduction

In perfectly competitive markets, price-taking behavior is often justified by
assuming that agents are small relative to market size. The implication of
this assumption is that prices are almost insensitive to individual actions.
Hence, even if agents behave strategically, equilibrium behavior corresponds
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to price-taking optimization as the economy becomes large. The crucial ax-
ioms underlying this non-cooperative foundation of competitive equilibrium
are anonymity—the names of the agents are irrelevant to the market—and
aggregation—individual actions affect market price only through the average
of all actions (Dubey et al. [1980]).

In general, a game where payoffs depend only on individual strategies
and an aggregate of all strategies is called a (generalized) aggregative game
(Corchón [1994]).1 A prominent example of such games is a Cournot oli-
gopoly, where profits depend exclusively on individual and total output. If,
additionally, payoffs do not depend on the names of the agents, the game
is symmetric. Aggregate-taking optimization—the natural generalization of
price-taking behavior—is then still well defined even if agents are not neg-
ligible, although it does not correspond to strategic, rational behavior. An
optimal aggregate-taking strategy (ATS) is one that is individually optimal
given the value of the aggregate when all players adopt it. In an ATS, players
who are not negligible behave as if they were, i. e. they “feel small.”

Schaffer [1989] observed that, in a Cournot duopoly, the output cor-
responding to a competitive equilibrium—the output level that maximizes
profits at the market-clearing price—is evolutionarily stable, meaning that
it maximizes relative profits.2 That is, a firm deviating from the competi-
tive equilibrium will earn lower profits than its competitor after deviation.3

This result was extended to a general oligopoly by Vega-Redondo [1997],
who additionally showed that the competitive equilibrium would be the only
long-run outcome of a learning dynamics based on imitative behavior. The
evolutionary approach, hence, provides foundations for competitive equilib-
rium dispensing with the assumption of negligible agents.

In the present work, we identify the structural characteristics of the
Cournot oligopoly which underly these results. The first is the fact that
it is an aggregative game. The second is the strategic substitutability be-
tween individual and total output. Since the incentive to increase individual
output decreases the higher the total output in the market, the Cournot

1Cornes and Hartley [2001] present examples of games which can be viewed as aggrega-
tive games after a suitable transformation of the strategy spaces.

2The concept of evolutionarily stable strategy used here, due to Schaffer [1988], refers
to a finite population and differs from the usual concept in evolutionary game theory for
a continuum population (cf. Section 3).

3The key for the evolutionary success of the competitive firm is its spiteful behavior.
Quoting Schaffer [1989]: “When firms have market power, the potential for ‘spiteful’
behavior exists. A firm which forgoes the opportunity to maximise its absolute profit
may still enjoy a selective advantage over its competitors if its ‘spiteful’ deviation from
profit-maximisation harms its competitors more than itself.”
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oligopoly has a submodular structure.4

Indeed, we find that the results for the Cournot oligopoly are but an
instance of a general phenomenon. An ATS is evolutionarily stable in any
aggregative game with a submodular structure. This has a natural coun-
terpart in the supermodular case; any evolutionarily stable strategy (ESS)
corresponds to aggregate-taking optimization.

Possajennikov [2003] already observed a relation between optimal ag-
gregate-taking strategies and evolutionarily stable strategies in aggregative
games. Under differentiability, he finds that the first-order conditions of
their defining optimization problems are identical. Careful examination of
the second-order conditions allows to determine conditions under which both
concepts coincide. In contrast, our approach relies exclusively on the struc-
ture of the game and provides an intuitive and direct way of relating both
concepts.

In the submodular case, we obtain even stronger results. Any ATS is
weakly globally stable, meaning that it is weakly better in relative terms
independently of the number of opponents behaving differently. If the game
has a strict ATS, then this is strictly globally stable and the unique ESS.

Furthermore, we show that a strictly globally stable ESS is always the
long-run outcome of a learning dynamics based on imitation and experimen-
tation. This result, which is of independent interest, is proven for arbitrary
(not necessarily aggregative) symmetric games. As a corollary, this will also
hold for any strict ATS of a submodular aggregative game. In short, the dy-
namic stability result of price-taking behavior quoted above generalizes for
aggregate-taking optimization to arbitrary submodular aggregative games.

In our view, these results might be taken to provide an alternative, evo-
lutionary foundation for the perfect competition paradigm. In contrast to
the large-population approach, this foundation does not rely on agents be-
ing negligible. In fact, the evolutionary success of behaving as if they were
negligible is due precisely to the fact that they are not. When an agent
optimizes assuming that she will not affect the aggregate, the latter will ac-
tually change, but in such a way that it is her opponents who will be more
harmed. A key new insight is that this property derives directly from the
supermodular or submodular structure of the game.

These results are also of interest for evolutionary game theory, since they
provide either necessary or sufficient conditions to obtain ESS for a class of
aggregative games. In the submodular case, we actually provide shortcuts for
the computation of an ESS and the long-run outcomes of imitative learning

4Amir [1996] and Amir and Lambson [2000] show that certain Cournot oligopolies can
be seen as supermodular through appropriate changes of variable (cf. Section 2.3).
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dynamics. Further, our result on imitative dynamics is, to our knowledge,
the first general result on the dynamic properties of finite-population ESS.

The paper is organized as follows. Section 2 introduces the notion of
(generalized) aggregative games and presents examples beyond the Cournot
oligopoly. Section 3 presents the concepts of evolutionary and global stability
for n-player games and particularizes them for aggregative games. Section 4
discusses aggregate-taking behavior. Section 5 presents the results relating
aggregate-taking behavior and evolutionary stability. Section 6 contains the
dynamic results. Section 7 concludes.

2 Generalized symmetric aggregative games

A game is called aggregative if the payoffs to any player depend only on
that player’s strategy and the sum of all strategies chosen. If the sum is
replaced by an arbitrary aggregate g, we refer to a generalized aggregative
game (Corchón [1994]).

In the present work we will consider symmetric games with a strategy
space S common to all players, assumed to be a subset of a totally ordered
space X. For our purposes it will be enough to let S ⊆ X = R. Further
we will assume the aggregate g to be a symmetric and monotone increasing
function.5 For the sake of expositional simplicity we will drop the qualifiers
generalized, symmetric, and monotone, referring to such games simply as
aggregative games.

Definition 1. A (generalized) symmetric aggregative game with aggregate
g is a tuple Γ ≡ (N, S, π) where N is the number of players, the strategy
set S, common to all players, is a subset of a totally ordered space X, π :
S × X → R is a real-valued function, and g : SN → X is a symmetric and
monotone increasing function, such that individual payoff functions are given
by πi(s) ≡ π(si, g(s)) for all s = (s1, . . . , sN) ∈ SN and i = 1, . . . , N .

2.1 Families of aggregative games

Existence of a monotone aggregate function is the only requirement for a
game to be representable as an aggregative game. Hence, this class of games
may be rather large. Actually, in the examples we consider the aggregate is
a functional form that can be extended to any number of players as captured
by the following definition.

5The analysis could be analogously performed for the case of decreasing aggregates.
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Definition 2. A family of symmetric aggregative games is a collection of
games {Γn}∞n=1 where Γn ≡ (n, S, π) is a (generalized) symmetric aggregative
game with aggregate gn such that g1(s) = s for all s ∈ S and there exists a
function g : X × S → X such that

gn+1(s1, . . . , sn, sn+1) = g (gn(s1, . . . , sn), sn+1) (1)

for all s1, . . . , sn+1 ∈ S, and all n ≥ 1.

Note that the construction of an aggregate in Definition 2 follows an in-
ductive scheme. The condition that g1(s) = s strikes us as natural, although
it is not necessary for our analysis. This condition implies that the restriction
of g to S × S coincides with g2 and is, hence, symmetric. Constructing the
aggregate in an inductive way has two advantages. First, it allows us to speak
of families of games with a variable number of players but the same strategic
structure. This will be useful to perform comparative statics with respect to
the number of players. Second, it allows to formulate the payoffs of the game
depending only on individual strategy and either an aggregate of all strate-
gies, or an aggregate of the strategies of the other players. Indeed, consider a
family of symmetric aggregative games {Γn}∞n=1 with Γn ≡ (n, S, π). Define
π̃ : S ×X → R by

π̃(s, x) = π(s, g(x, s)).

Now, using (1), we can view the payoffs of the game Γn as a function of
individual strategy and an aggregate (namely gn−1) of the strategies of the
other players as follows.

πi(si, s−i) = π(si, g
n(si, s−i)) = π̃(si, g

n−1(s−i))

In the literature, the dependence of the payoff function on an aggregate of
the opponents’ strategies is exploited to simplify the analysis of best reply
correspondences (see e. g. Vives [1999]).

2.2 Super- and submodularity in aggregative games

In this section we adapt the concepts of super- and submodular games (see
e. g. Topkis [1998]) to the case of aggregative games.

Definition 3. We say that an aggregative game Γ ≡ (N, S, π) is super-
modular (resp. submodular) in individual strategy and the aggregate if π has
increasing (resp. decreasing) differences; i. e. if π(s′′, x)−π(s′, x) is increasing
(resp. decreasing) in x ∈ X for all s′′ > s′ ∈ S.
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If X = R and π(s, x) is continuously twice differentiable, then π has
increasing (resp. decreasing) differences if and only if

∂2π(s, x)

∂x∂s
≥ (resp. ≤ ) 0

The concept of increasing differences captures the notion of complemen-
tarity —the incentive to increase s increases with the level of the aggregate
x. Respectively, the concept of decreasing differences captures the notion of
substitutability —the incentive to increase s decreases with the level of the
aggregate x.

Definition 4. We say that an aggregative game Γ ≡ (N, S, π) is quasisu-
permodular in individual strategy and the aggregate if π satisfies the single-
crossing property in (s, x) ∈ S ×X; i. e. if, for all s′′ > s′ and x′′ > x′

π(s′′, x′) ≥ π(s′, x′) ⇒ π(s′′, x′′) ≥ π(s′, x′′)

π(s′′, x′) > π(s′, x′) ⇒ π(s′′, x′′) > π(s′, x′′)

We say that Γ is quasisubmodular in individual strategy and the aggregate
if π satisfies the dual single crossing property in (s, x); i. e. if the conditions
above hold with the reversed inequalities.

The single-crossing property (SCP) is an ordinal version of complemen-
tarity weaker than increasing differences. If s′′ is preferred to s′ given x = x′,
then s′′ is preferred to s′ given a higher x = x′′, although we cannot say
whether the incentive to replace s′ with s′′ has increased. Thus, increasing
differences implies the SCP, but not vice versa. An analogous remark can be
made for the dual SCP.

2.3 Examples of aggregative games

Example 1. Cournot oligopoly. Consider an oligopolistic market for a
homogeneous good with quantity-setting firms. Let qi ∈ R+ be the quantity
supplied by firm i = 1, . . . , n. Inverse demand is given by a strictly decreasing
function P (·) that depends on the aggregate output level Q =

∑
i qi. All firms

face the same increasing cost function C(q). The profit to firm i is then given
by

πi(q) = π(qi, g
n(q)) = P (gn(q)) qi − C(qi)

with q ∈ Rn
+ and gn(q) =

∑n
j=1 qj increasing. This defines a family of

aggregative games in the sense of Definition 2, with aggregate equal to the
sum of all quantities.6

6Alternatively, we could have chosen the inverse demand function itself as a (decreasing)
aggregate. As noted above, our results could be rewritten for such aggregates.
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The Cournot game is submodular in own (qi) and total (Q) output. To
see this, let q′′i > q′i, and note that

π(q′′i , Q)− π(q′i, Q) = P (Q)(q′′i − q′i)− (C(q′′i )− C(q′i))

is decreasing in Q for P decreasing.
No further assumptions are required for the Cournot oligopoly to be sub-

modular in individual strategy and the aggregate. If, alternatively, we con-
ceive the payoffs of this game as a function of individual strategy and an
aggregate of the opponents’ strategies, the corresponding submodularity is
obtained only under the additional assumption of decreasing marginal rev-
enues. Particular instances of the Cournot game are usually analyzed in the
literature as supermodular in own output and the opponents’ total output
through convenient changes of variable (see Amir [1996] or Vives [1999]).

Example 2. Rent-seeking. There is a rent V to be obtained—e. g. rent de-
rived from monopoly power, a prize, some commonly valued good (auction).
Players compete for this rent by investing some effort or income, si ∈ R+,
i = 1, . . . , n. Only the player that wins the contest obtains the rent, while
all other expenditures are lost. The higher the expenditure of a player, si,
the higher the probability that i obtains the rent, given by

Prob{i gets V | s1, . . . , sn} =
sr

i∑n
j=1 sr

j

The parameter r models a technology that turns expenditures or efforts into
probabilities of winning. If r < 1 there are decreasing returns to these efforts.
If r > 1 there are increasing returns. The borderline case r = 1 corresponds
to constant returns.

In a Nash equilibrium total expenditure is always lower than V . In par-
ticular, if the number of players is n ≤ r/(r − 1), there is a symmetric Nash
equilibrium of this game with ŝ = n−1

n2 rV (see e. g. Lockard and Tullock
(eds.) [2001]).

Rent-seeking corresponds to a family of aggregative games with payoff
function

πi(s) = π(si, g
n(s)) =

(
si

gn(s)

)r

V − si

with gn(s) =
(∑n

j=1 sr
j

)1/r

and r > 0.

Note that rent-seeking games are submodular in individual strategy and
the aggregate, since

∂2π

∂x∂s
= −r2 sr−1

xr+1
V ≤ 0.

7



Alternatively, we could have defined the aggregate to be g(s) =
∑n

j=1 sr
j .

The payoff function would then be

πi(s) =
sr

i

g(s)
V − si

This, however, would not fulfill Definition 2.

Example 3. Tragedy of the commons. Consider the following version
of the problem of the commons. A set of agents operate a commonly owned
production process with decreasing returns to scale. Agents choose their
input contributions and total output is distributed in proportion to individual
contributions. This results in an average return game as defined by Moulin
and Watts [1997]. Let si ∈ R+ denote the individual contribution of agent i =
1, . . . , n, and let gn(s) =

∑
i si be the aggregate input. Output is produced

with a technology given by y = f(gn(s)), with f(0) = 0 and f concave.7

Payoffs are given by

πi(s) = π(si, g
n(s)) =

si

gn(s)
· f(gn(s))− si

A Nash equilibrium of this game involves an overutilization of the technology
due to the presence of a negative externality which is not taken into account
by individual agents.8

Let A(x) = f(x)/x denote the average output. Set A(0) = limx→0 f(x)/x,
i. e. the slope of f at zero, and assume A(0) > 1. The function A is decreasing
by concavity of f . Note that payoffs can be written as π(s, x) = s[A(x)− 1].

The game is submodular in own contribution and the aggregate. To see
this, let s′′ > s′ and note that

π(s′′, x)− π(s′, x) = (s′′ − s′)[A(x)− 1]

is decreasing in x.

Example 4. Diamond’s search. Milgrom and Roberts [1990] present a
simplified version of Diamond’s search model (Diamond [1982]) of an econ-
omy where production results from a technology with specialized labor, mod-
elled through an individual level of effort, si ∈ R+. In order to consume, each

7The production function f need not be differentiable. E. g. f(x) = ax for all x ≤ x̄
and f(x) = b0 + b1x for all x ≥ x̄, with b1 < a < 1 and b0 = (a− b1)x̄.

8Moulin and Watts [1997] show this in a general framework where agents are endowed
with convex preferences on output share and input consumption, and both goods are
normal. The version presented here is akin to the common pool resource extraction game
in Sethi and Somanathan [2001].
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individual must first produce a good at cost C(si), increasing with si, that
must be exchanged for another individual’s good. Success in finding a trading
partner—and thus in consumption of produced goods—depends proportion-
ally on the own effort and the total level of effort in the economy. The latter
is then interpreted as employment. The point was to show that there may
be multiple equilibria, i. e., multiple natural rates of unemployment. This is
captured by a family of aggregative games with payoff function

πi(s) = π(si, g
n(s)) = αsig

n(s)− C(si)

with gn(s) =
∑n

j=1 sj and α > 0.
This game is supermodular, since for s′′ > s′

π(s′′, x)− π(s′, x) = α(s′′ − s′)x− (C(s′′)− C(s′))

is increasing in the aggregate x.

Example 5. Minimum effort. The minimum-effort game can be used to
model a Stag-Hunt production game where the inputs are n different types of
specialized labor, all of them perfect complements for the production of the
output (see e. g. Bryant [1994]). Individual level of effort is denoted si ∈ R+

and production costs are linear. This can be seen as a family of aggregative
games with payoff function

πi(s) = π(si, g
n(s)) = agn(s)− bsi

aggregate gn(s) = mini{si}, and a > b ≥ 0.
This game is simultaneously super- and submodular, since for s′′ > s′

π(s′′, x)− π(s′, x) = −b(s′′ − s′)

is constant in x.9

3 Evolutionary stability in a finite population

Standard evolutionary game theory considers random, pairwise contests be-
tween individuals drawn from an infinite population—two individuals are
repeatedly chosen at random to play a given two-player game. In that con-
text, a strategy is an evolutionarily stable strategy (ESS) if, once adopted
by the whole population, it cannot be invaded by a small mass of mutants,
that is, individuals displaying different behavior (see e. g. Weibull [1995]).

9This holds true for any separable payoff function π(s, x) = h1(s) + h2(x).
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To apply the principle of natural selection to, say, firms in an industry, we
need a definition of an ESS for a finite population of players which “play the
field”, that is all compete with each other simultaneously (Schaffer [1988]).
This will differ from the analogous concept for an infinite population. In a
small population with mutants coming in one at a time, the single mutant
will not face other mutants.

Let Γ ≡ (N, S, Π) be a symmetric N -player game. That is, S is the
common strategy set for all players, Π : S × SN−1 → R, and the individual
payoff functions are given by πi(s) ≡ Π(si|s−i) for all s ∈ SN and i =
1, . . . , N , where Π(si|s−i) = Π(si|s′−i) if s′−i is a permutation of s−i.

Definition 5. We say that s ∈ S is an ESS of a symmetric game Γ ≡
(N, S, Π) if for all s′ ∈ S,

Π(s|s′, s, . . . , s) ≥ Π(s′|s, s, . . . , s).

An ESS is strict if the inequality holds strictly for all s′ 6= s.

In a finite population, an ESS strategist does not maximize own payoffs
in general; rather, it is relative payoffs that are maximized—the difference
between own and opponents’ payoffs. A deviation to an ESS may decrease
own survival probability, but in that case it will decrease the opponents’
probability of survival even more. This is called spiteful behavior (Hamilton
[1970]). As observed by Schaffer [1988], an ESS is a strategy s such that

s ∈ arg max
s′

[Π(s′|s, s, . . . , s)− Π(s|s′, s, . . . , s)]

Thus, an ESS corresponds to a symmetric Nash equilibrium of the game
with relative payoffs. In general, however, a finite-population ESS does not
necessarily correspond to a Nash equilibrium of the original game in stark
contrast to the standard ESS concept for an infinite population.

Allowing for the appearance of mutants in groups results in a more strin-
gent concept of stability of a finite-population ESS.

Definition 6. Let s be an ESS of a symmetric game Γ ≡ (N, S, Π). We say
that s is weakly (strictly) globally stable if for all s′ ∈ S, s′ 6= s

Π(s|s′, m. . ., s′, s, . . . , s) ≥ (>)Π(s′|s′, m−1. . . , s′, s, . . . , s)

for all 1 ≤ m ≤ N − 1.

Note that in a finite population of N players with m mutants, players
choosing the incumbent strategy face m mutants, while mutants face only
m− 1 other mutants, since the mutant never faces herself.
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Definition 6 differs slightly from the one by Schaffer [1988], who calls an
ESS globally stable if it fulfills the strict inequality in Definition 6 for m ≥ 2
(see Crawford [1991] and Tanaka [2000] for closely related concepts).

Both ESS and global stability constitute a stability check against a single
competing strategy. An ESS is robust against all possible mutants coming
in small fractions; i. e. in a finite population only one at a time. A globally
stable strategy is robust against all possible mutant strategies independently
of the fraction of mutants.10

ESS in an aggregative game

Let Γ ≡ (N, S, π) be a symmetric aggregative game with aggregate g. Then,
s ∈ S is an ESS if, for all s′ ∈ S,

π(s, g(s′, s, . . . , s)) ≥ π(s′, g(s′, s, . . . , s)).

That is, s performs better than the mutant strategy s′ in the post-mutation
strategy profile with aggregate g(s′, s, . . . , s). Thus, an ESS solves

s ∈ arg max
s′

[π(s′, g(s′, s, . . . , s))− π(s, g(s′, s, . . . , s))] (2)

An ESS, s, is weakly (strictly) globally stable if, for all s′ 6= s and all
1 ≤ m ≤ N − 1

π(s, g(s′, m. . ., s′, s, . . . , s)) ≥ (>)π(s′, g(s′, m. . ., s′, s, . . . , s)). (3)

Example 1. Cournot oligopoly (continued). Denote by qw the output
level corresponding to a Walrasian equilibrium, which satisfies

P (n · qw) qw − C (qw) ≥ P (n · qw) q − C (q)

for all q 6= qw. In words, qw maximizes profits given the price. Vega-Redondo
[1997] shows that for all q 6= qw and 1 ≤ k ≤ n

π(qw, g(q, n−k. . . , q, qw, k. . ., qw)) = P ((n− k)q + kqw)qw − C(qw) >

P ((n− k)q + kqw)q − C(q) = π(q, g(q, n−k. . . , q, qw, k. . ., qw))

which implies that qw is a strictly globally stable ESS. To see this, note that
it follows from P (.) strictly decreasing that

[P (nqw)− P ((n− k)q + kqw)] (qw − q) < 0

10In Section 6 we will postulate a dynamic model where simultaneous mutations to
different strategies are allowed.
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Subtracting C(q) + C(qw) and rearranging we obtain

[P ((n− k)q + kqw) qw − C (qw)]− [P ((n− k)q + kqw) q − C (q)] >

[P (nqw) qw − C (qw)]− [P (nqw) q − C (q)]

It suffices to notice that the right-hand side of the previous inequality is
non-negative by definition of qw.

Remark 1. In general, the output corresponding to a competitive equilib-
rium is larger than the output corresponding to a Cournot equilibrium. It
is worth noting that this fact generalizes as follows. For any aggregative
game with strictly increasing aggregate g and payoff function π(s, x) strictly
decreasing in x, a globally stable ESS, s∗, will always be larger than the
strategy corresponding to a symmetric Nash equilibrium, s̃. For

π(s̃, g(s̃, . . . , s̃)) ≥ π(s∗, g(s∗, s̃, . . . , s̃)) ≥ π(s̃, g(s∗, s̃, . . . , s̃)),

but s̃ > s∗ would imply g(s∗, s̃, . . . , s̃) < g(s̃, . . . , s̃) and π(s̃, g(s∗, s̃, . . . , s̃)) >
π(s̃, g(s̃, . . . , s̃)), a contradiction.

4 Aggregate-taking behavior

We have just seen in Example 1 that the outcome of price-taking behavior
corresponds to a finite population ESS. By price-taking behavior it is meant
that agents ignore the effect of their individual decisions on the market price.
The generalization of this idea to an arbitrary aggregative game results in
the concept of aggregate-taking behavior.

Definition 7. Let Γ ≡ (N, S, π) be a symmetric aggregative game. We say
that s∗ ∈ S is an optimal aggregate-taking strategy (ATS) if

s∗ ∈ arg max
s

π(s, g(s∗, . . . , s∗)) (4)

A strict ATS is an ATS which is a strict maximizer of this problem.

Example 2. Rent-seeking (continued). The first order condition of prob-
lem (4) for this case yields

∂π(si, g(s∗, . . . , s∗))

∂si

∣∣∣∣
si=s∗

=
r

ns∗
· V − 1 = 0.

Moreover, since

∂2π(si, g(s∗, . . . , s∗))

∂s2
i

=
r(r − 1)sr−2

i

n(s∗)r
· V
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it follows that π(si, g(s∗, . . . , s∗)) is strictly concave in si if r < 1. Thus,
s∗ = r

n
·V is a strict maximum and, hence, a strict ATS in that case. Note that

total investment is n · s∗ = r ·V < V ; i. e., there is no overdissipation of rent.
The Nash equilibrium of the game, however, is given by ŝ = n−1

n2 · r · V 6= s∗.
Hehenkamp et al. [2001] find that s∗ is an ESS of this game for r ≤

1 + 1
n−1

. This is a second example where ATS and ESS coincide, for a
certain range of parameters. The ESS problem in this example captures the
tradeoff between increasing the relative probability of winning the prize and
the additional relative per unit investment necessary to do so, where relative
here means in comparison with the opponents. The fact that s∗ is an ESS
means that ignoring the effect of individual investments on the aggregate
level of investment is a shortcut to solve that problem. In a sense, an ATS
maximizes the relative probability of winning the prize taking the cost into
account.

Existence of ATS

Existence of a solution to problem (4) is guaranteed by Kakutani’s fixed
point theorem if the strategy set S is a compact, convex subset of R and the
payoff function π(s, x) is continuous in (s, x) and quasiconcave in s. Here we
provide alternative conditions based on supermodularity for the existence of
an ATS.

Proposition 1. Let Γ ≡ (N, S, π) be a symmetric, quasisupermodular ag-
gregative game. If S ⊂ R is compact and π(s, x) is upper semicontinuous in
s for each x, then an ATS exists.

Proof. The result follows as an application of Lemma 1 in the Appendix to
the function F (s, t) = π(s, g(t, . . . , t)). The function F satisfies the single-
crossing property by quasisupermodularity of Γ and the fact that g is in-
creasing.

Existence of an ATS for a quasisubmodular game cannot be directly es-
tablished. For the case of a Cournot oligopoly, Amir and Lambson [2000]
observe that payoff functions can be rewritten to depend only on total out-
put and the sum of the opponents’ output levels. Under mild, additional
assumptions, the game is supermodular in these two variables, a fact that
can be used to show existence of Cournot-Nash equilibria. This approach
can be generalized to show existence of Nash equilibrium in families of ag-
gregative games, for which the aggregate of the opponents’ strategies is well
defined by gn−1. It can be shown by means of counterexamples, however,
that this method fails to provide an existence result for ATS.
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5 ESS, ATS, and supermodularity

In Examples 1 and 2 we saw that ESS and ATS coincide at least for cer-
tain parameter ranges. We also saw that both are examples of submodular
aggregative games. In the present section, we explore the relation between
ATS and ESS in the framework of a general super- or submodular aggregative
game.

Proposition 2. Let Γ ≡ (N, S, π) be a symmetric aggregative game. Sup-
pose Γ is quasisupermodular in individual strategy and the aggregate. If
s∗ ∈ S is an ESS, then s∗ is also an ATS. If s∗ is a strict ESS, then s∗ is also
a strict ATS.

Proof. Let s∗ be an ESS. Consider a mutation to a strategy s < s∗. By
monotonicity of the aggregate,

g(s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (5)

Since s∗ is an ESS, we have that

π(s, g(s, s∗, . . . , s∗)) ≤ π(s∗, g(s, s∗, . . . , s∗)). (6)

Since π satisfies the SCP, (5) and (6) imply that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)), (7)

verifying the ATS property for s.
Consider now a mutation to s > s∗. By monotonicity of the aggregate,

g(s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (8)

By contradiction, suppose that the ATS property is not fulfilled:

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)). (9)

By the SCP, (8) and (9) imply that

π(s∗, g(s, s∗, . . . , s∗)) < π(s, g(s, s∗, . . . , s∗)), (10)

which contradicts that s∗ is an ESS.
The proof that strict ESS implies strict ATS follows analogously, with

strict inequalities in (6) and (7), and weak inequalities in (9) and (10).

Proposition 3. Let Γ ≡ (N, S, π) be a symmetric aggregative game. Sup-
pose Γ is quasisubmodular in individual strategy and the aggregate. If s∗ ∈ S
is an ATS, then s∗ is also an ESS and it is weakly globally stable. If s∗ is a
strict ATS, then s∗ is the unique ESS (and hence also the unique ATS) and
it is strictly globally stable.

14



Proof. Let s∗ be an ATS. To check weak global stability and, in particular,
the ESS property, we consider first m mutations to the same strategy s > s∗,
with 1 ≤ m ≤ N − 1. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (11)

Since s∗ is an ATS, we have that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)). (12)

Since π satisfies the dual SCP, (11) and (12) imply that

π(s, g(s, m. . ., s, s∗, . . . , s∗)) ≤ π(s∗, g(s, m. . ., s, s∗, . . . , s∗)), (13)

verifying the ESS property for s.
Consider now m mutations to s < s∗. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (14)

By contradiction, suppose that the weak global stability property is not ful-
filled:

π(s∗, g(s, m. . ., s, s∗, . . . , s∗)) < π(s, g(s, m. . ., s, s∗, . . . , s∗)). (15)

By the dual SCP, (14) and (15) imply that

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)), (16)

which contradicts that s∗ is an ATS.
The proof that strict ATS implies strict global stability and, in particular

strict ESS follows analogously, with strict inequalities in (12) and (13), and
weak inequalities in (15) and (16). To see uniqueness, suppose there is a
different ESS s̃ 6= s∗. Applying strict global stability of s∗ for m = N − 1,
we obtain

π(s∗, g(s∗, s̃, . . . , s̃)) > π(s̃, g(s∗, s̃, . . . , s̃)),

in contradiction with s̃ being an ESS.
Summarizing, the last two propositions show that ESS implies ATS in

the supermodular case, and the reverse implication is true in the submodular
case.11 For instance, the Cournot oligopoly of Example 1 is submodular in
own and aggregate output. Hence, the individual output level of a Walrasian
equilibrium (by definition, an ATS) is an ESS by Proposition 3.

11If we allow for decreasing aggregates in Definition 1, we obtain the dual results, i. e.,
ESS implies ATS if π satisfies the dual SCP, and ATS implies ESS if π satisfies the SCP.
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To get an intuition for these results, consider an ATS s∗ and an arbitrary
strategy s > s∗ in the quasisubmodular case. By definition of ATS, there is no
incentive to switch from s∗ to s given the value of the aggregate. Mutations
to s will increase the value of the aggregate. Quasisubmodularity implies
that there are no gains in relative terms from playing s rather than s∗ in the
post-mutation profile.

Note that our results for the submodular case are stronger than those for
supermodularity. This is due to an asymmetry in the concepts of ATS and
ESS. In particular, Proposition 3 will be more useful than Proposition 2, as
we will illustrate in examples below. Recall an ESS solves the maximization
problem (2) and an ATS solves the maximization problem (4). In general,
the latter is much easier to solve than the former. In the supermodular
case, Proposition 2 implies that solving (4) yields a necessary condition for
an ESS. In that case, sufficient conditions for ESS need still be checked.
In the submodular case, though, solving (4) is sufficient to find an ESS by
Proposition 3. Moreover, in this case, strict ATS will always be strictly
globally stable, a fact that will have strong implications for dynamic stability
(see Section 6).

The differentiable case

Propositions 2 and 3 do not require any differentiability assumptions on the
considered aggregative game, relying only on sub- or supermodularity. For
specific examples, however, differentiability helps to establish the equivalence
of ESS and ATS (or to identify the parameter range where this equivalence
holds). Possajennikov [2003] observes that under differentiability, the first
order conditions of problems (2) and (4) are identical. He then finds sufficient
conditions for (interior) ESS and ATS to coincide. These conditions can be
summarized as follows. If relative payoffs (the argument in problem (2))
are quasiconcave in the mutant’s strategy (s′)—and hence the second-order
condition for a global maximum of (2) is fulfilled—then ATS implies ESS;
conversely, if the function π (the argument in problem (4)) is quasiconcave
in individual strategy—the second-order condition for a global maximum of
(4) is fulfilled—then ESS implies ATS. The difference between these and our
results is illustrated in Example 2 below.

Examples

Example 2. Rent-seeking (continued). We saw that this game is submod-
ular in individual strategy and the aggregate, and that s∗ = r

n
· V is a strict

ATS for 0 < r < 1. By Proposition 3, it follows that s∗ is the unique ESS.
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Hence, ATS implies ESS, and vice versa (by uniqueness). Therefore, ATS
and ESS coincide for 0 < r < 1.

In order to apply the approach in Possajennikov [2003] the second-order
conditions of both problems must be carefully examined to reach the pre-
vious conclusion. The point here is that examination of the second-order
condition for problem (2) is more cumbersome than the direct application of
Proposition 3.

For r > 1 there is no ATS, so neither Proposition 3 nor the results in
Possajennikov [2003] can be applied. Hehenkamp et al. [2001] show, however,
that s∗ is an ESS for r ≤ 1 + 1

n−1
. For 1 < r < 1 + 1

n−1
, s∗ is an ESS but not

an ATS.

Example 3. Tragedy of the Commons (continued). We saw that this
game is submodular in individual strategy and the aggregate. An interior
ATS is given by the condition A(ns∗) = 1.12 By Proposition 3, it follows that
every ATS is a globally stable ESS. By Remark 1, in a globally stable ESS
input contributions are larger than in a Nash equilibrium, and the tragedy
of the commons is exacerbated. The intuition is straightforward. If selfish
agents act strategically, they neglect to consider the negative externality that
increasing their contribution imposes on the other agents. Under aggregate-
taking behavior, they further neglect to consider the negative effect that an
increase of their input has on their own payoff. This resembles the case of
a Cournot oligopoly with constant returns to scale. From the firms’ point
of view, the Cournot-Nash equilibrium is strictly worse than the “efficient”
collusive outcome, and the Walrasian outcome (which is an ATS) is even
worse.

Example 4. Diamond’s search (continued). We saw that this game is
supermodular in individual strategy and the aggregate. In this case, by
Proposition 2, it follows that every ESS is an ATS. If C ′′ > 0, an ATS is given
by the first-order condition for problem (4), αns∗−C ′(s∗) = 0. Hence, this is
also a necessary conditions for an ESS.13 As in Possajennikov [2003], here we
must check the second-order condition for problem (2). Direct computations
show that if C ′′ > 2α, then the condition above is also sufficient for ESS.
Therefore, ESS and ATS coincide for C ′′ > 2α, but it is easy to construct
examples (with C ′′ > 0 but C ′′ ≯ 2α) where there is no ESS but there is an
ATS.

12If S = [0,K] and A(nK) > 1, the ATS is given by s∗ = K.
13In contrast, the necessary condition for a symmetric Nash equilibrium is α(n + 1) ·

sN − C ′(sN ) = 0.
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Example 5. Minimum effort (continued). In this case, since the aggregate
is a minimum function, the individual payoff functions are not differentiable
and the analysis based on first- and second-order conditions does not apply.
The game, though, is both super- and submodular in individual strategy and
the aggregate. By Propositions 2 and 3, every ESS is an ATS and vice versa.
Since π is decreasing in si the only ATS (hence, the only ESS) is s∗ = 0.
Note that all symmetric profiles (s, . . . , s) with s ∈ R+ are Nash equilibria.
Thus, in this case the finite-population ESS is a Nash equilibrium.

6 Stochastic stability of an ESS

Vega-Redondo [1997] considers a discrete-time dynamic model of a Cournot
oligopoly where firms choose quantities from a finite grid.14 Each period,
imperfectly informed, boundedly rational firms imitate the output level of
any firm with highest profits in the previous period. Occasionally, with an
exogenous probability ε > 0, firms experiment with an arbitrary output level.
The prediction of the model is that, for small ε, the system spends most of
the time at the state where all firms produce the output corresponding to
the Walrasian equilibrium—strict ATS (hence, strictly globally stable ESS)
of the Cournot game with strictly decreasing demand. Formally, this state
is stochastically stable.15 Using recent results on stochastic stability from
Ellison [2000], it is easy to show that the former conclusion generalizes to
any strictly globally stable ESS. This result is of independent interest and
can be stated for symmetric games in general, and not only for aggregative
games. To our knowledge, this is the first result on dynamic stability of a
finite-population ESS.

Let Γ ≡ (N, S, Π) be any symmetric game with finite S. Assume play-
ers choose strategies from S in discrete time t = 0, 1, . . . according to the
following two rules:

(i) Imitation: Each period t ≥ 1, players mimic one of the strategies that
gave highest payoffs in the previous period.

(ii) Experimentation: With independent probability ε > 0, players ignore
the prescription of imitation, and choose a strategy from S according
to a probability distribution with full support.

14This requirement is for tractability. For a discussion of this model with a continuum
of strategies see K.R.Schenk-Hoppé [2000].

15A state is stochastically stable if it is in the support of the limit invariant distribution
of the process as ε → 0.
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Proposition 4. Let Γ ≡ (N, S, Π) be a symmetric N -player game with finite
S. Let s∗ be a strictly globally stable ESS. Then, the profile (s∗, . . . , s∗) is
the unique stochastically stable state of the imitation dynamics with exper-
imentation.

Proof. s∗ is a strictly globally stable ESS; i. e., it is resistant to any number
of simultaneous experiments (mutations) with the same strategy. Taking
m = 1 and m = N − 1 in Definition 6, we obtain that

(a) starting at s∗, an experimenter choosing any other s 6= s∗ performs
strictly worse, and

(b) starting at any s 6= s∗, an experimenter with s∗ performs strictly better.

Ellison [2000, Theorem 1] provides the following result for stochastic sta-
bility of a state ω. Let the radius of the state, R(ω), be the minimum number
of experiments necessary to leave ω. Let the coradius of the state, CR(ω), be
the maximum number of experiments necessary to reach ω from any other
state. If R(ω) > CR(ω), then ω is the only stochastically stable state.

For our particular imitation dynamics with experimentation, (a) above
implies that R(s∗, . . . , s∗) > 1 and CR(ω) > 1 for any other state. By
(b), CR(s∗, . . . , s∗) = 1 and R(ω) = 1 for any other state. In particular,
R(s∗, . . . , s∗) > CR(s∗, . . . , s∗), implying that (s∗, . . . , s∗) is the only stochas-
tically stable state.16 Intuitively, this state is harder to destabilize through
experimentation than any other state.

Corollary 1. Let Γ ≡ (N, S, π) be a quasisubmodular aggregative game with
finite S. Let s∗ be a strict ATS. Then the profile (s∗, . . . , s∗) is the unique
stochastically stable state of the imitation dynamics with experimentation.

Corollary 1 follows from Propositions 3 and 4. It provides a link between
the ATS concept in submodular aggregative games and the long-run outcome
of dynamical models based on imitative behavior. Applied to a Cournot oli-
gopoly as in Example 1, it yields the result in Vega-Redondo [1997]. Applied
to a rent-seeking game as in Example 2, it implies stochastic stability of the
profile where each player invests s∗ = r

n
· V when r < 1. This can be seen as

an efficient outcome since it avoids overdissipation of rent.

16Moreover, the expected waiting time until this state is first reached is of order ε−1.
In particular, the order of convergence is independent of population size.
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7 Conclusions

The present work deals with the class of (generalized) symmetric aggregative
games, whose payoff function may be written to depend only on individual
strategy and an aggregate of all strategies. If players were negligible, in a
Nash equilibrium of such games their behavior would correspond to opti-
mization given the value of the aggregate. If players are not negligible, this
kind of aggregate-taking behavior is still well defined, although it does not
correspond to rational behavior. We refer to an optimal aggregate-taking
strategy (ATS) as an optimizing strategy given the value of the aggregate,
when all players choose that strategy. This is a generalization of the concept
of competitive equilibrium.

We consider two dual cases. Under submodularity of the payoff function,
which includes the case of Cournot oligopoly, an ATS satisfies an evolutionary
stability criterion. Specifically, any deviation from an ATS in that case leaves
the deviator worse off in relative terms. A strategy verifying this property is
called a finite-population ESS. Under supermodularity of the payoff function,
the converse result obtains; i. e. aggregate-taking behavior is a necessary
condition for evolutionary stability.

Moreover, in the submodular case, we show that a strict ATS is also the
long-run outcome of a learning dynamics based on imitation and experimen-
tation. This provides dynamic foundation for aggregate-taking behavior in
such settings.

In other words, in the supermodular case we find that ATS is a necessary
condition for ESS, while in the submodular case it is a sufficient condition for
globally stable ESS. In the latter case, this provides a shortcut for the compu-
tation of an ESS and the long-run outcomes of imitative learning dynamics.
Of course, these findings are useful provided an ATS exists. Existence is
guaranteed if the payoff function of the game is quasiconcave in individual
strategy. It turns out that this requirement is easier to verify than the condi-
tions required to find an ESS directly, due to the complexity of the objective
function of the associated optimization problem.

Appendix

We say that F : R2 → R satisfies the single-crossing property in (s, x) ∈ R2

if, for all s′′ > s′ and x′′ > x′

F (s′′, x′) ≥ F (s′, x′) ⇒ F (s′′, x′′) ≥ F (s′, x′′)

F (s′′, x′) > F (s′, x′) ⇒ F (s′′, x′′) > F (s′, x′′)
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The following result is an application of well known lattice programming
results. We refer the reader to Topkis [1998] for further details.

Lemma 1. Let S ⊂ R be compact. Suppose F : R2 → R satisfies the single-
crossing property and F (s, x) is upper semicontinuous in s for each value of
x. Then there exists s∗ ∈ S such that

s∗ ∈ arg max
s∈S

F (s, s∗)

Proof. Upper-semicontinuity of F and compactness of S guarantee that
arg maxs∈S F (s, x) is non-empty for each x. By Topkis [1998, Theorem 2.8.6]
(due to Milgrom and Shannon [1994]) and Topkis [1998, Corollary 2.7.1 and
Theorem 2.4.3] the maximum and minimum selections of arg maxs∈S F (s, x)
are increasing. By Tarski’s fixed point theorem (see e. g. Topkis [1998, Corol-
lary 2.5.1]) these selections have a fixed point.
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