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1 Introduction

Existence and uniqueness of Cournot equilibrium are topics of a long and ongoing de-

bate.1 The problem is that even for well-behaved preferences, 'examples of duopoly

models in which no Cournot equilibrium (in pure strategies) exist are easily produced'

(Vives, 1999, p. 94). Typically, the approaches dealing with existence start from a

given number of ¯rms. They consider the quantity setting game, taking as given tech-

nologies, i.e. the cost functions. While ¯rms may di®er, these di®erences are usually

given exogenously (see, for instance, Novshek, 1985). From an Industrial Organization

perspective it is interesting to know whether and under what conditions both market

structure and technology can be endogenized without running into existence problems.

Is it easily possible to add an additional stage which deals with entry and technology

choice?2

From the above quote as well as from the well-known problem of non-existence of a

pure strategy equilibrium in research tournaments without uncertainty (see Dasgupta

and Stiglitz, 1980a), one might conclude that the non-existence problem becomes even

more severe. I assess how important the problem is by analyzing the simple and

standard case of linear demand and constant marginal costs. As regards technology

choice, I assume that ¯rms can choose from a set of two technologies, a large-scale and

a small-scale technology.

This simple framework is quite rich in terms of the patterns of existence and unique-

ness of (pure strategy) equilibrium it yields. Non-existence of equilibrium, existence

of multiple equilibria and equilibria in which ex-ante identical ¯rms choose di®erent

technologies are possible outcomes depending on the parameters. I provide a full char-

acterization of the parameter sets for which these outcomes arise.

There are two main ¯ndings with respect to non-existence of equilibrium: First, the

1See the recent article by Long and Soubeyran (2000) for a list of contributions.
2Long and Soubeyran (2000) claim that an advantage of their approach is that the equilibrium is

characterized in terms of marginal costs. According to these authors, this facilitates the study of a
class of two-stage Cournot games (see p. 345).
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existence problem disappears if vertical market size is larger than a certain threshold.

Vertical market size is measured here by the vertical intercept of the demand curve.

Second, non-existence is largely a 'small number' phenomenon. One may well construct

examples for which an equilibrium fails to exist for arbitrarily large numbers of ¯rms.

However, the range of parameter values where non-existence may occur is large only

if the market supports only a few large-scale ¯rms. This result is quite important in

the light of the wide-spread use of duopoly models. An interesting example is a recent

paper by Mills and Smith (1996). In a Cournot duopoly model with technology choice,

Mills and Smith characterize conditions under which ex-ante identical ¯rms choose

di®erent technologies. My results show that the characterization is incomplete as long

as entry is not explicitly accounted for. The article also derives a condition, which

provides an easy check for the existence of equilibrium.

Concerning uniqueness of equilibrium I characterize the market size range in which

multiple equilibria are likely to exist. It turns out that multiplicity of equilibrium

requires that the di®erent types of ¯rms do not di®er much in terms of the average

costs realized in an equilibrium in which only one technology is available. Consequently

the performance, i.e., prices and market output, of very di®erent industry structures

may be almost identical, a point also made by Davis (1999).

A ¯nal topic addressed in this article concerns the question under what conditions

ex-ante identical potential entrants end up employing di®erent technologies. I derive

a su±cient condition for a symmetric equilibrium to exist in which all ¯rms choose

the same technology. From an empirical point of view, the most interesting parame-

ter values seem to be those for which this su±cient condition does not hold. In the

respective range a heterogeneous industry structure arises endogenously. The article

shows that the results of Mills and Smith (1996) generalize even to the case of free

entry. My model provides an endogenous explanation of the di®erences in ¯rm size

frequently found in many industries (see, e.g., Sutton, 1998) within a framework of

technology choice. By explicitly allowing for heterogeneity, it di®ers from the main
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body of the literature on technology choice and R&D activities, respectively, under

Cournot competition. In that literature, most authors either directly assume that a

unique and symmetric equilibrium exists (see, e.g., Okuno-Fujiwara and Suzumura,

1993) or they ensure existence of such an equilibrium by making strong assumptions

on the - typically continuous - set of available technologies (see, e.g., Dasgupta and

Stiglitz, 1980b). Consequently, these models cannot account for heterogeneity among

¯rms by assumption.

The remainder of the paper is organized as follows. Sections 2 and 3 present the ba-

sic model and introduce entry. Section 4 derives a su±cient condition for a unique and

symmetric equilibrium to exist. Section 5 discusses non-existence of equilibrium, co-

existence of di®erent types of ¯rms in equilibrium and non-uniqueness of equilibrium. It

proves that non-existence vanishes for large values of vertical market size and presents

an example on the importance of non-existence. The example also demonstrates for

which parameter values both asymmetric and multiple equilibria arise. Section 6 con-

cludes.

2 The model

Consider an industry which produces a homogeneous product. The inverse demand

function is

p(y) = a¡ y
s
; (1)

where p and y respectively denote the price and the aggregate demand of the product.

The demand function exhibits two market size parameters, a and s. The parameter a

accounts for what I call vertical market size. It measures the maximum willingness to

pay for that product. The parameter s is a measure of horizontal market size. One

can think of it as the number of (identical) consumers. Firms may choose from a set

of two technologies, a small- and a large-scale technology. The constant marginal costs

associated with the small-scale technology are c > 0. Firms entering with the small-

3



scale technology incur ¯xed costs fS. The marginal costs for large-scale producers are

zero. Their ¯xed costs are denoted as fL. Of course, fL > fS. The overall number of

(active) ¯rms is denoted by n, m describes the number of small-scale (or S-)¯rms and

n¡m the number of large-scale (or L-)¯rms.

Firms' pro¯ts depend on the technology they have chosen. The pro¯t functions are:

¦j(y1; : : : ; yn) = (a¡
Pn
i=1 yi
s

)yj ¡ cyj ¡ fS; j 2M (2)

¦i(y1; : : : ; yn) = (a¡
Pn
j=1 yj

s
)yi ¡ fL; i 2 N nM; (3)

where yk is the output of ¯rm k = 1; : : : ; n. M is the set of S-¯rms andN := f1; : : : ; ng.
The equilibrium quantity of an S-¯rm is

yS(m;n) =
s(a¡ c¡ (n¡m)c)

n+ 1
8m = 1; : : : ; n: (4)

The equilibrium quantity of an L-¯rm is

yL(m;n) =
s(a+mc)

n+ 1
8m = 0; : : : ; n¡ 1: (5)

Substituting yl and yh into (2) and (3) leads to equilibrium pro¯ts of S and L ¯rms as

a function of the respective ¯rm numbers:

¦S(m;n) =
s

(n+ 1)2
(a¡ c¡ (n¡m)c)2 ¡ fS 8m = 1; : : : ; n; (6)

and

¦L(m;n) =
s

(n+ 1)2
(a+mc)2 ¡ fL 8m = 0; : : : ; n¡ 1: (7)

3 Entry

Suppose entry into the market is free, and a large number of identical potential entrants

exists. A potential ¯rm can enter as an S-¯rm or an L-¯rm. In a free-entry-equilibrium

(m;n) the zero-pro¯t conditions

¦S(m+ 1; n+ 1) < 0 · ¦S(m;n) (8)
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and

¦L(m;n+ 1) < 0 · ¦L(m;n) (9)

must hold.

De¯nition 1 A candidate equilibrium is a con¯guration (m;n) that satis¯es the zero-

pro¯t conditions (8) and (9).

A candidate equilibrium is of some interest on its own. It constitutes the equilibrium

of a game with a large population of potential entrants of two di®erent types. The

types, i.e. the technology of the respective ¯rms, are exogenous.

In our model with technology choice, an equilibrium con¯guration (m;n) must

additionally satisfy the no-switching conditions

¦S(m;n) ¸ ¦L(m¡ 1; n) (10)

and

¦L(m;n) ¸ ¦S(m+ 1; n): (11)

S-¯rms must not have an incentive to employ the L-technology, and L-¯rms must not

have an incentive to employ the S-technology.

As the above description makes clear, I consider a two-stage game. In stage 1, ¯rms

decide on entry and technology. In the second stage, ¯rms choose their output levels.

Each equilibrium of the game with endogenous technology is, of course, an equilibrium

of a game with exogenous technologies and given types. Therefore, the equilibria of

the endogenous technology case also indicate possible equilibrium con¯gurations for an

environment with exogenous heterogeneity, i.e. ex-ante heterogeneity.

4 Existence of a unique and symmetric equilibrium

In this section I provide a su±cient condition for a unique equilibrium to exist in which

all active ¯rms choose the same technology. I call such an equilibrium symmetric. The

derivation of the condition ¯rst proceeds in a graphical way, before it is stated and
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proved in more formal terms. The graphical analysis provides some intuition for the

requirements of a symmetric equilibrium.

Let TS = c+
q
fS=s and TL =

q
fL=s. TS and TL denote the average costs realized

by an L-¯rm and an S-¯rm, respectively, in a free entry equilibrium in which only

the respective technology is used.3 TL = TS is clearly a knife-edge case. The relation

between TS and TL determines which of the two technologies is, roughly speaking, the

e±cient one.

For the graphical analysis I display the equations ¦S(m;n) = 0 and ¦L(m;n) = 0

in (n;m)-space.4 Using equation (6), ¦S(m;n) = 0 yields m = n(TS=c) + (TS ¡ a)=c.
Using equation (7), ¦L(m;n) = 0 yields m = n(TL=c) + (TL ¡ a)=c. The two lines
intersect at (n;m) = (¡1;¡a=c). Figure 1 depicts the two lines for TS > TL. They

intersect the horizontal axis at ¡1 + a=TS and ¡1 + a=TL, respectively. Note that the
lines have a positive slope greater than 1.5 Pro¯ts can be kept constant with increasing

n if m, the number of small ¯rms, increases faster than n. Pro¯ts of the respective

¯rm types are negative in the area below the respective zero-pro¯t line.

Figure 1 about here

Given the con¯guration in Figure 1 both technologies cannot coexist in equilibrium.

To see this, note that the use of technology S by some ¯rms would require a con¯g-

uration (m;n) on or above the locus ¦S(m;n) = 0. Otherwise S-type ¯rms would

make losses. However, with this con¯guration, entry would be pro¯table for large-scale

¯rms. This can be seen from the con¯guration at the starting point of the horizontal

arrow in Figure 1. Entry of an L-¯rm implies that the con¯guration (m;n) changes in

the direction of this arrow. It immediately follows that at least one ¯rm could enter

using the L-technology provided that the horizontal distance between the two lines at

3Average cost are calculated here neglecting the integer constraint.
4The following derivation ignores the integer constraint. It is taken into account in the formal

derivation below.
5The slope of locus ¦L(m;n) = 0 is smaller than one if c > TL. In this case the reduced pro¯t

function derived in equation (7) does not apply, as it would require negative output of small ¯rms.

6



the respective value of m is greater than 1. The resulting con¯guration (m;n+ 1) im-

plies positive pro¯ts for the entrant. A su±cient condition for the horizontal distance

between the two lines to always be greater than one is that the distance at m = 0 is

greater than one. For future purposes I denote the respective expression as D. Thus,

D ´ (a=TL)¡ (a=TS). In a sense, D gives a measure of the cost di®erence between the

two technologies.

The above discussion shows that in equilibrium S-type ¯rms cannot be active. To

see that only L ¯rms are active is indeed an equilibrium look at the vertical arrow in

Figure 1. It starts at (n;m) = (¡1 + a=TL; 0), i.e., at the free entry number of L-type
¯rms if only this technology is used. For this con¯guration to be an equilibrium an

L-type ¯rm must not have an incentive to switch to the S-technology. Again, the arrow

indicates in which direction the industry con¯guration would change in this case. If the

vertical distance between the two lines for n = ¡1+a=TL is greater than 1 such a move
cannot be pro¯table. To see this, note that the resulting con¯guration (1; n) would lie

below the zero-pro¯t line for S-technology ¯rms. Again, the assumptionD > 1 together

with the fact that the slope of ¦S(m;n) = 0 is greater than the slope of ¦L(m;n) = 0

guarantees that the (vertical) distance is greater than 1. This establishes the existence

of a symmetric equilibrium with only L-type ¯rms. The condition on D shows what

it takes in terms of a cost disadvantage in order to keep 'ine±cient' ¯rms out of the

market. This is equivalent to guaranteeing the existence of a unique and symmetric

equilibrium.

Uniqueness and symmetry of equilibrium requires much less in terms of the cost

di®erence if TS · TL. For the respective parameter values only S-type ¯rms can be

active in equilibrium. To see this, consider the knife-edge case TS = TL. In this case the

zero-pro¯t curves coincide. Consequently, L type ¯rms cannot be active in equilibrium.

This follows from the fact that pro¯ts of all ¯rms inclusive of the switching ¯rm increase

as soon as an L-type ¯rm switches to the S-technology. Starting from a situation of zero

pro¯ts it is always pro¯table for a large ¯rm to switch to the small-scale technology.
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Irrespective of what the number of L-¯rms is in the candidate equilibrium given n,

deviation is a dominant strategy. The equilibrium is reached when only S-¯rms are

active. Neither switching nor entry would be pro¯table. Switching to a large-scale

technology given the total number of ¯rms depresses pro¯ts of all ¯rms inclusive of the

switching ¯rm. Further entry is not possible by construction of the zero-pro¯t curves.

The graphical analysis reveals an important di®erence between the cases with en-

dogenous and exogenous technology, respectively. With exogenous technology the

condition TS · TL is insu±cient to guarantee that the 'ine±cient' technology, the

L-technology, is not employed in equilibrium.6 Consider again the knife-edge case

TS = TL. With exogenous technology only large ¯rms are active is an equilibrium.

The entry of neither large nor small ¯rms is possible. Starting from a situation when

only large ¯rms are active, entry of a small ¯rm would lead to a movement along an

arrow with slope 1. As the slope of locus ¦S(m;n) = 0 is greater than 1, a small

entrant cannot break even. With exogenous heterogeneity, uniqueness of equilibrium

requires a su±cient distance between the two loci in the case TS · TL as well. Only if
the cost advantage of the 'e±cient' technology, the S-technology, is su±ciently large,

only large ¯rms are active cannot be an equilibrium.

Proposition 1 states and proves the results for the endogenous technology case in

more formal terms. It also takes the integer constraint into account. Therefore the

value of D which is su±cient for existence and symmetry is greater than in Figure 1.

Proposition 1 If D ¸ 2, a unique equilibrium exists and in equilibrium all ¯rms use

the L-technology. If TS · TL, a unique equilibrium exists and in equilibrium all ¯rms

use the S-technology.

Proof see Appendix.

Having derived the conditions under which a unique and symmetric equilibrium

exists, I now further discuss the meaning of these conditions and how di®erent vari-

6Note that only small ¯rms are active is an equilibrium anyway as it is the equilibrium in the
endogenous technology case.
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ables a®ect them. A closely related question is how technology choice depends on the

parameters in general. The graphical analysis and Proposition 1 reveal an asymmetry

between the case where the S-technology and that where the L-technology is the ef-

¯cient one. If the small-scale technology is e±cient, the result obtained is similar to

that of models with a continuum of ¯rms (see Elberfeld and GÄotz, 2002). Only the

e±cient technology is employed in equilibrium.7 If the L-technology is the e±cient one

the results di®er from, for instance, a model of perfect competition with a continuum

of ¯rms. In our oligopoly model with large agents even 'ine±cient' ¯rms may be viable

in the long run, if the cost di®erence is not too large.

The two market size parameters a and s have quite di®erent e®ects as far as the

two questions are concerned. Vertical market size a does not a®ect technology choice

as it does not enter TS or TL. Given that TS > TL, there is a monotonic relation

between a and D. Increasing a makes it ever more likely that a symmetric equilibrium

exists. Horizontal market size s has a clear impact on technology choice. Increasing s

eventually makes the large-scale technology superior. It is with respect to horizontal

market size that the statement holds that large markets give rise to the use of large-

scale technologies. Symmetric equilibria exist for small and for large values of s but

not for intermediate values. In the limit, as either a or s approach in¯nity, a unique

and symmetric equilibrium exists. Large vertical market size does not determine which

technology is used. This property of the linear demand model has also been documented

by Neumann et al. (2001). They show that changes in the parameter a leave ¯rm size

and ¯rm R&D expenditures constant. Only the number of ¯rms changes with a.

The cost parameters a®ect technology choice in the way one would expect. If either

marginal or ¯xed costs of a technology decrease it is more likely that the respective

technology is used. A change in a cost parameter that increases the di®erences in

average costs makes existence of a unique and symmetric equilibrium more likely.

7Note that one obtains a unique equilibrium even for the knife-edge case TL = TS . This is the only
case in which equilibrium is not unique in a framework with a continuum of ¯rms!
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Before turning to the question of what happens if the su±cient condition of Propo-

sition 1 is not satis¯ed, I extend Proposition 1 to the case of k di®erent technologies.

For that purpose I extend the above notation in a straightforward way. Suppose tech-

nology type t, where t = 1; : : : ; k, has ¯xed costs ft and (constant) marginal costs ct.

Let Tt = ct+
q
ft=s. Again, Tt denotes average costs in the free-entry equilibrium with

technology t. De¯ne Ti = minfT1; : : : ; Tkg, Tj = minfT1; : : : ; Ti ¡ 1; Ti + 1; : : : ; Tkg
and Dt ´ a=Ti ¡ (a=Tt) for all t = 1; : : : ; k; t6= i.

Proposition 2 If Dj ¸ 2, then an equilibrium exists and in equilibrium all ¯rms use

technology Ti.

Proof Note that Dj < Dt for all t = 1; : : : ; k; t6= i; j by de¯nition. The Proposition
then follows immediately from the proof of Proposition 1. By the assumption on Dj a

deviation to technologies with greater marginal costs and smaller ¯xed costs cannot be

pro¯table. Taking into account that Dj ¸ 2 implies Ti < Tt for all t = 1; : : : ; k; t6= i,
technologies with lower marginal but higher ¯xed costs cannot be pro¯table either. 2

The condition employed in Proposition 2 is more restrictive than the respective

condition of Proposition 1. The main purpose of Proposition 2 is to show that the

above arguments easily extend to more general cases. Two consequences of Proposition

2 are worth mentioning. First, technology choice and therefore industry structure may

change quite often as a function of horizontal market size s. Of course, this requires

that the various technologies are important in the sense that they provide the minimum

average costs for some values of s. Second, the range for which the su±cient conditions

for existence of a unique and symmetric equilibrium does not hold increases if more

technologies exist. Thus, it is even more important in the case with k technologies to

examine what happens if the su±cient condition is not satis¯ed. I turn to this in the

next section. The analysis will be constrained to the case of two technologies, which

as above are labeled L- and S-technology.
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5 Non-existence, non-uniqueness, and asymmetry

of equilibrium

In this section I examine the outcomes in the range where the su±cient condition is

not satis¯ed. The result that is probably the most interesting one from a theoretical

and methodological view concerns the non-existence of a pure strategy equilibrium for

certain parameter ranges. From an empirical point of view, the asymmetric equilib-

ria arising in large part of the range where the su±cient condition does not hold, are

well worth mentioning. They reproduce the heterogeneous structures found in many

industries (see, e.g., Sutton 1998). In the relevant range ex-ante identical ¯rms end

up with di®erent amounts of output. Thus, one obtains an endogenous explanation of

¯rm size di®erences leading to an asymmetric industry structure. The ¯nal outcome I

shall discuss concerns uniqueness of equilibrium. Examples show that one often obtains

multiple equilibria in the range considered in this section. This is particularly true if

the candidate equilibria involve several large ¯rms. The interesting thing about these

equilibria is that industry performance measured by the equilibrium price is approx-

imately the same in the di®erent equilibria while the implied industry con¯gurations

may be quite di®erent.

In the following subsections, I examine the three possible outcomes in some detail.

The analysis proceeds mainly by means of examples. After excluding the range for

which general results are easy to derive, general results are hardly possible. There is

one important exception, however, as far as non-existence is concerned. In the next

subsection I show that an equilibrium always exists if vertical market size a is greater

than some threshold value.

5.1 Non-existence of equilibrium

The intuition as to why non-existence arises is straightforward: As long as many rivals

are active, the pivotal ¯rm chooses the large-scale technology. Given this level of

investment, (some) rivals do not have an incentive to enter in the ¯rst place. However,
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if there are less rivals, it is optimal for the pivotal ¯rm to switch to the small-scale

technology. Put in the terms of Figure 1, the scenario might appear as follows. Suppose

that the candidate equilibrium is one with only large ¯rms and that the respective

number of large ¯rms is ¹n. An equilibrium may not exist if the vertical distance

between the two zero-pro¯t lines is so small that a ¯rm which switches the technology

and moves along the vertical arrow, ends up making a positive pro¯t with the S-

technology.8 At the new industry con¯guration entry of either S or L-type ¯rms may

be possible. If S-¯rms enter both the horizontal and the vertical distance between

the zero-pro¯t lines is greater than in the only large ¯rm case. Therefore, it is well

likely that either additional entry of a large ¯rm becomes pro¯table or that a small

¯rm could increase its pro¯t by switching technologies. Both in these situations and

in the case where entry with the L-technology becomes pro¯table once an 'incumbent'

switches, the resulting con¯guration is one with ¹n large ¯rms and (at least) one small

¯rm. Due to the assumption that only large ¯rms are active constitutes a candidate

equilibrium, we know that the small ¯rm cannot be viable. Once it exits, we are back

at the situation in which switching technologies becomes pro¯table for one large ¯rm.

An equilibrium does not exist.

In the following I ¯rst present an example of non-existence, which illustrates how

important non-existence is in terms of the range of parameter values for which non-

existence occurs. Second, I show that non-existence does not arise for 'large' values of

vertical market size a. I also discuss the parameters which determine how large a must

be in order to guarantee existence.

The example depicts the regions in the (a; s)-space where non-existence applies.

The parameter values I use are: fS = 5; c = 2; fL = 2050. The values of the ¯xed costs

are chosen such that the maximum number of large ¯rms, for which non-existence can

arise, equals 20. It is explained below how this number is derived. Figure 2 depicts

necessary conditions for non-existence. The triangular-shaped areas are the areas where

8The vertical distance at n = (a=TL)¡ 1 must be smaller than 1.
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non-existence may occur. The respective candidate equilibrium starts with one large

¯rm for values of a of about 4 (the largest 'triangle') and ends with 19 large ¯rms for

values of a around 40 (the respective area looks more like a dot in the diagram). In all

'triangles' there are (a; s) vectors for which non-existence arises.9

Figures 2 and 3 about here

The conditions are explained in more detail by describing Figure 3, which provides a

detail of Figure 2. Figure 3 depicts the area of non-existence for the case where the

candidate equilibrium is one with one large ¯rm.

Locus s1 gives the value of s such that the large ¯rm (or one of the ¹n large ¯rms,

respectively) is indi®erent between the two technologies, given the ¯rm is the sole

incumbent (given there are ¹n large incumbents). Thus, s1 is derived from the condition

¦S(1; ¹n) = ¦L(0; ¹n), which yields

s1 =
(1 + ¹n)2 (fL ¡ fS)
2 a c ¹n¡ c2 ¹n2 : (12)

Below locus s1, the ¯rm would switch to the small-scale technology. As explained

above, such a switch may cause non-existence as entry of either large or small ¯rms

might become possible.

Locus A gives the value of s, such that a large ¯rm is viable (¹n large ¯rms are

viable). It solves the equation ¦L(0; ¹n) = 0. Locus A captures the notion of a candidate

equilibrium with ¹n large ¯rms.

Locus C captures the constraint 'only small ¯rms are active'. It solves the condition

¦S(n
¤; n¤) = ¦L(n¤¡ 1; n¤), where n¤ denotes the zero pro¯t number of small ¯rms in

an 'only small ¯rms are active' equilibrium. For values of s above locus C deviating

from the choice of the S-technology is always pro¯table for a single ¯rm.

The emergence of non-existence in the area between s1 and C is straightforward.

Below locus s1 'one large ¯rm is active' is not an equilibrium, since the ¯rm would have

9Non-existence occurs, for instance, for (a; s) = (40:079; 510:587). The free entry number of ¯rms in
the case where only the L-(S-)technology is available is 19 (383) ¯rms. To see that the equilibrium fails
to exist note that ¦S(1; 19) = :517 > ¦L(0; 19) = :423 and that ¦S(2; 20) = :004 < ¦L(1; 20) = :038.
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an incentive to switch to the S technology. The only remaining candidate equilibrium

is one with 'only S-type ¯rms are active'. Above C this cannot be an equilibrium as

well. The result is non-existence.

Note that locus A rather than some extension of locus C limits the non-existence

range for a · (n¡m+1)c, i.e. for a · 4 in the case of one large ¯rm. The reason is the
following: In a situation where only small ¯rms are active, a large ¯rm could always

pro¯tably enter for values of s above locus A. All small ¯rms would stop producing

as prices would be below their marginal costs. Therefore, the L-¯rm could break even.

A large ¯rm will be active even though switching from the S-technology to the L-

technology were not pro¯table. The latter result is due to the integer constraint which

implies positive pro¯ts of the S-type incumbents in a free entry equilibrium.

The above argument for non-existence applies to the left of locus V1 (i.e., the area

indicated by the left arrow originating at NE). The (dashed) locus V1 describes the

vectors (a; s) at which a small ¯rm becomes viable, given that one (¹n) large ¯rm(s)

is(are) active. Thus, to the right of this line 'one large ¯rm is active' is no longer a

candidate equilibrium. Similarly, locus V2 describes the vectors (a; s) at which two

small ¯rms become viable. Both between the loci V1 and V2 and to the right of V2

non-existence arises. The respective areas are indicated by the center and the right

arrow. They apply below the loci s1;1 and s1;2, respectively. Along s1;1 (s1;2) a ¯rm

is indi®erent between the S and the L-technology given that one (two) small rival(s)

is (are) active. The non-existence area indicated by the right arrow is so small that

it is hardly visible. For parameter values where three or more small ¯rms were viable

non-existence cannot arise. Similarly, the constraint provided by locus V1 is binding

for small values of ¹n only, namely for the case of one to four large ¯rms. Figure 2 omits

the non-existence areas to the right of the (dashed) locus V1 for the cases in which two

to four large ¯rms are active, the respective areas would hardly be visible. For the

purpose of the example it is su±cient to know that non-existence also arises in a small

part of the area made up by V1; s1, and B. Locus B is the only part of Figure 2 which
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is not yet explained. I explain the construction of this locus by using Figure 4.

Figure 4 about here

Figure 4 provides another detail of Figure 2. It depicts the area of non-existence

for the case where the candidate equilibrium is one with four large ¯rms. Two things

need to be explained, the array of curves drawn in grey and locus B. The grey lines

are conditions which are analogous to s1. They solve the equation ¦S(m; ¹n+m¡ 1) =
¦L(m ¡ 1; ¹n + m ¡ 1). For m = 1, one obtains the condition determining s1 (see

equation 12). For m = 2, the curve next to locus s1 applies. Using the notation of

Figure 3, this curve could be denoted as s1;1. Between this curve and s1 non-existence

arises because the pivotal ¯rm would switch to the S-technology if all ¯rms use the

L-technology but would switch back to the L-technology if entry occurs due to the

¯rst switch. Below the m = 2 locus entry of a single S-entrant would not induce a

switch by the pivotal ¯rm to the L-technology. However, the switch occurs if a second

S-¯rm would enter. Analogous reasoning holds for the other curves (m = 3; 4; :::, i.e.,

s1;2; s1;3; :::). The number of small entrants is always incremented by one. The adjacent

pairs of these curves give the non-existence area for di®erent con¯gurations with ¹n¡ 1
large ¯rms and m ¡ 1 small ¯rms. These areas are bounded at the left by locus A.
For values of s below locus A, ¹n large ¯rms are not viable. Thus, the switch to the

L-technology, which causes non-existence, can no longer occur. Locus B is the lower

envelope of the array of grey curves. It connects the points where the adjacent pairs

of curves intersect.10;11

A ¯nal condition for non-existence to arise concerns the viability of potential en-

trants once a large incumbent switches to the small-scale technology. As mentioned

above, non-existence requires that entry occurs if an incumbent switches. The impor-

tance of the viability condition becomes apparent in the case of a candidate equilibrium

10As shown in the appendix, non-existence arises only to the left of the intersections.
11The maximum number of m I consider in the construction of B is the free entry number of small

¯rms if only the S-technology were available. This procedure yields an upper bound for the range in
which an equilibrium does not exist. See also the next paragraph.
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with 20 large ¯rms. While a triangle (s1; A;B) exists for this case, non-existence does

not arise because neither a small nor a large entrant would be viable if the pivotal ¯rm

were to switch to the S-technology. This requirement for non-existence is not satis¯ed

in part of the triangle with 19 large ¯rms as well. For smaller numbers of large ¯rms the

'triangles' are a good approximation for the actual non-existence area. For instance, in

the case underlying Figure 4, 16 small ¯rms would at least be viable if three large ¯rms

were active. The respective grey curves (e.g.,s1;13) are very close to the intersection of

locus A and locus B. At least in Figure 2, the di®erence between the approximation

and the actual non-existence area would not be visible.

The above example indicates two things. First, non-existence does not seem to

arise for large values of vertical market size a. Indeed, Proposition 3 below shows

that, given cost parameters, a threshold value a¤ exists such that non-existence cannot

occur for a > a¤. Second, it demonstrates that the area where non-existence occurs

is 'small'. This holds even in a case where, due to a large di®erence between fS and

fL, non-existence may arise for candidate equilibria with as many as 19 large ¯rms.

That is, even though a¤ is 'large', non-existence cannot occur in a number of intervals

[a1; a2[, where a2 < a¤. The area of the non-existence triangles is small in general.

Exceptions are the triangles for the cases with a small number of large ¯rms in the

candidate equilibrium. If this number is ¯ve or smaller than ¯ve, such intervals no

longer exist and the area of the triangles becomes 'large'. In this sense, non-existence

is a small number problem.

Turning back to the general case I show now that an equilibrium of the whole

game always exists in markets of a su±ciently large vertical size. What is 'su±cient' is

shown below. The relevance of the parameter a should be clear from the discussion of

Proposition 1. We know that a symmetric equilibrium does not exist once horizontal

market size s is such that we are slightly above the knife-edge case TL = TS. It is natural

to ask whether non-existence may also arise for arbitrary values of a. Proposition 3

shows that this is not the case.

16



Proposition 3 Given the cost parameters of the model, an a¤ exists such that for all

a > a¤ an equilibrium of the two-stage game exists.

Proof see Appendix.

It is instructive to look at how the proof proceeds.12 The proof starts with the

necessary conditions for a candidate equilibrium (m;n) not to be an equilibrium of

the game (equations (30) and (31)). The conditions yield a maximum value for a

denoted as ¹a such that non-existence can arise. I then show that for su±ciently large

n, n ¯rms are not viable, given the market size vector ensuring non-existence. This is a

contradiction to the assumption that the con¯guration is a candidate equilibrium. This

result yields an intuitive explanation as well. Remember that changes in a leave the

relative pro¯tability of the two technologies una®ected. Therefore, one would expect

that an increase in the number of large ¯rms changes the condition for switching to

the small technology, loosely speaking, in a proportional way. Increases in the number

of ¯rms, however, imply that the market becomes more competitive in the sense that

price-cost margins decrease. Thus, a given change in the number of ¯rms requires a

more than proportional increase in market size in order for the larger number of ¯rms

to be viable.13 As a result, the conditions for non-existence to arise eventually cease

to hold as the number of (large) ¯rms increases.

It is possible to explicitly determine the maximum number n¤ of L-type ¯rms for

which non-existence may arise. It can be shown that n¤ is the (positive) root of the

equation14

(1 + 4n+ 12n2 + 20n3 + 24n4 + 16n5 + 4n6) fS

¡ (1 + 8n+ 20n2 + 16n3 + 4n4) fL = 0: (13)

12The proof follows the construction of the non-existence areas in Figures 2 and 4 closely. Unfortu-
nately, this makes the proof quite tedious.
13Actually, ¹a, capturing the non-existence condition, is strictly concave in the number of large ¯rms

(see equation (34)), whereas the zero-pro¯t condition is linear in n.
14The equation derives from setting ¦L(0; n) as de¯ned in equation (35) in the Appendix equal to

0.
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Two points deriving from equation (13) are worth being mentioned. First, n¤ depends

only on the ratio fL=fS. Second, n
¤ is of order

q
fL=fS. n

¤ may well grow without

bound. However, this requires quite a large di®erence between the two technologies

in terms of their respective ¯xed costs. Empirically, a ratio of fL=fS ¼ 400 as in the
above example seems to be quite a large number. And even in this case, n¤ is only

20. The reason why n¤ increases with fL=fS seems to be the following: switching

technologies seems to be more pro¯table when the di®erences between technologies are

large. Note that this is not a ceteris paribus statement. The switch can only occur in

a neighborhood of the knife-edge case. That is, large di®erences in ¯xed costs require

either large di®erences in marginal costs or a large horizontal market size s.

Given n¤, we can immediately derive a¤. Substituting n¤ in equation (34) and

setting m = 1 yields

a¤ = c

Ã
n¤ + 1 +

3 + 2n¤

2 (¡1 + n¤ + n¤2)
!
: (14)

For n¤ ¸ 2, a¤ is smaller than c(
q
fL=fS + 2). Similar to the condition for D in

Proposition 1, we obtain an easy check for the question whether an equilibrium exists.

The way in which a¤ depends on c, the di®erence in marginal costs, is straightforward.

If the di®erence is large, a must be large in order for small ¯rms to be viable at all.

The same argument applies for large values of n¤. In order for a single small ¯rm to

produce a positive amount of output in the case of n¤ L-type rivals, a must be greater

than cn¤ (see equation (4)).

5.2 Asymmetric and multiple equilibria

In this subsection I discuss both under what conditions ¯rms employing di®erent tech-

nologies may co-exist in equilibrium and the circumstances which give rise to the ex-

istence of multiple equilibria. It turns out that a rather intuitive characterization

is possible based on the above example. As noted above, the empirical importance

of asymmetric equilibria, i.e. of equilibria in which ¯rms of di®erent size are active,

stems from the well established empirical ¯nding that ¯rm sizes di®er greatly within
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industries (see, e.g., Sutton, 1998 and Cabral and Mata, 2001). My model stresses the

importance of both lumpy technology and market size in the explanation of these facts.

In what follows I describe the market size vectors for which asymmetric and multiple

equilibria arise, given cost parameters.

From the above discussion of Figures 2, 3, and 4 it is clear that locus V1 will be

pivotal in determining the respective range of co-existence. To the right of V1 a small

¯rm is viable even if the maximum feasible number of large ¯rms is active. Even though

Figure 2 draws the respective dashed lines only for the cases of one to four large ¯rms,

similar lines exist for the other non-existence areas in Figure 2 as well. Actually, in the

example a small ¯rm may be viable for as large values of a as 1900, given the number of

large ¯rms is equal to the free entry number of large ¯rms in a situation with only large

¯rms. The latter number is greater than 900.15 It is now straightforward to determine

areas in which asymmetric equilibria must exist. If we were to draw locus V1 for all

the di®erent numbers of large ¯rms considered in Figure 2, and if we extend that up

to the locus where a further large ¯rm becomes viable (extend locus A to obtain that

condition), we obtain an area with an asymmetric equilibrium certainly as long as we

are above locus C.16

The obvious question to address now is whether the respective asymmetric equilibria

are unique. We know that above locus s1 (to be exact, above locus s1;1 in the notation

used in Figure 3), an equilibrium exists with the maximum feasible number of L-type

¯rms and one (or a 'few') small ¯rms. However, other equilibria may exist as well

as long as the market size vector (a; s) is close to s1. To see this, consider Figure

4. Note that s1;13 (i.e., the grey line closest to the intersection of A and B) is much

°atter than s1. Extending this line across locus V1, we see that for the area between

s1 and the (extended) grey line the following holds. The pivotal ¯rm would choose

the L-technology if only one (or a few) small ¯rms were active. This yields the above

15For (a; s) = (1941:91; 464:129) an equilibrium with one small ¯rm and 922 large ¯rms exists.
16This statement does not hold, of course, for vectors from the non-existence area.
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described equilibrium with the maximum number of large ¯rms. If, however, 15 or

more small ¯rms are active, the pivotal ¯rm chooses the S-technology. In the resulting

equilibrium, the number of large ¯rms is one short of the maximum number. This

argument applies even for vectors for which a small ¯rm would not be viable, i.e., for

vectors to the left of V1. To see this, consider the vector (a; s) = (14:675; 491:364).

In this case, two equilibria exist: (m;n) = (0; 6) and (m;n) = (20; 25). The ¯rst

equilibrium implies that a small ¯rm is not viable, given the maximum number of large

¯rms is active. That is, we are to the left of V1. Obviously, we are also below one of

the above mentioned (extended) grey lines (below what might be called s1;20 using the

notation of Figure 3).

Given the above argument and the shape of locus B as well as the grey lines in

Figure 4, it is now straightforward to provide an upper bound ¹s with the following

property. For values of horizontal market size greater than ¹s, the resulting equilibria

are unique. To construct ¹s, consider Figure 4 and note that the slope of locus B close

to the intersection with A is always negative, although the curve is quite °at. If the

number of small ¯rms is quite large, the locus along which the pivotal ¯rm is indi®erent

between the two technologies is only slightly negatively inclined. To be sure that the

pivotal ¯rm chooses the L-technology it is su±cient to draw a horizontal line through

the maximum of locus B in terms of s. Alternatively, one may join the intersections of

loci A and B to obtain an upper bound for the parameters underlying Figure 2. The

resulting curve is nearly a straight, horizontal line with a value of s of about 511.

Having derived an upper bound for multiple equilibria to arise, the next step consists

of the derivation of a lower bound s. Proposition 1 has shown that the value of s for

which TS = TL holds is the obvious candidate. In the example the respective value of s

is 463.129. This value seems to be the greatest lower bound, i.e. s = 463:129. It is easy

to ¯nd examples for values slightly greater than s for which multiple equilibria arise.17

17I have calculated the equilibria for s + 1 and a ranging from 8 to 60. In each case multiple
equilibria arise. Take, for example, (a; s) = (20; 464:129). The equilibrium con¯gurations are in this
case: (m;n) = f(30; 37); (50; 56); (71; 76); (91; 95); (111; 114); (131; 133); (152; 153); (172; 172)g. Multi-
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As far as the existence of symmetric equilibria is concerned, note that below locus C

a symmetric equilibrium exists, in which only small ¯rms are active. Of course, the

respective equilibrium is not unique as long as s > s. Locus C converges to s for large

a.

The above discussion shows that there are two rather di®erent con¯gurations under

which an asymmetric equilibrium arises. First, a range in which the resulting asym-

metric equilibrium is unique. Second, an area in which multiple equilibria exist. In the

latter case, at least one of the equilibria is asymmetric. The economic reason as to why

these di®erent types arise are also di®erent. The unique equilibria arise largely due to

indivisibilities of technology; entry of the more 'e±cient' type of ¯rm is not possible,

as it could take place only on a large scale. On the other hand, a small ¯rm may be

able to enter the market even though its average costs are higher. Small-scale entry is

possible even in the case of a small residual demand.

Multiple equilibria arise only if the ¯rms are not too di®erent in terms of aver-

age costs. The upper bound ¹s determines this maximum di®erence. Below ¹s the

L-technology is not su±ciently superior in order to be always the ¯rst choice in the

following sense. Suppose we are in a situation with less than the maximum feasible

number of large ¯rms and with a number of small ¯rms which is just viable given the

number of large ¯rms. For s > ¹s it is always pro¯table for a small ¯rm to switch

to the large-scale technology. Below ¹s this does not hold. Between ¹s and s the two

technologies exhibit similar average costs. This makes it possible to produce di®erent

equilibria by replacing, for instance, one large ¯rm by the number of small ¯rms, which

is su±cient to produce approximately the same output. The example mentioned in

footnote 17 produces such a pattern. One large ¯rm can be replaced by about 20 small

¯rms. Note that the equilibrium output of a large ¯rm is about 977, small ¯rms pro-

duce about one twentieth, namely about 49 units of output. This result is very much

in vein of Davis (1999) who provides conditions under which market output is uniquely

ple equilibria can also be found for s+ :5 even for as small a number of a as 12.
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determined within the set of (multiple) equilibria.

A ¯nal point related to multiple equilibria, but also to my model of technology

choice in general, concerns the relation between market concentration and market

power, respectively, and performance. The multiple equilibria exhibit nearly identi-

cal performance in terms equilibrium prices. Prices typically di®er by less than a

tenth of a percentage point. However, concentration ratios and price-cost margins

vary greatly. More generally, if an industry experiences a drastic restructuring due to

increases in horizontal market size s, the new equilbrium is typically one with much

higher concentration and with lower prices.

6 Conclusions

Once one takes entry and technology choice into account, (two-stage) Cournot games

allow for a wide range of outcomes. Apart from a unique equilibrium with symmetric

¯rms, co-existence of di®erent types of ¯rms and non-uniqueness of equilibrium may

result for di®erent parameter values. An outcome may also be non-existence even

though the underlying game is one with linear demand and constant marginal costs.

The article characterizes the parameter values for which the various outcomes result

and evaluates their respective importance. The full characterization of the equilib-

rium outcomes in this article allows applied papers focussing on technology choice to

evaluate the importance of di®erent equilibrium con¯gurations without performing a

complete analysis on their own. An example of such an application is Elberfeld, GÄotz,

and StÄahler (2002). Technology choice enters their model in the shape of whether

production should take place domestically or whether ¯rms should choose a multina-

tional production mode. The formal structure of the problem of vertical foreign direct

investment Elberfeld, GÄotz, and StÄahler consider is the same as in my model.

As regards the importance of the di®erent outcomes, the article has shown that

non-existence does not occur if vertical market size and the number of ¯rms is large.

Existence problems become important if the market supports only a few large ¯rms.
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The conclusion from this result for the duopoly cases often considered in the literature

is the following: Entry should explicitly be taken into account in the respective models.

This would ensure that the claimed equilibria can really result from underlying fully

speci¯ed games.

Compared to non-existence, asymmetric equilibria are much more important in the

sense that they apply for a larger set of parameter values. The interesting thing about

the equilibria with co-existence of di®erent ¯rm types is that it provides an endogenous

explanation of a stylized fact, namely that ¯rms in an industry often di®er with respect

to their size. This explanation is based purely on indivisibilities in technology choice

and on market size.

The combination of indivisibilities and of technology choice in my model yields two

further conclusions. The ¯rst regards the integer constraint. In a case in which ¯rms are

large compared to the market size, lumpy technology may yield substantial pro¯ts due

to the integer constraint (see Lambson, 1987). Once one allows for technology choice,

the problem of excess pro¯ts is partly mitigated by the possibility of small-scale entry,

even if the small-scale technology is lumpy as well. The second conclusion concerns

the relation between market structure and performance. The discussion of multiple

equilibria has shown that the various equilibrium con¯gurations may di®er greatly

in market structure parameters like the number of ¯rms and industry concentration.

These di®erences map into di®erences in conduct parameters like price-cost margin in

an intuitive and expected way. However, large variations in price-cost margins among

industries, for instance, do not imply that these industries di®er in performance. On the

contrary, the article has shown that rather di®erent industry structures are compatible

with nearly identical equilibrium outcomes in terms of prices. Yet another example

that policy prescriptions based on determinants of the industry structure only may be

quite misleading.
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7 Appendix:

Proof of Proposition 1

Case 1: TL < TS.

First, I show that a con¯guration in which S-¯rms are active, i.e., m > 0, cannot

be an equilibrium. Entry with the L-technology would be pro¯table in this case. To

see this note that m > 0 requires ¦S(m;n) ¸ 0. Using (6), this inequality can be

rearranged to yield

a¡ c¡ (n¡m)c
(n+ 1)

¸
s
fS
s

(15)

Using the de¯nition of TS this expression can be simpli¯ed to

a+mc

(n+ 1)
¸ TS: (16)

Pro¯table entry of an L-¯rm requires ¦L(m;n + 1) ¸ 0. Similar to the above

inequality, using (7) this inequality can be written as

a+mc

(n+ 2)
¸ TL: (17)

Inverting the inequality and rewriting the r.h.s. yields

n+ 1

a+mc
+

1

a+mc
· 1

TL
: (18)

From equation (16) we know that the ¯rst term of (18) is smaller than 1=TS. Therefore,

inequalty (18) is certainly satis¯ed if

1

TS
+

1

a+mc
· 1

TL
: (19)

holds. Rearranging and multiplying by a yields

a

a+mc
· a

TL
¡ a

TS
: (20)

This inequality is certainly satis¯ed as the l.h.s. is smaller than 1, while the r.h.s

consists of the de¯nition of D which by assumption is greater than 2. This proves that
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the S technology cannot be used in equilibrium. Additional entry of L-¯rms would

occur.

The second step of the proof shows that a ¯rm in a candidate equilibrium with only

L-type ¯rms does not have an incentive to switch to the S-technology. In formal terms

a su±cient condition for such a switch not to be pro¯table is ¦S(1; n
¤) < 0. Here,

n¤ is de¯ned as the largest integer such that ¦L(0; n) ¸ 0. To prove that switching is
unpro¯table I calculate the (real) numbers ¹n and n̂, respectively, for which ¦S(1; n) = 0

and ¦L(0; n) = 0, respectively. Using the de¯nitions of TS and TL one obtains after

some manipulations

¹n =
a+ c

TS
¡ 1 (21)

and

n̂ =
a

TL
¡ 1 (22)

respectively. To show that ¦L(1; n
¤) < 0 it is su±cient that n̂ > ¹n + 1. Note that

1 must be added due to the integer constraint. Using the de¯nitions of ¹n and n̂, the

condition reads

a

TL
¡ 1 > a+ c

TS
: (23)

Rearranging yields

a

TL
¡ a

TS
>
c

TS
+ 1: (24)

This inequality clearly holds. The l.h.s equals D and is therefore by assumption greater

than 2. The expression c=TS is smaller than 1. This proves the proposition as concerns

the case TL < TS.

Case 2: TS · TL. First, I show that the L-technology cannot be an equilibrium

choice. It is always optimal for a large ¯rm to switch to the S-technology, irrespective

of what the number of large ¯rms is, if

¦S( ~m(i) + 1; ~m(i) + i)¡ ¦L( ~m(i); ~m(i) + i) > 0: (25)

Here i is an arbitrary number of large ¯rms (of course smaller than the maximum

feasible number). ~m(i) is the maximum viable number of small ¯rms, given there are
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i large ¯rms, i.e., it is determined by the condition ¦S( ~m(i); ~m(i) + i) = 0. Using the

condition TL = TS tedious calculations yield that the l.h.s. of (25) equals

cfS(2a¡ c¡ 2ci)=(a¡ c¡ ci)2: (26)

This expression must be positive if small ¯rms are to be viable at all. Thus, deviation

from the L-technology is always pro¯table.

It remains to be shown that an S-¯rm does not have an incentive to switch to the

L-technology if the zero pro¯t number of S-¯rms n¤ is active. That is,

¦S(n
¤; n¤)¡¦L(n¤ ¡ 1; n¤) > 0: (27)

It turns out that the resulting expression is positive both if the integer constraint is

taken into account and if it is neglected. Once one employs the condition TL = TS to

substitute for fL, one eventually obtains in the latter case

(2a¡ 3c)cfS + (a¡ c)2c2
p
fS
p
s

(a¡ c)2 ; (28)

which is clearly positive. Condition (27) is also positive if evaluated at n¤ ¡ 1 thus
taking the integer constraint into account. It reads

c
p
fS
p
s
³
2 fS ¡ 3 c

p
fS
p
s+ (a¡ c) 2 c s

´
³p
fS ¡ (a¡ c) ps

´2 : (29)

Omitting the term 2fS in the term in brackets in the numerator, the remaining ex-

pression is positive once n¤ > 1:5. Thus one obtains that the whole term is positive.18

Only S-type ¯rms are active is the unique equilibrium if TL · TS.

Proof of Proposition 3

The proof proceeds in several steps.

First, I derive necessary conditions for the non-existence of equilibrium. Suppose

that the con¯guration (m¡1; n) constitutes a candidate equilibrium. Necessary condi-
tions for non-existence are that con¯gurations (m¡ 1; n) and (m;n) do not constitute
18For brevity, it is omitted to show that the derivative of condition (27) with respect to n¤ is

monotonous, proving that the the condition must be satis¯ed for the actual equilibrium number
which lies in the interval [n¤ ¡ 1; n¤]
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an equilibrium. Thus, conditions

¦S(m;n) ¸ ¦L(m¡ 1; n) (30)

and

maxf¦S(m+ 1; n+ 1); 0g · ¦L(m;n+ 1); (31)

where m = 1; : : : ; n. must hold. Condition (30) implies that an L-¯rm would deviate

to the S-technology, thus (m ¡ 1; n) cannot be an equilibrium. By condition (31)
the switch would induce entry of an L-¯rm, thus (m;n) cannot be an equilibrium.

Condition (31) implies also that (m+ 1; n+ 1) cannot be an equilibrium.

Second, I show that a maximum value of ¹a exists such that the necessary conditions

for non-existence, i.e., conditions (30) and (31), can be satis¯ed simultaneously, given

the number of ¯rms. From conditions (30) and (31) we can derive the values of s (s1 and

s2) such that both conditions are satis¯ed with equality. In terms of Figure 4, s1 and s2

are two adjacent grey curves. In the case of (31), I drop the 0 and take ¦S(m+1; n+1)

as the term on the left hand side. This matters only if ¦S(m+ 1; n + 1) < 0. In this

case the non-existence range is a subset of the set captured by the conditions. Solving

(30) and (31) for s yields

s1 ´ (1 + n)2 (fL ¡ fS)
2 a c n+ 2c2n(m¡ 1)¡ c2 n2 (32)

and

s2 ´ (2 + n)2 (fL ¡ fS)
c (1 + n) (2 a¡ c (n¡ 2m+ 1)) : (33)

(30) and (31) are satis¯ed for values of s such that s2 < s < s1. This follows from the

fact that

@¦L/@s > @¦S/@s:

Calculating the value of a such that s1 = s2 we obtain

¹a ´ 2c+ c (n¡m) + c (3 + 2n)

2 (¡1 + n+ n2) : (34)
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In terms of Figure 4, the values of ¹a for di®erent values of m constitute locus B. It

is straightforward to show that the derivative of s1 with respect to a evaluated at ¹a is

greater in absolute terms than the respective derivative of s2. Thus, s2 < s1 requires

a < ¹a. Therefore, ¹a is the maximum value such that conditions (30) and (31) can

be satis¯ed simultaneously. Note two things about the relation between ¹a and m, the

number of small ¯rms, deriving from (34). First, for given n, ¹a assumes a maximum for

m = 1, i.e., in a candidate equilibrium with only large ¯rms, in which the pivotal ¯rm

may switch from the L-technology to the S-technology. Second, for a given number of

large ¯rms, i.e. n ¡m, the case without small ¯rms again yields the maximum value

of ¹a. As a consequence of these two properties it is su±cient to consider non-existence

for candidate equilibria with only large ¯rms active. Thus, in what follows the analysis

assumes m = 1.

Third, I show that a number of large ¯rms n¤ exist such that for n > n¤ the necessary

conditions for non-existence, i.e., (30) and (31), cannot be satis¯ed simultaneously. The

reason is that, starting from the values of ¹a and s1 associated with n, an n exists such

that n ¯rms are not viable given the underlying values of a and n. To see this, calculate

the pro¯ts of L-¯rms in the candidate equilibrium (0; n) if a = ¹a and s = s1(¹a). One

obtains

¦L(0; n) =
(1 + 4n+ 2n2)

2
(fL ¡ fS)

4n (1 + n)3 (¡1 + n+ n2) ¡ fL (35)

This expression is decreasing in n. Therefore, an n¤ must exist such that all ¯rms'

pro¯ts are negative for all n ¸ n¤. Thus, the candidate equilibrium (0; n) with n ¸ n¤

requires a market size vector (a; s) such that either a > ¹a or, in the case of a < ¹a, that

s > s1(a). The latter statement follows from the fact that pro¯ts are an increasing

function of a if we use s = s1(a). The respective pro¯ts read

¦L(0; n) =
a2 (fL ¡ fS)
2 a c n¡ c2 n2 ¡ fL: (36)

It is straightforward to show that the derivative of this expression with respect to a is

positive. Therefore, it is proved that non-existence cannot occur for a number of large
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¯rms greater than n¤. Values of a and s satisfying the relevant necessary conditions

for non-existence do not support the respective candidate equilibrium.

Finally, a¤, the threshold value of a which ensures existence is calculated. Substi-

tuting n¤ into equation (34) and using m = 1 yields the respective value (see equation

(14) in the main text). It follows from the above reasoning that conditions (30) and

(31) cannot be satis¯ed simultaneously for a > a¤. Therefore, non-existence cannot

occur for a > a¤. This completes the proof. 2
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Figure 1: Condition for the existence of a unique and symmetric equilibrium

(TS > TL).
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Figure 2: Regions of non-existence of an equilibrium
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Figure 3: Regions of non-existence of an equilibrium (detail): Candidate equilibria

with one or two large ¯rms
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Figure 4: Non-existence of an equilibrium (detail): Candidate equilibrium with four

large ¯rms
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