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Abstract

We consider economies with incomplete markets, one good per state,
two periods, t = 0, 1, private ownership of initial endowments, a single
firm, and no assets other than shares in this firm. In Dierker, Dierker,
Grodal (2002), we give an example of such an economy in which all market
equilibria are constrained inefficient. In this paper, we weaken the concept
of constrained efficiency by taking away the planner’s right to determine
consumers’ investments. An allocation is called minimally constrained ef-
ficient if a planner, who can only determine the production plan and the
distribution of consumption at t = 0, cannot find a Pareto improvement.
We present an example with arbitrarily small income effects in which no
market equilibrium is minimally constrained efficient.
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1 Introduction

We consider finance economies with production. More precisely, we assume in-
complete markets, one good per state, private ownership of initial endowments,
production, and two time periods. Due to the incompleteness of markets, share-
holders typically disagree about which production decision their firm should take.
Drèze (1974) presents a way of resolving the conflict among shareholders by in-
troducing an equilibrium concept that is based on Pareto comparisons with the
aim of achieving constrained efficiency. We restrict ourselves to economies with
one good per state in order to rule out price effects, which are a well-known cause
of constrained inefficiency [cf. Geanakoplos et al. (1990)].

In this paper, we show that the market in such economies may not be able to
achieve an allocation that satisfies minimal efficiency requirements as soon as the
quasilinear framework is left. This phenomenon is illustrated in economies with
only one firm.

The firm has constant returns to scale and makes zero profit. Its state depen-
dent output at t = 1 is sold on the asset market in exchange for the corresponding
input. When the firm proposes a production ray, consumers choose their optimal
investments and this determines their consumption in all states. The firm adjusts
its production level to the market clearing scale. The resulting allocation is called
a market equilibrium. The set of all allocations the market can achieve consists
of all market equilibria corresponding to some production decision of the firm.

A Drèze equilibrium is a market equilibrium with the following property:
The (new) shareholders of the firm meet at t = 0 after they have chosen their
shares optimally. If these shares are held fixed, there is no other production
plan such that the shareholders of the firm can achieve a Pareto improvement
by adopting that production plan and by making sidepayments at time t = 0 to
reach unanimity.1

Constrained efficiency means that a hypothetical planner cannot find a Pareto
improvement by simultaneously choosing the production plan, the shares, and
each individual’s consumption at t = 0. Note that a constrained efficient market
equilibrium is a Drèze equilibrium.

An example of an economy with a unique, but constrained inefficient Drèze
equilibrium is presented in Dierker, Dierker, and Grodal, henceforth DDG, (2002).
This example is driven by the existence of a consumer whose preferences exhibit
strong income effects. If there are no income effects, that is to say, if all consumers
have quasilinear utility functions, then at least one constrained efficient Drèze

1For an extensive treatment of Drèze equilibria in a setting with private ownership of initial
endowments, the reader is referred to Magill and Quinzii (1996), chapter 6.
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equilibrium exists, since the social surplus is well defined and is maximized at a
Drèze equilibrium.

Since the planner, who can implement constrained efficient allocations, is
more powerful than the market, we reduce the planner’s power substantially and
explore whether the planner can still outperform the market. We introduce the
following very weak version of constrained efficiency, in which tomorrow’s con-
sumption can only be affected by the planner through the choice of the production
plan. After the planner has chosen a production plan with input normalized to -1,
consumers choose their optimal investments subject to their budget constraints.
The firm adjusts production to the market clearing scale. The planner, who is no
longer allowed to alter individual consumption at t = 1, can only distribute the
resources remaining at t = 0 after subtracting the input. An allocation is called
minimally constrained efficient if the planner, who is subject to these constraints,
cannot find a Pareto improvement. It turns out that the example in DDG (2002)
is minimally constrained efficient.

However, there are economies without any minimally constrained efficient
allocations. To show this, we start with a quasilinear economy with three Drèze
equilibria. Two of them are surplus maxima and the third is a surplus minimum.
Then we perturb the quasilinear utility functions of the example by adding a
small term to the utility at t = 0. The perturbation does not affect the way
in which future consumption streams are ranked, i.e., utility at t = 1 is left
unchanged. These small perturbations leave the set of Drèze equilibria invariant.
However, for arbitrarily small perturbations, all Drèze equilibria, and hence all
market equilibria, become minimally constrained inefficient.

The notion of minimal constrained efficiency cannot be weakened further,
since the planner should at least retain the possibility of changing the production
plan and redistributing total consumption at t = 0. We conclude that, even in
economies with one good per state, arbitrarily small income effects can make it
impossible to select a production plan that achieves a market equilibrium that
satisfies at least some weak version of constrained efficiency. The question of how
to choose a market equilibrium remains open and is briefly discussed at the end
of the paper.

The remainder of the paper is organized as follows. In Section 2 we introduce
the framework and present the definitions. In Section 3 we give an example
showing that minimally constrained efficient market equilibria need not exist.
Section 4 contains concluding remarks.

3



2 Framework and Definitions

The reason why the market mechanism can be unable to generate allocations that
exhibit desirable efficiency properties can be illustrated in a very simple setting.
We consider two periods, t = 0, 1, and two possible states of nature at t = 1,
denoted s = 1 and s = 2, respectively. The unique state at t = 0 is included
as the state s = 0. There is a single good, denoted s, in each state s = 0, 1, 2
and there is just one firm. It transforms good 0 into a state dependent output
at t = 1. We assume that there are no assets other than shares in the firm. The
firm has constant returns to scale and makes zero profits. Its technology is given
by a family of normalized production plans (−1, λ, 1− λ). The production set is

Y = {α(−1, λ, 1− λ) ∈ R3 | α ≥ 0, 0 ≤ λ ≤ λ ≤ λ ≤ 1} .

There are two types of consumers. Ideally, each type is represented by a
continuum of mass 1. For convenience, we refer to each continuum of identical
consumers as a single consumer denoted i = 1, 2. Consumer i has the initial
endowment ei, consumption set R3

+, and utility function U i.

If the firm selects the normalized production plan (−1, λ, 1−λ) and consumer
i chooses the investment αi ≥ 0 in the firm, the resulting consumption bundle
is ei + αi(−1, λ, 1 − λ). Consumer i selects αi so as to maximize utility in the
budget set

Bi(λ) = {ei + αi(−1, λ, 1− λ) ∈ R3
+ | αi ≥ 0} .

If the utility functions are strictly quasiconcave, i’s optimal investment αi(λ) is
uniquely determined. Agent i consumes xi(λ) = ei + αi(λ)(−1, λ, 1 − λ), holds
shares ϑi(λ) = αi(λ)/(α1(λ) + α2(λ)), and the firm produces y(λ) = [α1(λ) +
α2(λ)](−1, λ, 1− λ).

Definition . The allocation (y(λ), x1(λ), x2(λ)) is called a market equilibrium iff

1) xi(λ) = ei + αi(λ)(−1, λ, 1− λ), where αi(λ) is i’s optimal investment at the
production ray λ,

2) y(λ) = [α1(λ) + α2(λ)](−1, λ, 1− λ) ∈ Y .

Market equilibria are the only allocations that the market can achieve. In
general, these allocations cannot be Pareto compared and the shareholders face
a social choice problem. In order to resolve the problem, Drèze (1974) suggested
that shareholders use sidepayments among themselves at t = 0 in order to reach
unanimity.

A Drèze equilibrium is a market equilibrium in which the production plan of
the firm passes the following test: It is impossible for the shareholders to find
another production plan and sidepayments at t = 0 such that all shareholders are
better off if they use their original investment levels and get the sidepayments.2

2In the usual definition of a Drèze equilibrium, shares ϑi, and not the investment levels αi,
are taken as fixed when a production plan is evaluated. The two definitions are equivalent.
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More precisely, consider a market equilibrium (y(λ̃), x1(λ̃), x2(λ̃)) with respect to

λ̃ and let I = {i | αi(λ̃) > 0}. The market equilibrium is a Drèze equilibrium if
it is impossible to find a normalized production plan (−1, λ, 1− λ) and a system
of sidepayments (τ i)i∈I at t = 0 with

∑
i∈I τ

i = 0 such that

U i(ei + τ i(1, 0, 0) + αi(λ̃)(−1, λ, 1− λ)) > U i(xi(λ̃))

for every i ∈ I. Note that the production plan (−1, λ, 1−λ) on the left hand side

of the above inequality is multiplied by the investment level αi(λ̃) that is optimal

at the normalized equilibrium production plan (−1, λ̃, 1− λ̃).

We recall the definitions of constrained feasibility and constrained efficiency
[cf. Magill and Quinzii (1996)]. A commodity vector x ∈ R3 is written as
x = (x0, x1), where x0 ∈ R corresponds to t = 0 and x1 ∈ R2 corresponds to
t = 1. An allocation (y, x1, x2) is constrained feasible if it can be implemented by a
planner who simultaneously determines the production plan y = (y0, y1) ∈ Y , the
shares ϑi of all consumers and who, moreover, freely redistributes good 0. More
precisely, the allocation ((y0, y1), (x

1
0, x

1
1), (x

2
0, x

2
1)) ∈ Y ×R3

+ ×R3
+ is constrained

feasible if x1
0 +x2

0 = e1
0 +e2

0 +y0 and there exist shares ϑi ≥ 0 such that xi
1 = ϑiy1

for all i and
∑

i ϑ
i = 1. Note that the set of constrained feasible allocations

does not depend on how the aggregate endowment of good 0 is distributed across
consumers and that it is, in general, larger than the set of market equilibria. A
constrained feasible allocation is called constrained efficient if there does not exist
a Pareto superior constrained feasible allocation.

In searching for constrained efficient market equilibria we can restrict atten-
tion to the set of Drèze equilibria since a constrained efficient market equilibrium
is a Drèze equilibrium.

In DDG (2002) we present an example of a finance economy with a unique, but
constrained inefficient Drèze equilibrium. Thus, the market is unable to achieve
constrained efficiency in the example. Therefore, we are led to ask the question
of whether the efficiency requirements can be relaxed such that the market can
at least achieve an extremely weak form of constrained efficiency.

The planner who can implement constrained efficient allocations is more pow-
erful than the market, since the planner can distribute consumption at t = 0
directly and affect consumption at t = 1 indirectly by allocating shares to in-
dividuals. Clearly, to improve upon a market equilibrium, the planner must be
able to compensate the losers of a change of the available asset by reallocating
consumption at t = 0. Therefore, we cannot deprive the planner of the right
to distribute good 0. However, we take away the right to allocate shares. Since
the power of a planner who is deprived of this right cannot be further reduced,
a constrained feasible allocation is called minimally constrained efficient if it is
not possible for a planner who does not possess the right to distribute shares, to
Pareto improve upon the allocation.
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More precisely, the economy with the weakened planner can be described
as follows. First the planner chooses λ. Given λ, each consumer i selects the
optimal investment αi(λ) such that the resulting consumption plan (xi

0, x
i
1) =

ei + αi(λ)(−1, λ, 1−λ) maximizes i’s utility in the budget set associated with i’s
initial endowment and λ. The planner can redistribute total consumption

∑
i x

i
0

at t = 0, but cannot affect individual consumption xi
1 at t = 1 and λ. That

is to say, whenever the planner has chosen λ, the stock market opens and each
consumer i chooses (xi

0, x
i
1) = ei + αi(λ)(−1, λ, 1− λ) optimally. Then the stock

market is closed and nobody, including the planner, can change xi
1. After the

stock market is closed the planner can redistribute good 0.

Definition . A constrained feasible allocation is called minimally constrained
efficient if there is no Pareto superior allocation (λ, (ci

0, x
i
1)i) satisfying

(i) xi
1 = ei

1 + αi(λ)(λ, 1− λ), where αi(λ) is i’s optimal investment given λ,

(ii)
∑

i c
i
0 =

∑
i e

i
0 −

∑
i α

i(λ), and

(iii)
∑

i α
i(λ)(−1, λ, 1− λ) ∈ Y .

Condition (i) says that, after the planner has chosen the production ray, indi-
vidual consumption at t = 1 is determined by the market. Condition (ii) states
that the planner can redistribute the aggregate consumption

∑
i e

i
0−

∑
i α

i(λ) at
t = 0. Condition (iii) says that the planner adjusts the level of production to the
consumers’ aggregate investment.

Our method of defining minimal constrained efficiency can, in principle, also
be used if there are several goods in each state. In this case, even equilibria
with respect to fixed sets of assets are typically constrained inefficient due to
price effects. Therefore, Grossman (1977) weakened the definition of constrained
efficiency by introducing a central planner with incomplete coordination. We
compare our planner with Grossman’s. Grossman’s planner cannot act simul-
taneously in different states, but our planner is not even allowed to act in any
state other than s = 0. At s = 0 , our planner is, apart from the ability to
choose λ, weaker than Grossman’s, since shareholdings and individual consump-
tion at t = 1 are determined by individual optimization. Our planner can only
redistribute the resources at s = 0 that are not used for production, whereas
Grossman’s planner can also allocate shares.

Numerical computation shows that the unique Drèze equilibrium in the exam-
ple in DDG (2002) is minimally constrained efficient although it is not constrained
efficient. This fact can be explained as follows. The example is driven by strong
income effects: The optimal investment of the first consumer depends strongly
on his wealth and, therefore, on the sidepayment obtained from the planner.
However, in the case of minimal efficiency this effect ceases to play a role since
individual investments in shares are, by definition, independent of sidepayments.
Since the mechanism driving the example in DDG (2002) cannot be used in the
case of minimal constrained efficiency, one would like to know whether at least
one Drèze equilibrium in a finance economy is minimally constrained efficient.
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3 Can the Market Achieve Minimal Constrained

Efficiency?

In order to answer this question we proceed as follows. First we present and
discuss a quasilinear example. Due to the existence of a representative consumer,
a constrained efficient Drèze equilibrium necessarily exists. Then we introduce
small income effects by perturbing the example slightly and analyze how the
perturbation affects the efficiency properties of the Drèze equilibria.

In the unperturbed example, consumers have quasilinear utilities given by

U1(x0, x1, x2) = x0 + x0.6
1 and

U2(x0, x1, x2) = x0 + x0.6
2 ,

respectively. We assume λ = 0.1, λ = 0.9 and e1 = e2 = (2, 0, 0). It turns out
that the economy under consideration has three Drèze equilibria, A,B and C,
corresponding to λA = 0.1, λB = 0.5, and λC = 0.9, respectively.

In the definition of a Drèze equilibrium, shares are kept fixed when share-
holders evaluate alternative production plans. In order to gain insight into the
consequences of this feature, it is useful to investigate the interior equilibrium B.
To do so, we first consider the indirect utility u1(2, λ) that consumer 1 obtains,
if the firm chooses the ray λ and if consumer 1 makes the optimal investment
α1(λ) = 0.6(0.6λ)1.5. Since this utility equals u1(2, λ) = 2 + 0.4(0.6λ)1.5, the
function u1(2, ·) is convex. Similarly, the utility level of consumer 2 at λ equals
u2(2, λ) = u1(2, 1− λ) and is convex in λ. As a consequence, shareholders’ social
surplus associated with the ray λ, u1(2, λ) + u2(2, λ), is convex in λ. Due to the
symmetry between u1(2, λ) and u2(2, λ), the social surplus has a critical point at
λB = 0.5, which must be a global minimum [see Figure 1].

Observe that the situation changes drastically if the shareholders are deprived
of the possibility of adjusting their shares, or, equivalently, their investment levels,
when λB is tested against some alternative λ. Consider consumer 1 who wants
to choose the investment level α1(λ) in proportion to λ1.5. If α1 is now taken as
fixed at its value at λB = 0.5, then the utility reached at ray λ equals ũ1(2, λ) =
c0 + c1λ

0.6 with c1 > 0, whereas the indirect utility with share adjustment is a
function of the type u1(2, λ) = c′0 +c′1λ

1.5 with c′1 > 0. Thus, by disregarding how
consumer 1’s individual investment level α1(λ) varies with λ, the originally convex
function u1(2, ·) is turned into a concave function ũ1(2, ·). As a consequence,
ũ1(2, ·) + ũ2(2, ·) is a concave function and the critical point λ = 0.5 becomes a
maximum. For this reason, λB yields a Drèze equilibrium. Clearly, the utility
sum ũ1(2, ·)+ ũ2(2, ·) constructed by fixing the shares does not represent owners’
welfare at alternative production rays correctly.
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0.2 0.4 0.6 0.8

Figure 1: Surplus minimum at the Drèze equilibrium λB = 0.5

At the Drèze equilibria A and C, consumers’ social surplus is maximized.
Hence, A and C are constrained efficient.

Now we perturb the quasilinear example by altering the utility derived from
consumption at t = 0 without changing the utility obtained from consumption
at t = 1. In particular, the utility functions stay additively separable after
perturbation. Let

U1
a (x0, x1, x2) = x0 + ax2

0 + x0.6
1 and U2

a (x0, x1, x2) = x0 + ax2
0 + x0.6

2 , (1)

where 0 < a ≤ 0.1. It is easy to show that i’s utility function is quasiconcave in
the relevant range.

As in the unperturbed example, the production ray varies in the interval
[0.1, 0.9] and there are three Drèze equilibria corresponding to λA = 0.1, λB = 0.5,
and λC = 0.9, respectively. However, the boundary equilibria are no longer
constrained efficient for any a > 0. Moreover, the boundary equilibria are not
even minimally constrained efficient.

Proposition . For arbitrarily small a > 0, no market equilibrium associated with
some ray λ is minimally constrained efficient.

Proof. Consider any ray λ and the corresponding market equilibrium allocation.
Clearly, the equilibrium corresponding to λB = 0.5 is not minimally constrained
efficient. Therefore, let λ 6= 0.5. We show that the production ray 1−λ, together
with a suitable reallocation of consumption at t = 0 is preferred to λ by both
types of consumers. Due to symmetry we can assume λ < 0.5.

Agent i consumes xi(λ) ∈ Bi(λ) when the ray λ is chosen. If λ is replaced by
1 − λ, agent i consumes xi(1 − λ) and achieves the utility level U i

a(x
i(1 − λ)) 6=

8



U i
a(x

i(λ)). Let τ i be the amount of good 0 required in addition to xi(1 − λ) in
order to let i achieve the original utility level U i

a(x
i(λ)). More precisely,

U1
a (x1(1− λ) + τ 1(1, 0, 0)) = U1

a (x1(λ)) (2)

and
U2

a (x2(1− λ) + τ 2(1, 0, 0)) = U2
a (x2(λ)) . (3)

Since λ < 0.5 < 1 − λ, we have τ 1 < 0 and τ 2 > 0. Moreover, by symmetry,
x1

0(λ) = x2
0(1− λ) and

U1
a (x1(λ)) = U2

a (x2(1− λ)) , U2
a (x2(λ)) = U1

a (x1(1− λ)) . (4)

We add (2) and (3), use symmetry and the utility specifications (1), and obtain

(τ 1 + τ 2) + a((τ 1)2 + (τ 2)2) + 2a(τ 1x1
0(1− λ) + τ 2x1

0(λ)) = 0 . (5)

Since calculation of consumer 1’s optimal shares yields that the demand for good
zero is strictly decreasing, we have x1

0(λ) > x1
0(1− λ) > 0.

Assume that τ 1+τ 2 ≥ 0 and, hence, τ 2 ≥ |τ 1|. Then τ 2x1
0(λ)) > |τ 1x1

0(1−λ)|.
Therefore, the left hand side of (5) must be strictly positive for every a > 0,
which is a contradiction. We conclude that τ 1 + τ 2 < 0. Hence, the equilibrium
corresponding to λ is not minimally constrained efficient.

0.2 0.4 0.6 0.8

Figure 2: Intersecting total “saving” functions

Figure 2 illustrates the argument. Take the equilibrium at 0.1 and consider the
sidepayment τ 1(λ) necessary to keep consumer 1 at the utility level U1

a (x1(0.1))
if the ray 0.1 is replaced by the ray λ. That is to say, τ 1(λ) is given by

U1
a (x1(λ) + τ 1(λ)(1, 0, 0)) = U1

a (x1(0.1)) .
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Let τ 2(λ) be defined in a similar way. Thus, τ 1(λ) + τ 2(λ) specifies the total

amount of compensation required to maintain the utility levels achieved at 0.1.

The relationship to Figure 1 becomes clearer if the compensation is replaced by

−(τ 1(λ) + τ 2(λ)), which is the amount of good 0 that can be saved at λ while

keeping consumer i on the utility level U i
a(x

i(0.1)). This total “saving” function

becomes positive at λ = 0.9, which indicates that the equilibrium with respect to

λ = 0.1 is not minimally constrained efficient. A similar saving function can be

defined if the other boundary λ = 0.9 is taken as the reference point. If a goes to

0, both curves in Figure 2 approach the social surplus curve depicted in Figure 1

(up to a constant).

The nonexistence of constrained efficient and minimally constrained market

equilibria is caused by the following facts. First, the example is built upon a

nonconvexity. In the unperturbed, quasilinear example, the nonconvexity can be

described as follows. The amount of good 0 initially available in the economy

just suffices to maintain the utility profile (u1(2, 0.1), u2(2, 0.1)) reached at the

boundary point λ = 0.1, if the other boundary point λ = 0.9 is chosen. However,

if the firm implements any ray λ strictly between 0.1 and 0.9, this amount is

insufficient. Second, as soon as the perturbation parameter a becomes positive,

the graphs of the two saving functions intersect each other. To maintain the

profile (u1
a(2, 0.1), u2

a(2, 0.1)) at λ = 0.9, one can dispense with a positive amount

of good 0. A similar statement holds if the two boundary points are interchanged

[cf. Figure 2]. These two features cannot be ruled out in general. Therefore, one

cannot expect the market to be able to achieve minimally constrained efficient

outcomes.3

The allocations attainable by the market depend on the initial allocation of

endowments. To obtain a situation in which a constrained efficient market equi-

librium exists in the perturbed example, a lump sum redistribution of initial en-

dowments is required. Markets do not perform such redistributions and thus, are

less powerful than even the very weak planner discussed in the context of minimal

constrained efficiency. The importance of the initially determined distribution of

wealth in nonconvex environments was first pointed out by Guesnerie (1975) in

the framework of complete markets and nonconvex production sets. Guesnerie

showed that all marginal cost pricing equilibria can be inefficient, even though

Pareto efficiency requires prices to equal marginal costs.

3It has been emphasized in the literature on compensation criteria à la Hicks and Kaldor
that intersecting utility possibility frontiers often entail inconsistent policy recommendations
[see, e.g., Gravel (2001)].
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4 Concluding Remarks

We have seen that shareholders’ social surplus can reach its minimum at a Drèze
equilibrium if all shareholders have quasilinear utilities. This is due to the fact
that the definition of a Drèze equilibrium only takes welfare changes of first order
into account. Thus, no distinction is made between an interior maximum and
any other critical point.

In the quasilinear case, a constrained efficient Drèze equilibrium exists. There-
fore, it is tempting to refine the Drèze equilibria in order to rule out constrained
inefficient allocations. However, our example shows that this endeavor can fail to
provide any solution as soon as one deviates from the quasilinear setting: Arbi-
trarily small income effects render all market equilibria constrained inefficient.

Moreover, even if the efficiency requirements are substantially reduced, they
can remain unfulfilled at every market equilibrium in a finance economy. In our
example the stock market cannot even achieve a minimally constrained efficient
outcome if the quasilinear setting is abandoned. Hence, the existence of a con-
strained efficient equilibrium in the quasilinear economy should be viewed as an
artifact lacking any robustness.

Clearly, there are economies in which the problem does not arise. For exam-
ple, Drèze equilibria are constrained efficient if there is only one firm and if every
consumer’s indirect utility function is quasiconcave. This function describes the
maximum amount of utility the consumer can derive from a production decision
at different levels of wealth at t = 0. The indirect utility functions underlying
Figure 1 are not quasiconcave. This is due to the fact that the specification of
the direct utility functions U i makes optimal shareholdings sufficiently sensitive
to changes in the production ray.4 Since the indirect utility depends on how the
optimal number of shares that an individual holds varies with the asset span and
individual wealth at t = 0, it is, unless attention is restricted to particularly sim-
ple examples, quite difficult to state economically meaningful conditions ensuring
the quasiconcavity of indirect utility functions. We do not think that imposing
restrictions on consumers’ characteristics presents a promising approach to over-
come the problem of nonexistence of constrained efficient market equilibria.

It has been suggested to us to use lotteries instead of deterministic allocations.
A similar approach has been successfully applied in other settings. Cole and
Prescott (1997), for instance, use random allocations to analyze equilibria in
economies with clubs. Club membership is indivisible and lotteries are used to
restore convexity. Lotteries have also been used to overcome the nonconvexity
of the set of feasible allocations in economies with adverse selection. In that
case, the nonconvexity is due to individual incentive constraints and eliminated

4If the power 0.6 in the definition of U i is replaced by a number below 0.5, quasiconcavity
of the indirect utility function ui results.
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by introducing random allocations; see Prescott and Townsend (1984). In this
paper, the difficulty is not due to a nonconvexity on the individual level but to a
pure public good problem.

In our framework, random allocations could be introduced by making the
production decision stochastic and letting consumers choose their investments
contingent on the realization. More specifically, consider the set U = {(u1, u2) ≤
(u1(2, λ), u2(2, λ)) | λ ∈ [0.1, 0.9]} of vectors that are below a utility profile at-
tained at some market equilibrium in the quasilinear example. The set U is
nonconvex. Let the production ray become random and consumers have von
Neumann-Morgenstern utility functions. If consumers are allowed to choose
their investments after they have learned the realization of λ the set U is con-
vexified. More precisely, the convex hull of U is generated by the two profiles
(u1(2, λ), u2(2, λ)) associated with the boundary equilibria λ = 0.1 and λ = 0.9.
In comparison to the deterministic market equilibrium at λ = 0.5, both con-
sumers are better off in expectation if the firm chooses a symmetric lottery over
λ = 0.1 and λ = 0.9.

In the example the procedure corresponds to the introduction of a veil of ig-
norance. Before the lottery takes place it is not known whose favorite production
ray will be realized. This ex ante viewpoint is appropriate for certain fairness
considerations, but appears unnatural in the analysis of the efficiency of equilib-
ria in economies with incomplete markets. The introduction of lotteries does not
provide a genuine extension of the Arrow-Debreu-McKenzie theory to the case
of incomplete markets. Furthermore, introducing lotteries amounts to making
markets more complete. Our goal, however, is to analyze efficiency issues in a
model with a given, small set of assets.5 Since the introduction of lotteries over
production plans is difficult to justify on economic grounds and since it changes
the nature of the underlying problem in an essential way, we do not think that
the use of lotteries lends itself to the present framework.

Majority voting presents another way to overcome the social choice problems
faced by shareholders. For properties of corporate control by majority voting,
see DeMarzo (1993) and Geraats and Haller (1998). Apart from problems such
as equilibrium existence, agenda control, non sincere voting etc., the following
point deserves attention. Since the voting outcome depends on power, it need
not reflect welfare properly. The point is easily understood in the context of the
quasilinear example in Section 3. To break ties, a third quasilinear consumer
with arbitrarily small weight is introduced, whose utility increases if the ray λ
approaches 0.5. This additional consumer becomes the median voter. Due to
symmetry, majority voting leads to λ = 0.5 if every shareholder has one vote.
Moreover, it is not difficult to modify the example such that voting according to

5In addition, even if the set of market equilibria is convexified, it differs substantially from
the set of constrained efficient allocations. We do not see how one would obtain an analogue
to the first welfare theorem.
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the one share-one vote rule yields the same outcome. The median voter, although
of arbitrarily small weight, has overwhelming power. The median voter’s optimal
choice, though, is the welfare minimum. Thus, majority voting should be seen as
a modelling device that is better suited for positive than for normative purposes.

Instead of examining whether a proposed production plan can be unanimously
improved upon after sidepayments are made, one can compare the gains, ex-
pressed in units of good 0, that are obtained from any production plan in com-
parison to a given reference point. In the perturbed quasilinear example the point
of zero production, that is to say, the allocation (e1, e2) of initial endowments,
can be used for reference. Consumer i’s surplus Si(λ) is given by the amount of
good 0 consumer i needs in excess of ei to obtain the same utility level as if the
firm chose the ray λ. The total surplus

∑
i S

i(λ) associated with some market
equilibrium can then be maximized. In the perturbed quasilinear example the
maximum is taken at both boundary points λ = 0.1 and λ = 0.9. Thus, the same
outcome as in the quasilinear case is obtained.

A major advantage of this approach lies in the fact that it relies on the max-
imization of continuous functions rather than maximization of incomplete, in-
transitive, and nonconvex relations. The surplus maximum is characterized as
follows: It presents the minimum amount of good 0 needed in the absence of the
firm in order to be able to compensate all consumers such that they can attain
every utility profile that is induced by some production decision. Clearly, this
type of surplus maximization, which is motivated by the lack of constrained effi-
cient market equilibria, does not aim at achieving constrained efficiency and its
theoretical foundation remains controversial.

The surplus function described above can be viewed as a particular social
welfare function. To overcome the problem of the nonexistence of constrained or
even minimally constrained efficient market equilibria, one might also resort to
any other social welfare function. However, it is a priori unclear which welfare
function is particularly well suited for this purpose.6

A less radical procedure suggesting itself in the perturbed quasilinear example
is the choice of the boundary equilibria λ = 0.1 or λ = 0.9 on the basis that they
are “less inefficient” than, say, λ = 0.5. To define the degree of inefficiency,
interpersonal utility comparisons are not required.

The last three approaches provide welfare oriented methods that may be used
to overcome the problem presented in this paper. In each case a particular func-
tion is optimized. These approaches require a large amount of information and
are far more complex than the usual profit maximization in General Equilibrium
Theory with complete markets. They would change the character of the theory
considerably.

6In another context involving lotteries, Dhillon and Mertens (1999) argue in favor of relative
utilitarianism.
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Drèze, J.H. (1974). “Investment under Private Ownership: Optimality, Equi-
librium and Stability”, in Allocation Under Uncertainty; Equilibrium and
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