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Abstract

This paper studies the forecasting abilities of a battery of uni-

variate models on hourly electricity spot prices, using data from the

Leipzig Power Exchange. The speci�cations studied include autore-

gressive models, autoregressive-moving average models and unobserved

components models. The results show that speci�cations where each

hour of the day is modelled separately present uniformly better fore-

casting properties than speci�cations for the whole time series, and

that the inclusion of simple probabilistic processes for the arrival of

extreme price events can lead to improvements in the forecasting abil-

ities of univariate models for electricity spot prices.

Keywords: Electricity spot prices, ARMA models,

Structural time series, Forecasting.
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1 Introduction

The ongoing worldwide deregulation of electricity markets has created an

increasing interest for building econometric models of electricity prices with

the aim of both understanding the dynamics of electricity price formation

and obtaining reliable forecasts. Due to the nonstorable nature of the un-

derlying good (and therefore to the impossibility of inventories to be used as

price arbitrage devices linking expectations and spot prices), the dynamics

of electricity prices present certain stylized facts that cannot be adequately

captured by models whose focus is the price behaviour of storable commodi-

ties and �nancial securities. In particular, time series of electricity spot

prices exhibit more structure which can be used for forecasting compared to

time series of �nancial securities, which are usually quite well described by

Markovian processes. Due to the youth of deregulated electricity markets,

few studies have approached the subject of time series modelling of electric-

ity prices directly. De Vany and Walls (1999) use cointegration methods in

order to assess the issue of integration of regional electricity markets and con-

vergence of electricity prices in the US. Knittel and Roberts (2001) present

an empirical analysis of electricity prices in California and comment on the

forecasting properties of several simple time series models, while Escribano,

Pe~na and Villaplana (2002) present a relatively general modelling strategy

for electricity prices, and apply it to four di�erent markets.

The aim of this paper is to compare the performance of univariate time

series models in forecasting electricity spot prices. Electricity spot prices

present several types of superposed seasonal cycles, mean reversion and price

spikes. Including such stylized facts in time series models for electricity prices

implies that in some cases we may want to drift away from the assumption

of linearity in the modelling strategy. While nonlinear time series analysis

provides an interesting framework in order to approach modelling prices of

nonstorable goods [see, e.g., Robinson (2000) for an example in the electricity

market], this paper concentrates exclusively on linear univariate models, and

it focuses on electricity spot price predictions.1 The performance of a battery

of univariate models, including various types of ARMA models, models with

unobserved components and with jumps, is studied in forecasting electric-

1As it will appear clear below, some of the models used in this paper could also be

viewed as piecewise linear models.
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ity spot prices using hourly data from the German Leipzig Power Exchange

(LPX) from its opening on June 16th, 2000 at 1:00 to October 15th, 2001 at

24:00. The set of models includes both models based on the complete hourly

time series of electricity prices and models where the dynamic behaviour

of each hour is modelled using di�erent (potentially interrelated) dynamic

processes, and the forecasting superiority will be assesed using predictive ac-

curacy tests.

The paper is organized as follows. Section two presents a description

of the market and the data used in the study. The models that will be

used in order to obtain forecasts for electricity spot prices are presented

and motivated in section three, while section four presents the results of the

forecasting exercise and section �ve concludes and indicates potential future

paths of research.

2 The LPX market and the price data

The Leipzig Power Exchange (LPX) commenced trading in June 2000. Since

then it has established itself as the most liquid spot market for electricity in

Germany. In June 2002, LPX will be merged with its former rival, the Eu-

ropean Energy Exchange (EEX) in Frankfurt, to form potentially the most

important continental European electricity exchange. Today about 90 trad-

ing participants, German as well as international, are active at LPX. Monthly

trading volumes regularly exceed 1:5million MWh.

The LPX is organized as a day ahead market. Participants submit buy-

ing and selling bid curves for each of the next 24 hours. Every day at noon

the exchange aggregates bids for each hour and determines market clear-

ing prices and volumes for each hour of the following day. Afterwards LPX

transmits schedules to the Transmission System Operators and informs the

bidders about prices and amounts to be delivered and received. Contracts

can be concluded for 365 days of a year.

A total of 11,688 observations of hourly LPX electricity spot prices in

Euro per megawatt (Euro/MWh) are available and they are plotted in Fig-

ure 1. The sample period begins on June 16th, 2000 (the opening of the

market) and ends on October 15th, 2001. Figure 2 presents the average price



3

for each hour for weekdays (Monday-Friday) - solid line - and weekends -

dotted line - over the whole sample. Prices are signi�cantly higher during

weekdays, and both for weekends and weekdays a relatively similar intra-

day pattern emerges: the price begins to increase at around 5:00 during the

workday (7:00 for weekends) and continues to increase until 12:00 when there

is the �rst and biggest peak of the day. Then the price begins to fall until

17:00 and after reaching its locally lowest point it starts to increase again

until 19:00-20:00 when it reaches the second peak of the day. Prices begin to

fall thereafter, until the 5:00 (7:00) turning point appears.

Table 1 presents summary statistics for the whole sample of hourly elec-

tricity prices and for each one of the 24 hours of the day. The null hypothesis

of a normal distribution tested by the Jarque-Bera test statistic is not re-

jected at a 5% signi�cance level for hours 1:00�5:00, 8:00, 24:00. Intuitively,

this suggests that models based on the normality assumption applied on the

electricity prices of hours 1:00�5:00, 8:00 and 24:00 have bigger chances of

accurately representing the data generating process than for hours 6:00, 7:00,

9:00�23:00. Note that the electricity prices for the �rst peak hour, 12:00,

have the highest mean and standard deviation and the electricity prices for

the second peak hour, 18:00, have the highest skewness and kurtosis.

A remarkable characteristic of energy commodity prices is the presence of

price spikes (see Figure 1). Such a phenomenon is usually explained by either

supply-sided (unplanned outage of a large power plant) or demand-sided

shocks (heat wave in summer). On the other hand, also market mechanism

failure and capacity constraints of the network can cause spikes, because

they lead to temporary deviations from perfect competition in the market

and therefore to price spikes when temporary monopolists or oligopolists

make use of their market power. Table 2 shows the mean and variance of

the jumps which are identi�ed using a recursive �lter in the spirit of Clewlow

and Stickland (2000) for both the whole sample and each hour separately.

The underlying probability of a jump, �, assumed to be constant for a given

hour of the day, is also presented in Table 2. Note that (positive) jump

probabilities for each hour vary during the day from 0.004 to 0.014. The

recursive �lter approach used to extract the price spikes begins by identifying

as jumps those observations which are higher than the �-quantile of the

normal distribution centered around the empirical mean of the electricity spot

price time series, and with the standard deviation of the complete sample (as
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long as this proportion of observations is higher than (1� �)). In our case, �

was set to be 0.997. The identi�ed jumps are removed from the sample, the

standard deviation is computed again and the same procedure is repeated

until the proportion of observations with a higher value than the �-quantile

is smaller than �. Notice as well that the existence of jumps is associated

with a leptokurtic and long right-tailed distribution of electricity prices (see

the histogram of the time series in Figure 3).

3 Time series models for electricity prices

This section presents the battery of univariate models that will be used to

obtain predictions of electricity spot prices. All models will be estimated

using both the complete in-sample dataset as a single time series and twenty

four time series, each one corresponding to an hour of the day.2

3.1 AR(1) process

It has been well documented that an important property of energy spot prices

is mean-reversion [see, e.g., Gibson and Schwartz (1990), Brennan (1991)].

The benchmark model for mean reverting processes used will be a simple �rst

order autoregressive process [AR(1)], which could be thought of as an exact

discrete time version of an Ohrstein-Uhlenbeck process [see, e.g., Knittel and

Roberts (2001)]. The stochastic process for electricity prices (pt) is, thus,

pt = � + �pt�1 + �t; �t � NID(0; �2�) (3.1)

where the error term, �t; is assumed to be white noise with constant variance

�
2
�. The conditional mean of pt given information up to and including period

t� 1 is, thus,

p̂t = E(ptjIt�1) = � + �pt�1;

where It�1 is the �-algebra generated by fp0; p1; : : : ; pt�2; pt�1g, and the con-

ditional variance of p̂t is �
2
�.

2The approach based on disaggregating high frequency data into di�erent time series

corresponding to a time unit has been used by, e.g., Ramanathan et. al (1997) for electricity

loads and Bauer, Deistler and Scherrer (2001) for ozone data.
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This class of models is able to reproduce mean reversion and therefore to

capture some of the autocorrelation present in the price series, but it ignores

certain other cycles present in the series (intraday, weekend/weekday and

seasonal patterns), and it assumes that the error structure is independent

across time. Furthermore, linear Gaussian models such as (3.1) cannot acco-

modate the price spikes found in the data. The AR(1) model will, thus, act

as a benchmark model in the forecasting exercise.

For the case of the disaggregated daily time series for hour fzg, z 2 f1,

2,: : :, 23, 24g, the analogous model can be speci�ed as

p

fzg
t = �

fzg + �

fzg
p

fzg
t�1 + �

fzg
t ; �

fzg
t � NID(0; �2�fzg)

where �
fzg
t is assumed to be white noise, uncorrelated with �fsg8s 6= z. No-

tice that p
fzg
t�1 corresponds to pt�24 in the data with hourly frequency. The

model using disaggregated time series accounts for intraday seasonality by

estimating di�erent parameters for each di�erent hour of the day, and could

be viewed as a global piecewise-linear model in which the parameters depend

on the hour corresponding to period t. That is,

pt =
24X
z=1

(�fzg + �

fzg
pt�24 + �

fzg
t )I(t is hour z);

where I(�) is an indicator function taking value one if the argument is true

and zero otherwise, and �
fzg
t is white noise, assumed to be uncorrelated with

�

fsg
t 8s 6= z.

3.2 AR (1) process with time-varying intercept

The second model addresses the systematic seasonal variation found in elec-

tricity prices by allowing the intercept in the simple AR(1) process described

above to change depending on the hour of the day, day of the week and

month of the year corresponding to the period being modelled. The seasonal

patterns will be assumed to remain constant through time and will all be

modelled using dummies. The resulting AR(1) process with time-varying-

intercept that will actually be used is

pt = �t + �pt�1 + �t; �t � NID(0; �2�) (3.2)
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with

�t = �0t+
24X
i=1

�1;iI(t is hour i)+
7X

j=1

�2;jI(t is in day j)+
12X
k=1

�3;kI(t is in month k):

(3.3)

Note that this speci�cation allows as well for a global trend, independent of

the seasonal pattern, as implied by the �rst summand of the expression of �t

above.

When dealing with the disaggregated time series, that is, with twenty

four time series each one corresponding to an hour, the speci�ed model is

p

fzg
t = �

fzg
t + �

fzg
p

fzg
t�1 + �

fzg
t ; �

fzg
t � NID(0; �2�fzg)

for hour z 2 f1; 2; : : : ; 23; 24g where

�

fzg
t = �

fzg
0 t +

7X
j=1

�

fzg

2;j I(t is in day j) +
12X
k=1

�

fzg

3;k I(t is in month k): (3.4)

3.3 ARMA process with time-varying intercept

Working in a discrete time framework, price dynamics can be speci�ed as

generalizations of the mean reverting processes presented above by specifying

a complete autoregressive-moving average [ARMA (p; q)] model with time

varying intercept such as

pt = �t +
pX

i=1

�ipt�i + �t +
qX

j=1

�j�t�j; �t � NID(0; �2� ) (3.5)

where �t is speci�ed as in (3.3) and f�tg is a white noise process with constant

variance �2� . For hourly disaggregated data the speci�ed ARMA model for

hour fzg is

p

fzg
t = �

fzg
t +

pX
i=1

�

fzg
i p

fzg
t�i+ �

fzg
t +

qX
j=1

�

fzg
j �

fzg
t�j; �

fzg
t � NID(0; �2

�fzg
) (3.6)

where the hour-speci�c time-varying intercept �
fzg
t is de�ned as in (3.4), and

�

fzg
t is assumed to be white noise.
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3.4 Crossed ARMA process with time-varying inter-

cept

More exibility could be achieved by allowing the electricity spot price in hour

z to depend upon price realizations in hour s 6= z, under the assumption

that all hour-speci�c shocks are uncorrelated with each other. The model

speci�cation is, thus,

p

fzg
t = �

fzg
t +

pX
i=1

�

fzg
i p

fzg
t�i+

24�zX
j=1

�

fzg
j p

fz+jg
t�1 +

z�1X
k=1

&

fzg

k p

fz�kg
t + �

fzg
t +

qX
l=1

�

fzg

l �

fzg

t�l ;

(3.7)

where �
fzg
t is assumed to be white noise, uncorrelated with �

fsg
t 8s 6= z.

3.5 ARMA processes with jumps

A remarkable characteristic of electricity spot prices is the presence of price

spikes. In a continuous-time framework, jump-di�usion models consider the

possibility of large short-lived variations of the underlying variable and thus

might be appropriate for modeling electricity spot prices. Jump-di�usion

models link price changes to the arrival of information, and considers the

existence of two types of news: normal news, which produce continuous

price dynamics and abnormal news, which cause discrete price jumps and

whose arrival is modelled using a probabilistic discrete time process. Jump-

di�usion models can account for conditional density functions with fat tails

and non-zero skewness, whose sign depends on the mean jump size. Taking

into account the inclusion of jumps, the more general price process speci�ed

by (3.5) can be augmented by appending an additional term that represents

the arrival of abnormal shocks, yielding

pt = �t +

pX
i=1

�ipt�i + �t +

qX
i=1

�i�t�i + �tjt; (3.8)

where jt is a discrete time probability process governing the arrival of price

jumps and �t is the jump size. This generalization can be applied to any of

the models exposed above. In a continuous-time setting the arrival of shocks

is usually modelled by a Poisson process [see e.g. Knittel and Roberts (2001),

Huisman and Mahieu (2001)], but for simplicity the forecasting experiment
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will be carried out using a binomial process, that is,

jt =

8<
:

0 with probability 1� �;

1 with probability �:

This implies that the shock arrival process is constant over time (over days

at a given hour for the models treating with 24 time series): in a given period

prices are drawn from a process such as (3.5) with probability 1�� and with

probability � the electricity price is drawn at time t from the same process

augmented additively with �t. The jump size, �t will be modelled as the

realization of a normally distributed random variable with expectation � and

variance �2�. The jumps, its mean and variance as well as the probability of a

jump ocurring are identi�ed using the recursive �lter presented in section 2.

Given the simple process governing the arrival of jumps, they can be easily

accomodated to the conditional expectation of the models described above

in order to compute forecasts just by adding �̂t�̂ to the forecasts computed

from the data without jumps.3 When the electricity spot price in the LPX

market is modelled in an hour-by-hour fashion, we will allow for di�erent �s

for each daily time series of prices at a given hour, as the uneven distribution

of price spikes across hours of the day seems to be a stylized fact of electricity

spot prices (see Table 2).

3.6 Unobserved components model

Structural time series models are based on the identi�cation of unobserved

components wich are directly interpretable out of the data, and have been

widely used in economics [see Harvey (1985, 1989) or Harvey and Jaeger

(1993) for the most relevant examples]. Assume that the process of interest

(pt) can be decomposed in an additive fashion into a trend component (�t),

a cycle component ( t), a seasonal component (t) and an irregular compo-

nent (�t), where the trend captures long-term movements of the series, the

cyclical component is a sine-cosine wave with constant frequency, �, the sea-

sonal component will be modelled using seasonal dummies and the irregular

component is assumed to be white noise. That is,

pt = �t +  t + t + �t; �t � NID(0; �2� ): (3.9)

3Actually, if jumps are removed, the models refer to the time series without jumps (say

~pt), so that forecasts can be computed as p̂t = ~̂pt + �̂t�̂.
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The trend component is speci�ed in its most general form as follows,

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�);

�t = �t�1 + Æt; Æt � NID(0; �2Æ);

where �t and Æt are disturbances uncorrelated mutually and with the irreg-

ular component, �t. It can be easily noticed that such a speci�cation of the

trend nests as special cases the linear time trend model (if �2Æ=0 and �
2
�=0),

the random walk with drift (if �2Æ=0 and �
2
� >0) and the smooth trend model

(if �2Æ >0 and �
2
�=0).

The cyclical component is speci�ed as
2
4  t

 
�

t

3
5 = �

2
4 cos� sin�

�sin� cos�

3
5
2
4  t�1

 
�

t�1

3
5 +

2
4 !t

!
�

t

3
5
;

where � 2 [0; �] is the cyclical frequency, � 2 (0; 1) is the damping factor of

the cycle,  �

t appears by construction and !t and !
�

t are iid normally dis-

tributed disturbances, mutually uncorrelated and with equal, �xed variance

�
2
!. Notice that the cycle is an ARMA(2,1) process where the autoregressive

roots are constrained to be complex [see Harvey (1985)], leading to pseudo-

cyclical behaviour.

The seasonal component is de�ned in a similar fashion like for the ARMA

models presented above, that is,

t =
24X
i=1

�1;iI(t is hour i) +
7X

j=1

�

fzg

2;j I(t is in day j);

where the monthly seasonal pattern will be captured by the cyclical compo-

nent and is therefore excluded from the speci�cation of the seasonal compo-

nent.

4 Forecasting evaluation

4.1 The forecasting exercise: setting and results

The dataset is divided into an in-sample period comprising the �rst 10,607

observations (June 16th, 1:00, 2000 to August 31st, 24:00, 2001) and an out-of-
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sample period composed by the remaining 1,080 observations (from Septem-

ber, 1st, 1:00, 2001 to October, 15th, 24:00, 2001), which will be used to assess

the forecasting abilities of the di�erent models. The out-of-sample period is

plotted in Figure 4, and includes several price spikes. The forecasting exer-

cise is designed as follows. The in-sample data is used to estimate the model

of interest, and up to 168 hours (one week)-ahead forecasts are computed

from the estimated model.4 Two measures of the forecast error, root mean

square error (RMSE) and mean absolute error (MAE), are then calculated

for each model as

RMSE =

vuut 1

168

S+168X
t=S+1

(p̂t � pt)2;

MAE =
1

168

S+168X
t=S+1

jp̂t � ptj;

where p̂t refers to the forecasted price for period t, pt is the actually realized

electricity price in period t and S is the period corresponding to the last

in-sample observation.5 The in-sample period is then enlarged by one ob-

servation and again forecasts up to 168 steps-ahead are computed, together

with the corresponding RMSE and MAE. This procedure is repeated 913

times and the average RMSE and MAE are computed for each model. The

results are presented in Table 3 for the whole collection of models.

For the case of the benchmark AR(1) model, four di�erent models were

estimated and used for forecasting using the complete dataset without hourly

disaggregation (global models): AR(1), AR(1) in logs, AR(1) with jumps and

AR(1) in logs with jumps. The AR(1) model using logged data avoids nega-

tive forecasts of prices, but proves to produce worse forecasts than the AR(1)

model using raw data.6 Two extra models are considered for the AR(1) class

4The results of the model estimation are not presented, and are available from the

authors upon request.

5Note that, although the loss function di�ers, the same weight is given to each step-

ahead forecast in computing the root mean square error and the mean absolute error.

Although a di�erent weighting strategy could have been carried out if the forecaster has

reasons to believe that observations at some forecasting horizon are more valuable than

others, we decided to use a more unconstrained setting.

6Although our dataset does not contain negative prices on electricity, such a phe-
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with time-varying mean. The unrestricted AR(1) model with time-varying

intercept includes all estimated parameters from the speci�cation (3.2), while

the restricted AR(1) model with time-varying intercept elliminates the pa-

rameters which appear statistically insigni�cant using sequential t-tests for

the signi�cance of the parameters of the seasonal dummies, starting with the

most insigni�cant parameter until all remaining parameters are individually

signi�cant at least at a 5% signi�cance level. In the model with only signi�-

cant parameters, F-tests were performed to assess equality of seasonal e�ects

across all possible combinations of (signi�cant) hours of the day, days of the

week and months of the year. If the F-test did not reject equality of param-

eters at 5% signi�cance level and the proportion of the variance explained

by the model did not decrease, the model was further restricted to contain

equal parameters in those seasonal dummies which were being tested. Using

the global dataset for the AR(1) class with time-varying intercept, models

with restricted parameters present better forecasting properties than their

unrestricted analogs. While the inclusion of jumps improves the forecasting

performance of the AR(1) model with constant intercept, it worsens the fore-

casting properties of the AR(1) model with time-varying mean.

Eight di�erent ARMA models are estimated and used for forecasting for

the complete hourly time series. The AR and MA orders were chosen after

examining the correlogram and for most models include lag 1, 23, 24 and 25.

Inside the ARMA class of models for the hourly time series the unrestricted

model in logs performs best according to the RMSE, and the unrestricted

ARMAmodel in levels according to MAE. The inclusion of jumps worsens the

forecasting performance, and the best models of this class perform relatively

worse that the best models of the AR(1) class with time-varying intercept.

The unobserved components model is estimated by maximum likelihood

after using Kalman �ltering.7 After trying di�erent trend speci�cations, the

restriction �
2
Æ = �

2
�=0 was imposed, as allowing for more exibility in the

trend component lead to worse forecasts. The relatively bad forecasting

properties of the structural time series model in the global setting can be

nomenon appears in other time series of electricity prices [see e.g. Knittel and Roberts

(2001), using data for the electricity market in Northern California].

7For technical details on the estimation methodology, see Harvey (1989).
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partly explained by the fact that part of the seasonal dynamics are captured

by the cyclical error, leading to predictions that tend to understate intraday

seasonal variations in the price of electricity.

The second part of Table 3 presents the results for the models based on

24 time series (separable models), each one corresponding to an hour of the

day. It should be noted that every single model in the separable setting out-

performs its corresponding global model independently of the forecast error

statistic (RMSE or MAE) used to compare the forecasting abilities. Two

di�erent classes of ARMA models are considered in the separable setting,

depending on whether the autoregressive lags refer exclusively to past days

of the hour to be modelled (hourly ARMA models) or if cross-correlations

among hour t and hour t�v, for v = 1; 2; : : : ; 23 are also included in the model

(crossed ARMA models). Notice that this last class of models assumes that

the error corresponding to a given hour z 2 f1; 2; : : : ; 24g is uncorrelated with

contemporaneous, past and future errors of hour s 2 f1; 2; : : : ; 24g; s 6= z.

The inclusion of jumps, even when it is in the simple form described

above, improves the forecasting abilities in all classes of separable models

independently of the loss function taken into account when computing the

forecast error. The model that outperforms all others and, therefore, presents

the best forecasting capabilities among the �fty estimated models is the sep-

arable restricted crossed ARMA model with jumps, with a RMSE of 3.99

and a MAE of 2.57. A graphical illustration of the di�erent forecasting abil-

ities of the models considered can be found in Figures 5 and 6. Figure 5

presents the point forecasts generated by the model with worst forecasting

abilities among all models studied [global AR(1) with constant intercept]

for the last out-of-sample week. Figure 6 presents the forecasts in the last

out-of-sample week for the model with the smallest forecast error (separable

restricted crossed ARMA model with jumps).

4.2 Testing for equal predictive accuracy

In order to assess whether the observed di�erences in forecasting power across

models are actually signi�cant, the Diebold-Mariano (DM) test for predic-

tive accuracy [Diebold and Mariano (1995)] was performed among the mod-

els which present better forecasting power inside each class. The DM test

approach aims to test the null hypothesis of equality of expected forecast ac-
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curacy against the alternative of di�erent forecasting ability across models.

Assume that we are trying to compare the forecasts produced by two models,

A and B up to h-steps ahead. The null hypothesis of the test can be, thus,

written as

dt = E[g(eAt )� g(eBt )] = 0; (4.10)

where eit refers to the di�erence between the forecasted price and the actual

price for model i (i = A;B), and g(�) is the corresponding loss function.

The Diebold-Mariano test uses the autocorrelation-corrected sample mean

of dt in order to test for (4.10). If n observations and forecasts are available,

the test statistic is, therefore,

S = [V̂ ( �d)]�1=2 �d;

where

V̂ ( �d) =
1

n

(0 + 2
h�1X
k=1

̂k);

and

̂k =
1

n

nX
t=k+1

(dt � �
d)(dt�k �

�
d):

Under the null hypothesis of equal forecast accuracy, S is asymptotically

normally distributed. The model that presents best forecasting properties

inside a given class is chosen as the representative of that class, and a test

of equal forecasting accuracy is performed against the model with best over-

all forecasting properties (the separable crossed ARMA model with jumps

and restricted coeÆcients). The results are presented in Table 4 for both

of the loss functions used in the forecasting experiment (RMSE and MAE).

The separable crossed ARMA model with jumps and restricted coeÆcients

presents highly signi�cant improvements in forecasting accuracy when com-

pared to the rest of the representatives of the model classes. Given the large

number of out of sample observations in the forecasting exercise, the results

give very strong evidence of better predictive abilities of this model against

all others.

5 Conclusions and paths for further research

The current liberalization process taking place in electricity markets world-

wide has increased the interest for econometric models with good forecast-
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ing properties for electricity spot prices. Using data for the LPX market,

the results presented in this paper indicate that an hour-by-hour modelling

strategy for electricity spot prices improves signi�cantly the forecasting abil-

ities of linear univariate time series models, and that assessing the process

of arrival of price spikes, even if it is in a simple manner, can also lead to

better forecasts. The result is not trivial, as it is not always the case that

models that are able to reproduce in-sample stylized facts produce better

out-of-sample forecasts. We have abstracted from modelling volatility clus-

tering and potential nonlinearities of the data generating process (DGP),

and the process leading to the existence of price spikes has been kept as

simple as possible. A straightforward path of further research would involve

accounting for more sophistication in the DGP by studying the forecasting

properties of electricity spot price models with time-varying volatility and

potential nonlinearities in the conditional mean process. The computational

burden, however, is greatly enlarged by allowing for nonlinearity, as in gen-

eral there exists no closed-form analytic expressions for multi-step forecasts

in nonlinear models.
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Table 1: Descriptive statistics for LPX electricity spot prices over

period June 16th, 2000 - October 15th, 2001. Hours marked with
� do not reject at 5% signi�cance level the null hypothesis of a

normal distribution tested by Jarque-Bera test statistic.

Hour Mean St. Dev. Skewness Kurtosis

1:00� 15.01 4.04 0.077 2.960

2:00� 13.25 4.03 -0.038 2.574

3:00� 12.29 4.04 -0.004 2.650

4:00� 11.88 4.08 0.010 2.570

5:00� 12.18 4.23 -0.147 2.620

6:00 13.19 4.38 -0.434 2.785

7:00 15.62 5.43 -0.601 2.694

8:00� 20.43 8.11 -0.028 2.734

9:00 23.52 8.89 0.348 3.500

10:00 25.75 9.26 0.861 5.359

11:00 28.30 10.01 1.105 5.623

12:00 34.87 16.59 2.758 19.950

13:00 28.34 10.07 3.526 36.815

14:00 25.84 9.14 1.201 8.464

15:00 23.31 8.19 0.783 4.687

16:00 21.44 7.08 0.567 4.435

17:00 20.37 6.51 0.603 4.247

18:00 21.52 9.54 6.412 88.920

19:00 22.25 7.69 1.329 6.311

20:00 22.04 7.03 1.683 12.333

21:00 20.90 5.53 1.360 9.290

22:00 19.60 4.25 1.340 13.200

23:00 19.29 3.65 0.641 7.140

24:00� 16.86 4.05 -0.135 3.388

Whole sample 20.33 9.50 2.370 23.500
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Table 2: Mean of jumps (�j), jump variances (�2j ) and jump prob-

abilities (�) for speci�c hours and the whole sample

Hour �j �
2

j �

1:00 7.19 172.69 0.008

2:00 no jumps are identi�ed

3:00 no jumps are identi�ed

4:00 no jumps are identi�ed

5:00 no jumps are identi�ed

6:00 no jumps are identi�ed

7:00 no jumps are identi�ed

8:00 no jumps are identi�ed

9:00 29.60 19.72 0.010

10:00 36.88 119.85 0.008

11:00 39.74 54.90 0.012

12:00 75.85 1258.28 0.014

13:00 68.45 2128.27 0.006

14:00 41.72 495.72 0.006

15:00 29.04 40.44 0.014

16:00 28.79 13.19 0.008

17:00 23.79 7.45 0.010

18:00 82.87 5859.03 0.004

19:00 31.50 77.43 0.010

20:00 29.03 200.77 0.012

21:00 25.52 65.78 0.010

22:00 17.92 75.60 0.012

23:00 19.17 67.63 0.004

24:00 7.93 182.66 0.008

Whole sample 36.41 17.30 0.018
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Table 3: Forecast performance. Out of sample period: September

1st, 1:00, 2001 to October 15th, 24:00, 2001 (1080 observations)

Forecast horizon: one week (168 hours)

Global Models (single time series)

Model RMSE MAE

AR(1) 9.464 6.697

AR(1), in logs 10.048 7.131

AR(1), jumps 9.396 6.676

AR(1), jumps, in logs 9.833 6.967

AR(1), varying intercept 5.306 3.852

AR(1), varying intercept, signi�cant 5.461 4.067

AR(1), varying intercept, in logs 4.917 3.259

AR(1), varying intercept, in logs, signi�cant 4.893 3.249

AR(1), varying intercept, jumps 5.547 3.999

AR(1), varying intercept, jumps, signi�cant 5.719 4.267

AR(1), varying intercept, jumps, in logs 5.028 3.347

AR(1), varying intercept, jumps, in logs, signi�cant 4.983 3.325

ARMA, varying intercept 5.354 3.542

ARMA, varying intercept, signi�cant 5.252 3.428

ARMA, varying intercept, in logs 5.164 3.465

ARMA, varying intercept, in logs, signi�cant 5.228 3.505

ARMA, varying intercept, jumps 5.585 3.712

ARMA, varying intercept, jumps, signi�cant 5.659 3.809

ARMA, varying intercept, jumps, in logs 5.259 3.476

ARMA, varying intercept, jumps, in logs, signi�cant 5.375 3.605

Unobserved components model 7.923 5.942

Separable Models (24 time series)

AR(1) 6.536 4.641

AR(1), in logs 6.995 5.007

AR(1), jumps 6.459 4.583

AR(1), jumps, in logs 6.866 4.922

AR(1), varying intercept 4.212 2.769

AR(1), varying intercept, signi�cant 4.347 2.886
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Table 3: (continued)

AR(1), varying intercept, in logs 4.319 2.854

AR(1), varying intercept, in logs, signi�cant 4.476 2.979

AR(1), varying intercept, jumps 4.130 2.702

AR(1), varying intercept, jumps, signi�cant 4.197 2.752

AR(1), varying intercept, jumps, in logs 4.211 2.775

AR(1), varying intercept, jumps, in logs, signi�cant 4.266 2.813

ARMA, varying intercept 4.527 2.840

ARMA, varying intercept, signi�cant 4.447 2.784

ARMA, varying intercept, in logs 4.288 2.733

ARMA, varying intercept, in logs, signi�cant 4.266 2.702

ARMA, varying intercept, jumps 4.210 2.731

ARMA, varying intercept, jumps, signi�cant 4.139 2.671

ARMA, varying intercept, jumps, in logs 4.194 2.703

ARMA, varying intercept, jumps, in logs, signi�cant 4.185 2.688

Crossed ARMA, varying intercept 4.231 2.697

Crossed ARMA, varying intercept, signi�cant 4.138 2.641

Crossed ARMA, varying intercept, in logs 4.049 2.617

Crossed ARMA, varying intercept, in logs, signi�cant 4.158 2.670

Crossed ARMA, varying intercept, jumps 4.065 2.601

Crossed ARMA, varying intercept, jumps, signi�cant 3.993 2.568

Crossed ARMA, varying intercept, jumps, in logs 4.019 2.619

Crossed ARMA, varying intercept, jumps, in logs, signi�cant 4.037 2.627

Unobserved components model 5.837 3.734
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Table 4: Diebold-Mariano test statistics for equal forecasting accu-

racy. Restricted crossed ARMA with varying intercept and jumps

against best forecasting models of all other classes. � (��) [���] indi-

cates rejection of the null hypothesis of equal forecasting accuracy

at 10% (5%) [1%] signi�cance level.

Model class DM (RMSE) DM (MAE)

Global Models (single time series)

AR(1) -5.403��� -4.108���

AR(1), varying intercept -0.900��� -0.682���

ARMA, varying intercept -1.235��� -0.860���

Unobserved components model -3.930��� -3.374���

Separable Models (24 time series)

AR(1) -2.560��� -2.080���

AR(1), varying intercept -0.211��� -0.183���

Hourly ARMA, varying intercept -0.157��� -0.086���

Unobserved components model -1.843��� -1.167���
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Figure 2: Average hourly LPX electricity spot prices across the entire sample
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