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Abstract

We observe that the imitation dynamics of Cubitt and Sugden (CS) is the same as
the Replicator Dynamics for a certain class of games. Known results for such games
then permit a more complete analysis of the CS imitation process, containing their
results as special cases, and extending them considerably. We also offer a comment on
the special role of “pure” prospects, and an as if interpretation of the CS process in
terms of payoff-guided imitation.
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1 Introduction

In a recent article, Cubitt and Sugden (1998) (henceforth CS) postulate an evolutionary
model where a population of agents adapt their behavior in a game against nature through
a process of imitation. For binary decisions, the outcome of the process is compatible with
preference relations of the type proposed by SSB utility theory and regret theory. For non-
binary decision problems among lotteries, CS define a Fishburn solution (following Fishburn
(1984)) as a population state in which the average behavior corresponds to a prospect that
is weakly better in terms of SSB preferences than each of the a priori available prospects.
They go on to show that such a Fishburn solution is a particular type of rest point of the
process, which is Lyapunov stable but not asymptotically stable in general.

The evolution of preferences is an important subject, and CS is a pioneering paper in
the sense that it provides a bridge between, first, the literature which extends the study of
static preferences beyond the von Neumann-Morgenstern framework, and, second, explicitly
dynamic evolutionary models. We write this note with the intention of better understanding
and illustrating CS from the point of view of “classical” evolutionary game theory.

In this spirit, we first observe that the process postulated by CS is formally identical to
the Replicator Dynamics (see e.g. Hofbauer and Sigmund (1998)) for a certain associated
zero-sum game. A Fishburn solution is the same as a Nash equilibrium of this game. Theo-
rems 1-3 in CS then follow immediately from standard results in evolutionary game theory.
Moreover, these results permit also a more complete analysis of the dynamics studied by
CS. In fact, there are two qualitatively different cases, only one of which is covered in CS. In
the first case (covered by CS) we have orbits oscillating within closed invariant sets around
interior rest points, and it seems difficult to interpret these orbits in terms of preferences
(in fact, the interior rest points are both best and worst in terms of certain natural SSB-
preferences). In the second case, we have no interior rest points, but a flow away from
certain prospects in one face of the simplex towards certain other prospects in another face;
the attracting prospects are SSB-best and the repelling prospects are SSB-worst, so that
one might tentatively consider these SSB preferences as the “result of evolution.”

We also complement the analysis in CS and Fishburn (1984) to show that the Fishburn
solution π0 induced by the set of degenerate lotteries (“simple prospects”), is the essential
prediction of the process in the following sense. A Fishburn solution for a given set of lotteries
can only be in the interior of the convex hull spanned by those lotteries if it coincides with
π0. If π0 can not be spanned by the postulated lotteries, then necessarily the Fishburn
solution must be in the boundary of their convex hull.

Finally, we show that the imitation process postulated by CS, which is not guided by any
considerations of payoffs or preferences, is nevertheless behaviourally indistinguishable from
a process generated by a certain payoff-guided imitation rule (the proportional imitation
rule), for the associated zero-sum game. Thus, the agents in the CS model behave as if they
tried to maximize some sort of expected utility, after all.1

Section 2 presents the model of CS and defines the associated zero-sum game. Section 3
contains a fairly complete analysis of the CS dynamics, using known results from evolution-
ary game theory. Section 4 presents our results on simple prospects. Section 5 proposes our
alternative interpretation in terms of payoff-guided imitation.

1We offer this section with apologies to CS: even without discussing methodological issues, it is pretty
clear that such an as if explanation of observed behavior is not what they have in mind.
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2 The Cubitt-Sugden Model and the Fishburn Solution

A (large) population of individuals play a game against nature with a finite set of conse-
quences X = {x1, ..., xz}; the set of probability distributions on X is given by the (z − 1)
- dimensional simplex ∆z = {q = (q1, ..., qz) | 0 ≤ qj ≤ 1 ∀ j and

∑z
j=1 qj = 1} (this set

is called P in CS). Elements of ∆z are called prospects. A decision problem is a set of n
different prospects D = {p1, ..., pn}. We denote by P the stochastic (n × z)-matrix whose
rows are the prospects in D.

Agents are able to compare their performance with that of other, randomly sampled
agents. Suppose that an agent (the reviewer) using prospect p who has just obtained con-
sequence xj samples an agent (the comparator) using prospect q who has obtained conse-
quence xk. The probability that this reviewer switches to the prospect of the comparator is
assumed to depend only on observed consequences, and is named 1−M(xj , xk). We define
the index of attractiveness of xj relative to xk by ψjk = ψ(xj , xk) = M(xj , xk)−M(xk, xj),
and note that the (z × z)-matrix Ψ := [ψjk)]zj,k=1 is skew-symmetric, i.e. ψjk = −ψkj . The
bilinear extension of ψ to general prospects p, q ∈ ∆z, is given by

ψ(p, q) =
∑

j

∑
k

pjqkψjk = pΨq′ (1)

The skew-symmetric bilinear (SSB) function ψ can be thought of as representing (non-
transitive) preferences on ∆z, namely, a prospect p ∈ ∆z is (weakly) SSB-better than
q ∈ ∆z iff ψ(q, p) ≤ 0.

CS postulate the following dynamics, justified on evolutionary grounds as a model of
imitation giving rise to an “analogue of the replicator equation” (CS, p.768).2 Given the
decision problem D = {p1, ..., pn}, let πi be the proportion of agents in the population
choosing prospect pi. Agents sample other agents as above and switch or not according
to M , in such a way that the net flow of individuals switching from ph to pi is given by
ψ(pi, ph). The (continuous-time) dynamics on the population state π = (π1, ..., πn) ∈ ∆n is

dπi/dt = πi

∑
h

πh · ψ(pi, ph) = πiψ(pi, g(π)) (i = 1, ..., n) (2)

where g(π) =
∑

h πhph = πP ∈ ∆z is the population average of chosen prospects.3

CS define a Fishburn solution for the decision problem D as a population state π∗ such
that

ψ(pi, g(π∗)) ≤ 0 ∀i = 1, . . . n (3)

In terms of SSB-preferences, the prospect p∗ = g(π∗) is a best element in the convex hull
co(D) of D. We may call co(D) the set of feasible prospects4 and shall also call a prospect
p∗ a “Fishburn solution” for D if it is an SSB-best element in co(D).

It was already observed by Kreweras (1961) that an SSB-best prospect is formally equiv-
alent to an optimal strategy in a certain symmetric zero-sum game.5 More precisely, let

2The interpretation of the Replicator Dynamics as a model of imitation is well-known. See e.g.
Björnerstedt and Weibull (1996) for details. See also Section 5.

3Given their derivation of Ψ, CS restrict ψjk to lie in the interval [−1, 1]. This is not necessary if a
continuous-time dynamics is built, since here the quantities ψjk refer to an instantaneous flow and can be
interpreted as densities. The analysis therefore holds for an arbitrary (skew-symmetric) matrix Ψ.

4In the sense that these prospects can be realized as population averages, not necessarily in the sense
that such “average prospects” are directly available to the individual agents.

5“Le problème est formellement identique à celui du duel symétrique ..” (p. 29). Note also that a
symmetric zero-sum game has an antisymmetric (or skew-symmetric) payoff matrix, and that the value of
such a game is always zero.
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us define the auxiliary game G = G(p1, ..., pn) as the zero-sum game with (pure) strategy
space D and payoff matrix A := PΨP ′. This game is symmetric and hence has value zero
because Ψ (and hence A) is skew-symmetric. Profiles π = (π1, ..., πn) ∈ ∆n correspond to
mixed strategies for this game. The payoff from a pure strategy pi against strategy ph is
aih = piΨp′h = ψ(pi, ph) and the payoff from pi against a mixed strategy π ∈ ∆n is∑

h

aihπh = (Aπ′)i = piΨP ′π′ = ψ(pi, g(π)) (4)

The following observation is essentially due to Kreweras (1961) (p. 29); for completeness’
sake, we also give a short proof.

Proposition 2.1. A population profile π∗ is a Fishburn solution for the decision problem
D if and only if (π∗, π∗) is a Nash equilibrium of the game G.

Proof. By (4), a profile π∗ is a Nash equilibrium of the game G iff

ψ(pi, g(π∗)) ≤ 0 = ψ(g(π∗), g(π∗)) ≤ ψ(g(π∗), pk) ∀pi, pk ∈ D (5)

The left inequality in (5) says that π∗ is a Fishburn solution. Conversely, if π∗ satisfies the
left inequality in (5), then it also satisfies the right inequality, by skew-symmetry, i.e. it is a
Nash equilibrium. �

In view of this proposition, existence of a Fishburn solution (Theorem 1 in CS) follows
immediately from the standard fixed-point argument for the existence of Nash equilibria.6

As noted above, a Fishburn solution p∗ = g(π∗) corresponds to a best element (in terms of
SSB preferences) in the set of feasible prospects. Note that existence of a worst element also
follows from the same argument (consider the game G− with payoff matrix −A). Moreover,
if π∗ is interior, it satisfies (5) with equality everywhere and g(π∗) is both a best and a worst
element with respect to the SSB preferences described by ψ.

3 Dynamics

The Replicator Dynamics is the most important dynamic model arising from evolutionary
game theory. It is derived from a Darwinian model where strategies that fare better than
average (given the population profile) thrive at the expense of others (see e.g. Hofbauer and
Sigmund (1998) or Weibull (1995)). Formally, for the game G defined above, the Replicator
Dynamics is given by

dπi/dt = πi [ψ(pi, g(π))− π] ∀i = 1, . . . n (6)

where π = ψ(g(π), g(π)) = πAπ′ is the average payoff in the population given profile π.
Since the payoff matrix A is skew-symmetric, we have π = 0 for every profile π ∈ ∆n.
Hence, the CS dynamics (2) is not only analogous but actually identical to the Replicator
Dynamics (6) for the zero-sum game G.

The behaviour of the Replicator Dynamics for zero-sum games is well-known.7 We
summarize here some of the results and refer to Akin and Losert (1984) (henceforth AL) for

6Equivalently (in the present context), both Kreweras (1961) and Fishburn (1984) refer to von-Neumann’s
Minimax Theorem.

7See e.g. Hofbauer and Sigmund (1998, pp. 74 and 127) or Hofbauer and Sigmund (1988, pp. 129 and
275); the original analysis is due to Schuster, Sigmund, Hofbauer, and Wolff (1981); see also Akin and Losert
(1984)).
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the proofs. Consider the dynamics (2) on the simplex ∆n. The solution can be described
by a smooth map Φ : ∆n × R → ∆n, called the flow of the system (AL p. 232). For given
π ∈ ∆n, the function t → Φ(π, t) describes the solution path with initial point π. In order
to describe the asymptotic behavior of such paths, define the following three sets:

E0 = {π ∈ ∆n | ψ(pi, g(π)) = 0 ∀i}
E+ = {π ∈ ∆n | ψ(pi, g(π)) ≥ 0 ∀i, with at least one strict inequality}
E− = {π ∈ ∆n | ψ(pi, g(π)) ≤ 0 ∀i, with at least one strict inequality}

The sets E0, E+, and E− are convex subsets of ∆n consisting of rest points of the dynam-
ics. Moreover, exactly one of two cases holds. In the “Interior Equilibrium Case,” E0 is
nonempty, and both E+ and E− are empty. In the “No Interior Equilibrium Case,” E0 is
empty and both E+ and E− are nonempty (AL, Th. 2). Note that the elements of E0

⋃
E−

are Fishburn solutions, i.e., Nash equilibria of the game G with payoff matrix A. Symmet-
rically, the elements of E0

⋃
E+ are Nash equilibria of the game G− with payoff matrix

−A, i.e., the game where all payoffs (all indices of attractiveness) are reversed. Of course,
the Replicator Dynamics for G− is also the “reverse” of the dynamic (2) (formally, its time
reversal).

Next define the Lyapunov function Iq(p) = −
∑

i∈supp(q) qi log(pi/qi) for p, q ∈ ∆n with
supp(q) ⊂ supp(p). This function (known as relative entropy) is strictly convex in p and
achieves a unique minimum Iq(p) = 0 at p = q. Then, if Φ(π, t) is the path through any
interior point π ∈ ∆n, AL (Thms. 4 and 5) show the following: Ie[Φ(π, t)] is constant in
t for e ∈ E0, and strictly increasing (resp. strictly decreasing) in t for e ∈ E+ (resp. for
e ∈ E−). Theorems 2 and 3 in CS follow immediately from these results.8

In the interior equilibrium case (AL, Th. 4), the elements of E0 are exactly the equilibria
of both G and G−. In particular, they are rest points of both the Replicator Dynamics (2)
and its reverse. Not surprisingly, for both dynamics these points are Lyapunov stable but
not asymptotically stable, with the dynamics leading neither towards them nor away from
them, but orbiting around in closed invariant sets which contain no equilibria (a phenomenon
called “neutral stability” in evolutionary game theory).9 It seems difficult to interpret these
equilibria either evolutionarily or normatively, since they are equally compatible with both
the original CS model of imitation based on the index of attractiveness ψ (or, if we wish,
SSB “preferences” described by ψ) and also with the “reverse” model based on −ψ. We
agree with CS that in this case their model of imitation does not yield an outcome that
could meaningfully be interpreted in terms of preferences.

In the no interior equilibrium case (typical for n even), not considered in CS, the dy-
namics is rather different (AL, Th. 5). The elements of E− are precisely the Nash equilibria
of the game G, i.e. the Fishburn solutions (SSB-best elements). Call a strategy pi good
if ψ(pi, g(π)) ≥ 0 ∀π ∈ E−. Symmetrically, the elements of E+ are precisely the Nash
equilibria of the game G−

0 , i.e. the SSB-worst elements. Call a strategy (or prospect) pi bad

8For the original result (in the framework of bimatrix games), see the main Theorem of Section 8 in
Schuster, Sigmund, Hofbauer, and Wolff (1981). Incidentally, this Theorem uses the same Lyapunov func-
tions as CS (which could be traced back to Volterra), and also shows that, in the interior equilibrium case,
time averages along any interior orbit converge to the equilibrium set. If orbits are closed, time averages
must then be numerically equal to the equilibrium they “enclose.” This latter fact is mentioned in Footnote
9 of CS, for a specific example. Actually, it turns out to be a general property of the Replicator Dynamics
(see Hofbauer and Sigmund (1998, Th. 7.6.4)).

9Although the typical text-book example is that of closed orbits, in general the actual shape of the
orbits can be extremely complex. Sato, Akiyama, and Farmer (2002) show that, in a 3× 3 zero-sum game,
the two-population Replicator Dynamics presents chaotic behavior. Such situations could also arise in the
one-population case for higher dimensions.
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if ψ(pi, g(π)) ≤ 0 ∀π ∈ E+. Denote by ∆− (resp. ∆+) the face of the simplex ∆n spanned
by all good (resp. all bad) strategies.10 Take any interior point π ∈ ∆n, and consider the
path Φ(π, t) of the dynamics passing through π (π is not a rest point because E0 is empty).
Then, the ω-limits of this path are contained in ∆− and the α-limits are contained in ∆+. In
other words, all interior paths lead away from the bad prospects in ∆+ and towards the good
prospects in ∆−. Moreover, the dynamics within the “attracting face” ∆− can be analyzed
considering the game restricted to the pure strategies which span the face. Eventually, we
will end either in an interior equilibrium situation restricted to a certain face of the simplex,
or in a corner of the original simplex.

4 Simple Fishburn Solutions

Let us now consider the decision problem D0 = {x1, ..., xz} where xk stands for the prospect
which gives consequence xk with certainty. Such prospects will be called simple prospects.
Obviously, in this case, P = I and hence g(π) = πP = π. A Fishburn solution p0 =
g(π0) = π0 ∈ ∆z for D0 is called a simple Fishburn solution. We want to show that, for a
(nonsimple) decision problem D = {p1, ..., pn} in the sense of CS, there are, qualitatively,
only two relevant situations. Either p1, ..., pn can span a simple solution p0, and then p0 is a
Fishburn solution for D too, or they can’t, and then there can not be any interior Fishburn
solution: the Fishburn solution for D must prescribe not to use some of the prospects.

We interpret this result as follows. Suppose, for simplicity, that p0 is interior and unique.
Either it is also a Fishburn solution of the decision problem D, or the latter solution is in
the boundary of co(D), pointing to an evolutionary pressure to introduce new prospects,
replacing old ones. Whenever (maybe through mutation or experimentation) a new prospect
is introduced in D which allows to span p0 = π0, this will become the Fishburn solution of
D. Hence, in a sense, there is not much generality gained by considering a decision problem
D restricted to certain prospects p1, ..., pn instead of the unrestricted problem D0 containing
all pure strategies x1, ..., xz.11

We call a decision problem D = {p1, ..., pn} nondegenerate if the matrix P has full rank
(equal to z).

Proposition 4.1. Consider a decision problem D = {p1, ..., pn}.
(a) Suppose a simple Fishburn Solution p0 belongs to the convex hull co(D) of p1, ..., pn.

Then, p0 is also a Fishburn solution for D.
(b) Suppose that the decision problem D is non-degenerate and admits an interior Fish-

burn solution p∗ = g(π∗) with π∗ >> 0. Then, p∗ is a simple Fishburn Solution.

Proof. (a) By assumption, p0 ∈ co(D), and since it is an SSB-best element in the whole
simplex ∆z, it is a fortiori an SSB-best element in the subset co(D).

(b) Let p = g(π) be a Fishburn solution for D. This means that ψ(pi, g(π)) ≤ 0 ∀ i. In
fact, if π is interior (i.e. πi > 0 for all i), we must have

ψ(pi, g(π)) = 0 ∀ i

because the average payoff is zero,
∑

i πi · ψ(pi, g(π)) = 0. By (4), the equations above can
be written in matrix form as

P ·Ψ · P ′ · π′ = 0
10Of course, by the definition of E− resp. E+ we must actually have equality in the equations defining

good resp. bad prospects. In degenerate cases, ∆+ and ∆− may not be disjoint.
11This, of course, is a different view of the model than the one given by CS. Under this view, it is arguable

whether the model describes “evolution of preferences” or merely adds to the literature on the evolutionary
foundations of Nash equilibria, in the spirit of Björnerstedt and Weibull (1996).
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Since P has full rank, it follows that Ψ · P ′ · π′ = 0. That is, p = g(π) = π · P is a Fishburn
solution for D0 = {x1, ..., xz}. �

Proposition 4.1 relates the Fishburn solution p0 of the “unrestricted” problem D0 to
the Fishburn solution of the “restricted” problem D, with given prospects {p1, . . . pn}, and
says, roughly, that these solutions are the same provided p0 ∈ co(D). There is an analogous
result on evolutionarily stable strategies (ESS) in evolutionary game theory. Here, the xk

are “pure strategies,” and the pi are “phenotypes.” If some p∗ is an ESS in the unrestricted
game with all pure strategies, then it is also stable (w.r.t. the replicator dynamics) in the
game restricted to the phenotypes {p1, . . . pn}, provided, again, p∗ ∈ co({p1, . . . pn}) (see
Hofbauer and Sigmund (1998, p. 73)).

5 An Alternative Interpretation

CS emphasize that in their model of social evolution they take the concept of imitation as
primitive; “there is no independent concept of preference or utility” (p. 763). The agents’
behaviour is governed by “indices of attractiveness” ψij which are not derived from any
idea of payoff associated with the various prospects. On the contrary, the objective is
to “investigate whether this process tends to select behaviour which maximizes something
which we may interpret as preference satisfaction.”

The conclusion of CS in this regard is rather skeptical; we wish to point out here that
it is indeed possible to give such an interpretation, in the following sense: for any (skew-
symmetric) “imitation matrix” Ψ and any decision problem D = {p1, . . . pn} the associated
CS dynamic (2) on the population state π ∈ ∆n is behaviourally indistinguishable from
the dynamics generated by a conventional (i.e. payoff-guided) imitation rule in our auxil-
iary game G, viz. the proportional rule12 “imitate prospects that perform better, with a
probability proportional to the expected payoff gain.”

Thus, even if the agents imitate each other blindly, so to speak, according to arbitrary
indices ψij , they behave as if they tried to maximize ”payoff”, by following a certain bound-
edly rational imitation rule in some suitably defined zero-sum game. This follows from our
observation in Section 2 that the CS dynamic (2) is the same as the replicator dynamic (6)
for the auxiliary game G, and from the known fact that the proportional imitation rule gives
rise to the replicator dynamic (Hofbauer and Sigmund (1998, p. 87)).

More precisely, let A = PΨP ′ be the payoff matrix of G, and π = (π1, . . . πn) ∈ ∆n be
a population state (strategy). Define the (state-dependent) “utility” uπ(pi) of a prospect
pi as the expected “payoff” from this prospect in state π: uπ(pi) = (Aπ′)i = ψ(pi, g(π)).
Then, under proportional imitation, the net switching rate from ph to pi is uπ(pi)− uπ(ph)
and we obtain the dynamic

dπi/dt = πi

∑
h

πh[uπ(pi)− uπ(ph)] (7)

or (remember that the average payoff
∑

h πhuπ(ph) = π̄ = 0),

dπi/dt = πiuπ(pi) = πiψ(pi, g(π)) (8)

which is the same as (2).
The “preferences” represented by the “utility function” uπ give a complete transitive

ordering over all prospects (even satisfying the expected utility principle of von Neumann -

12Schlag (1998) studies this rule in games against multi-armed bandits.
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Morgenstern) for every population state π, but as π = π(t) changes over time, so do these
preferences. However, if the process does converge to a rest point π∗ a positive answer can be
given to the question quoted at the beginning of this section: in this case, the CS imitation
process selects a stable transitive preference order represented by the vNM-utility function
uπ∗ .
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