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Abstract

We consider four models of evolution and
learning in games which rely on perturbations of
payoffs, including stochastic fictitious play.  In all
cases, we establish global stability results for zero-
sum games, games with an interior ESS, potential
games, and supermodular games.
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1.  Introduction

A common theme of many recent models of evolution and learning in games is
the abandonment of the assumption that players always evaluate payoffs using the
same fixed payoff matrix.  Some stochastic models of learning (Fudenberg and Kreps
(1993), Kaniovski and Young (1995), Benaïm and Hirsch (1999a)) and evolution
(Blume (1993, 1997), Young (1998)) consider players whose payoffs are perturbed by
random shocks which are i.i.d. over time.  Other deterministic models of learning
(Ellison and Fudenberg (2000)) and evolution (Ely and Sandholm (2000)) look at
populations of players with heterogenous preferences.  All of these papers can be
viewed as successors of the seminal work of Harsanyi (1973a), who introduced
random payoff perturbations as the basis for his model of the purification of mixed
equilibrium.
 In this paper, we consider the performance of these models in four important
classes of games:  zero sum games, games with an interior ESS, potential games, and
supermodular games.  For all combinations of models and games, we are able to
establish global convergence results.

Of all the models we analyze, the most thoroughly studied is stochastic fictitious
play.  Brown (1951) introduced standard fictitious play as a method of computing
Nash equilibria.  In fictitious play, each player chooses best responses to his beliefs
about his opponents, which are given by the time average of past play.  Convergence
of beliefs to Nash equilibrium has been established for two-player zero sum games
(Robinson (1951)), 2 x 2 games (Miyasawa (1961)), potential games (Monderer and
Shapley (1996a)), games with an interior ESS (Hofbauer (1995b)), and certain
supermodular games (Milgrom and Roberts (1991), Krishna (1992)).1  However,
even when players' beliefs converge to Nash equilibrium, their actual behavior may
not.  In particular, since best responses are generically pure, behavior cannot
converge to the mixed equilibrium of a game.  For this reason, the appropriateness
of fictitious play as a model of learning mixed equilibrium has been called into
question.
 To contend with this, Fudenberg and Kreps (1993) introduced stochastic fictitious
play.  In this model, each player's payoffs are perturbed in each period by shocks a la

Harsanyi (1973a).  As a consequence, each player's anticipated behavior in each
period is a genuine mixed strategy.  Fudenberg and Kreps (1993), Kaniovski and
                                                
1 Examples in which beliefs fail to converge have been offered by Shapley (1964), Foster and Young
(1998), and Krishna and Sjöström (1998).
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Young (1995), and Benaïm and Hirsch (1999a) are therefore able to extend
Miyasawa's (1961) result for 2 x 2 games to stochastic fictitious play, proving not only
convergence of beliefs to equilibrium, but also convergence of behavior.  Benaïm
and Hirsch (1999a) also establish convergence in certain p-player, two strategy games.
However, because of the complications created by the random payoff perturbations,
results for other classes of games have proved difficult to obtain.  In particular, very
little is known about convergence in games with more than two strategies per
player.

In this paper, we establish the convergence of stochastic fictitious play in all of
the classes of games noted above in which standard fictitious play is known to
converge.  We also prove convergence for these games in three other models:  the
stochastic evolution model of Blume (1993, 1997) and Young (1998), Ellison and
Fudenberg's (2000) model of population fictitious play, and Ely and Sandholm's
(2000) model of evolution with diverse preferences.  While general techniques have
been developed for studying these other three classes of models, few guarantees of
convergence have been established for specific classes of games.2  The present paper
fills this gap.
 The four classes of models listed above are defined using four different
mathematical structures:  the stochastic models use Markov chains with decreasing
and fixed step sizes, while the deterministic models rely on ordinary and functional
differential equations.  Nevertheless, behavior in all four models can be
characterized in terms of solutions to a single ordinary differential equation which
captures the models' expected or aggregate motion.  Because of complications
created by the payoff perturbations, this differential equation is difficult to analyze
unless the number of strategies in the underlying game is small.

The crucial differential equation is a smooth version of the best response
dynamics.  This perturbed dynamics is obtained by introducing a stochastic

perturbation of the payoffs to each pure strategy.  The first step in our analysis
establishes an alternate representation of the perturbed dynamics which utilizes a
non-linear, deterministic perturbation of the payoffs to each mixed strategy.3

 While the perturbed best response dynamics can be quite difficult to analyze
when presented in their original form, they often become easier to study when
                                                
2 We know of two exceptions for the stochastic evolution model:  results of Blume (1993, 1997) and
Young (1998) for potential games, and results of Benaïm and Hirsch (1999b) for certain p-player, two
strategy games.
3 Deterministic payoff perturbations were first considered by Harsanyi (1973b), while the
corresponding dynamics were introduced by Fudenberg and Levine (1998).
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expressed in terms of deterministic perturbations.  For zero sum games, games with
an interior ESS, and potential games, Hofbauer (2000) and Hofbauer and Hopkins
(2000) have constructed Lyapunov functions for the deterministically perturbed
dynamics.  For supermodular games, we can establish that the perturbed dynamics
form a strongly monotone  dynamical system (Hirsch (1988)).  These results enable
us to establish convergence of the perturbed dynamics to an equilibrium from
almost every initial condition.  Moreover, these results can be used to characterize
the chain recurrent states (Conley (1978)) of the perturbed dynamics in all four
classes of games.4  This inclusive notion of recurrence is critical to understanding
the long run behavior of stochastic fictitious play.
 Recall that the perturbed best response dynamics arise as a description of expected
or aggregate motion in more complex evolution and learning models.  Fortunately,
techniques from the theories of stochastic approximation, convergence of Markov
processes, and functional differential equations can be used to show that in all of the
models in question, an understanding of expected or aggregate motion is nearly
enough to determine limit behavior.  By combining these techniques with the
representation theorem and the analyses of the perturbed dynamics, we are able to
obtain a variety of strong convergence results.

Section 2 describes the perturbed best response dynamics for a single population
model, and provides its stochastic and deterministic derivations.  Section 3 uses the
latter derivation to characterize these dynamics in four classes of games.  Sections 4
through 7 establish stability results for four models of evolution and learning.
Section 8 extends these results to multipopulation settings.  Section 9 concludes.
Proofs omitted from the text can be found in the Appendix.

2.  The Perturbed Best Response Dynamics

We first consider players who are paired to play a two-player, n  strategy
symmetric game.  Let A ∈      R

n n×  denote the payoff matrix for such a game, so that Aij

= ei·Aej is the payoff received by a player who plays strategy i against an opponent
who plays strategy j, while y·Ax is the expected payoff of mixed strategy y against

                                                
4 The chain recurrent states of a deterministic flow are those states  which can arise in the long run i f
the flow is subjected to small shocks which occur at isolated moments in time.  See Section 3 for a formal
definition.
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mixed strategy x.  Let ∆ = {x ∈     R+
n :  

  
xjj∑  = 1} denote the simplex, which represents

both the set of mixed strategies and the set of strategy distributions.
Traditional game theoretic analyses focus on best responses.  Here, the best

response correspondence B: ∆ ⇒ ∆ is defined by

B(x) = 
    
arg max

y
y Ax

∈
⋅

∆
.

A (symmetric) Nash equilibrium is a fixed point of B:  x* ∈  B(x*).  The best response
correspondence is also used to define the best response dynamics (Gilboa and Matsui
(1991)):

(BR)     ̇x  ∈  B(x) – x.

Under these dynamics, the strategy distribution x always moves in the direction of a
current best response.5

 As we shall see, behavior in a number of recent models of evolution and
learning in games can be characterized in terms of smoothed versions of the best
response dynamics.  We express these perturbed best response dynamics as

(P)     ̇x  =     ̃B(x) – x,

where the perturbed best response function     ̃B : ∆ → ∆ is a smooth approximation of
the best response correspondence.  Our analysis relies on the fact that the function     ̃B
can be derived using two distinct approaches.

2.1  The Stochastic Derivation of     ̃B

 The first derivation of the perturbed best response function is obtained by
stochastically perturbing the payoffs to each pure strategy, an approach pioneered by
Harsanyi (1973a).  Suppose that when playing strategy i against an opponent playing
strategy j, a player receives a payoff of Aij + bi.  Here, Aij is the appropriate entry from
the player's payoff matrix, while bi represents a random payoff term.  The random
variables bi are i.i.d. with some fixed distribution function F whose density function

                                                
5 Since B is set valued, equation (BR) may admit multiple solution trajectories from a single initial
condition – see Hofbauer (1995b).
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f is strictly positive and bounded.  We define the perturbed best response function     ̃B :
∆ → ∆ by letting     B̃i (x) equal the probability that strategy i is optimal:

    B̃i (x) ≡ P(argmaxj (Ax)j + bj = i). (1)

2.2  The Deterministic Derivation of     ̃B

 One can also define a perturbed best response function by deterministically
perturbing the payoffs to each mixed strategy.  Harsanyi (1973b) introduced this sort
of perturbation in a study of the number of Nash equilibria in generic games,
augmenting the payoffs to each mixed strategy y ∈  int(∆) by     ln yii∑ .  Van Damme

(1991) uses such deterministic perturbations to represent control costs, and
investigates the connections between these costs and refinements of Nash
equilibrium.  More recently, Fudenberg and Levine (1998) consider deterministic
perturbations of payoffs in the context of learning in games.
   We suppose that a player who chooses mixed strategy y against mixed strategy x
receives a payoff of y·Ax – V(y).  The expression y·Ax is the usual random matching
payoff, while the function V(y) is a deterministic perturbation which depends
nonlinearly on the mixed strategy the player chooses.  We call the perturbation V :
int(∆) →  R admissible if     D

2V(y) is positive definite on       R0
n  = {z ∈      R

n :  z·1 = 0} for all y,
and     ∇V y( )  approaches infinity as y approaches the boundary of ∆.  Any admissible

perturbation V also defines a perturbed best response function, namely

     ̃B(x) = 
    
arg max ( )

int( )y
y Ax V y

∈
⋅ −( )

∆
. (2)

2.3  The Characterization Theorem

 Theorem 2.1 is fundamental to much of the analysis that follows.  It shows that
any perturbed best response function defined using stochastic perturbations of
payoffs can be represented in terms of an appropriate deterministic perturbation.

Theorem 2.1:  Fix the bias distribution F.  Then the function     ̃B  defined in equation

(1) satisfies equation (2) for some admissible deterministic perturbation V.

To prove Theorem 2.1, it is useful to express the dynamics (BR) and (P) in a
somewhat different way.  Notice that in defining the best response B(x) and the
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perturbed best response     ̃B(x), the strategy distribution x is only used to compute the
payoff vector Ax, which in turn is used to determine choice probabilities.  We can
therefore decompose the dynamics (BR) and (P) as follows:

(BR')     ̇x  ∈  M(Ax) – x;
(P')     ̇x  = C(Ax) – x.

Here, M(a) = argmaxy∈ ∆ y·a denotes the maximizer correspondence; the choice

probability function C:     R
n  → int(∆) is a perturbed version of M.  Theorem 2.1

follows immediately from this decomposition and Theorem 2.2.

Theorem 2.2:  Fix the bias distribution F, and define the choice probability function C
by

Ci(a) ≡ P(argmaxj aj + bj = i). (1')

Then for some admissible disturbance V,

C(a) = 
    
arg max ( )

int( )y
y a V y

∈
⋅ −( )

∆
(2')

The proof of this result proceeds as follows.  First, we establish that the
derivative matrix DC is symmetric and has negative off-diagonal terms. These
properties of DC imply that the vector field C admits a convex potential function,
which we call W .6  We show that the required disturbance function V  can be
obtained as the Legendre transform of W .  This choice of V  ensures that the
functions     ( )∇ −V 1  and   ∇W  ≡ C are identical (in a sense to be made precise below), so
that C satisfies the first order conditions for the maximization problem (2').

 Proof:  Fix a strategy i and a payoff vector a.  Since the density function for ai + bi

is f(t – ai), and since the distribution function for maxk≠i(ak + bk) is     F t akk i
( )−

≠∏ , a

convolution yields

Ci(a) = P(ai + bi ≥ maxk≠i(ak + bk)) (3)
= P(maxk≠i(ak + bk) – (ai + bi) ≤ 0)

                                                
6 These facts are well known in the literature on discrete choice theory:  see McFadden (1981) or
Anderson, de Palma, and Thisse (1992, Chapters 2 and 3).  However, the remainder of our argument
appears to be new.
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= 
    

f t a F t a dti k
k i

( ) ( )− −



≠

−∞

∞

∏∫ .

Hence, when i ≠ j,

  

∂
∂

C
a

i

j

(a) = 
    
− − − −






≠
−∞

∞

∏∫ f t a f t a F t a dti j k
k i j

( ) ( ) ( )
,

 < 0. (4)

(The fact that f is bounded allows us to differentiate under the integral sign, and also
ensures that the resulting integral is finite and depends continuously upon a.)
 Equations (3) and (4) have a number of important consequences.  First, equation
(4) implies that the derivative matrix DC(a) ∈      R

n n×  is symmetric:

  

∂
∂

C
a

i

j

(a) = 
  

∂
∂
C

a
j

i

(a)   for all i and j. (5)

Second, DC(a) is positive definite on       R0
n .  To see this, note that by equation (4), the

off-diagonal terms of DC(a) are strictly negative.  Moreover, since 
    

C ajj
( )∑  = 1 by

definition, it follows that 
    

∂
∂

C

aj

j

i
a( )∑  = 0 for each i, and so that

      
∂
∂

C
a

i

i
a( ) = 

    
−

≠
∑ ∂

∂
C

a
j i

j

i
a( ). (6)

Hence, equations (5) and (6) imply that

DC(a) 1 = 0. (7)

Moreover, if z is not proportional to 1, then if we let dij = 
    
∂
∂

C
a

i

j
a( ), equations (6), (5),

and (4) imply that

 z · DC(a) z = 
  

d z zij i j
ji

∑∑ (8)

= 
  

d z zij i j
i jj ≠
∑∑  – 

    
( )d zij j

i jj

2

≠
∑∑

= 
    

d z z zij i j j
i jj

( )−
≠
∑∑ 2

= 
    

d z z z zij i j i j
i jj

( )2 2 2− −
<
∑∑

= 
    

− −
<
∑∑ d z zij i j
i jj

( )2  > 0.
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These observations imply that C is one-to-one on       R0
n  and satisfies C(a + c1) = C(a) for

all c ∈  R:  shifting payoffs by a constant vector does not affect choice probabilities.
Finally, we make an observation about the range of the function C:  if

components aj, j ∈  J stay bounded while the remaining components approach
infinity, then Cj(a) → 0 for all j ∈  J:  that is, C(a) converges to a subface of the simplex.
It follows that there are points in the range of C arbitrarily close to each corner of the
simplex.

Since the derivative matrix DC(a) is symmetric, the vector field C admits a
potential function W:     R

n  → R (that is, a function which satisfies   ∇W  ≡ C).  Indeed,

W(a) = 
    
− − −



∏∫−∞

∞
F t a F t dtk

k

n( ) ( ) .

Equation (8) implies that W is strictly convex on       R0
n .

Now consider the restrictions of W  and C ≡   ∇W  to       R0
n , and let V: int(∆) → R

denote the Legendre transform of W:

V(y) = y·    C
−1(y) – W(    C

−1(y)). (9)

Since W :       R0
n  → R is strictly convex and C:       R0

n  → int(∆) takes values at points

arbitrarily close to each corner of the simplex, Theorem 26.5 of Rockafellar (1970)
implies that the following statements are true.  First, the domain of V  is convex and
equals the range of C, which therefore must be all of int(∆).  Second, V  and W  solve
the dual optimization problems

V(y) = 
      
max ( )
a n

y a W a
∈

⋅ −( )
R 0

 and     (10)

W(a) = 
    
max ( )

int( )y
y a V y

∈
⋅ −( )

∆
.     (11)

Third,   ∇V : int(∆) →       R0
n  is invertible, with     ( )∇ −V 1  ≡   ∇W  ≡ C  on       R0

n .7

  We conclude by establishing the required properties of V.  First, since     ( )∇ −V 1  ≡ C,
the observation three paragraphs above shows that     ∇V y( )  approaches infinity as y

approaches the boundary of ∆.  Furthermore, since C(  ∇V (y)) = y, differentiating

                                                
7  Since the domain of V is int(∆), the partial derivatives of V are not well defined.  Consequently,

  ∇V (y) is defined to be the unique vector in       R0
n  such that V(y +hz) = V(y) + (  ∇V (y)·z)h  + o(h) for a l l

unit length vectors z in       R0
n .
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yields DC(  ∇V (y))     D
2V(y) = I, where all expressions are interpreted as linear

operators on       R0
n .  Since DC(  ∇V (y)) is symmetric and positive definite on       R0

n  and
inverts     D

2V(y) on       R0
n , it follows that     D

2V(y) is also positive definite on       R0
n .

  Finally, solving for the maximizer

 y* = 
    
arg max ( )

int( )y
y a V y

∈
⋅ −( )

∆
,

we find that a =   ∇V (y*), and hence that y* = C(a).  This completes the proof of the
theorem.  ■

Theorem 2.2 is proved for cases where the stochastic derivation of C uses i.i.d.
perturbations to the payoffs to each of the n pure strategies.  The restriction to i.i.d.
perturbations is actually unnecessary:  this theorem and all of our subsequent results
continue to hold so long as the vector (b1, … , bn) of payoff disturbances admits a
strictly positive density on     R

n .
To summarize:  The perturbed dynamics (P) can be derived in two distinct ways.

In the models we study in Sections 4 through 7, perturbed dynamics arise which are
based on stochastic perturbations bi described by some distribution function F.

(P-F)     ̇xi  = P(argmaxj (Ax)j + bj = i) – x.

Alternatively, one can define perturbed dynamics using some deterministic
perturbation V.

 (P-V)     ̇x  = 
    
arg max ( )

int( )y
y Ax V y

∈
⋅ −( )

∆
 – x.

Theorem 2.1 shows that any dynamic of the form (P-F) can be represented as a
dynamic of the form (P-V).  In order to understand the former dynamics, it is
enough to characterize the latter.

2.4  Discussion

2.4.1  The Converse of Theorem 2.2

It is natural to ask whether the converse of Theorem 2.2 also holds:  that is,
whether the choice function derived from any admissible deterministic
perturbation of payoffs can be derived from an appropriate stochastic perturbation.
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Proposition 2.3, which considers the logarithmic deterministic perturbations studied
by Harsanyi (1973b), shows that such a reconstruction is not always possible.

Proposition 2.3:  When n ≥ 4, there is no stochastic perturbation of payoffs w h i c h

yields the same choice probabilities as the admissible deterministic perturbation V(y)
= –

    
ln yjj∑ .

 More generally, we have the following characterizations of the two types of
choice functions.  The Legendre transform argument in the proof of Theorem 2.2
shows that the choice function C:     R

n  → int(∆) can be derived from an admissible
deterministic payoff perturbation V  if and only if DC(a) is symmetric, positive
definite on       R0

n , and satisfies DC(a) 1 = 0.  On the other hand, the Williams-Daly-

Zachary Theorem (see McFadden (1981)) implies that the choice functions C which
can be derived from some stochastic payoff perturbation (b1, …, bn) with a strictly
positive density on     R

n  are characterized by these requirements, plus the additional
requirement that the partial derivatives of C satisfy

 
    
(– )

...
1 0

1

k
k

i

i i

C

a a
k

∂
∂ ∂

 > 0

for each k = 1, … , n – 1 and each set of k + 1 distinct indices {i0, i1, … , ik}.

2.4.2  The Logit Dynamics

A class of perturbed dynamics for which the connections above can be described
explicitly is the logit dynamics,

(L)     ̇x  = L(Ax) – x,

which are defined in terms of the logit choice function

Li(a) = 

    

exp( )
exp( )

ε
ε

−

−∑
1

1

a
a
i

j
j

.

We call the parameter ε ∈  (0, ∞) the noise level .  When ε approaches zero, L

approaches the maximizer correspondence M; when ε approaches infinity, L
approaches the uniform probability vector (    

1
n , … ,     

1
n ).
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 The logit choice function is widely used in microeconomics (Anderson, de
Palma, and Thisse (1992)), macroeconomics (Durlauf (1997)), and econometrics
(Amemiya (1981, 1986)), and has been studied in game theoretic contexts by Blume
(1993, 1997), McKelvey and Palfrey (1995), Chen, Friedman, and Thisse (1997),
Fudenberg and Levine (1998), Young (1998), and Anderson, Goeree, and Holt (1999).
We now present its stochastic and deterministic derivations.

Proposition 2.4:  (i) If the distribution function F is the  extreme value  distribution

F(b) = exp(–exp(–  ε −1b – γ)) (where γ is Euler's constant), then  P(argmaxj aj + bj = i) =
Li(a).

 (ii) If the deterministic disturbance V  is the entropy function V(y) = 
    
ε y yj jj

ln∑ ,

then      arg max ( )int( )y y a V y∈ ⋅ −( )∆  = L(a).

 Proof:  For a proof of part (i), see Anderson, de Palma, and Thisse (1992, Theorem
2.2).  Part (ii) is established by evaluating the first order conditions of the
maximization problem – see Rockafellar (1970, p. 148), Anderson, de Palma, and
Thisse (1992, Theorem 3.7), or Fudenberg and Levine (1998, p. 119).  ■

 To relate these results to Legendre transforms, observe that the potential
function associated with the logit choice function L is W (a) = 

    
ε εln( (exp( ))−∑ 1ajj

.  If

we restrict L to       R0
n , then it is invertible, with inverse     ( ) ( )L yi

−1  = 
    
ε (ln ( ln ))y yi n jj

− ∑1 .

Then computing the Legendre transform of W  using equation (9) yields V(y) =

    
ε y yj jj

ln∑ .  It can be checked that V  and W solve the dual maximization problems

(10) and (11), and that8   ∇V  ≡     L
−1 .

 In order to model boundedly rational choice in a simple fashion, Chen,
Friedman, and Thisse (1997) consider choice functions of the form

 Ci(a) = 

    

w a
w a

i

j
j

( )
( )∑

,    (12)

                                                
8 If one computes the gradient of V by taking its partial derivatives, one obtains     L−1 (y) plus a
constant vector.  However, since the domain of V is actually int(∆), we view     ∇V y( ) as a vector in       R0

n ,
which can be obtained from the vector of partial derivatives by subtracting this same constant vector.
Thus,     ∇V y( ) is equal to     L−1 (y ) .
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where the weighting function w: R → (0, ∞) is some increasing and differentiable
function of payoffs.  We conclude this section by noting that the only choice
function of this form which can be derived from either stochastic or deterministic
perturbations of payoffs is the logit choice function L.

Proposition 2.5:  Suppose that the choice function C satisfies condition (12) a n d

either condition (1') or condition (2').  Then C  ≡ L  for some noise level ε > 0.

3.  Analysis of the Perturbed Dynamics for Four Classes of Games

 Theorem 2.1 provides a representation of the perturbed dynamics (P-F) in terms
of a deterministic payoff perturbation.  We now use this representation to analyze
the perturbed dynamics arising in certain important classes of games.  In subsequent
sections, we use this analysis as a foundation for studying four models of evolution
and learning.

3.1  Preliminaries

3.1.1  Rest Points and Nash Equilibria

The main results of this section establish the stability of rest points of the
dynamics (P-F).  These rest points will ultimately constitute our predictions of play
in the evolution and learning models.  For these predictions to accord with standard
game theoretic analyses, the stable rest points should approximate Nash equilibria of
the underlying game.  The following result ensures that this is true whenever the
perturbations generating the dynamics (P-F) are sufficiently small.9

Theorem 3.1:  Fix a game A.  For each k  ∈  Z+, let   F
k  be a distribution function, a n d

let   x
k  be a rest point of (P-  F

k ) under this noise distribution.  Suppose the sequence

{  F
k } converges weakly to a mass point at zero.  If the sequence {  x

k } converges to x*,
then x* is a Nash equilibrium of A.

                                                
9  To apply Theorem 3.1 to the logit dynamics (L), we observe that the extreme value distribution F(t)
= exp(–exp(–ε–1t – γ)) has mean zero and variance ε2π2/6 (Anderson et. al . (1992, p. 40)).  Hence, rest
points of (L) converge to Nash equilibria as the noise level ε approaches zero.
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3.1.2  ω-Limit Sets and Chain Recurrence

 In order to state our stability results, we must introduce two notions of recurrent
behavior for deterministic flows:  ω-limit sets and chain recurrence.  The proofs of
our results also require other notions of recurrence; a full account is provided in the
Appendix.
 Let φ: R+ × ∆ → ∆ denote the (semi-) flow  for the dynamics (P):  φ(t, x) is the
position at time t of the solution to (P) which begins at x.  The set of rest points of (P)
can be defined as RP = {x ∈  ∆:  φ(t, x) = x for all t ≥ 0} = {x ∈  ∆:     ̃ ( )B x  = x}.
 The ω-limit set of the state x, ω(x) = {z ∈  X:  limk→∞φ(tk, x) = z for some tk → ∞}, is
the set of limit points of the solution trajectory starting at x.  We let Ω = 

      ω( )x
x∈∆U

denote the union of the ω-limit sets.  Clearly, RP ⊂ Ω.
 Knowledge of Ω is generally not sufficient to characterize limit behavior under
stochastic fictitious play.  To accomplish this, we require a more general notion of
recurrent behavior for deterministic flows, one which includes the states which can
arise in the long run if the flow is subject to small shocks occurring at isolated points
in time.  This form of robustness is captured by chain recurrence, a notion of
recurrence due to Conley (1978).
 We call a sequence {x = x0, x1, … , xn = y} an ε-chain from x to y if for each i ∈  {1, … ,
n}, there is a ti ≥ 1 such that     φ( , )t x xi i i− −1  < ε.  The ε-chain specifies n  + 1 segments

of solution trajectories to (P).  The first begins at x, and the last is simply the point y;
the jumps between the ends and beginnings of consecutive segments are never
longer than ε.   We call the state x chain recurrent if there is an ε-chain from x to
itself for all ε > 0, and we let CR denote the set of chain recurrent points.  The set CR

contains all rest points, periodic orbits, quasiperiodic motions, and chaotic orbits of
the flow.  It can be shown that Ω ⊂ CR, and that in general this inclusion is strict.10

See the Appendix for further discussion of these notions of recurrence.

3.2  Zero Sum Games and Games with an Interior ESS

 We now provide stability results for the perturbed best response dynamics (P) for
a number of classes of games.  As usual, any result which holds for the game A  also
holds for the game A + 1  ′v , v ∈      R

n , since adding the vector   ′v  to each row of A  does
                                                
10  For a simple example, consider a flow on a circle which moves clockwise everywhere except at a
finite number of rest points.  Then while the rest points are the only ω-limit points, all points on the
circle are chain recurrent.
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not affect players' incentives.  More notably, our convergence results which hold for
A also hold for A + w  ′1 , which is obtained by adding the vector w to each column of
A .11  Of course, the latter transformation alters the sets of Nash equilibria and rest
points of (P), while the former one does not.
 We now turn to the classes of games to be studied.  In the current symmetric
setting, A is a zero sum game if the matrix A is skew-symmetric (  A

T  = –A).  In such
games, the sum of the payoffs received by the players in any match is zero.

The notion of an evolutionarily stable strategy (Maynard Smith and Price (1973))
is the original solution concept of evolutionary game theory.  A mixed strategy x*
∈ ∆ is an ESS if x*·Ax > x·Ax for all mixed strategies x in a neighborhood of x*.  A n
ESS is a mixed strategy with the property that after any invasion by a mutant mixed
strategy, the ESS performs better than the mutant in the post-entry population.
 Hofbauer (2000) studies global properties of the perturbed best response dynamics
for these classes of games.12  He defines the dynamics (P-V) for some deterministic
perturbation of payoffs V, and then uses V to construct a strict Lyapunov function Λ:
∆ → R for the dynamics:  that is, a function whose value increases strictly along
every non-constant solution trajectory.  The existence of a strict Lyapunov function
implies global convergence to the set of rest points of (P-V).13  Moreover, if the
Lyapunov function is strictly concave, as is true in the cases under consideration,
then the maximizer of this function is globally stable and is the unique chain
recurrent point.  

Theorem 3.2  (Hofbauer (2000)):  If A is zero sum or admits an interior ESS, then t h e

strictly concave function

Λ(x) =     x Ax V x y Ax V yy⋅ −( ) − ⋅ −( )[ ]( ) max ( )  = x·Ax – (V(x) + W(Ax))

is a strict Lyapunov function for the dynamics (P-V).  The unique maximizer of Λ,
x*(Λ), is the unique and globally stable rest point of (P-V).  Moreover, CR = {x*(Λ)}.

                                                
11  To see why, let b be the (random) disturbance vector with joint distribution F.  Then the choice
function generated by the game A + w1' and the disturbance vector b is identical to the choice function
generated by the game A and the disturbance vector b + w.  In other words, the effect of adding w to
each column of A can be mimicked by a corresponding shift in the payoff disturbances.
12 Local stability of rest points of (P-V) in these games was established by Hopkins (1999).
13  For a proof of this implication, see, e.g., Hofbauer and Sigmund (1988, Theorem 7.6).
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Together, Theorems 3.2 and 2.1 establish the existence of a global attractor for the
stochastically perturbed dynamics (P-F).

3.3  Potential Games

 We say that the game A is a potential game  if the matrix A  is symmetric, so that
the payoffs received by matched players are identical.14  Potential games include all
pure coordination games, and also arise in applications of evolutionary techniques
to implementation problems – see Sandholm (2000c).
 Potential games are known to have strong convergence properties under
evolutionary dynamics.  Hofbauer (1995a) and Sandholm (2000b) show that the
average payoff function a(x) =   

1
2 x·Ax is a Lyapunov function for these games under a

broad class of unperturbed evolutionary dynamics, and that its local maximizers are
precisely the dynamics' locally stable rest points. We now show that under a mild
regularity condition, analogous convergence and equilibrium selection results hold
for the perturbed dynamics (P-V), and hence for the dynamics (P-F).
 To begin, we present another result due to Hofbauer (2000).

Theorem 3.3  (Hofbauer (2000)):  If A is a potential game, then the function

Π(x) =   
1
2 x·Ax – V(x).

is a strict Lyapunov function for the dynamics (P-V).  It follows that every solution

trajectory of (P-V) converges to a connected set of rest points of (P-V), and so that Ω =
RP.

Theorem 3.3 provides a strict Lyapunov function for the dynamics (P-V), and
therefore guarantees that Ω, the set of limit points for the solution trajectories of (P-
V), is equal to the set of rest points of (P-V).  But to analyze stochastic fictitious play,
we must also characterize the chain recurrent set CR.  Remarkably, the existence of a
strict Lyapunov function is not enough to ensure that CR = RP.15  However, this
                                                
14  These games have also been dubbed partnership games (Hofbauer and Sigmund (1988)), doubly
symmetric games (Weibull (1995)), and games with identical interests (Monderer and Shapley
(1996a)).  Some authors (e.g., Monderer and Shapley (1996b)) also include games of the form A + 1v' as
potential games, where A is again a symmetric matrix and 1v' represents an incentive-irrelevant
payoff shift.  Since the shift 1v' does not affect the dynamics (P) (see Section 3.2), all of our results
continue to hold under this broader definition of potential games.
15 For counterexamples, see Akin (1993, p. 25-26 and 55-56) and Benaïm (1999, p. 27).
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equivalence can be established under slightly stronger assumptions.  To explain
these, we first note that since the matrix A is symmetric, the first order condition for
a maximizer of Π  on ∆ is

Ax* –     ∇V x( *) = c1.

Since the choice function satisfies C(a + c1) = C(a) and inverts   ∇V , points satisfying
the first order condition also satisfy C(Ax*) = C(Ax* – c1) = C(    ∇V x( *)) = x*.  In other
words, the critical points of the Lyapunov function Π are precisely the rest points of
the dynamics (P-V).
 With this observation in hand, it is possible to show that CR = RP under either
of two mild assumptions.  One possibility is to require that the dynamics (P-V) be
sufficiently smooth.  To accomplish this, it is enough to require smoothness of the
disturbance function.

Proposition 3.4:  If A is a potential game and V is     C
n−1 , then CR = RP.

If we begin with the stochastically perturbed dynamics (P-F), the deterministic
perturbation V which corresponds to F will be     C

n−1  if F is sufficiently smooth.
 We can reach stronger conclusions if we instead impose a generic regularity
condition.  To make this point more precisely, we rewrite the first order condition
above as

 I0 (Ax* –     ∇V x( *)) = 0,

where I0 is the matrix which projects     R
n  onto       R0

n .16  A second order sufficient

condition for x* to maximize Π  is that the second derivative matrix I0 (A –     D
2V(x*))

is negative definite on       R0
n .  We will impose our regularity condition on this matrix.

(R) I0 (A –     D
2V(x*)) has full rank on       R0

n  for all x* ∈  RP.

Our local stability analysis of the dynamics (P-V) focuses on the derivative of
these dynamics at the rest point x*, D    ̇x  = DC(Ax*) A  – I.  We call the rest point x*
linearly stable if all eigenvalues of D    ̇x  corresponding to directions in       R0

n  have

strictly negative real part.  Linear stability implies both Lyapunov and asymptotic

                                                
16  That is, I0 is a linear map which is the identity on       R0

n  and which annihilates the vector 1.
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stability.  Similarly, we call x* linearly unstable if some eigenvalue of D    ̇x
corresponding to a direction in       R0

n  has strictly positive real part.

  Theorem 3.5 summarizes the connections between critical points of the
Lyapunov function Π and the rest points of (P-V).  In particular, part (iii) of the
theorem shows that under the regularity condition (R), all rest points of the
perturbed dynamics are linearly stable or linearly unstable, according to whether the
point is a local maximizer of Π .  This implies that the number of rest points is finite,
and guarantees that these points are the only chain recurrent states.

Theorem 3.5:  If A is a potential game, then:
 (i) The critical points of Π  are precisely the rest points of (P-V).
 (ii) The strict local maximizers of Π are precisely the asymptotically stable rest

points of (P-V).
 (iii) If condition (R) holds , then the local maximizers of Π are precisely t h e

linearly stable rest points, while other rest points are linearly unstable.  Moreover ,
RP is finite, and CR = RP.

3.4  Supermodular Games

Supermodular games describe interactions in which different players' actions are
strategic complements.  In these games, an order relation is placed on the strategy
sets; strategic complementarity means that the advantage of switching to a higher
strategy increases when opponents choose higher strategies.  Supermodular games
arise in many economic applications; for examples, see Milgrom and Roberts (1990),
Vives (1990), and Fudenberg and Tirole (1992).
 We say that A is a (strictly) supermodular game  if whenever j > i, the difference
Ajk – Aik is strictly increasing in k.  In words, the advantage of strategy j over strategy
i < j is greater the higher is the opponent's strategy k.17

A fundamental property of supermodular games is that they possess increasing
best response correspondences.  This property can be used to show that pure strategy
Nash equilibria of these games exist and possess a very simple structure, and is also
important for studying learning processes.18  A related monotonicity property is
                                                
17  Of course, it is enough for this property to hold after the names of the strategies have been
permuted in an appropriate way.
18 For the properties of pure strategy equilibria, see Topkis (1979) or the aforementioned references.
Milgrom and Roberts (1991) show that fictitious play converges in supermodular games with a unique
Nash equilibrium, while Krishna (1992) proves convergence in supermodular games satisfying a
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fundamental for studying the perturbed best response dynamics.  To state this
property, we define the invertible linear operator S:       R0

n  →       R
n−1 by

 (Sx)i = 
    

xj
j i

n

= +
∑

1

.

That is, the ith component of Sx equals the proportion of players choosing strategies
larger than i.  If we view points in the simplex as probability distributions on the
strategy set {1, 2, … , n}, then Sy ≥ Sx if and only if y stochastically dominates x.
 Proposition 3.6 establishes that in supermodular games, the perturbed best
response function is monotone with respect to the stochastic dominance order.

Proposition 3.6:  Suppose that A is supermodular.  If Sy ≥ Sx, then S    ̃B(y) ≥ S    ̃B(x).

The remainder of the analysis in this paper only directly utilizes the
stochastically perturbed dynamics (P-F).  For this reason, we will henceforth refer to
these dynamics simply as (P).

In the present context, it is easier to study the dynamics (P) after applying the
change of coordinates S.  The next result shows that this yields the dynamics

(S)     ̇v  =     SB S v v˜( )− −1

on the set S(∆) = {v ∈        R
n−1:  1 ≥ v1 ≥ … ≥ vn–1 ≥ 0}.

Proposition 3.7:  The dynamics (P) and the dynamics (S) are linearly conjugate:  {xt}t≥0

solves (P) if and only if {Sxt}t≥0 solves (S).

 The differential equation     ̇v  = g(v) on S(∆) ⊂       R
n−1 is called cooperative if 

  
∂
∂

g
v

i

j
(v) ≥

0 for all v and all distinct i and j:  that is, an increase in any component of the state
increases the rate of change of all other components.  The equation is irreducible if
for each subset I of {1, … , n – 1}, there is an i ∈  I and a j ∈    I

C  such that 
  
∂
∂

g
v

i

j
(v) ≠ 0 for

all v .  The transformed dynamics (S) are of interest because they possess both of
these properties.

                                                                                                                                                            
diminishing returns condition.  Kandori and Rob (1995) use the monotonicity of best responses in
characterizing the stochastically stable states of supermodular games in the Kandori, Mailath, and
Rob (1993) model.
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Theorem 3.8: If A is supermodular, the dynamics (S) are cooperative and irreducible.

Observe that if ι j is a standard basis vector in       R
n−1, then     S j

−1ι  = ej+1 – ej, where the

latter vectors are standard basis vectors in     R
n .  In light of this observation and

Proposition 3.7, the fact that (S) is cooperative has the following interpretation for
the perturbed best response dynamics (P):  if some players increase their strategy
from j to j + 1, the growth rate of strategy i + 1 increases relative to that of strategy i
for all i ≠ j.
 Theorem 3.8 is important because dynamics which are cooperative and
irreducible have desirable monotonicity and convergence properties.  In the next
result, we list a number of useful implications of Theorem 3.8 for the perturbed best
response dynamics (P).

Theorem 3.9:  If A is supermodular, then

(i)  The dynamics (P) are strongly monotone with respect to the stochastic

dominance order:  if {xt}t≥0 and {yt}t≥0 are two solutions to (P) with Sy0 ≥ Sx0 and y0 ≠ x0,
then Syt > Sxt for all t > 0.

(ii) There is an open dense set of initial conditions from which solutions t o

(P) converge to unique limit points in RP.
 (iii) The remaining initial conditions are contained in a finite or countable
union 

    MiiU  of invariant manifolds of codimension 1, and hence have measure

zero.
 (iv) Chain recurrent points are either rest points or are contained in these
invariant manifolds:  CR ⊂ RP 

    ∪ MiiU .

Proof:  In light of Proposition 3.7 and Theorem 3.8, part (i) follows from Theorem
4.1.1 of Smith (1995), part (ii) from Theorem 2.4.7 of Smith (1995), part (iii) (after a
reversal of time) from Theorem 1.1 of Hirsch (1988), and part (iv) from Theorems
1.6 and 1.7 of Hirsch (1999) (also see Theorem 3.3 and Corollary 3.4 of Benaïm and
Hirsch (1999b)).  ■
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4.  Stochastic Fictitious Play

Stochastic fictitious play is studied by Fudenberg and Kreps (1993), Kaniovski and
Young (1995), and Benaïm and Hirsch (1999a).  We now describe a symmetric
variant of their models.
 In each discrete time period, a pair of players drawn from a larger group plays the
symmetric game A.  In standard fictitious play, each player chooses a best response to
his belief about how his opponent will behave; this belief is determined by the time
average of past play.  In stochastic fictitious play, players make these choices after
their payoffs are subjected to random shocks.

The state variable in stochastic fictitious play is the time average of play,
represented by the sequence of random variables     Zt t{ } =

∞

1
.  This sequence is defined by

Zt = 
    

1
2

1 2

1
t s s

s

t

Y Y+( )
=
∑ ,     (13)

where     Yt
1 and     Yt

2  are the choices made by the two matched players at time t.  The
initial choices     Y1

1 and     Y1
2  are arbitrary pure strategies, while subsequent choices are

best responses to beliefs Zt.  Best responses are determined after payoffs have been
subject to disturbances,     ( )bt i

α , which are independent over time t and across players α
∈  {1, 2} and strategies i ∈  {1, … , n}; the disturbances all follow the common
distribution function F.  Hence, players' choice probabilities are described by the
perturbed best response function     ̃B :

    P Y e Z zt i t+ = =( )1
α  = P(argmaxk (Az)k +     ( )bt k+1

α  = i) =     
˜ ( )B zi .     (14)

By rearranging equation (13), we can obtain a recursive definition of the process
Zt:

Zt+1 =     
1

2 2 1
1

1
22t t t tt Z Y Y+ + ++ +( ).

Then using equation (14), we can compute the expected increments of Zt:

    E Z Z Z zt t t+ − =( )1  = 
    

1
1

1
2 1

1
1

2
t t t tE Y Y Z z z+ + ++ =( ) −[ ]( )  =     

1
1t+ (    ̃B(z) – z).
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Thus, the expected change in the time average is governed by the perturbed best
response dynamics; since current behavior has a diminishing impact on the time
average, its rate of change falls over time.

Using techniques from stochastic approximation theory, Fudenberg and Kreps
(1993), Kaniovski and Young (1995), and Benaïm and Hirsch (1999a) show how the
behavior of the time average Zt in any stochastic fictitious play can be characterized
in terms of the differential equation defined by its expected motion.  However, as
the perturbations make this equation difficult to analyze, Fudenberg and Kreps
(1993) and Kaniovski and Young (1995) only establish convergence in 2 x 2 games,
while Benaïm and Hirsch (1999a) also prove convergence in certain p-player, two
strategy games.
  By combining our analysis of the perturbed best response dynamics with results
of Pemantle (1990), Benaïm and Hirsch (1999a), and Benaïm (2000), we can establish
convergence of beliefs and choice probabilities in four important classes of games.
While our results are stated for beliefs Zt, since     ̃B  is continuous, corresponding
results hold for the choice probabilities     ̃B(Zt) as well.19

 To state our results, we let LS ⊂ RP denote the set of Lyapunov stable rest points
of (P), and let LU ⊂ RP denote the set of linearly unstable rest points of (P).

Theorem 4.1:  Consider the process of stochastic fictitious play described above , a n d

fix any initial condition.
 (i) If A is a zero sum game or has an interior ESS, then P(limt→∞ Zt = x*(Λ)) = 1.
 (ii) Suppose A is a potential game.  If f is sufficiently smooth , then P(ω(Zt) is a
connected subset of RP) = 1.  Ιf condition (R) holds and   ′f  exists and is bounded ,

then P(limt→∞ Zt ∈  LS) = 1.
 (iii) If A is a supermodular game, then P(ω{Zt} ⊂ RP or ω{Zt} ⊂ Mi for some i) =
1.  If in addition, n equals 2 or 3 and   ′f  exists and is bounded, then P(limt→∞ Zt ∈  RP –

LU) = 1.

 Proof:  Theorem 3.3 of Benaïm and Hirsch (1999a) shows that with probability
one, the process Zt converges to an attractor-free set of the dynamics (P).  Proposition
C in the Appendix shows that this set must be a connected subset of CR.  Part (i)
follows from this result and our Theorems 2.1 and 3.2.  The proofs of the remaining
parts, which rely on our analyses from Sections 3.3 and 3.4 and on results of

                                                
19  In particular, if beliefs converge to some rest point x* of (P), then choice probabilities also converge
to     ̃B (x*) = x*.
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Pemantle (1990), Benaïm and Hirsch (1999a), and Benaïm (2000), can also be found
in the Appendix.  ■

 Part (i) of the theorem guarantees convergence of stochastic fictitious play to the
unique rest point of (P) in games which are zero sum or which admit an interior
ESS.  Part (ii) shows that in potential games, convergence to the set of rest points is
ensured if the disturbance distribution is smooth; under regularity condition (R),
convergence is always to a unique limit point which is Lyapunov stable under (P),
and hence a local maximizer of the Lyapunov function Π .
 Part (iii) of the theorem only guarantees convergence to rest points of (P) i n
supermodular games with 2 or 3 strategies.  When there are more strategies, we
cannot rule out convergence to one of the unstable invariant manifolds Mi.  Benaïm
(2000) conjectures (and proves under additional assumptions) that such manifolds
cannot be limits of stochastic approximation processes.  If this conjecture is correct,
convergence to rest points of (P) can be established in all supermodular games.

5.  Evolution with Stochastic Decision Rules

 Blume (1993, 1997) and Young (1998) study the evolution of play in large
populations whose members follow stochastic decision rules.  They obtain tight long
run predictions of behavior when players play a potential game and where players'
decision probabilities are determined using logit choice functions.  Unfortunately, as
we shall explain below, their method of analysis does not seem to extend beyond
these classes of games and choice functions.20

  More recently, Binmore and Samuelson (1999), Sandholm (2000a), and Benaïm
and Weibull (2000) have developed general techniques for analyzing evolutionary
models with stochastic decision rules.  These papers do not offer predictions of play
for specific classes of games.  However, by combining the techniques developed i n
these papers and others with our analysis of the perturbed best response dynamics,
we can generate medium and long run predictions of play in four classes of games,
predictions which do not depend on the specification of payoff disturbances.

A population of N  players is repeatedly matched to play a symmetric game A .
Players occasionally receive opportunities to change their behavior, with each
player's revision opportunities arriving via independent, rate 1 Poisson processes.
                                                
20  On the other hand, Blume (1993, 1997) and Young (1998) also obtain results for local interaction
models, which we do not consider here.
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When a player receives a revision opportunity, he evaluates the current expected
payoff to each of his pure strategies, but these evaluations are subject to shocks
which are independent across strategies and over time and which follow a common
distribution function F.  The player selects the strategy which he evaluates as best.
 Aggregate behavior in this model is described by a continuous time Markov
process {  Xt

N }t≥0 on the state space   ∆N  = {x ∈  ∆:  Nxi ∈  Z for all i}.  The initial condition

X0 is arbitrary.  Let   τ r  be the random time at which the rth revision opportunity is
received, and let   b

r  be a random vector representing the payoff disturbance which
occurs during this opportunity.  For a switch from strategy i to strategy j to occur, the
player granted the revision opportunity must be playing strategy i, and the
realization of his payoff disturbance must render strategy j a best response.
Transitions of   Xt

N  are therefore described by

    
P X x e e X xr r

N
N j i

N
τ τ+ = + − =( )1

1 ( ) = xi P(argmaxk (Ax)k +   bk
r  = j)

 = xi     
˜ ( )B xj

for all i ≠ j.  With the remaining probability of     x B xi ii
˜ ( )∑ , no change in state occurs.

  The expected increment in   Xt
N  during a single revision opportunity is given by

    
E X X X xr r r

N N N
τ τ τ+ − =( )1 = 

    

1
N

ji
j i i je e x B x∑∑ −( ) ˜ ( )

= 
    

1
N j j i

ij
i i j

ji

e B x x e x B x˜ ( ) ˜ ( )∑∑ ∑∑−







=     
1
N (    ̃B(x) – x).

Since the expected number of revision opportunities per time unit is N , the
expected motion of   Xt

N  is captured by the perturbed best response dynamics (P).

Binmore and Samuelson (1999), Sandholm (2000a), and Benaïm and Weibull
(2000) show that over finite time spans, the stochastic evolution of a large
population closely mirrors a solution to the differential equation which describes its
expected motion.  We can therefore show that in the classes of games we consider, a
large population must approach and then remain near the rest points of the
dynamics (P) for some long (but finite) amount of time.

To state this result, we consider a sequence of Markov processes   Xt
N  whose initial

conditions     X
N
0  ∈    ∆N  converge to some state x0 ∈  ∆ as N approaches infinity.  We say
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that these processes converge in the medium run to the set A  ⊂ ∆ from the initial
condition x0 if for each ε > 0, there is a time T0 = T0(x0) such that for all T ∈  [T0, ∞),

 
    
lim sup inf *

[ , ] *N t T T x A
t
NP X x

→∞ ∈ ∈
− <





0

ε  = 1.

In words:  if a large population begins play near x0, then with probability close to 1,
the population approaches the set A and remains nearby for a long, finite time span.

Theorem 5.1:  Consider the model of stochastic evolution described above.
 (i) If A is zero sum or admits an interior ESS, then   Xt

N  converges in t h e

medium run to RP = {x*(Λ )} from every initial condition x0 ∈  ∆ .
(ii) If A is a potential game, then   Xt

N  converges in the medium run to RP

from every initial condition x0 ∈  ∆ .
(iii) If A is a supermodular game , then   Xt

N  converges in the medium run t o

RP   from almost every initial condition x0 ∈  ∆ .

 Proof:  Theorem 4.1 of Sandholm (2000a) shows that over any finite horizon, the
stochastic process   Xt

N  stays within   
ε
2  of the solution trajectory of (P) with the same

initial condition with probability close to 1 when N  is large.  Theorems 2.1, 3.2, and
3.3 show that in the games considered in parts (i) and (ii), all solution trajectories of
(P) converge to RP; Theorem 3.9 shows that in supermodular games, this is true of
trajectories starting from almost every initial condition.  Combining these results
proves the theorem.  ■

 In case (i), where A is zero sum or admits an interior ESS, one can establish a
stronger result:  the time T0 of convergence to a neighborhood of x*(Λ) can be chosen
independently of the initial condition x0.  A statement and proof of this claim is
presented in the Appendix (Proposition 7).

The finite horizon description of behavior provided by Theorem 5.1 suffices for
many economic applications.  However, in settings where behavior over very long
time spans is of interest, it may be more natural to consider an infinite horizon
description of behavior.  Unfortunately, Theorem 5.1 cannot be directly extended to
an infinite horizon result (T = ∞):  since the process   Xt

N  is irreducible, all states in   ∆N
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are visited infinitely often with probability one, so large deviations from all rest
points are certain to occur.21

To characterize infinite horizon behavior, one needs to describe the stationary
distribution   µ

N  of the process   Xt
N .  Since   Xt

N  is irreducible and aperiodic, the

stationary distribution is unique.  It describes the long run behavior of   Xt
N  in two

distinct ways.  Regardless of initial behavior,   µ
N  approximates the probability

distribution of   Xt
N  after a long enough time has passed;   µ

N  also almost surely

describes the limiting time average of play.
  We now provide our characterizations of   µ

N .

Theorem 5.2:  Consider the model of stochastic evolution described above.
 (i) Suppose A is zero sum or admits an interior ESS.  If Q is an open set
containing x*(Λ), then limN→ ∞  µ

N (Q) = 1.

 (ii) Suppose A  is a potential game , and let O be an open set containing RP.
Then limN→∞  µ

N (O) = 1.  If condition (R) holds , and Q is an open set containing LS,

then limN→ ∞  µ
N (Q) = 1.

 (iii) Suppose that A is supermodular .  If Q is an open set containing LS, t h e n
limN→∞  µ

N (Q) = 1.

 Part (i) of the theorem shows that when A is zero sum or admits an interior ESS,
then in the long run a large population spends nearly all time in a neighborhood of
the rest point x*(Λ).  In fact, we show in the Appendix that in these cases, long run
behavior can be described by a normal distribution centered at x*(Λ).  Part (ii) shows
that if A  is a potential game, then in the long run, a large population will nearly
always stay near rest points of (P); if the regularity condition (R) holds, the
population only stays near Lyapunov stable rest points.  Part (iii) shows that if A  is
supermodular, a large population must again stay near Lyapunov stable rest points
of (P).  The proof of the theorem, which combines our earlier analysis with results of
Kurtz (1976), Benaïm (1998), Benaïm and Hirsch (1999b), and Benaïm and Weibull
(2000), is contained in the Appendix.

Blume (1993, 1997), Young (1998), and Ianni (1999) study evolution in potential
games under the logit choice rule.  They show that in this setting, the Markov
process describing the evolution of play is reversible, regardless of whether
interactions are global or local in nature.  This allows them to establish that the

                                                
21  This observation underlies analyses of games based on stochastic stability, an approach pioneered
by Foster and Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993).
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stationary distribution is proportional to exp(    
1
ε p( )⋅ ), where p(·) is a suitably chosen

function on the relevant state space, and ε is the noise level.  If the interaction is
global, it can be shown that p(x) is nearly proportional to the potential function a(x)
=   

1
2 x·Ax when the population size is large.  Thus, when the noise level ε is small,

the stationary distribution places most of its mass near the global maximizer of
potential whenever a unique maximizer exists.  This result provides a unique
prediction of long run behavior.
 When it is applicable, reversibility is a powerful tool for studying infinite
horizon behavior.  Unfortunately, this tool seems only to work when studying
potential games, and then only under logit choice functions:  these are the only
choice functions which both generate a reversible Markov process and can be
derived from an explicit model of payoff perturbations.  In contrast, our analysis can
be employed to study other classes of games, and is not sensitive to the choice of
disturbance distribution.
 The equilibrium selection results of Blume (1993, 1997), Young (1998), and Ianni
(1999) are obtained under the logit choice rule, which is generated by extreme value
distributed disturbances.  It is natural to ask whether these results can be generalized
to arbitrary disturbance distributions.  Blume (1999) shows that this is possible in 2 x
2 games:  the risk dominant equilibrium, which is also the global maximizer of
potential, is selected under any i.i.d. payoff disturbances.  Whether an analogous
selection result can be established for n x n games is an open question.

6.  Fictitious Play in a Diverse Population

In the stochastic models we have considered so far, the distribution F has been
used to describe random payoff shocks.  We now turn to two deterministic models
of learning (Ellison and Fudenberg (2000)) and evolution (Ely and Sandholm (2000))
in which this distribution is used to describe the preference composition of a fixed
population.  Our notation is borrowed from Ely and Sandholm (2000).
 In these models, players are randomly matched to play an n  × n game, but
different players evaluate the outcome of a match using different payoff matrices π
∈ Π =     R

n n× .  To obtain the distribution of payoff matrices in the population, we
suppose that all players' preferences are based on the same payoff matrix A, with
variation around this matrix determined by biases towards each strategy.
Specifically, we suppose that these biases are described by i.i.d. random variables
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with distribution F.  Letting b denote a vector of such random variables, we define
the distribution of payoff matrices in the population by P(π ∈  S) = P(A + b  ′1  ∈  S).
 There are a continuum of players with each preference π in the support of P.  The
behavior of the subpopulation with preference π is a strategy distribution σ(π) in the
simplex ∆.  Hence, a complete description of the population's behavior is given by a
Bayesian strategy σ: Π → ∆.  Observe that Eσ = 

  
σ dP

Π∫  ∈  ∆ represents the aggregate

behavior of the population as a whole.
 Since players are randomly matched with players drawn from the entire
population, each player's best responses are defined with respect to aggregate
behavior x = Eσ ∈  ∆.  Thus, the best response function, B: ∆ → Σ, is defined by

B(x)(π) = 
    
arg max

y
y x

∈
⋅

∆
π .

Best responses are unique up to a set of preferences with measure zero.
In Ellison and Fudenberg's (2000) two population fictitious play model, players

always choose a best response to the time average of past play.  We now describe a
single population version of their model.  Let ct ∈  ∆ denote aggregate behavior at

time t, and let zt = 
    
1

0t t

t
c dt∫  ∈  ∆ denote the time average of play.  By the definition of

the fictitious play process, ct = E(B(zt)).
22  Hence, by differentiating the definition of zt

with respect to t, we obtain

    ̇zt =     
1
t tc  – 

    
1

0
2t t

t
c dt∫     (15)

=       
1
t t tE z z( ( ( )) )B − .

Thus, the time average always moves in the direction of the aggregate best response
E(B(zt)), doing so more slowly as time passes.  A computation reveals that

E(B(z))i = 
      

Bi z dP( )
Π∫     (16)

= P(π:  Bi(z)(π) = ei)
=     P z ik kπ π: arg max ( ) =( )
=     P Az b ik k karg max ( ) + =( )
=     

˜ ( )B zi .

                                                
22  To avoid technical difficulties at time zero, one can assume that ct and zt are constant during some
initial interval [0, t0].
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Thus, the equation of motion for beliefs in the fictitious play process is again a
reparameterized version of the perturbed best response dynamics (P).
   Since equation (15) is an ordinary differential equation, local stability of its rest
points can be determined by computing the eigenvalues of its derivative matrix.
Using this approach, Ellison and Fudenberg (2000) characterize local stability of
mixed equilibria of asymmetric 2 x 2 games under all bias distributions, and prove
local stability results for certain classes of 3 x 3 games and bias distributions.  W e
now establish global convergence results for four families of n x n games and all bias
distributions.  As before, we state results for beliefs zt; since E(B(·)) is continuous,
corresponding results hold for aggregate behavior E(B(zt)).

Theorem 6.1:  Consider population fictitious play.
 (i) If A is zero sum or admits an interior ESS, then beliefs zt converge to x*(Λ)
from all initial conditions.
 (ii) If A is a potential game, then ω{zt} ⊂ RP regardless of the initial condition

z0.  If condition (R) holds , convergence is always to a single point, and only rest

points in LS are locally stable.
 (iii) If A is supermodular , then beliefs converge to a point in RP from almost

every initial condition in ∆ .

 Proof:  Follows directly from Theorems 2.1, 3.2, 3.3, 3.5, and 3.9.  ■

7.  Evolution in a Diverse Population

Ely and Sandholm (2000) study evolution in populations whose preferences are
diverse, focusing on best response dynamics.  Under the standard best response
dynamics (BR), aggregate behavior always moves in the direction of the current best
response.  To extend this idea to the diverse population setting, one supposes that
this occurs in each subpopulation π.  This leads to the Bayesian best response

dynamics

(B)   ̇σ  = B(E(σ)) – σ,

which is defined on the space Σ = {σ: Π → ∆} of Bayesian strategies.
 Since Σ is a function space, in order to interpret the Bayesian dynamics (B) one
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must specify the norm on Σ with respect to which the dynamics are defined.23  Ely
and Sandholm (2000) show that if (B) is interpreted using the     L

1 norm,

σ  ≡ 
    

E i
i

n

σ
=
∑

1

,

then equation (B) defines a Lipschitz continuous law of motion, and so possesses
unique solution trajectories.  

Dynamics on the space Σ of Bayesian strategies are difficult to analyze directly.
For this reason, Ely and Sandholm (2000) establish close connections between the
Bayesian dynamics (B) and the aggregate best response dynamics, defined on the
simplex by

(AB)     ̇x  = E(B(x)) – x.

These dynamics describe the evolution of aggregate behavior Eσ under the dynamics
(B).  Ely and Sandholm (2000) show that aggregate behavior x* is a rest point of (AB)
if and only if the Bayesian strategy σ* = B(x*) is a rest point of (B).  Similarly, x* is
stable under (AB) if and only if B(x*) is stable under (B), where "stable" can refer to
Lyapunov, asymptotic, or global stability.
 Equation (16) shows that equation (AB) is identical to the perturbed best response
dynamics (P).  We can therefore establish the following results concerning the
convergence of solutions to the Bayesian dynamics (B).

 Theorem 7.1:  Consider evolution in a diverse population under the dynamics (B).
 (i) If A is zero sum or admits an interior ESS, then the Bayesian strategy

B(x*(Λ)) is globally stable.
 (ii) If A  is a potential game, then ω{σt} ⊂ B(RP) regardless of the initial

condition σ0.  If condition (R) holds , convergence is always to a single point, a n d

only points in B(LS) are locally stable.
 (iii) If A is supermodular, there is an open dense set of initial conditions Σ0 ⊂
Σ from which convergence to a single point in B(RP) is guaranteed.

                                                
23 The trajectory {σt} is a solution of   ̇σ  = f(σ) with respect to norm ⋅  if limh→0     h ft h t t

−

+ − −1( ) ( )σ σ σ  =
0 for each time t.
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 Proof:  Theorem 6.6 of Ely and Sandholm (2000) shows that aggregate behavior x*
is globally stable under (AB) = (P) if and only if the Bayesian strategy B(x*) is globally
stable under (B).  Part (i) of the theorem follows from this result and Theorems 2.1
and 3.2.  Parts (ii) and (iii) of the theorem are proved in the Appendix.  ■

8.  Multiplayer and Multipopulation Models

 We now describe how the results from the previous sections can be extended to
multipopulation models.  For convenience, we consider only two-player games;
however, our results for potential games and supermodular games can be extended
to the p-player case.
 An (asymmetric) two-player game is described by a pair of m  x n  payoff matrices
(    A

1,     A
2 );   Aij

k  is the payoff received by player k when player 1 plays strategy i ∈  {1, … ,

m} and player 2 plays strategy j ∈  {1, … , n}.  Thus, if player 1 chooses mixed strategy x
∈    ∆1  = {x ∈     R+

m :    xii∑  = 1} and player 2 mixed strategy y ∈    ∆2 = {y ∈     R+
n :  

  
yjj∑  = 1},

their expected payoffs are x·    A
1y and x·    A

2 y, respectively.
 Since best response functions for each player are defined with respect to the other
player's behavior, the perturbed best response dynamics are defined as follows:

(P2)     ̇x  =     ̃B
1(y) – x ≡     C A y1 1( ) – x;

    ̇y  =     ̃B
2 (x) – y ≡     C A x2 2(( ) )′  – y.

The choice probability functions     C
1 and     C

2  are defined via equation (1') in terms of
stochastic perturbations with distributions     F

1  and     F
2.  By Theorem 2.2,     C

1 and     C
2

can also be represented using equation (2') in terms of some admissible
deterministic perturbations,     V

1 and     V
2 .

As in the single population case, the perturbed dynamics associated with zero
sum games and potential games can be characterized by taking advantage of their
deterministic representation.24  A two player game (    A

1,     A
2 ) is zero sum  if     A

1 = –    A
2 ,

while it is a potential game  if     A
1 =     A

2 .  The following results of Hofbauer and
Hopkins (2000) show that the perturbed dynamics for these two classes of games can
be described using Lyapunov functions.

                                                
24 Our results for games with an interior ESS only extend to the multipopulation case in a trivial
sense:  any ESS of a multipopulation game must be a strict (and hence pure) Nash equilibrium (Selten
(1980)).
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Theorem 8.1  (Hofbauer and Hopkins (2000)):
(i) If (    A

1,     A
2 ) = (A , –A) is zero sum, then the strictly concave function

Λ(x, y) =     − + + + − ′( )V x W Ax V y W A x1 1 2 2( ) ( ) ( ) ( )

is a strict Lyapunov function for the dynamics (P2).
(ii) If (    A

1,     A
2 ) = (A , A) is a potential game, then the function

Π(x, y) = x·Ay –     V
1(x) –     V

2 (y).

is a strict Lyapunov function for the dynamics (P2).

 Theorem 8.1 (i) implies that the dynamics (P2) corresponding to any zero sum
game (A, –A) admit a unique chain recurrent point.  It can therefore be shown that
all of our results for zero sum games from Sections 4 through 7 can be established i n
the two population case.  To extend our results on potential games, we must once
again impose additional assumptions to characterize the chain recurrent set.  In
particular, all of our earlier results can be established under an appropriate regularity
condition on the matrix

    

−
′ −











D V x A

A D V y

2 1

2 2

( )
( )

,

which is the Hessian matrix of the Lyapunov function Π(x, y).  
 All of our results for supermodular games can be established in the
multipopulation case as well.  We call the game (    A

1,     A
2 ) (strictly) supermodular  if

both players' payoffs satisfy an increasing differences property:  when j > i,     Ajk
1  –     Aik

1

and     Ak j
2  –     Aki

2  are strictly increasing in k.  Given our results from Section 3.4, it is

easily verified that after an appropriate change in coordinates, the dynamics (P2)
derived from any supermodular game are cooperative and irreducible, and hence
strongly monotone.  We can therefore extend Theorem 3.9 and our results for
supermodular games from Sections 4 through 7 to multipopulation settings.
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9.  Conclusion

We studied four models of evolution and learning in games which rely on
perturbations of the payoffs to each pure strategy.  For each of these models, we
established global convergence results in four important classes of games.
 While most of this paper has focused on the similarities among the four models,
we should also point out the differences.  In both of the stochastic models, payoff
disturbances are i.i.d. over time, and so represent influences on behavior which are
realized anew each time the game is played.  In contrast, in the deterministic models
different players experience different payoffs, but the payoffs of each individual are
fixed over time.  Such payoff diversity seems natural in many economic
applications involving large populations of players.25

 We can also make distinctions between the predictions of the stochastic and
deterministic models.  The most noteworthy of these is the relative strengths of
their long run predictions.  Because stochastic fictitious play and stochastic
evolution explicitly allow for randomness in behavior, unstable limit points of the
perturbed best response dynamics can be eliminated from consideration as long run
predictions of play.  In the deterministic models these unstable limit points cannot
be ruled our a priori; however, they can only arise after very unusual initial
conditions.

Finally, we observe an important difference between the possibilities for long
run prediction in the two stochastic models.  Regardless of the initial conditions,
every attractor of the dynamics (P) is a possible limit behavior under stochastic
fictitious play (Benaïm and Hirsch (1999, Theorem 5.4)).  In contrast, it is well
known that in models of stochastic evolution, the limiting stationary distribution
can place all of its mass on a single attractor, even when multiple attractors exist.26

Theorem 5.2 showed that in the games under consideration, the limiting
distribution only places mass on the stable rest points of (P), but our result does not
make a selection among them.  As we noted earlier, Blume (1999) has obtained a
selection result for 2 x 2 games which does not depend on the disturbance
distribution.  Establishing equilibrium selection results for more general strategic
environments is an important topic for future research.

                                                
25  See, for example, Sandholm (2000c).
26  There can also be more subtle differences between the limit behaviors of the two models – see
Benaïm (1998, p. 70).
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Appendix

A.1  Notions of Recurrence for Deterministic Flows

 Our analyses of long run behavior in stochastic fictitious play and in the
stochastic evolution model require a variety of notions of recurrence for
deterministic flows.  In this section, we introduce the concepts we need and explain
the relationships between them.

Consider a Lipschitz continuous differential equation     ̇x  = f(x) which is defined
on the simplex ∆ and whose solutions do not leave ∆.  This equation defines a
(semi-) flow φ: R+ × ∆ → ∆, where φ(t, x) is the position at time t of the solution to     ̇x  =
f(x) starting at x.  For each set A ⊂ ∆, we define φ(t, A) = {φ(t, x):  x ∈  A}.  The set A  is
forward invariant if φ(t, A) ⊂ A for all t ≥ 0, and it is invariant if φ(t, A) = A  for all t

≥ 0.
The classical notions of recurrence and asymptotic behavior of a flow are based

on the concept of the ω-limit set.  The ω-limit set of the state x ∈  ∆ is the set of limit
points of the trajectory with initial condition x:  ω(x) = {z ∈  ∆:   limk→∞φ(tk, x)  = z for
some tk → ∞}.  We let Ω = 

      ω( )x
x∈∆U  denote the union of all ω-limit sets.  Also, we

call state x recurrent if x ∈  ω(x), and we let R denote the set of recurrent states.  The
set cl(R) is known as the Birkhoff center of attraction.
 For the analysis of the two stochastic models two other notions of recurrence are
more useful.  One is a refinement of the aforementioned concepts, the other a
coarsening.
 A center of attraction is a compact invariant set A  such that for all open sets U

containing A and all x ∈  ∆, we have that 
    
1

0
1t U

t
t x dt( ( , ))φ∫  approaches 1 as t approaches

infinity.27  That is, all orbits spend almost all of their time arbitrarily close to A.  It
can be shown that the intersection of all centers of attraction is nonempty and itself
a center of attraction – the minimal center of attraction MCA.
 There is a different description of MCA in terms of measures which are
invariant under the flow φ.  Let µ be a (Borel) probability measure on ∆.  The support
of this measure is defined by supp(µ) = {x ∈  ∆:  µ(O) > 0 for every open set O

containing x}.  Alternatively, supp(µ) is the smallest compact subset of ∆ with µ-
measure 1.  We say that the measure µ is invariant under φ if µ(φ(t, A)) = µ(A) for all
A and all t ≥ 0.  Let M(φ) denote the set of all measures which are invariant under φ.
                                                
27  Here, 1U: ∆ → {0, 1} denotes the indicator function for the set U ⊂  ∆.
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Then the minimal center of attraction of φ can be characterized as MCA =

      
cl supp

M
( ( ))

( )
µ

µ φ∈U .  For further details concerning the minimal center of attraction,

see Nemytskii and Stepanov (1960, Sections 5.6 and 6.9) or Akin (1993).
 Our final and most general notion of recurrence is chain recurrence, a concept
due to Conley (1978) (also see Akin (1993), Robinson (1995), or Benaïm (1999, Section
5.1)).  This notion of recurrence describes the states which can occur in the long run
if the dynamics are subject to small shocks which occur at isolated moments in time.
An ε-chain from x to y is a sequence {x = x0, x1, … , xn = y} such that     φ( , )t x xi i i− −1  < ε

for some ti ≥ 1, where i ∈  {1, … , n}.  The state x is chain recurrent if there is an ε-
chain from x to itself for all ε > 0.  We let CR denote the set of chain recurrent states.
 The relationships among the four notions of recurrence described above are well
known.  We summarize them the following proposition.

Proposition A:  MCA ⊂ cl(R) ⊂ cl(Ω) ⊂ CR.

 Proof:  The first inclusion follows from the Poincaré Recurrence Theorem; see
Nemytskii and Stepanov (1960, p. 368).  The second inclusion follows from the fact
that R ⊂ Ω.
 To prove the third inclusion, we first show that Ω ⊂ CR.  Let y ∈ ω(x).  Then
there exists an unbounded sequence of times {tk}k ∈ N such that     φ( , )t x yk −  → 0.  Fix ε >

0.  By the continuity of φ, we can choose an l large enough that     φ φ( , ) ( , )t x yl + −1 1  <

ε.  Then since     φ( , )t x yk −  < ε for some tk > tl + 1, {y, φ(tl + 1, x), y} is an ε-chain, and so

y ∈  CR.
 Finally, we show that CR is closed.  Suppose that {xk}k∈ N ⊂ CR and that xk → x.  Fix
ε > 0.  Choose l large enough that     φ φ( , ) ( , )t x t xl −  <   

ε
2  for all t ∈ [0, 2].  Let {xl = y0, y1, …

, yn–1, yn = xl} be an   
ε
2 -chain; without loss of generality, we can suppose that t1 ∈  [1, 2].

Then by applying the triangle inequality twice, we find that {x, y1, … , yn–1, x} is an ε-
chain.  Hence, x ∈  CR, and so CR is closed, allowing us to conclude that cl(Ω) ⊂
CR.  ■

 There is an alternate description of CR in terms of the concept of an attractor.  A n
attractor A  for a semiflow φ is a nonempty, compact, invariant set which is
asymptotically stable.  (The definition stated in Benaïm (1999, p. 22) is equivalent,
and attractors so defined are sometimes called uniform attractors.)  We let A(φ)
denote the set of attractors under φ.  Each attractor A  possesses a basin of attraction
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B(A) = {x ∈ ∆: ω(x) ⊂ A}, which is an open set containing A.  Its complement R(A) =
∆ – B(A), which is called the dual repellor of A, is a compact, invariant set.
  We now provide the alternate description of the chain recurrent set.  Begin with
the simplex ∆; then, for each attractor A, remove the set of "transient" states B(A) –
A.  What remains is the chain recurrent set CR.

Proposition B:  CR = 
        

A R A
A

∪
∈

( )
( )A φ
I  = 

        
∆ − −






∈

B A A
A

( )
( )A φ
U .

Proof:  See Robinson (1995, Theorem 9.1.3).

 Benaïm and Hirsch (1999a) introduce the notion of an attractor-free set.  The set
A  is attractor-free if it is nonempty, compact, and forward invariant, and if no
proper subset of A  is an attractor with respect to the flow restricted to A.  The last
proposition shows that every point in an attractor-free set is chain recurrent.

Proposition C:  The set A is attractor-free if and only if A is connected and every

point in A is chain recurrent with respect to the flow restricted to A.  In particular, i f

A is attractor-free, then A ⊂ CR.

 Proof:  See Benaïm (1998, Proposition 5.3).

A.2  Proofs Omitted from the Text

The Proof of Proposition 2.3
 Substituting V(y) = –

    
ln yjj∑  into equation (2'), we find that this selection of V

yields the choice probability function Ci(a) =     ( ( ) )c a ai− −1 , where c(a) is the unique
number satisfying c(a) > maxj aj and 

    
( ( ) )c a aij

− −∑ 1  = 1.  Now suppose that n  ≥ 4, and

let i, j, and k be distinct strategies.  A computation reveals that

    

∂
∂ ∂

2C
a a

i

j k

 = 

    

2 2 2 2

2 3
2 3C C C

C
C C C C Ci j k

ll

i j k ll ll∑
∑ ∑( )

+ +( ) −( ) .

This expression is negative whenever Ci, Cj, and Ck are all close enough to zero.
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  Now suppose that the choice function     ̂C  is derived from a stochastic
perturbation of payoffs.  Then differentiating expression (4) with respect to ak reveals

that 
    

∂
∂ ∂

2Ĉ
a a

i

j k
 must always be strictly positive.  (In fact, this can be established even when

the stochastic payoff perturbations are not i.i.d.)  We therefore conclude that the
choice function Ci(a) =     ( ( ) )c a ai− −1  cannot be derived from a stochastic perturbation of

payoffs.  ■

The Proof of Proposition 2.5

 Suppose that the choice function C satisfies equation (12) and equation (2') for
some admissible V.  (Theorem 2.2 implies that if C satisfies (1'), it satisfies (2') as
well.)  Then if we define W:       R0

n  → R via equation (11), Theorem 26.5 of Rockafellar
(1970) implies that   ∇W  ≡ C on       R0

n .  Moreover, it is clear from equation (2') that C(a +

c1) = C(a) for all c ∈  R.  Thus, if we define W on the remainder of     R
n  by W (a + c1) =

W (a) + c for any a ∈       R0
n  and c ∈ R, it can be verified that   ∇W  ≡ C on all of     R

n .  It

follows that DC(a) is symmetric for all a ∈      R
n .

 Now, applying equation (12), we observe that if i ≠ j, then

 
    

∂
∂

C
a

ai

j

( ) = 

    

−
′

( )∑
w a w a

w a

i j

kk

( ) ( )

( )
2 .

Thus, the symmetry of DC implies that     w a w ai j( ) ( )′  =     w a w aj i( ) ( )′  for all a.  Since w  is

strictly positive, it follows that     ′w ai( )  = ε w(ai) for some constant ε, and hence that

w(ai) = K exp(ε ai) for some constants ε and K.  Since w  is strictly positive and
increasing, it must be that ε  and K are strictly positive, and hence that C ≡  L.  ■

The Proof of Theorem 3.1

Recall that the perturbed best response function     ̃B(x) can be written as C(Ax),
where C is a perturbed version of the maximizer function M(a) = argmaxy∈ a y·a.  For
each distribution function   F

k , let   C
k  denote the corresponding choice probability

function:    Ci
k (a) = P(argmaxj aj +   bj

k  = i), where the random variables   bj
k  are i.i.d. with

distribution   F
k .

 We first prove a lemma.

Lemma 1: Suppose that   F
k  ⇒  δ{0} and that   a

k  → a*. If i ∉ argmaxj aj*, then   Ci
k (  a

k) → 0.
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Proof:  Let l ∈  argmaxj aj*, and let ε = al* – ai* > 0.  Then for all large enough k,

   Ci
k (  a

k) = P(argmaxj   aj
k  +   bj

k  = i)

  ≤ P(  ai
k  +   bi

k  ≥   al
k  +   bl

k )
  ≤ P(  bi

k  –   bl
k  ≥   

ε
2 ).

Therefore, since the random variables (  bi
k  –   bl

k ) converge in distribution to the
constant 0 as k approaches infinity,   Ci

k (  a
k) → 0.  ❏

Now suppose that   x
k  =   C

k (A  x
k ) and that   x

k  → x*.  To prove the theorem, it is
enough to show that x* ∈  M(Ax*).  Clearly, A  x

k  → Ax*.  Hence, Lemma 1 tells us
that if i ∉ argmaxj (Ax*)j, then xi* = limk→∞   xi

k  = limk→∞   Ci
k (A  x

k ) = 0.  Consequently, x*

∈  M(Ax*).  This completes the proof of the theorem.  ■

The Proof of Proposition 3.4
 The Lyapunov function Π(x) =   

1
2 x·Ax – V(x), which is a map from the n  – 1

dimensional space ∆ to the one dimensional space R, is     C
n−1  by assumption.

Therefore, since n  – 1 > max{0, (n – 1) – 1}, Sard's Theorem implies that the set of
critical values of Π has measure zero.  This set is equal to the set {Π(x):  x ∈  RP} by
Theorem 3.5 (i).  Thus, Propositions 5.3 and 6.4 of Benaïm (1999) (also see Exercises
3.16 and 6.11 of Akin (1993)) imply that not only the set of ω-limit points of (P-V),
but also every attractor-free set under (P-V) is contained in RP.  Therefore,
Proposition C enables us to conclude that CR = RP.  ■

 The proof of Theorem 3.5 makes use of the following lemma.

Lemma 2:  Suppose that A is a potential game  and that x* is a rest point of (P-V).
Then the eigenvalues of H  = I0 (A –     D

2V(x*)) corresponding to directions in       R0
n  are

real, and have the same signs as the eigenvalues of D    ̇x  = DC(Ax*) A  – I
corresponding to directions in       R0

n .

 Proof:  Because A  and     D
2V(x*) are symmetric, the matrix H is symmetric on       R0

n

(i.e., x·Hy = y·Hx for all x, y ∈        R0
n ), so the eigenvalues of H corresponding to

directions in       R0
n  are in fact real.  (The projection I0 is introduced so that H maps       R0

n

to itself, ensuring that H can be diagonalized.)
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To make the connection with the eigenvalues of D    ̇x , we recall (from the proof of
Theorem 2.1) that DC(a)z =     [ ( ( ))]D V C a2 1− z for all z ∈        R0

n , and that DC(a) 1 = 0 (because
C(a + c1) ≡ C(a)).  Since     [ ( ( ))]D V C a2 1−  is only defined on       R0

n , we can let     [ ( ( ))]D V C a2 1−  1

= 0 and can write

D    ̇x  = [    D
2V(C(Ax))]–1 A – I.

Since at the rest point, x* = C(Ax*), and since [    D
2V(C(a))]–1 1 = 0, we can continue:

D    ̇x  = [    D
2V(x*)]–1 A – I

 = [    D
2V(x*)]–1(A –     D

2V(x*))
 = [    D

2V(x*)]–1 I0 (A –     D
2V(x*))

 = QH.

The matrix Q ≡ [    D
2V(x*)]–1 = DC(Ax*) annihilates 1, and maps       R0

n  into itself.

Therefore, we can find a matrix of eigenvectors, Z, whose first n  – 1 columns are i n

      R0
n  and whose nth column is 1.  Since Q is symmetric and is positive definite on       R0

n ,

we can write Q = ZD  ′Z  = P  ′P , where D is a diagonal matrix whose first n  – 1
diagonal elements are positive and whose last diagonal element is zero, and where
P =     ZD1 2/ .  Let       Rn

n
−1 = {x ∈      R

n : xn = 0}.  Observe that P maps       Rn
n

−1 onto       R0
n  and maps

  ( ,..., , )0 0 1 ′ to 0, while   ′P maps       R0
n  onto       Rn

n
−1 and maps 1 to 0.

 Let     ̃P
−1 be a matrix which inverts P on       R0

n .  Then QH = P  ′P H, viewed as a linear
operator on       R0

n , is similar to     ̃P
−1P  ′P HP  =   ′P HP, viewed as a linear operator on       Rn

n
−1.

Moreover, since P:       Rn
n

−1 →       R0
n  is full rank, the symmetric bilinear form   ′P HP on

      Rn
n

−1 is congruent to the symmetric bilinear form H on       R0
n .  Since similarity and

congruence preserve the signs of eigenvalues, we have established the result.  ■

The Proof of Theorem 3.5:
Part (i) of the result was proved in the text, while part (ii) follows directly from

the fact that Π is a strict Lyapunov function for (P-V) (Theorem 3.3).  We therefore
consider part (iii).  By assumption (R), the critical point x* is a local maximizer of Π
precisely when all of the eigenvalues of H = I0 (A –     D

2V(x*)) corresponding to
directions in       R0

n  are strictly negative; when x* is not a local maximizer, some
eigenvalue must be positive.  (Recall that H is symmetric on       R0

n , so that all of these

eigenvalues are real).  Lemma 2 therefore implies that if x* is a local maximizer of
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Π, it is linearly stable under (P-V), while if it is not a local maximizer, it is linearly
unstable.
 We now show that RP is finite.  The argument above shows that all rest points of
(P-V) are hyperbolic:  at rest points, all eigenvalues of D    ̇x  are real and nonzero.
Hence, all rest points of (P-V) are isolated.  If RP ⊂ ∆ is an infinite set, then as ∆ is
compact, RP has an accumulation point   x .  Since each x* ∈  RP satisfies     ̃ ( *)B x  = x*
and since     ̃B  is continuous, it follows that     ̃B(  x ) =   x , and hence that   x  ∈ RP.  This
contradicts the fact that rest points are isolated, and so we conclude that RP is finite.
 Since RP is finite, so is the set {Π(x):  x ∈  RP}.  Therefore, by again applying
Propositions 5.3 and 6.4 of Benaïm (1999), we can conclude that CR = RP.   ■

The Proof of Proposition 3.6:
 We begin with a lemma.

Lemma 3:  Suppose that     uk k

n{ } =1
 is strictly increasing and that     ck k

n{ } =1
 satisfies

    
ck

k

j

=
∑

1

 ≤ 0 for all j ≤ n, with a strict inequality for some j and equality at j = n.     (17)

Then      u ck ki

n

=∑ 1
 > 0.

Proof:  For all j < n, let dj = uj+1 – uj > 0.  Then

 
    

u ck k
i

n

=
∑

1

 = 
    
u cn k

k

n

=
∑

1

 – 
    

d cj
j

n

k
k

j

=

−

=
∑ ∑



1

1

1

 = –
    

d cj
j

n

k
k

j

=

−

=
∑ ∑



1

1

1

 > 0.  ❏

 The next lemma shows that the increasing differences property of supermodular
games still holds when we consider ordered pairs of opponent's mixed strategies.  Its
proof makes use of the following observation:

Sy ≥ Sx  if and only if  
    

( )y xi i
i

m

−
=
∑

1

 ≤ 0 for all m < n.     (18)

Lemma 4:  If Sy ≥ Sx and y ≠ x, then (Ay)i – (Ax)i is strictly increasing in i.

Proof:  Fix i < j.  We want to show that (Ay)j – (Ax)j > (Ay)i – (Ax)i, or
equivalently, that
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 (Ay)j – (Ay)i = 
    

( )A A yjk ik k
k

n

−
=

∑
1

 > 
    

( )A A xjk ik k
k

n

−
=

∑
1

 = (Ax)j – (Ax)i.

Since A is strictly supermodular, uk = Ajk – Aik is strictly increasing in k, while since
Sy ≥ Sx and y ≠ x, observation (18) implies that ck = yk – xk satisfies condition (17).
Thus, Lemma 3 yields the result. ❏

 Now suppose that Sy ≥ Sx.  We want to show that S    ̃B(y) ≥ S    ̃B(x).  If y = x this is
obviously true, so we suppose instead that y ≠ x.  By observation (18), it is enough to
show that for all m < n,

 0 > 
    

( ˜ ( ) ˜ ( ))B y B xi i
i

m

−
=
∑

1

 = 
    

∇ + − ⋅ −∫∑
=

˜ ( ( ) ) ( )B y x y x di
i

m

λ λ λ1
0

1

1

.

If we let z = λy + (1 – λ)x, it is enough to show that

 
    

∇ ⋅ −
=
∑ ˜ ( ) ( )B z y xi
i

m

1

 < 0 for all m < n.     (19)

Since     ̃B(z) = C(Az), we see that

 
    

∇ ⋅ −
=
∑ ˜ ( ) ( )B z y xi
i

m

1

= 
    

∂
∂

C
a

Az A y xi

k
kj

k

n

j j
j

n

i

m

( ) ( )
===

∑∑∑ 





−
111

.

This expression is negative if

 
    

( ( )) ( )A y x
C
a

Azk
k

n
i

ki

m

− −




= =

∑ ∑
1 1

∂
∂

 > 0.     (20)

Now uk = (A(y – x))k is strictly increasing by Lemma 4, while equations (4) and (6)
imply that ck =     –

∂
∂
C
ai

m
i

k=∑ 1
 satisfies condition (17).  Therefore, Lemma 3 implies that

inequality (20) holds for all m < n, and hence that S    ̃B(y) ≥ S    ̃B(x).  This completes the
proof of the proposition.  ■

 It is worth noting that only two properties of the choice probability function C

were used to establish Proposition 3.6:  to establish condition (17) we used the facts
that
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∂
∂

C
a

j

l

i

k
i

j
==
∑∑

11

 > 0 for all k, l < n, and that 
    

∂
∂

C
a

j

n
i

j
=
∑

1

 = 0 for all i ≤ n.

Notably, the symmetry of DC, which was essential for establishing our results for
other classes of games, was not needed here.  In fact, all of our results for
supermodular games extend immediately to dynamics based on any choice
probability function satisfying the two properties noted above.

The Proof of Proposition 3.7

 If {xt} solves (P), then

   
d
dt tSx  =     S xd

dt t( ) =     S B x xt t( ˜( ) )−  =     SB S Sx Sxt t
˜( ( ))− −1 ,

so {Sxt} solves (S).  Conversely, if {Sxt} solves (S), then

  
d
dt tx  =     S Sxd

dt t
−1( ) =     S SB S Sx Sxt t

− − −1 1( ˜( ( )) ) =     
˜( )B x xt t− ,

so {xt} solves (P).  ■

The Proof of Theorem 3.8

 Define the function     ̂B : S(∆) → S(∆) by     ̂B(v) =     SB S v˜( )−1 .  Fix i, j ∈  {1, … , n – 1}, i ≠ j,

and fix v ∈  S(∆).  It is enough to show that 
    
∂
∂

ˆ
( )B

v
i

j
v  > 0.

 Let x =     S v−1 .  Observe that if ej+1 and ej are standard basis vectors in     R
n , then S(ej+1

– ej) = ι j, a standard basis vector in       R
n−1.  It follows that

 
    

∂
∂

ˆ
( )

B
v

vi

j

 = 
    

lim ˆ( ) ˆ( )
ε ε

ει
→

+ −( )



0

1
B v B vj

i

 = 
    

lim ˜( ( )) ˜( ( ))
ε ε

ει
→

− −+ −( )



0

1 11
SB S v SB S vj

i

 = 
    

S B x e e B xj j
i

lim ˜( ( )) ˜( )
ε ε

ε
→ ++ − −( )









0 1

1

 = 
    
S DB x e ej j

i
( ˜( )( ))+ −[ ]1

 = 
    

∇ ⋅ −+
= +
∑ ˜ ( ) ( )B x e ek j j

k i

n

1
1

Since     
˜ ( )B ykk

n

=∑ 1
 = 1 for all y ∈  ∆,     ∇ ⋅

=∑ ˜ ( )B y zkk

n

1
 = 0 for all y ∈  ∆ and all z ∈        R0

n .  W e

can therefore conclude from equation (19) that
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∂
∂

ˆ
( )

B
v

vi

j

 = 
    
− ∇ ⋅ −+

=
∑ ˜ ( ) ( )B x e ek j j
k

i

1
1

 > 0.  ■

 To prove Theorem 4.1, we need to establish that the stochastic fictitious play Zt

satisfies a global version of Pemantle's (1990) nondegeneracy condition.  To state this
condition, we let     U

n
0  = {θ ∈        R0

n :      θii

2∑  = 1} denote the set of unit vectors in       R0
n , and

let Yt =     
1
2

1 2Y Yt t+( ).

Lemma 5:  
    
min min max ( ˜( )) ,

z U
t tn

E Y B z Z z
∈ ∈

+ − ⋅{ } =( )∆ θ
θ

0
1 0  > 0.

To interpret this condition, recall that if Zt = z, then the increment in the beliefs
process at time t + 1 is Zt+1 – Zt =     

1
1t+ (Yt+1 – z), while the expected increment is

    E Z Z Z zt t t+ − =( )1  =     
1

1t+ (    ̃ ( )B z  – z).  Thus, the condition in the lemma requires that

there are significant random deviations of the process Zt from its expected motion;
these deviations must be possible from any current state z and in any direction θ.
The proof of Lemma 5 requires this preliminary result.

Lemma 6:  If θ ∈      U
n
0 , then max i θi ≥ 

    
1

1n n( )−
 >     

1
n  and min i θi ≤ –

    
1

1n n( )−
 <  –    

1
n .

 Proof of Lemma 6:  Since z ∈        R0
n , we know that k, the number of strictly positive

components of θ, is between 1 and n – 1; we may suppose the first k  components are
strictly positive.  Now suppose that maxi θi < 

    
1

1n n( )−
.  In this case,     θii

k

=∑ 1
 < 

    
k

n n( )−1
 and

    θii

k 2

1=∑  <     
k

n n( )−1 .  Since θ ∈        R0
n ,     θii k

n

= +∑ 1
 = –    θii

k

=∑ 1
; moreover,     θii k

n 2

1= +∑  <     
k

n n

2

1( )− , as this

sum is maximized if exactly one term is non-zero.  But then     θii

n 2

1=∑  <     
( )

( )
k k

n n
+

−
1

1  ≤ 1,

contradicting that θ is of unit length.  The proof of the other claim is similar.  ❏

 Proof of Lemma 5: Since the density of the disturbance vector b has full support
on     R

n , we can place a uniform lower bound on the probability of an arbitrary
strategy being the best response after the payoff disturbances are realized:

 m  ≡ 
    
min min ˜ ( )

x i S iB x
∈ ∈∆

 > 0.

Now fix z ∈  ∆ and θ ∈     U
n
0 , and let   A

+  = {(i, j):     ( ( ) ˜( ))1
2 e e B zi j+ − ⋅θ  > 0}.  Then
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E Y B z Z zt tmax ( ˜( )) ,+ − ⋅{ } =( )1 0θ

 = 
    

P Y e Y e Z z e e B zt i t j t
i j

i j+ += = =( ) + −( ) ⋅{ }∑ 1
1

1
2 1

2 0, max ( ) ˜( ) ,
,

θ

 = 
    

˜ ( ) ˜ ( ) ( ( ) ˜( ))
( , )

B z B z e e B zi j
i j A

i j
∈ +

∑ + − ⋅( )1
2 θ

 ≥ 
    
m e B z

i
i

2 max ( ˜( ))− ⋅θ

 = 
    
m B z

i
i

2 max ( ˜( ) )θ θ− ⋅( )
 ≥ 

    
m m m

i
i

i
i i i

2 1max ( )max minθ θ θ− − +( )





 = 
    
m

i
i i i

3 max minθ θ−( )
 ≥     

2 3m
n .  ■

The Proof of Theorem 4.1 (ii)
 Suppose that A  is a potential game and that f is smooth enough that the
corresponding deterministic perturbation V  is     C

n−1 .  Then Proposition 3.4 and
Theorem 2.1 imply that CR = RP, while Proposition C shows that this set contains
all attractor-free sets under (P).  Theorem 3.3 of Benaïm and Hirsch (1999a) states
that with probability one, ω(Zt) is an attractor-free set.  Proposition C implies that all
attractor-free sets are connected.  We can therefore conclude that P(ω(Zt) is a
connected subset of RP) = 1.  (In addition, Proposition 6.4 of Benaïm (1999) implies
that the Lyapunov function Π  is almost surely constant on ω(Zt).)
 Next, suppose that A  is a potential game, that condition (R) holds, and that f is

  C
1 .  Then Theorem 3.5 (iii) and Theorem 2.1 show that CR = RP and that this set is

finite.  Thus, Theorem 3.3 of Benaïm and Hirsch (1999a) implies that P(limt→∞Zt ∈
RP) = 1.  Furthermore, Theorem 3.5 (iii) shows that all points in RP are either
linearly stable or linearly unstable.  The fact that   ′f  is bounded implies that equation

(P) is   C
2.  Given this observation and Lemma 5, we can use Theorem 1 of Pemantle

(1990) to show that P(limt→∞Zt ∈  LU) = 0.  Consequently, P(limt→∞Zt ∈  LS) = 1.  ■

The Proof of Theorem 4.1 (iii)
 Suppose that A is supermodular.  By Theorem 3.9 (iv), CR = RP 

    ∪ MiiU ; hence,

applying Proposition C and Theorem 3.3 of Benaïm and Hirsch (1999) establishes the
first statement in part (iii).  If we suppose that   ′f  is bounded, then equation (P) is   C

2.

If n  = 2, then each Mi is simply a rest point, and so our result for this case follows
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from the   C
2 smoothness of (P), Lemma 5, and Theorem 1 of Pemantle (1990).  If n  =

3, we can appeal to Proposition 3.7, Theorem 3.8, and Theorem 4.3 of Benaïm (2000),
which establishes that when (P) is a   C

2, two dimensional, cooperative, and
irreducible dynamics, Zt converges with probability one to a rest point which is not
linearly unstable.  Once again, Lemma 5 provides the nondegeneracy condition
which is needed to apply this result.  ■

After presenting Theorem 5.1, we claimed that when A is zero sum or admits an
interior ESS, we can determine an upper bound on the time before a neighborhood
of the rest point x*(Λ) is reached which is independent of the population's initial
behavior.  Recalling the definition of convergence in the medium run, we say that
the processes   Xt

N  converge uniformly in the medium run if the time until

convergence, T0(x0), can be chosen independently of x0.  We then have the following
result.

Proposition 7:  In the model of stochastic evolution , if A is zero sum or admits a n
interior ESS, then   Xt

N  converges uniformly in the medium run to RP = {x*(Λ )}.

To prove this result, one combines Theorems 2.1 and 3.2, Theorem 4.1 of Sandholm
(2000a), and the following classical result from dynamical systems.

Lemma 8:  Let x* be a Lyapunov stable global attractor of the flow φ on the simplex ∆.
Fix γ > 0, and let τ(x) = inf{T:      φ( , ) *t x x−  ≤ γ for all t ≥ T}.  Then supx∈ ∆ τ(x) < ∞.

Proof:  Since x* is globally stable, τ(x) < ∞ for all x ∈  ∆.  Now suppose that the
lemma is false.  Then there is a sequence of initial conditions {  x

k } ⊂ ∆ such that
limk→∞τ(  x

k ) = ∞.  Since ∆ is compact, this sequence has an accumulation point   x  ∈  ∆.
Because x* is Lyapunov stable, there is an η > 0 such that whenever     x x− *  ≤ η,

    φ( , ) *t x x−  ≤ γ for all t ≥ 0.  Because x* is a global attractor, there is a time   T  < ∞ such

that     φ( , ) *T x x−  ≤   
η
2 .  Finally, since the flow is continuous in the initial condition x,

we know that for all x sufficiently close to   x ,     φ φ( , ) ( , )T x T x−  ≤   
η
2 .  Therefore, for all

sufficiently large k, the triangle inequality implies that     φ( , ) *T x xk −  ≤ η, and hence

that     φ( , ) *t x xk −  ≤ γ for all t ≥   T .  But then τ(  x
k ) ≤   T  for all sufficiently large k ,

contradicting the definition of the sequence {  x
k }.  ■
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 The next lemma, due to Hopkins (1999), establishes a local stability result needed
to prove Theorem 5.2(i).  We provide a simpler proof.

Lemma 9:  If A is zero sum or admits an interior ESS, then x*(Λ), the global attractor

of (P-V), is linearly stable.

 Proof:  The derivative of the dynamics (P-V),     ̇x  = C(Ax) – x, is given by DC(Ax)A
– I.  We will show that this derivative matrix is stable on       R0

n  at all points in ∆.  If A

is zero sum then z·Az = 0 for all z ∈  R, while if A  admits an interior ESS, it is
negative definite on       R0

n  (Hofbauer and Sigmund (1988, p. 122)).  Either way, z·Az ≤ 0
for all z ∈       R0

n .  As we noted in Section 2.4.1, DC(Ax) is symmetric, positive definite
on       R0

n , and annihilates the vector 1.  Hence, the argument on p. 128-129 of Hofbauer

and Sigmund (1988) shows that all eigenvalues of DC(Ax)A corresponding to
directions in       R0

n  have non-positive real parts.  Moreover, DC(Ax)A – I has the same

eigenvectors as DC(Ax)A; for each eigenvalue λ of DC(Ax)A, the corresponding
eigenvalue of DC(Ax)A – I is λ – 1.  Consequently, DC(Ax)A – I is stable on       R0

n .  ■

The Proof of Theorem 5.2(i)
Our proof relies on a theorem of Kurtz (1976) (K76 hereafter).  To apply this

theorem, we define for each state x a random vector   I
x , which represents a

standardized random increment of this process   Xt
N  at the state x.  More precisely,   I

x

represents the possible increments during a single revision opportunity in the
numbers  (rather than proportions) of players of choosing each strategy.  The
distribution of   I

x , which is independent of the population size N, is given by

 P(  I
x  = ej – ei) = xi    

˜ ( )B xj whenever i ≠ j;

P(  I
x  = 0) = 

    
x B xi i

i

˜ ( )∑ .

 Using the notation of K76, the expected motion of   Xt
N  is given by

 F(x) = 
    

l P I lx

l

( )=∑  =     ̃ ( )B x  – x,

while the matrix function g defined by
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 gij(x) = 
    

l l P I li j
x

l

( )=∑  = 

    

− + ≠
+ =





 ≠
∑

( ˜ ( ) ˜ ( )) ;

( ˜ ( ) ˜ ( ))

x B x x B x i j

x B x x B x i j
i j j i

i l l i
l i

if 

if 

captures the comovements of the components of this process.
  K76 Theorem 2.7 shows that if x* is a global attractor of     ̇x  = F(x) (i.e., equation (P))
and certain additional conditions are satisfied, then the stationary distributions of
the rescaled process   Zt

N  =     N X xt
N( *)−  converge in distribution to N(0, Σ), where28

Σ = 
    

exp( ( *) ) ( *) exp(( ( *)) )Df x s g x Df x s ds′
∞

∫0
.

To prove our result, it is enough to verify the required conditions.
 The condition contained in K76 Theorem 2.3 requires that DF(x) be continuous
in x.  This follows from the fact that C is   C

1 , which was established in the proof of
Theorem 2.2.  K76 condition 2.1 and the second and third supremum conditions of
K76 Theorem 2.7 follow directly from the fact that the number of possible
transitions at each state are finite.  The first supremum condition follows from the
fact that DF(x) is a continuous function on the compact set ∆.  That   Xt

N  is irreducible

on   ∆N  implies that it admits a unique stationary distribution.  Finally, the global
stability of x* = x*(Λ) follows from Theorems 2.1 and 3.2, while the linear stability of
x* follows from Theorem 2.1 and Lemma 9.  This verifies all of the conditions
required by K76 Theorem 2.7, completing the proof of our theorem.  ■

The Proof of Theorem 5.2(ii)
 To prove the first claim, we appeal to the proof of Proposition 3 of Benaïm and
Weibull (2000), which shows that when N  is large, no stationary distribution of a
stochastic evolutionary process can place significant mass away from the minimal
center of attraction of the corresponding deterministic system.29  Proposition A
shows that this set is contained in the set of ω-limit points Ω; by Theorems 2.1 and
3.3, Ω = RP.

                                                
28  This expression for the covariance matrix Σ corrects the expression found in Kurtz (1976) (Kurtz,
personal communication).
29  While the results of Benaïm and Weibull (2000) and of Benaïm and Hirsch (1999b) (used below) are
presented for discrete time models, they still apply in our continuous time setting:  stationary
distributions are independent of this modeling choice.
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 The proof of the second claim is based on Theorem 4.3 of Benaïm (1998)
(hereafter B98).  Our conclusion follows immediately once we verify the hypotheses
which used in this theorem.
 The process   Xt

N  is an urn process as defined in B98 Example 1.1, with p+(x) =

C(Ax) and p–(x) = x.  Hence, conditions (i) and (ii) of B98 Corollary 3.3 are satisfied,
implying that B98 Hypotheses 2.1 and 2.3 hold; conditions (ii), (iii), and (iv) of B98
Hypothesis 3.4 are satisfied as well.  Lastly, since (P) possesses a globally attracting set
which is contained in int(∆), B98 Hypothesis 3.4 (i) also holds.

Next, we confirm the conditions stated in B98 Theorem 4.3.  Since we have
assumed that (R) holds, condition (i) follows from our Theorem 3.5 (iii).  Condition
(ii) follows from B98 Remark 3.10 (iii) and the fact that all rest points of (P) are i n
int(∆).  Condition (iii) follows from the fact that   Xt

N  is defined on ∆.

 Finally, we must show that under condition (R), any rest point x* of (P) which is
not Lyapunov stable under (P) is weakly unstable (B98 p. 68).  The proof of Theorem
3.5 (iii) shows that under condition (R), all rest points of (P) are hyperbolic.  Hence, if
x* is not Lyapunov stable, it follows from the Hartman-Grobman Theorem
(Robinson (1995, Theorem 5.5.3)) that there is a solution trajectory {xt}t∈ R such that
limt→–∞ xt = x*.  Moreover, Theorem 3.4 implies that limt→∞ xt = y*, where y* ≠ x* is
another rest point of (P).  Moreover, since Π is a strict Lyapunov function for (P), it
must be that Π(y*) > Π(x*), and hence that no orbit chain (B98, p. 68) beginning at y*
can lead to x*.  Thus, x* is weakly unstable.  This completes the proof of Theorem 5.2
(ii).  ■

The Proof of Theorem 5.2(iii)
 This proof relies on results of Benaïm and Hirsch (1999b) (henceforth BH).  To
apply these results, we let   I

x  be a random vector describing the increments of the
process   Xt

N  from the state x, as described in the proof of Theorem 5.2 (i).  Let   Σ x  ∈

    R
n n×  denote the covariance matrix of   I

x .  Since   I
x  takes values in       R0

n , 1·  Σ x 1 =
Var(  Xii∑ ) = 0.  Therefore, since the matrix   Σ x  is symmetric, it admits a matrix of

real eigenvectors; one of these eigenvectors is 1, and the others lie in       R0
n .  Let λ(x) be

the smallest eigenvalue of   Σ x  corresponding to an eigenvector in       R0
n .  To use the

results of BH, we need to show that λ(x) is uniformly bounded away from zero.
Intuitively, this means that for any current state x and any direction of motion z i n

      R0
n , the amount of randomness in the motion of the process   Xt

N  in the direction z is

nonnegligible.
 To establish the bound on λ(x), we again let
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 m  ≡ 
    
min min ˜ ( )

x i S iB x
∈ ∈∆

 > 0.

Lemma 10:  The minimum eigenvalue λ (x) of   Σ x  satisfies λ (x) ≥ m.

 Proof:  Fix an arbitrary unit length vector θ ∈        R0
n ; it is enough to show that θ·  Σ x θ

≥ m.  A calculation reveals that

 
    
Σ ij

x i j i j

i i i i

x x B x B x i j

x x B x B x i j
=

− − ≠
− + − =







˜ ( ) ˜ ( ) ;

( ) ˜ ( )( ˜ ( )) .

if 

if 1 1

Since x and     ̃ ( )B x  lie in the simplex, and since     θii

n

=∑ 1
 = 0 and     θii

n 2

1=∑  = 1, we find that

 θ·  Σ x θ = θ·diag(x)θ – ′θ x  ′x θ + θ·diag(    ̃ ( )B x )θ – ′θ     ̃ ( )B x     ̃ ( )B x ′ θ

 =     θi ii
x2∑  – 

    
θ j jj

x∑( )2

 +     θi ii
B x2 ˜ ( )∑  – 

    
θ j jj

B x˜ ( )∑( )2

 = 
    

θ θi jj ji ix x−( )∑∑
2

 + 
    

θ θi jj ji iB x B x−( )∑∑ ˜ ( ) ˜ ( )
2

 ≥ m
    

θ θi jj ji
B x−( )∑∑ ˜ ( )

2

= 
    
m B x n B xii ii j jj j jj

θ θ θ θ2
2

2∑ ∑ ∑ ∑− ( )( ) + ( )





˜ ( ) ˜ ( )

≥ m .  ❏

 To complete the proof, we must check the conditions which support BH
Theorem 1.5.  Proposition 3.7 and Theorem 3.8 show that (after a linear
transformation), the dynamics (P) form a cooperative, irreducible dynamical system
on ∆, so BH Hypothesis 1.2 is satisfied.  Since the increments are uniformly bounded
above, and since λ(x) is uniformly bounded below by Lemma 10, BH Proposition 2.3
implies that BH Hypothesis 1.4 holds.  Finally, since each   Xt

N  is takes values in the

compact set ∆, the tightness assumption in BH Theorem 1.5 is satisfied.  Therefore,
BH Theorem 1.5 implies that limN→∞  µ

N (Q) = 1 for any open set Q containing the

Lyapunov stable rest points of (P).  ■

 The proof of Theorem 7.1 requires the following lemma.
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Lemma 11:  Let R ⊂ RP, and let {σt} be a solution to (B) with ω{Eσt} ⊂ R.  Then  ω{σt}
⊂ B(R).

The proof of this lemma for the case where R is a singleton is contained in the proof
of Theorem 6.4 of Ely and Sandholm (2000) (henceforth ES); the proof for general R

requires only a minor modification.

The Proof of Theorem 7.1(ii)
 Suppose that {σt} is a solution to (B).  Then ES Theorem 5.1 implies that {Eσt} is a
solution to (AB) = (P).  Since A  is a potential game, Theorem 3.3 implies that ω{Eσt}
⊂ RP.  Thus, Lemma 11 allows us to conclude that ω{σt} ⊂ B(RP).  The remaining
claims follow immediately from Lemma 11 and ES Theorem 6.4.  ■

The Proof of Theorem 7.1(iii)
 Since A  is a supermodular game, Theorem 3.9 (ii) shows that there is an open
dense set O ⊂ ∆ such that solutions to (P) from every initial condition x0 ∈  O

converge to some point in RP.  We will show that     E
−1(O) is an open dense subset of

Σ, and that solutions to (B) from every initial condition σ0 ∈      E
−1(O) converge to

some equilibrium strategy profile in B(RP).
 Since E is continuous,     E

−1(O) is open.  To establish that     E
−1(O) is dense, we must

show that for every σ ∈  Σ and every ε > 0, the set     E
−1(O) and the open ε-

neighborhood of σ are not disjoint.  Let     Nε σΣ ( ) ⊂ Σ be the open ε-neighborhood of σ,
and for x ∈  ∆ let     N xε

∆( )  ⊂ ∆ be the open ε-neighborhood of x.  Since O is dense in ∆,
there exists a y ∈  ∆ such that y ∈      N Eε σ∆( ) ∩  O.  By ES Lemma 6.1, there is a ρ ∈  Σ
such that ρ ∈      Nε σΣ ( ) and Eρ = y.  Thus, ρ ∈      Nε σΣ ( ) ∩      E

−1(O), and so     E
−1(O) is dense i n

Σ.
Now suppose that {σt} is a solution to (B) with σ0 ∈      E

−1(O).  Since Eσ0 ∈  O, the
solution to (AB) starting from Eσ0 converges to some x* ∈  RP.  ES Theorem 5.2
therefore implies that {Eσt} converges to x*, and so Lemma 11 implies that {σt}
converges to B(x*).  This completes the proof of the theorem.  ■
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