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Abstract

Win Stay, Lose Shift as well as imitation strategies for iterated games rely on an

aspiration level. With both learning rules a move is repeated unless the pay-o�

fell short of the aspiration level. I investigate social adaptation mechanisms for

the aspiration level and their impact on the eÆciency of learning in a large popu-

lation of agents that repeatedly play one round of a symmetric 2�2 game against

randomly chosen opponents. It turns out that if the aspiration level is given by

the last payo� of the current opponent the population receives the maximal sym-

metric payo� of the game in the long run. If the aspiration level is determined

by independently chosen agents the outcome is related to the evolutionarily sta-

ble strategies. This holds for win stay, lose shift as well as for imitation based

learning. These results suggest that the choice of peers can be crucial for the

eÆciency of learning.
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1. Introduction

Satisfaction with an achievement is not independent of the achievements of our

peers. What counts is where we stand in comparison to others and not the

absolute value of a success. The social psychologists Thibaut and Kelley (1959)

already noted that aspiration levels, de�ned as the lowest satisfying outcomes,

are not constant but subject to learning. The aspiration level (which they call

comparison level) will adapt to salient outcomes a person is confronted with:

With variations in the particular instigations or reminders that

are present (e.g. the particular persons brought to mind for com-

parison), there appear to be corresponding uctuations in the com-

parison level.
Thibaut and Kelley (1959, p. 98)

Which are the persons brought to mind for comparison? These can be randomly

chosen agents or somehow salient individuals as e.g. persons we interact with.

Consider the situation where agents are in every round newly randomly matched

in pairs to play one round of a symmetric 2� 2 game. The agents update their

actions if their last payo� fell short of their aspiration level. I investigate two

updating mechanisms: a simple win stay, lose shift behavior and a more sophis-

ticated imitation rule.

In this paper I show that the choice of peers for comparison is crucial for the

eÆciency of learning: If the aspiration level is given by the last payo� of the

current opponent the population will in the limit receive the maximal symmetric

payo� of the game. If, in contrast, the aspiration level is determined by the last

payo� of independently randomly chosen agents, the limit payo� is related to the
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evolutionarily stable strategies of the one stage game. These �ndings hold for the

simple win stay, lose shift rule as well as for imitation learning.

As a special case I study the Prisoner's Dilemma. Here all players defect in

the limit if the aspiration level is determined by the payo� of independently

chosen agents but cooperate if the aspiration level is given by the payo� of the

current opponent. But is this cooperation stable if there are also players present

that always defect? It turns out that some cooperation persists as long as these

defectors are not in the majority. This holds for the win stay, lose shift as well

as for the imitation rule. The latter however is able to keep a higher level of

cooperation. To investigate the robustness of both aspiration based learning

rules I study a selection dynamics, assuming that rules leading to a higher payo�

spread faster in the population than those with a lower payo�. For a large class of

Prisoner's Dilemma games the aspiration based learning rules cannot be invaded

by always defecting players. For some Prisoner's Dilemma games the imitating

rule (but not the win stay, lose shift rule) can even invade a population of always

defecting players.

Recently several authors investigated learning dynamics based on endogenous

aspiration levels for repeated games, where the same two players repeatedly play

a 2� 2 game. They assumed either that the aspiration level of a player depends

on the payo�s he himself received in the past (Karandikar, Mookherjee, Ray

& Vega-Redondo 1998, Posch 1999, Posch, Pichler & Sigmund 1999, B�orgers &

Sarin 2000) or on an average population payo� (Dixon 2000, Oechssler 2000).



4

The approach closest to this paper is probably by Palomino & Vega-Redondo

(1999) who also consider a setting where the players are newly matched in every

round. The main di�erence to my approach is that Palomino and Vega-Redondo

assume that the aspiration levels of the players depend on the average population

payo�, which is assumed to be common knowledge. In contrast, in the model

presented here also the formation of the aspiration level is based solely on "local"

information. Interestingly, in the setup of Palomino and Vega-Redondo only

partial cooperation emerges for the Prisoner's Dilemma.

Closely related to the discrete imitation model studied in this paper, where in-

dependently, randomly chosen agents that achieved a higher payo� are imitated,

are the continuous imitation dynamics (Schlag 1998, Hofbauer 1995, Bj�ornerstedt

& Weibull 1996, Weibull 1995, Hofbauer & Sigmund 1998). Schlag (1998) showed

that imitating the better with independent matching is not optimal in the sense

that there are situations where the expected payo� of a player may decrease when

following this rule. He proposes a stochastic imitation rule where the probabil-

ity to imitate a player is proportional to the payo� di�erence. Hofbauer and

Schlag (2000) show that for cyclic games this imitation rule may result in cycling

learning dynamics. Another related approach is by Vega-Redondo (1997) who

considers an N -player oligopoly model where the same N players repeatedly in-

teract. He proves that imitating strategies of more successful opponents leads to

convergence to the Walrasian equilibrium.
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The paper is organized as follows. In Section 2 the learning rules and matching

schemes are introduced. In Section 3 I analyze the learning dynamics for homo-

geneous populations of win stay, lose shift and imitating players that update their

actions if they achieved less than their current opponent did. In Section 4 the

independent matching rule is studied where the players compare their payo�s to

independently chosen agents. In Section 5 I consider mixed populations for the

Prisoner's Dilemma where also always defecting players are present and study the

evolution of these strategies under selection. Finally, in the discussion I explore

generalizations to symmetric games with more than two actions and players.

2. The Shift if Better and Imitate if Better strategies for

symmetric 2� 2 Games

Consider a large population of players that are at each round randomly matched

in pairs to play one round of a symmetric 2 � 2 game. In the �rst round the

players choose an action at random such that each action is chosen with positive

probability. In all following rounds they update their actions using the aspiration

based learning rules described below.

2.1. Independent Matching and Competitor Matching. In the indepen-

dent matching case (Schlag 1998) every player �rst randomly samples an agent

and updates his own action if his own last payo� is smaller than the opponent's

last payo�. Next, each player independently samples another agent and plays

one round of the game using the current action. In the competitor matching case

only one agent is sampled in each round. The players update their actions if their
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last payo� falls short of the last payo� of their opponent and then play against

the same opponent one round of the game.

2.2. Shift if Better and Imitate if Better Updating. I consider two updat-

ing rules: one is shifting, i.e. the players just switch to the other action. The

second is imitation, i.e. the players copy the strategy of the player they sampled

to compare their payo� to. Obviously, imitation is a more sophisticated strategy

that requires information about the action the opponent used in the last round.

I call the �rst learning rule shift if better (SiB) and the second imitate if better

(IiB). The latter term is also due to Schlag (1998).

2.3. Symmetric 2�2 Games. Denoting the two actions by C and D the payo�

matrix for the game is given by

C D

C R S
D T P

;

i.e. playing C against C leads to the payo� R, D against C to T etc. The

learning rules SiB and IiB depend only on the rank ordering of the payo�s.

Considering only the generic situation where all payo� values are distinct there

are 24 di�erent rank orderings and the only symmetric payo�s are R and P . If we

assume additionally that R > P (which is no restriction of generality: otherwise

just re-label C and D), they are reduced to 12 rank orderings (Nowak, Sigmund

& El-Sedy 1995, Colman & Stirk 1998). I normalize the games by setting R = 1

and P = 0. Then each rank ordering corresponds to a region in the S-T plane as

sketched in Figure 1 (cf. Posch et al. (1999)). The 12 classes of games correspond

to very di�erent strategic situations. A widely used model for altruism is e.g. the
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Prisoner's Dilemma game, where T > 1 > 0 > S. Here the two options C and

D are interpreted as cooperation and defection.

S

T

0

1

0 1

1
Prisoner’s
Dilemma

2
Chicken

3
Leader

4
Battle of
the Sexes

567

Harmony

8

Stag Hunt

9 10 11 12
Deadlock

Figure 1. The 12 games in the S-T plane.

2.4. An Example. Let us consider the SiB and IiB strategies with competitor

matching for the Prisoner's Dilemma game. Whenever a SiB player got a lower

payo� than his opponent he will switch to the other action. For an IiB player this

only holds if the agents additionally played di�erent actions in the former round.

E.g., if a SiB player received payo� S and his opponent 1, he will defect in the

next round while an IiB player will cooperate; if a SiB or IiB player received payo�

0 and his opponent 1, they will both cooperate in the next round. Table 1 gives

the full de�nition of the SiB and IiB strategies for the Prisoner's Dilemma game.

For all other symmetric 2� 2 games the strategies can be de�ned analogously.
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SiB IiB
T 1 0 S

T D D D D

1 D C C C

0 C C D D

S D D D C

T 1 0 S

T D D D D

1 D C C C

0 D C D D

S D C D C

Table 1. The SiB and IiB strategies with competitor matching
for the Prisoner's Dilemma. The table gives the action of a SiB

(resp. IiB) player that obtained in the last round the row-payo�
and his opponent the column-payo�. The grayed entries denote
cases where the row player is unsatis�ed and updates his action.
Note that only the underlined actions in the matrix for IiB players
di�er from the ones for SiB players.

3. Competitor Matching: The SiB and the IiB Strategies in

Homogeneous Populations

3.1. The SiB strategy. Let rn; sn; tn; pn denote the relative frequencies of SiB

players receiving payo�s 1; S; T; and 0 in round n. For a population consisting

entirely of SiB players the relations tn = sn and rn = 1� pn� 2 sn hold for all n.

Thus, the dynamics of the four frequencies can be reduced to (sn; pn). Note that

at most one of the two matched players switches his action. They will play two

di�erent actions only if they played the same action in the past round but got

di�erent payo�s. This occurs if a player with payo� 1 meets a player with payo�

S or if a player with payo� 0 meets a player with payo� T . Thus, for all games

the frequency of players receiving S in the next round is given by

s
n+1

= sn rn + tn pn

= sn(1� 2 sn):(1)
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Hence, for all initial conditions limn!1 sn = 0. Next, consider the dynamics of

pn for the case of the Prisoner's Dilemma, where T > 1 > 0 > S. A pair of

SiB players receives the payo� 1 if the players got the payo�s (1; 1); (S; S); (1; 0)

or (0; 1) in the last round. As noted above, they receive S (resp. T ) after the

payo�s (1; S); (0; T ) (resp. (S; 1); (T; 0)). It follows that they receive 0 after all

other possible outcomes. Thus, the law of motion is given by

p
n+1

= p2
n
+ 2rntn + 2pnsn + 2sntn + t2

n

= p2
n
+ 2sn � s2

n
:(2)

I showed above that limn!1 sn = 0. Assuming for the moment that sn = 0 for

large n it easily follows that limn!1 pn = 0 as long as p1 < 1 (see Appendix

A for a rigorous proof without the above assumption). Thus, for the Prisoner's

Dilemma game it follows that limn!1 rn = 1

Also for all other games pairs of players that received payo�s (1; 1); (S; S); (1; 0); (0; 1)

will receive 1 in the next round. Players with payo�s (1; S); (0; T ); (S; 1); (T; 0)

receive S or T . Thus, for all symmetric 2� 2 games the fraction pn+1 of players

receiving 0 in round n+ 1 can be estimated from above:

p
n+1

� p2
n
+ 2rntn + 2pnsn + 2sntn + t2

n

= p2
n
+ 2sn � s2

n
=: f(pn; sn) (say).

From above it follows that for the recursion q1 = p
1
; qn = f(qn; sn) (which

corresponds to the Prisoner's Dilemma) we have limn!1 qn = 0. Since f(x; y)

is monotonically increasing in x on [0; 1] we get pn � qn for all n > 1 and thus

limn!1 pn = 0. Hence, if p1 < 1 then limn!1 rn = 1. Since we assume that in
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the �rst round both actions are played with positive probability this gives the

following result:

Proposition 1. For all symmetric 2 � 2 games a population of SiB players

receives in the limit the maximal symmetric payo�.

In the case of the Prisoner's Dilemma cooperation emerges. However, as follows

from the proof of Proposition 1, the Prisoner's Dilemma is somehow the \worst

case": here convergence is the slowest.

3.2. The IiB strategy. Let again rn; sn; tn, and pn denote the relative frequen-

cies of IiB players receiving payo�s 1; S; T; and 0 in round n. If two IiB players

are matched they both play the same action: if their payo�s were di�erent, the

player with the lower payo� imitates the other, if their payo�s were equal they

already played the same action. Thus, for a population consisting entirely of IiB

players independent of the initial moves for all n > 1 we have sn = tn = 0 and

pn = 1� rn. A pair of IiB players gets 1 in the next round if the players received

the payo�s (1; 1); (1; 0), or (0,1) in the last round. Only if both players received

0 they also receive 0 in the next round. Hence, the law of motion is given by

p
n+1

= p2
n
:

A straightforward calculation gives the following result:

Proposition 2. For all symmetric 2�2 games a population of IiB players receives

in the limit the maximal symmetric payo�.
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Thus, the limit outcome is the same as for the SiB rule. However, the convergence

rates di�er dramatically: for the SiB rule the convergence rate is slower than

geometric while for the IiB rule it is faster than geometric.

4. Independent Matching: Keeping Up with Anybody

For the behavior of both the SiB and the IiB strategy, it was essential to as-

sume that they play the game with the same agent they compare their payo� to.

Assuming independent matching the learning dynamics changes completely. I

illustrate the long run behavior of a homogeneous populations of SiB resp. IiB

players using this matching scheme for the 12 symmetric 2� 2 games.

Let cn denote the fraction of players that played the action C in the last round.

Then rn = c2
n
receive payo� 1, sn = cn (1 � cn) payo� S, and so on. Thus, it

suÆces to study the dynamics of cn. This will depend on the payo� ordering.

Consider e.g. the Prisoner's Dilemma. Here, for the SiB rule the law of motion

is given by

cn+1 = cn (1� 2 c2
n
+ 2c3

n
):

Thus, limn!1 cn = 0. Similarly for the IiB rule the law of motion is given by

cn+1 = c2
n
(3� 4 cn + 2c2

n
):

Again, limn!1 cn = 0. However, as for competitor matching convergence for the

IiB rule is faster than geometric while for the SiB rule it is slower than geometric.

Thus, with both, the SiB and the IiB rule, all players will use strategy D in the

limit. As shown in Section 3, if they use the same person for the updating of
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their strategy as for playing, both rules use C in the limit. Hence, the matching

rule is crucial for the outcome.

The results for all 12 games are given in Table 2. The limit outcome of the SiB and

IiB rule with independent matching is closely related to the pure and mixed evo-

lutionarily stable strategies of the game. A game has a pure evolutionarily stable

strategy if either a population playing always C or a population playing always

D cannot be invaded by any other strategy that occurs with small frequency.

For games with a mixed evolutionarily stable strategy a stochastic strategy that

plays the actions C and D with certain probabilities (which depend on the actual

payo� values) cannot be invaded.

As listed in Table 2 for the IiB rule all pure evolutionarily stable strategies are

also limit outcomes for the IiB rule. For the SiB rule this relation holds with three

exceptions: for the games 8 and 9 the frequency of playing C always stays equal

to the initial frequency; in game 10, where C and D are evolutionarily stable,

the population plays always C in the limit, regardless of the initial conditions.

Thus, here an equilibrium selection takes place: the game dynamics selects the

so called Stackelberg equilibrium (The Stackelberg solution is the strategy which

optimises the payo� under the assumption that the reply is optimal from the

co-player's view, see Colman and Stirk, 1998).

For games that have a mixed evolutionarily stable strategy populations of IiB

and populations of SiB players will play a mixed strategy in the limit. As the

dynamics for both the IiB and SiB rule depend only on the payo� ordering also
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this mixed strategy depends only on the payo� ordering and will in general not

coincide with the evolutionarily stable strategy.

Games SiB IiB ESS

1 0 0 0

2,3 1

2

1

2

S

S+T�1
4 1

2
(�1 +

p
5) 1p

2

S

S+T�1
5,6,7,11,12 1 1 1

8,9 �xed point line 0 1

2
! 1 0,1

10 1 0 1� 1p
2
! 1 0,1

Table 2. The limits of the fraction of players playing strategy
C for the SiB and IiB rule if they independently match an agent
for the updating of the strategy and another agent to play the

next round. The last column lists the pure and mixed evolutionary
stable strategies of the respective games. The notation 0 x! 1
denotes a situation where the limit for initial values c1 greater x is
1 and for initial values smaller than x is 0.

5. Competitor Matching: Keeping up with Jailbirds

In this section I investigate the robustness of the SiB and IiB rule for the Pris-

oner's Dilemma game with competitor matching. From above it follows that

both rules, when applied in a homogeneous environment, lead to a cooperating

population, regardless of the initial moves. How will these strategies perform in

a rougher environment where also players that always defect are present? I �rst

study the game dynamics in a population where a fraction Æ plays the strategy

All D, i.e. these agents always play D. Then I consider a selection dynamics for

populations of All D and SiB as well as All D and IiB players. Let tD
n
; pD

n
denote

the frequency of players that use the strategy All D and experience the outcomes

T and 0. Note that these players never experience 1 or S.
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5.1. The SiB strategy. Let rn; sn; tn; pn denote the fractions of players that use

the SiB rule and receive the payo�s 1; S; T; and 0. The six dimensional dynamics

(rn; sn; tn; pn; t
D

n
; pD

n
) for a population of SiB and ALL D players reduces to a

three dimensional system since Æ = tD
n
+ pD

n
, sn = tn + tD

n
, and the sum of all

frequencies is 1:

r
n+1

= r2
n
+ 2rn pn + s2

n

= s2
n
+ 2 rn (1� Æ � sn � tn)� r2

n

s
n+1

= rn sn + tn pn + rn p
D

n
+ pn t

D

n

= Æ (rn � sn)� s2
n
+ rn tn + sn (1� rn � tn)(3)

t
n+1

= rn sn + tn pn

= rn sn + tn (1� Æ � rn � sn � tn)

For all Æ 2 [0; 1] the state (0; 0; 0) is a �xed point for this system. The Jacobian

at this �xed point has eigenvalues (1 � Æ; 1 � Æ; 2 � 2Æ). Thus, for Æ > 1=2 the

point (0; 0; 0) is asymptotically stable; for Æ < 1=2 it is unstable. I computed all

�xed points of (3) numerically for a �ne grid of Æ-values using the Mathematica

(Wolfram 1996) function Solve: for Æ � 1=2 (0; 0; 0) is the only nonnegative �xed

point; for Æ < 1=2 there is another �xed point (�r(Æ); �s(Æ); �t(Æ)) which is locally

asymptotically stable and { as numerical simulations suggest { even globally

asymptotically stable. As shown in Section 3.1 (�r(0); �s(0); �t(0)) = (1; 0; 0).

Figure 2a shows for given Æ the fractions of SiB and All D players that receive

the payo�s 1; S, and T in the limit. The SiB rule performs strikingly well. If

more than half of the population consists of defectors (Æ > 1=2), it also defects
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SiB and All D IiB and All D

0.1 0.2 0.3 0.4 0.5
δ

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5
δ

0.2

0.4

0.6

0.8

1

a) b)

Figure 2. The fraction of All D players and a) IiB resp. b)
SiB players receiving the payo�s 1; S; and T in a population with
a fraction Æ of All D players and 1 � Æ SiB (resp. IiB) players:
fraction of SiB (resp. IiB) players receiving 1 thick line, S thin line,

T dashed line, and the fraction of All D players receiving T dotted
line.

in every round. If there are no defectors at all it cooperates in the limit. If

the frequency of defectors is somewhere between 0 and 1=2 the limit outcome is

mixed. But the frequency of SiB players that mutually cooperate is always larger

than the frequency of players receiving S. The higher the number of defectors

the less cooperation. If the fraction of All D players tends to zero the All D

players receive alternatingly the payo�s 0 and T : an All D player that received

T in the last round cannot exploit a SiB player unless the latter received 0 in

the last round, which is very unlikely if Æ is low. For small values of Æ the SiB

players receive S mainly against another SiB player, while for larger values of Æ

they receive S mainly against an All D player.

Evolution. Next I study the evolution of a population of SiB and All D players.

For simplicity I assume that in each generation the agents play an in�nite number
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of rounds and consider only the average payo� the players receive at the asymp-

totically stable states. The reproductive success of the players is given by their

average payo� such that selection is acting via a monotone selection dynamics

(Hofbauer & Sigmund 1998), i.e. strategies with a higher payo� spread faster

than those with a lower payo�. For a population with two strategies this implies

that the strategy with the higher payo� spreads, while the other decreases. The

dynamics is given by a di�erential equation

_Æ = Æ g(Æ);

where g(Æ) is a continuously di�erentiable function such that g(1) = 0 and g(Æ)

has the same sign as the di�erence of the average payo�s of All D and SiB players.

This di�erence is given by

T �tD(Æ)

Æ
� �r(Æ) + �s(Æ)S + �t(Æ)T

1� Æ
:

Thus, if T < c1(Æ)+c2(Æ)S; where c1(Æ) = Æ �r(Æ)=[(1� Æ) �s(Æ)� �t(Æ)] and c2(Æ) =

Æ �s(Æ)=[(1� Æ) �s(Æ)� �t(Æ)], the SiB players will have a higher average payo� than

the All D players. The functions c1(Æ); c2(Æ) are plotted in Figure 3. For Æ ! 0

the inequality reduces to T < 2. With increasing Æ the set of games where SiB can

spread becomes smaller. For Æ ! 1=2 the condition becomes T = 1; S = 0 which

is no longer a Prisoner's Dilemma game. Thus, for every Prisoner's Dilemma

game All D can spread if its frequency is below but suÆciently close to 1=2.

If Æ > 1=2 both strategies receive the average payo� 0 and thus none of the

strategies can spread.

From the monotonicity of c1 and c2 in Æ follows that the sets of games where

SiB can spread are nested for growing Æ. Thus, if for �xed S; T and some �Æ
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SiB IiB

0.1 0.2 0.3 0.4 0.5
δ

0.5

1

1.5

2
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δ

0.5

1
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2

a) b)

Figure 3. A fraction Æ of All D players cannot invade a) a SiB
population if the payo� values satisfy T < c1(Æ) + c2(Æ)S, where
c1(Æ) is given by the solid and c2(Æ) by the dashed line and b) an
IiB population if the payo� values satisfy T < c3(Æ) + Æ=(1� Æ)S,

where c3(Æ) is given by the solid and Æ=(1� Æ) by the dashed line.

the strategy SiB can spread, then it spreads also for all Æ < �Æ. Hence, an orbit

starting at �Æ leads to the �xed point 0 and SiB will come to �xation. If in contrary

for some �Æ the strategy All D can spread, then it spreads also for all Æ 2 [�Æ; 1=2)

and an orbit starting at �Æ converges to 1=2. Summarizing, we get

Proposition 3. For all Prisoner's Dilemma games there is a continuum of �xed

points on the interval [1=2; 1]. If T > 2 then all orbits starting in (0; 1=2) converge

to 1=2. If T < 2 there exists a �xed point Æ� such that all orbits starting in

(Æ�; 1=2) converge to 1=2 and all orbits starting in (0; Æ�) converge to 0 (see Figure

4).

0 0.5δ∗
δ

1

Figure 4. The phase portrait of the selection dynamics of a
population of SiB and All D players for Prisoner's Dilemma games
with T < 2. The interval [1/2,1] consists of of �xed points.
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Thus, for no Prisoner's Dilemma game All D can come to �xation. For Prisoner's

Dilemma games with T < 2 the point 0 is asymptotically stable and thus a

population of SiB players cannot be invaded by All D. Note that these are the

games for which the win stay, lose shift rule Pavlov in the repeated Prisoner's

Dilemma game is an evolutionarily stable strategy (Boerlijst, Nowak & Sigmund

1997, Leimar 1997).

5.2. The IiB strategy. Let rn; sn; tn; pn denote the fractions of players that use

the IiB rule and receive the payo�s 1; S; T; and 0. Since an IiB player never

receives the payo� T we have tn = 0 for all n > 1 and thus also sn = tD
n
.

Additionally, pD
n
= Æ� tD

n
and the sum of all frequencies is equal to 1. Thus, the

dynamics can be reduced to two dimensions:

r
n+1

= (rn + sn)
2 + 2rn pn

= rn(2� 2 Æ � rn) + s2
n

s
n+1

= rn p
D

n

= rn(Æ � sn)

The state (0; 0) is a �xed point for this system for all Æ 2 [0; 1]. The Jacobian

at this �xed point has eigenvalues (0; 2� 2Æ). Thus, for Æ > 1=2 the point (0; 0)

is asymptotically stable, for Æ < 1=2 it is unstable. I found numerically that for

Æ � 1=2 (0; 0) is the only non negative �xed point. For Æ < 1=2 there is another

�xed point (�r(Æ); �s(Æ)) which is asymptotically stable and { as simulations suggest
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{ even globally asymptotically stable1. As shown in Section 3.2, (�r(0); �s(0)) =

(1; 0).

Figure 2b shows the fractions of IiB and All D players that receive in the limit the

payo�s 1; S, and T . The IiB players can maintain a higher level of cooperation

than SiB as long as the frequency of defectors is less than 1/2. If more than half

of the population consists of defectors also the IiB players will always defect in

the limit.

Evolution. Again, I consider a monotone selection dynamics and study the payo�

di�erence between IiB and All D players given by

(4)
T �tD(Æ)

Æ
� �r(Æ) + �s(Æ)S

1� Æ
:

If T < c3(Æ)+Æ=(1�Æ)S, where c3(Æ) = Æ �r(Æ)=[(1� Æ) �s(Æ)], IiB players receive a

higher average payo� than All D players. The function c3(Æ) is plotted in Figure

3b. It has a local maximum at Æ = 0:41 where it takes the value 2:04. Thus, the

sets of games where IiB spreads are not nested for growing Æ as it is the case for

the SiB rule. This leads to a more complex dynamics.

For all Prisoner's Dilemma games with T < 2 IiB gets a higher payo� than All D

if the fraction of All D players is suÆciently small. This coincides with the result

for the SiB rule. However, for a population of IiB players there are Prisoner's

Dilemma games where All D never spreads: since c3(Æ) � 2 and Æ=(1� Æ) � 1 for

all Æ 2 (0; 1=2) in all Prisoner's Dilemma games with T � S < 2 the IiB strategy

receives a higher payo� than All D. Since limÆ!1=2 c3(Æ) = 2, for all games where

1For the corresponding di�erential equation it is easily seen that the divergence is strictly

negative. Thus, for the continuos system all orbits converge to a �xed point.
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T � S > 2 All D receives a higher payo� than the IiB strategy if the fraction of

All D players is close to but smaller than 1/2.

For games where T < 2 and T � S > 2 there is at least one �xed point in the

interval (0; 1=2), where IiB and All D receive the same payo�. If T 2 (1:9901; 2:04)

and S is close to 0 there are up to three �xed points. There, I numerically analyzed

the respective bifurcation diagrams (see Appendix B).

Proposition 4. For all Prisoner's Dilemma games the interval [1=2; 1] contains

a continuum of �xed points. The dynamics in [0; 1=2] is classi�ed in Figure 5: for

games in region d) all paths in [0,1/2] converge to 1/2 while for games in region

e) where T � S < 2 they converge to 0. For games in the remaining regions the

dynamics is more complex and speci�ed in Figure 5.
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Figure 5. The phase portrait of the selection dynamics of a
population of SiB and All D players for Prisoner's Dilemma games
with T < 2. The interval [1/2,1] consists of �xed points.

If T � S < 2 the IiB strategy can even invade a population of All D players: for

Æ > 1=2 there is a continuum of �xed points and thus the IiB strategy does as

well as All D . Hence, IiB can spread by random drift. If it crosses the 50% mark

by chance, IiB receives a higher payo� than All D and will come to �xation.
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6. Discussion

Using the last payo� of the current opponent as aspiration level turns out to be a

very eÆcient strategy for symmetric 2�2 games. For all games the SiB and the IiB

rule with competitor matching receive in the limit the maximal symmetric payo�.

An immediate question is if there is an analogous result for symmetric k�k games

with k > 2. The SiB strategy can be adapted easily for this situation: here the

players switch to one of the other actions if their payo� in the last round is lower

than the one of the opponent. Which of the other actions they choose is random.

An analogous result to Proposition 1 would imply that the fraction of players that

receive the highest payo� on the diagonal of the payo� matrix converges to 1.

Numeric investigations show, however, that this is not the case for the SiB rule.

Here the limit outcome is always mixed, i.e. the players do not coordinate on a

single action pair. In contrast, the IiB strategy is also successful for these games:

after the �rst round a population of IiB players receives only payo� values that lie

on the diagonal of the payo� matrix. An analogous argument as in Proposition 2

shows that a homogeneous population of IiB players coordinates in the limit on

the highest payo� on the diagonal of the payo� matrix. A corresponding result

for symmetric n person games, where the opponent with the highest payo� is

imitated, can be proven similarly. Thus, imitating the current opponent if he

was more successful appears to be a very powerful learning principle.

Also reciprocal strategies as Tit for Tat (Axelrod 1984) for the repeated Prisoner's

Dilemma or the discriminating strategy in the indirect reciprocity model Nowak

and Sigmund (1998a, 1998b) are imitating learning rules: they just copy the
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last move of the opponent without taking into account the opponents success.

These learning rules perform well if the players start with the "right" action

(which is C in this case) and if either no errors occur or only a small number of

rounds are played. Since these reciprocal learning rules are independent of the

game structure it depends solely on the initial actions if they receive the Pareto

optimal payo�. If the game structure changes, they cannot adapt to the new

situation.

This paper illustrates that \social" strategies that are guided by the payo� of

the opponent may lead to a very eÆcient outcome. For 2 � 2 games even the

simple SiB rule succeeds. It turns out, however, that the choice of the matching

rule is crucial. Anyhow, following the arguments of Thibaut and Kelley (1959)

discussed in the introduction, it seems to be less plausible to assume independent

matching than competitor matching: players we strategically interact with are

surely more salient to us than randomly chosen individuals.

Acknowledgement I wish to thank Michael Benesch, Ulrich Berger, Barbara

Bittner, Josef Hofbauer and Karl Sigmund for many helpful comments.

Appendix A

I �rst show for the dynamics (1),(2) the convergence of pn by constructing a

Lyapunov function. Let 1=2 > � > 0 and set v�(p) = min(max(�; p); 1 � �).

Then there exists an n0 such that for all n > n0 we have

(5) v�(pn+1)� v�(pn) � 0:
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Fix some initial conditions p1; s1. Let "n = 2sn�(sn)2 and choose an n0 such that

"n0 < ���2. Then the following proves (5) for all n > n0: a) pn � �) p
n+1
� �,

b) � < pn < 1��) p
n+1
�pn � 0. a) follows since pn+1 � p2

n
+"n0 � �. To show

b) note that the increment of pn+1�pn given by g(pn; "n), where g(p;") = p2+"�p

has zeroes at q1("); q2(") = 1=2(1�
p
1� 4"). Between these zeroes it is negative.

A straightforward calculation shows that for " < � � �2 we have q1(") < � and

q2(") > 1� �.

Thus, v� is a Lyapunov function. Since � can be chosen arbitrarily small it follows

that pn converges to one of the �xed points of the system of di�erence equations

(1), (2) given by (�s1; �p1) = (0; 0), (�s2; �p2) = (0; 1). The latter is however unstable:

assume that limn!1 pn = 1. Then limn!1 rn = 0. However, for rn < 0:2

rn+1 � rn = r2
n
+ s2

n
+ 2 rn pn � rn = (sn � 2 rn)

2 + rn � 5 r2
n
> 0;

which gives a contradiction. �

Appendix B

To determine the di�erent phase portraits we �rst set the term (4) equal to 0 and

solve the resulting equation for S. This leads to a function �(T; Æ) which gives

for each T and Æ the S value such that ALL D and IiB get the same average

payo�. If S is larger (smaller) than this value IiB receives a higher (lower) payo�

than ALL D. Figure 6 shows the function �(T; Æ) for several values of T . Each

horizontal line in the (Æ; S) plane corresponds to the phase portrait of a 2� 2

game. Fix an S and T . Then for all Æ values such that S > �(T; Æ) IiB will

spread (and the dynamics moves on the corresponding line to the left), while
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for all Æ such that S < �(T; Æ) ALL D spreads (and the dynamics moves to the

right). The intersections of �(T; Æ) with the horizontal line y = S are the �xed

points. To determine the di�erent regions in Figure 5 I computed for each T the

local extrema of the function �(T; Æ) from which then intervals for S are derived

where the number of �xed points (i.e. intersections of �(T; Æ) with the horizontal

line y = S) is constant.
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Figure 6. Dynamics of a population of IiB and All D players with
competitor matching. In the grayed region the IiB players receive
a higher payo� than the All D players, while in the white region

the All D players succeed. Thus, in the gray region the dynamics
points to the left and in the white region to the right. The dashed
line in each graph shows a phase portrait for the speci�ed value
of T and the value S on the y-axis. For Æ values greater 1/2 both
strategies receive the same payo� and there is a continuum of �xed

points.
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