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This paper examines the stability of mixed-strategy Nash equilibria of sym-
metric games, viewed as population profiles in dynamical systems with learning
within a single, finite population. Alternative models of imitation and myopic
best reply are considered and combined with different assumptions about the
speed of adjustment. It is found that specific refinements of mixed Nash equi-
libria serve to identify focal rest points of these dynamics in general games.
The relationship between both concepts is studied. In the 2× 2 case, both im-
itation and myopic best reply yield strong stability results for the same type
of mixed Nash equilibria.

1. INTRODUCTION

The interpretation of mixed-strategy Nash equilibria is an important
problem in Game Theory. The first difficulty lies on the meaning of mixed
strategy and whether it is reasonable or not to assume that players ran-
domize between pure strategies with precise probabilities. The second is
the issue of indifference. In mixed-strategy equilibria, the players are al-
ways indifferent between the mixed strategy they are playing and any of
the pure strategies in its support (and actually any other mixed strategy
with the same support). While it is true that they have no incentives to
deviate, they have no incentives to remain with the same action either.

Many alternative interpretations of such “mixed equilibria” have been
proposed. Building on an early suggestion from John Nash [12, pp.32-33],
evolutionary game theory has attempted to solve the first difficulty through
what could be labeled “the population approach.” In the framework of a
dynamical system, it is postulated that there is an infinite population of
players for each position in the game, and that they are repeatedly ran-
domly matched to play the game. A Nash equilibrium (in mixed strategies)

* I thank Josef Hofbauer for helpful comments and for providing me with examples
4.2 and 4.5.
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of the game can be re-interpreted as a giving the proportions of players in
each population who play each of the pure strategies available to them.

The second problem, though, becomes specially obvious when dynamic
interpretations are postulated, i.e. when Nash equilibria are viewed as rest
points of suitable dynamics. Any reasonable dynamic model would have to
allow the agents to try out all the alternatives if they are truly indifferent,
and hence it is difficult to see in which sense would a mixed-strategy Nash
equilibrium be a rest point.

It is often argued that, in a population framework, the population ap-
proach is formally equivalent to a situation where all the agents in the
population actually play a mixed strategy.1 However, under both interpre-
tations, the fact remains that every agent is actually indifferent between
the strategy he is playing and any pure strategy in the support of the
mixed strategy: both would give the same payoff, provided play in the
other populations do not change (myopia). Hence, it remains unclear why
would any dynamics based on, e.g., myopic best reply select Nash equilib-
ria. Hofbauer [8] rigorously explores this question in the case of the Best
Reply continuous-time dynamics for a large population of agents. In a finite
population, though, such “indifference” might make the stability of Nash
equilibria strongly dependent of the modeling details, and, specifically, of
tie-breaking assumptions.

Rather than trying to give a single interpretation for all mixed-strategy
Nash equilibria, this work focuses on symmetric games. A natural frame-
work for a dynamic analysis of such games is given not by a multi-population
context, but by a single-population one. In such a framework, several mod-
els have been proposed in the literature which deal with an explicitly finite
population of boundedly rational agents who use behavioral rules based on
imitation or best reply. Interaction is not necessarily limited to random
matching ([14]), but encompasses also round-robin tournaments ([9, 10])
and general N -player games ([15, 5]).

This paper is specially related to Kandori et al [9] and Oechssler [13].
Kandori et al [9] study a model where agents imitate highest payoffs when

playing a 2 × 2 game among themselves. In the case where the game has
a symmetric mixed-strategy equilibrium but no pure-strategy, symmetric
ones, they find that the (potentially high) speed of adjustment of their
model makes the mixed profile unstable. Then they make an additional
assumption, not on individual behavior but directly on the dynamics (a
“contraction” relative to the mixed profile) to stabilize it.

1This approach presents technical problems related to, first, the existence of random
matching mechanisms for infinite populations (see [7] and [2]), and, second, the aggre-
gation of the results of the random devices underlying the mixed strategies in a large
population (see [1]).



FINITE POPULATION DYNAMICS AND MIXED EQUILIBRIA 3

Oechssler [13] studies a similar framework (which he calls “the small
population case”) for best reply, but makes the explicit assumption that,
whenever there are several alternative best replies, agents which are already
playing one will never change. He then concentrates on convergence issues
for games with n ≤ 3 strategies.

This paper is an attempt to explore why, and if so, when are symmetric
mixed-strategy Nash equilibria “stable” in a dynamic context and a finite
population, specially when agents are allowed to try all alternatives that
they perceive as equally worthwhile.

The first, trivial observation is that, contrary to the multi-population
approach, the two “population interpretations” mentioned above are not
equivalent. If we consider a population of agents, all of them playing the
same mixed strategy, any one of them will remain indifferent between the
pure strategies in the support of the mixed one. If the mixed strategy is
interpreted as a population profile giving the proportion of agents playing
each of the pure strategies in a game, then things change. If an agent
changes his strategy, his action would change the population proportions
and hence affect his own payoff. Or, to put it in a simpler way, the fact
that an agent does not play against himself makes a difference between the
population proportions and the profile of strategies that he faces. Thus,
it is possible that keeping his current strategy is a strict best response
to the situation given by the underlying game and the population frame-
work. Hence, the mixed-strategy Nash equilibrium might be interpreted as
a population profile where agents actually play pure strategies, and they
remain with them because they actually give larger payoffs than any other
alternative.

Once this observation is done, it turns out that several different dynamic
approaches are able to sustain population profiles corresponding to mixed-
strategy Nash equilibria as stable outcomes or rest points. Specifically,
dynamics based on (myopic) best reply and imitation are considered. The
importance (or lack of it) of the specific assumptions in the model at hand
is illustrated considering both the slow adjustment case (as in [6]) and the
quick adjustment one (as in [9]).

First, the simplest case (2×2 games) is analyzed. It is shown that mixed
equilibria can be sustained by finite population dynamics when the game
has no pure-strategy symmetric Nash equilibria. The exact meaning of
“stability” takes different forms in the case of myopic best reply and imita-
tion, but the qualitative features of both models turn out to be essentially
identical. Under myopic best reply, the process converges to an absorbing
state (i.e. a singleton recurrent communication classes) which either corre-
sponds exactly to the mixed equilibrium or to a state next to it (depending
on integer problems). Under imitation (and slow speed of adjustment), the
system settles in a narrow (but non-singleton) recurrent communication
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class centered around a state whose population proportions approach the
mixed equilibrium as the population size grows to infinity.

Second, we investigate to which extent these encouraging results extend
to the general case. Under myopic best reply, we ask which mixed Nash
equilibria will be absorbing states even as the population size grows, and
identify a refinement of Nash equilibrium which is unrelated to previous
(evolutionary) concepts. We call the associated strategies BR-focal.

Under imitation, the analogous attempt results in a different refinement,
which we call Imitation-focal strategies.

We find that both concepts coincide for 2 × 2 games. For more general
games, Imitation-focal strategies with full support are BR-focal, but the
implication fails if the strategy is not completely mixed.

2. THE BASIC MODEL AND ALTERNATIVE DYNAMICS
2.1. How agents play the game

We consider a single finite population of N agents, i = 1, ..., N interacting
in discrete time, t = 1, 2, ... to play an underlying symmetric two-player
game with finite strategy space S = {s1, ..., sm} and (symmetric) payoff
function π : S2 7→ R.

A population state is (summarized by) the number of agents playing each
strategy, i.e. the state space is given by Ω = {(n1, ..., nm) ∈ Nm / n1 + ...+
nm = N}.

Notation. A typical state is denoted by ω, with ω(s) denoting its s-
th coordinate, i.e. the number of agents playing s in the state ω. We
call supp(ω) = {s ∈ S / ω(s) > 0}. We also keep the standard notation
supp(σ) for the strategies in the support of a given mixed-strategy σ.

Each period, each player interacts with all the other agents (round robin
tournament). Hence, the payoff of an agent playing strategy s when the
population state is ω is given by

Π(s, ω) =
∑

s′∈S

ω(s′) · π(s, s′)− π(s, s)

The last term (−π(s, s)) takes care of the fact that an agent will not play
against himself. Alternatively, this can be reinterpreted as the expected
payoff (times N) when agents are randomly matched in pairs to play the
game, with uniform probabilities. It is immaterial which interpretation is
taken, as long as agents take decisions according to Π(s, ω).
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2.2. How agents learn
After play takes place, some agents will have the opportunity to update

their strategies. We call this updating “learning.” Whenever an agent is
called to learn, he does so according to a behavioral rule

Definition 2.1. A Behavioral Rule for agent i is a mapping
Bi : S × Ω −→ ∆(S) where ∆(S) is the set of probability measures over
pure strategies.

Bi(s, ω)(s′) is then the probability with which agent i will play strategy
s′ after playing strategy s when the population state was ω. This definition
(potentially) incorporates the following elements:

• Myopia. Agents rely only on experience (Bi depends on current play),
and do not perform calculations about what other agents are going to do.
• Social Learning. Agents learn from their own actions but also from

the actions of others, since Bi also depends on ω.
• Bounded Memory. Agents’ decisions are influenced only by the last

period. See [3] for a discussion of models with longer memory.
• Probabilistic. Agents may display partially random behavior. This

will be specially important e.g. to incorporate tie-breaking assumptions.
• Anonymity Rules cannot depend on the names of other agents. This

is formalized through the use of the (summarized) state space Ω.

We consider two focal behavioral rules: imitation and myopic best reply.

Definition 2.2. The behavioral rule Bi is imitative if Bi(s, ω)(s′) >
0 ⇐⇒ s′ ∈ supp(ω) and Π(s′, ω) ≥ Π(s′′, ω) ∀ s′′ ∈ supp(ω). That is, a
rule is imitative if it prescribes to imitate the strategy that has given larger
payoffs (any of them in case of ties).

Notation. Let ω be an state and let s ∈ supp(ω). For every s′ 6=
s, s′ ∈ S, we denote m(ω, s, s′) the state such that m(ω, s, s′)(s) = ω(s)−
1,m(ω, s, s′)(s′) = ω(s′)+1, and m(ω, s, s′)(s′′) = ω(s′′) ∀ s′′ 6= s, s′. Also,
we denote m(ω, s, s) = ω ∀ s.

m(ω, s, s′) is the state that an agent playing s thinks that he would
induce in the population if he would change his strategy from s to s′, while
everybody else kept his strategy.

Definition 2.3. The behavioral rule Bi is a myopic best reply if
Bi(s, ω)(s′) > 0 ⇐⇒ Π(s′,m(ω, s, s′)) ≥ Π(s′′,m(ω, s, s′′)) ∀ s′′ ∈ S.
That is, the agent computes his best reply to the current strategy profile,
(myopically) assuming that no other agents will change their strategy.2

2If the state space were to be described by SN , i.e. the strategy profile in the popu-
lation, and using the standard notation ω = (si, s−i), this definition would amount to
if Bi(s, ω)(s′) > 0 ⇐⇒ Π(s′, s−i)) ≥ Π(s′′, s−i)) ∀ s′′ ∈ S.
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It is worth emphasizing the differences between imitation and best reply
in the current framework. Imitation requires extremely low computational
capabilities, and absolutely no knowledge of the game. Agents merely use
the information about the correspondence between actually played strate-
gies and actually observed payoffs. Myopic best reply, on the other hand,
requires potentially complex computations and explicit knowledge of the
game (payoff function). Agents compare potential, unobserved payoffs that
would result from a change in the current situation. In this sense, imitation
and myopic best reply represent two extreme, opposite behavioral assump-
tions. Imitation requires an extremely low degree of rationality. Myopic
best reply requires relatively high rationality.

In the present context, however, both rules produce the same results if
the population is large enough, at least in states where all strategies are
present. Since the round-robin tournament induces a continuous function
of the stage model payoffs, if the population is (very) large, the payoffs
in the state ω and m(ω, s, s′) are arbitrarily close. Hence, there is some
confusion in the literature as to whether one model is to be interpreted
as imitation or best reply. Technically, a model with imitative behavioral
rules is similar to a model with best reply where agents do not take into
account the fact that they cannot meet themselves. In the case of a large
population, the distinction turns irrelevant.

We will keep a sharp and clear distinction between imitation and best
reply, for two reasons. First, we are interested in explicitly finite popula-
tions. Second, there is a big conceptual difference between imitation and
(myopic) best reply in terms of the degree of rationality they assume.

Further, note that the two rules above incorporate the following

Assumption 1. Whenever a behavioral rule specifies several possible
best strategies, the agent chooses all of them with strictly positive proba-
bility, without exception.

This assumption is conceptually very important. For instance, one might
assume that, under myopic best reply, agents already playing a best reply
to the current profile do not change strategies even if there are other best
replies available, because they have no incentive to deviate. We explicitly
depart from such assumptions because they would prevent us from tackling
the original problem. The position of this paper is that, if there are several
available best replies, an agent has no incentive not to deviate, and drift
will eventually appear.3

3Oechssler [13] argues that there are always costs of changing a decision. Even in this
case, it can be easily assumed that the probability of remaining with the current, optimal
strategy is close to one, but it seems reasonable to allow for drift to other alternative
optimal strategies. The results remain unchanged under this approach.
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2.3. When agents learn
The concept of inertia is standard in learning models. It is assumed

that not all agents are able to learn all periods. This is introduced in
different ways in different models. Kandori et al [9] argue that inertia is a
justification for myopia.4 In their model, though, the probability of being
able to learn is independent across agents. In other models, it is often
argued that, if the population is large, it is unrealistic to assume that all
agents are able to revise their strategies simultaneously. As an extreme
assumption, it is postulated that the probability of two agents learning
simultaneously is zero, which gives rise to models where, each period, only
one randomly sampled agent is able to revise his strategy.5

In all cases, though, it is always assumed that the probability of a given
agent being able to revise in a given period is positive. This is merely
an anonymity requirement, and does not imply that the dynamics must
allow for simultaneous revisions as in [3]. As in [6], it is allowed that
only one agent revises each period, provided that any one of them may,
potentially, be the chosen one. Symmetrically, it is assumed that no agent
has the guarantee of always being able to revise. We explicitly make this
assumption:

Assumption 2. For all t, and for each i = 1, ..., N , the probability that
agent i is able to revise at period t is strictly positive and less than one
(although not necessarily independent from that of other agents).

With this caveat, we explicitly distinguish between the two approaches
mentioned above.

Definition 2.4. We say that a model presents independent inertia λ
if, every period, each agent is able to revise his strategy with probability
0 < 1− λ < 1, independent across agents and across periods.

We say that a model presents non-simultaneous learning if, every period,
a single agent is randomly sampled and this agent is the only one able to
revise his strategy.

The interest of these two alternative formulations lies on their relation-
ship to the speed of adjustment of the postulated dynamics. A model with
independent inertia could be described as one of quick adjustment. Each
period, all the agents in a fraction of the population (which can be close to
one) are able to simultaneously revise their strategies. If we were to think
of large populations or short time periods, this implies a large number of
revisions per time unit. On the other hand, models with non-simultaneous

4The introduction of inertia as in [9] has surprising implications in models with mem-
ory (see [3]).

5This question is related to standard arguments for approximation of discrete-time
systems by their continuous-time counterparts. See [6, 4].
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learning have slow adjustment. Only one agent revises at a time, and, in
N periods, always N agents would have revised their strategies.6

2.4. Learning processes
We are now able to consider different models. We call (single-population)

Learning Process any model where:

• Interaction: A single finite population of N agents, i = 1, ..., N inter-
acting in discrete time, t = 1, 2, ... to play an underlying finite, symmetric
two-player game according to a round-robin tournament (or, alternatively,
random matching with evaluation of expected payoffs).
• Speed of Adjustment: Each period, there is a specification of when

are agents able to learn (e.g. independent inertia or non-simultaneous
learning). This specification does not depend on the time index, and ex
ante the probability of a given agent being able to revise in a given period
is strictly positive and less than one.
• Learning: When an agent is able to learn, it does so according to a

pre-specified behavioral rule (e.g. imitation or myopic best reply). In case
of indifference between several options, he chooses all of them with positive
probability.

Note that any such Learning Process defines a finite Markov Chain on
the state space Ω, and hence can be studied using the standard techniques
from the theory of stochastic processes (see e.g. [11]).

The dynamics induces probabilities of transition among states which we
denote P (ω, ω′). The matrix P of transition probabilities is called transi-
tion matrix of the process. We also denote P k(ω, ω′) the probability that
the process is at state ω′ given that k periods before it was at state ω.

Given a stochastic process with transition matrix P and finite state space
Ω, we say that two states ω, ω′ communicate if there exist t, t′ > 0 such
that P t(ω, ω′) > 0 and P t′(ω′, ω) > 0. This defines an equivalence relation
whose equivalence classes are called communication classes. Qualitatively,
all states in the same communication class share the same features. For
example, the process cannot eventually settle in a strict subset of a com-
munication class, but rather on a full class.

6This comparison can be made more rigorously. If we view the dynamical systems
we are describing as stochastic processes, it is a standard result that their qualitative
features (e.g. recurrent versus transient states, see next section) depend only on the set
of positive probability paths. Fix the state space, the set of agents, and the behavioral
rules they use, and consider the set of possible dynamics, differing in their speed of
adjustment (inertia) assumptions. It is clear that, under Assumption 2, any positive
probability path of the dynamics with non-simultaneous learning is a positive probability
path of any other dynamics. Also, any positive probability path of any dynamics is a
positive probability path of the dynamics with independent inertia. Hence, in this sense,
these two dynamics are respectively minimal and maximal.
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A communication class C is transient if there exist ω ∈ C, ω′ ∈ Ω\C such
that P (ω, ω′) > 0. Classes which are not transient are called recurrent. The
process will eventually leave all transient classes and settle in a recurrent
class. If there is just one recurrent class, the process is called it ergodic;
if there are more than one, the process exhibits path dependence, i.e., it
might settle down in different classes depending on the initial conditions.

Definition 2.5. Consider a learning process with transition matrix
P . A population state ω is called absorbing if P (ω, ω) = 1.

An absorbing state forms a singleton recurrent communication class.
Once the process gets to an absorbing state, it will never leave it. This is
the first condition we will be interested in. Absorbing states are analogous
to stationary states of deterministic dynamics.

The basin of attraction B(C) of a recurrent class C is the set of states
from which there are positive probability paths that reach C in finite time,
i.e. B(C) = {ω ∈ Ω \ C / ∃t ∈ N, ω′ ∈ C such that P t(ω, ω′) > 0}.
Abusing notation, we also speak of the basin of attraction of an absorbing
state, B(ω) = B({ω}).

3. THE 2 × 2 CASE

Consider a 2× 2 symmetric game with payoff matrices given by

A B

A (a,a) (b,c)

B (c,b) (d,d)

where a, b, c, d are real numbers, and there exists a unique symmetric Nash
Equilibrium in mixed strategies (this implies that (a, b) 6= (c, d)).

Let (σ, 1 − σ) be the mixed strategy which gives the Nash equilibrium,
and let n∗ = σ ·N , i.e. the population proportion that corresponds to σ if
the mixed strategy is to be interpreted in population terms.

If his opponent is playing the mixed strategy (σ, 1−σ), a player is indif-
ferent between playing A and B, i.e.

σ · a + (1− σ) · b = σ · c + (1− σ) · d

which implies

σ =
(d− b)

(a− b) + (d− c)
For σ to be readily interpreted as a population profile, n∗ should be an

integer. As we will see, the analysis varies (slightly) depending on whether
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it is or not. For easy reference, we give a name to this condition (but do
not assume it).

Condition (INT). n∗ = σ ·N is an integer, i.e. n∗ ∈ {1, ..., N − 1}.

Notice that, n∗ · a + (N − n∗) · b = n∗ · c + (N − n∗) · d, i.e.

n∗ · (a− c) + (N − n∗) · (b− d) = 0.

Consider a population state ω where exactly n∗ agents are playing strategy
A and N − n∗ agents play B. This population profile corresponds to the
mixed strategy Nash equilibrium. Denote Π(s, n) the payoff of an agent
playing strategy s = A,B when exactly n agents in the population are
playing A. It follows that

Π(A,n) = (n− 1) · a + (N − n) · b
Π(B,n) = n · c + (N − n− 1) · d.

Consider any learning process applied to the described game. The state
space can be summarized by {0, 1, 2, ..., N}, where state n is identified with
all the situations where exactly n agents play strategy A. Under (INT),
the symmetric Nash Equilibrium corresponds then to state n∗.

3.1. Myopic Best Reply
Suppose the learning process is based on myopic best reply. An agent

playing A would remain with his current action if

Π(A,n) > Π(B, n− 1)

i.e. if the payoff of playing A when there are n agents in the population
playing A (including himself) is larger than the payoff he would obtain if
he were to switch to B, facing then a state where n− 1 agents would play
A. Analogously, an agent playing B would remain with his action if

Π(B, n) > Π(A, n + 1).

Ties are broken randomly, i.e. we want to explicitly allow all possibilities
whenever an agent faces an indifference situation (Assumption 1).

Proposition 3.1. Consider the 2 × 2 game above, and assume (INT).
In any learning process with myopic best reply, the state n∗ corresponding
to the mixed strategy Nash Equilibrium is absorbing if and only if c > a
and b > d, i.e. neither (A,A) nor (B,B) are Nash Equilibria.
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Proof. Note that Π(A,n∗)−Π(B, n∗− 1) = (n∗− 1) · a + (N −n∗) · b−
(n∗ − 1) · c− (N − n∗) · d = (n∗ − 1) · (a− c) + (N − n∗) · (b− d) = c− a.

Hence, an agent playing A will keep his action with probability one if
and only if c > a. Analogously,

Π(B,n∗)−Π(A,n∗+1) = n∗ ·c+(N−n∗−1) ·d−n∗ ·a−(N−n∗−1) ·b =
n∗ · (c− a) + (N − n∗ − 1) · (d− b) = b− d

It follows that an agent playing B will keep his action with probability

one if and only if b > d.

It is worth noticing that in state n∗, agents do not remain with their
current actions because they are indifferent. Quite on the contrary, they
do so because their current actions are strictly better than the alternative.
Of course, if payoffs are averaged across interactions or re-interpreted as
expected payoffs in a random matching framework, the advantage of keep-
ing the current action (e.g. b−a

N−1 ) tends to zero as the population size grows
to infinity, but for any fixed N it is still positive. This provides a tempting
interpretation for symmetric mixed strategy equilibria at the population
level.

Example 3.1. Consider a learning process with independent inertia
and myopic best reply. This dynamics is similar to the one in Kandori et
al [9], with the difference that there agents imitated the action which led
to the highest payoffs instead of playing a best reply.

Assume (INT). Consider the state n∗, and suppose c < a, b < d (e.g.
a Coordination game). On state n∗, all agents will change their current
actions if they get the opportunity to revise. Although it could happen
that just two agents get revision opportunities and they exchange their
strategies, the probability of remaining in state n∗ is strictly less than one.
Hence n∗ is not absorbing.

Proposition 3.2. Consider the 2 × 2 game above with c > a, b > d.
In any learning process with myopic best reply, there exists nA, nA − 1 <
n∗ < nA such that the singleton set C = {n ∈ Ω / nA − 1 < n < nA}
is a recurrent class (unless nA is exactly an integer). All other states
are transient and the process converges to C from any initial condition.
Moreover, limN→∞

nA
N = σ

If nA is exactly an integer, then, under independent inertia the process
is irreducible. Under non-simultaneous learning, the set C = {nA − 1, nA}
is a recurrent class and all other states are transient.

Proof. Take any state n. Then,

Π(A, n)−Π(B, n− 1) = (n− 1) · a + (N − n) · b− (n− 1) · c− (N − n) · d
= (n− 1) · (a− c) + (N − n) · (b− d)
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which is decreasing in n, and equal to zero if and only if

n = nA =
N · (b− d) + (c− a)

(b− d) + (c− a)
.

Hence, for n > nA, A-players which are given the opportunity to revise
switch to B with probability one.

Analogously,

Π(B,n)−Π(A,n + 1) = n · c + (N − n− 1) · d− n · a− (N − n− 1) · b
= n · (c− a) + (N − n− 1) · (d− b)

which is increasing in n, and equal to zero if and only if

n = nB =
(N − 1) · (b− d)
(b− d) + (c− a)

.

It follows that, given opportunity, B-players switch to A whenever n < nB .
Notice n∗ = N · (b−d)

(b−d)+(c−a) , i.e. nB < n∗ < nA.
On any state n such that nB < n∗ < nA, all agents will keep their

current actions regardless of whether they get the opportunity to revise or
not. Hence n is absorbing.

Analogously, states out of C are in transient classes. Note that nA −
nB = 1, i.e. C is a singleton unless nA is exactly an integer. In the
first case, the result follows immediately. In the second case, under non-
simultaneous learning it suffices to observe that {nA − 1, nA} is recurrent.
Under independent inertia, the fact that P (nB , N) > 0, P (nA, 0) > 0 makes
the process irreducible, i.e. the whole state space is a communication class
and the process never settles down.

The proof is completed observing that the quotients nA/N and nB/N ap-

proach σ as N grows to infinity.

This result tells us that, essentially, under myopic best reply, in a 2 ×
2 game without symmetric pure-strategy equilibria, the mixed strategy
equilibrium is the essential prediction. This takes the form of a unique
absorbing state which coincides with n∗ whenever n∗ is an integer, and is
next to it when not. The case when nA is an integer for a given N (and
hence n∗ is not) is merely an extreme form of an integer problem.

It is interesting to observe that this result is independent of the iner-
tia/speed of adjustment assumptions (except when nA is an integer). Only
the speed of convergence might be affected by such details.

Remark 3. 1. Suppose the learning process of the previous Proposition
presents independent inertia λ. Consider any state n. If n > nA, with
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positive probability n − n∗ A-agents are the ones getting opportunity to
revise and they will switch to B, therefore the process reaches state n∗. If
n < nB = nA − 1, with positive probability n∗ − nB B-agents switch to A
and the process reaches n∗. If nB < n < nA, neither A-agents nor B-agents
will change when given opportunity, hence the state n is absorbing.

Convergence, though, might be slow. The process might keep “overshoot-
ing” the set C for a long while, specially if nA, nB are close. Technically,
the whole set Ω \ C forms a single transient communication class.

Assume instead non-simultaneous learning. For each state n > nA, there
is probability 1

n that an A-player is given opportunity to revise, hence
switching to B and moving the process to state n − 1. With the comple-
mentary probability, a B-player is given opportunity to revise, which he
won’t do, and hence the process remains in state n. Hence, the process
moves inexorably towards C, without any overshooting possibility. Tech-
nically, each state in Ω \ C forms its own transient communication class.

Intuitively, under independent inertia (i.e. with a single, large transient
class), convergence is slowed down by the exploding number of possibili-
ties that appear because of simultaneous revisions, and the length of the
“long-run” until the process hits C will grow exponentially with the size of
the population. Under non-simultaneous learning (i.e. a large number of
small transient classes), though, speed of convergence does not essentially
depend on the size of the population, or, more precisely, since the number
of possibilities from a given state does not depend on the population size,
the expected time until C is reached grows linearly with N .

3.2. Imitation
Suppose now that the learning process is based on imitation. Automati-

cally, the states n = 0 and n = N are absorbing, since if only one action is
observed, no other action can be mimicked. In the “interior” of the state
space, an agent playing A would remain with his current action if

Π(A,n) > Π(B, n)

i.e. if the payoff of playing A when there are n agents in the population
playing A (including himself) is larger than the payoff other agents actually
playing B have obtained. Analogously, an agent playing B would remain
with his action if

Π(B, n) > Π(A,n).

Ties are broken randomly (recall Assumption 1).
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Proposition 3.3. Consider the 2× 2 game above. In any learning pro-
cess with imitation, states 0 and N are absorbing. No state n ∈ {1, ..., N −
1} can be absorbing.

Proof. Let 0 < n < N , i.e. both strategies are played in state
n. If Π(A, n) < Π(B,n), A-players will imitate B, and hence the state
is not absorbing. If Π(A,n) > Π(B, n), B-players will imitate A. If
Π(A, n) = Π(B,n), neither A-players nor B-players have any imitation-
based incentive to remain with their current action. Due to the random
breaking of ties, it follows that P (n, n) < 1 and n can not be absorbing.

States 0 and N are trivially absorbing since an unobserved action can not

be imitated.

Under imitation, only monomorphic states, i.e. states where all agents
are playing the same strategy, can be absorbing. If two different strategies
are present and they give different payoffs, then the one giving larger payoffs
will be imitated. If they give exactly the same payoffs, then there is always
positive probability that an agent drifts from one strategy to the other,
hence drawing the process out of the state. It follows that indifference
then blurs the intuitive difference between a Hawk and Dove game, where
dynamics should lead “in the direction” of n∗, and a Coordination game,
where dynamics should lead “away” from n∗.

Proposition 3.4. Consider the 2 × 2 game above with c > a, b > d.
In a learning process with imitation and non-simultaneous learning, there
exists n̂ ∈ [0, N ] such that the set

C =







{n̂− 1, n̂, n̂ + 1} if n̂ is an integer

{bn̂c, dn̂e} if not

is a recurrent class. The states 0 and N are absorbing, but the pro-
cess converges to C from any initial condition 1, ..., N − 1. Moreover,
limN→∞

n̂
N = σ.

Proof. Take any state n. Then,

Π(A, n)−Π(B,n) = (n− 1) · a + (N − n) · b− n · c− (N − n− 1) · d
= n · (a− c) + (N − n) · (b− d) + (d− a)

which is decreasing in n, and equal to zero if and only if

n = n̂ =
N · (b− d) + (d− a)

(b− d) + (c− a)
.
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Hence, for n > n̂, A-players which are given the opportunity to revise
switch to B with probability one, and, for n < n̂, B-players will be the
ones switching. It follows that, if n > n̂, P (n, n) + P (n, n + 1) = 1, and, if
n < n̂, P (n, n) + P (n, n− 1) = 1. Moreover, both probabilities in the sum
are always positive, i.e. the process always moves in the direction of n̂.

Suppose first that n̂ is an integer. In state n̂, strategies A and B give
the same payoff. Hence, if an A-player is given revision opportunity, he
will either keep his strategy or switch to B, and conversely for a B-player.
However, P (n̂− 1, n̂) = P (n̂ + 1, n̂) = 1, i.e. the process will always return
to n̂ after one period.

It follows immediately that C is a recurrent class, and the basins of
attraction of states 0 and N are empty. Since there are no other recurrent
classes, the result follows.

Suppose now that n̂ is not an integer. In state bn̂c, if a B-player is given
revision opportunity, he will switch to A and drive the process to state
dn̂e. Conversely, from state dn̂e an A-player will switch to B and drive
the process to bn̂c. It follows that C is a recurrent class and the process
converges to C from any initial condition except 0 and N .

It remains to observe that limN→∞
n̂
N = σ.

This result shows us that, under imitation and non-simultaneous learn-
ing, in a 2×2 game without symmetric pure-strategy equilibria, the mixed
strategy equilibrium is again the essential prediction. This takes the form
of a very narrow recurrent class around n̂, which converges to the appro-
priate proportion as N grows. This recurrent class fails to be a singleton
merely because of either integer problems or exact indifference. Outside
the set, there are two other absorbing states created by the very nature of
imitation, which have empty basins of attraction.

Remark 3. 2. Note that n̂ ∈ (n∗, N ] ⇐⇒ d > a, i.e. n̂ is pulled to
one or the other side of n∗ by the payoffs of the symmetric, pure-strategy
profiles.

What happens under independent inertia? Obviously, there are only
two absorbing states, 0 and N , and the rest of states are in a single, large
transient class. Intuitively, the speed of adjustment is too high and blurs
the result. In actual simulations, though, n̂ will still play a role, since the
actual probabilities of transition still favour a trend towards n̂. It is the
existence of low but positive probabilities of transition, say, from n̂ to 0
or N which (apparently) destroys the result. Kandori et al [9] solve the
problem by postulating a “contraction” of the dynamics relative to a a
mixed profile, i.e. they explicitly assume that the distance to the reference
mixed-strategy diminishes. This is an assumption made directly on the
dynamics, which is difficult to trace back to individual behavior.
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3.3. Extended Example: Hawk and Dove
Consider the well-known “Hawk and Dove” game:

H D

H (V−C
2 ,V−C

2 ) (V,0)

D (0,V) (V
2 ,V

2 )

where C > V > 0. This game has two asymmetric pure-strategy Nash
equilibria, (H, D) and (D, H), and a single symmetric Nash equilibrium
where both players play a mixed strategy which gives weight V/C to the
strategy H (Hawk). Hence, in our notation, n∗ = (V/C) ·N .

Consider any learning process based on myopic best reply. We can apply
Proposition 3.2. Direct computation shows that

nD = (N − 1)
V
C

, nH =
(N − 1) · V + C

C
= (N − 1)

V
C

+ 1

Hence, from any initial condition the process converges to an absorbing
state which lies between nD and nD +1. If n∗ is an integer, then C = {n∗}.
If not, then C is the singleton formed by the closest state to n∗, except in
the extreme case when 2 · n∗ is exactly an integer and n∗ is not.

Consider a learning process based on imitation and non-simultaneous
learning. We can apply Proposition 3.4. Direct computation shows that

n̂ =
N · V + C

C
= N · (V/C) + 1 = n∗ + 1

Hence, from any initial condition except 0 and N , the process converges to
a recurrent class formed by the two closest states to n∗ + 1 (if n∗ is not an
integer), or by the states n∗, n∗ + 1, n∗ + 2 (if n∗ is an integer).

Both results point to the significance of population profiles where (ap-
proximately) a fraction V/C of the population play strategy H, i.e., the
profile which corresponds to the mixed-strategy Nash equilibria.

3.4. Coordination Games: a Remark
Suppose that c < a, b < d, i.e. we have a coordination game. Then, the

mixed-strategy equilibria does not correspond to a stable configuration in
any sense of the word.

Under myopic best reply, it is still true that nB < n∗ < nA. However,
now A-players switch strategies for n < nA, and B-players for n > nB ,
which means the dynamics points towards the two monomorphic states.
The set {n ∈ Ω / nB < n < nA}, which is essentially a singleton next to
n∗, is the intersection of both basins of attraction. Hence, n∗ marks the
boundary between both basins of attraction, even if it fails to be absorbing.
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Under imitation, A-players switch strategies for n < n̂ and B-players for
n > n̂, i.e. again the dynamics points towards the monomorphic states.7

The state n̂ marks the exact boundary of the two basins of attraction
(technically, because of the tie-breaking assumption, it belongs to both,
and hence fails to be absorbing). Since it still approaches n∗ as N grows,
this still can be taken to point at the significance of the mixed equilibrium.

Regardless of the complications and technical details which spread from a
discrete-time, stochastic, behavior-based dynamics, qualitatively the situa-
tion is analogous to a well-behaved, continuous-time, deterministic system.
For a 2× 2 game with two pure-strategy, symmetric equilibria, the mixed
equilibrium identifies a repelling point of the dynamics, whereas the two
pure-strategy equilibria are stable. In absence of the pure-strategy equilib-
ria, the mixed-strategy one is then globally attracting.

4. THE GENERAL CASE: MYOPIC BEST REPLY

Consider now a general learning process with a single finite population
of N agents, i = 1, ..., N interacting in discrete time, t = 1, 2, ..., according
to a round-robin tournament, to play an underlying symmetric two-player
game with finite strategy space S = {s1, ..., sm} and (symmetric) payoff
function π : S2 7→ R.

Notation. Let A be the payoff matrix associated to the payoff function
π, and denote by es a vector of m = |S| coordinates, all of them zero
except for a 1 in the position corresponding to strategy s. Notice that
Π(s; ω) = eT

s · A · (ω − es), where eT
s is the transposed of the vector es

(vectors are assumed to be column vectors, transposed vectors are row
vectors). If we define the associated mixed strategy by σ = 1

N · ω, then
Π(s; ω) = N · π(s, σ)− π(s, s).

4.1. Absorbing states

Lemma 4.1. Consider any learning process based on myopic best reply.
Let ω = (n1, ..., nm) ∈ Ω, and define the corresponding mixed strategy σ by
σi = ni

N for all i = 1, ...m. Then, ω is an absorbing state if and only if

π(s, σ)− π(s′, σ) +
1
N

(π(s′, s)− π(s, s)) > 0 ∀ s ∈ supp(σ), ∀ s′ 6= s

Proof. The state ω is absorbing if and only if no agent will change
its strategy if given opportunity to revise. Under myopic best reply, this

7This dynamics is analyzed in Kandori et al [9].



18 CARLOS ALÓS-FERRER

amounts to

Π(s, ω) > Π(s′,m(ω, s, s′)) ∀ s ∈ supp(ω), ∀ s′ ∈ S \ {s}

Fix s ∈ supp(ω) and s′ 6= s. This condition is equivalent to

∑

s′′∈S

ω(s′′)·π(s, s′′)−π(s, s) >
∑

s′′∈S

ω(s′′)·π(s′, s′′)−π(s′, s′)−π(s′, s)+π(s′, s′)

or, equivalently,

∑

s′′∈supp(ω)

ω(s′′) · (π(s, s′′)− π(s′, s′′)) + π(s′, s)− π(s, s) > 0

which yields the required condition.

Remark 4. 1. With the above matrix notation A, es, then, a state ω is
absorbing if and only if, for all s ∈ supp(ω) and for all s′ 6= s,

eT
s ·A · ω − eT

s ·A · es > eT
s′ ·A · ω − eT

s′ ·A · es′ ⇐⇒
(es − es′)T ·A · ω − (es − es′)T ·A · es > 0 ⇐⇒

(es − es′)T ·A · (ω − es) > 0

Suppose the game has a mixed-strategy symmetric equilibrium given by
the strategy σ. The condition that makes possible to interpret this strategy
exactly as a population profile is:

Condition (INT). There exists a state ω∗ = (n1, ..., nm) ∈ Ω such that
σi = ni

N for all i = 1, ...m.

Proposition 4.1. Consider any learning process with myopic best reply.
If the game has a completely-mixed symmetric Nash equilibrium given by
the strategy σ, and assuming (INT), then the corresponding state ω∗ is
absorbing if and only if

π(s′, s) > π(s, s) ∀ s, s′, s′ 6= s

i.e. each pure strategy is a strict worst reply against itself. In particular,
the mixed-strategy Nash equilibrium will never be absorbing if the game has
any strict, pure-strategy Nash equilibrium.

Proof. If supp(ω) = S and σ describes a Nash equilibrium, then π(s, σ) =
π(s′, σ) for all s, s′ ∈ S. The result follows then from Lemma 4.1.
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Proposition 4.1 was already established in Oechssler [13, Proposition
1], where it is noted that a completely mixed profile as above cannot be
invaded by a single mutant playing a pure strategy.

4.2. BR-focal strategies
In the 2×2 case, we saw how an absorbing state exists for a fixed N except

under extreme integer problems, and whenever n∗ is a well-defined state,
it is precisely the absorbing one. This motivates the following definition.

Definition 4.1. A mixed strategy σ is frequently absorbing under best
reply or simply BR-focal if there exists N0 such that, for all N > N0 such
that N · σ(s) is an integer for all s ∈ S, the state ω = N · σ is absorbing in
any learning process with myopic best reply.

In the Hawk and Dove example, only the Nash equilibrium is BR-focal.
We confirm now this intuition for general games.

Theorem 4.1. A mixed strategy σ such that {σ(s)}s∈S are rational
numbers is frequently absorbing under best reply if and only if

(a) (σ, σ) is a Nash Equilibrium of the game.
(b) ∀ s′ ∈ S, if π(s′, σ) = π(σ, σ) then π(s′, s) > π(s, s) ∀ s ∈ supp(σ).

Proof. “Only if.” (a) Let σ be frequently absorbing under best reply, and
let s′ ∈ S be any pure strategy. It is enough to show that π(s′, σ) ≤ π(σ, σ).

Let s ∈ supp(σ). It follows that π(s, σ) = π(σ, σ). Suppose π(s′, σ) >
π(σ, σ) = π(s, σ). Then, π(s, σ) − π(s′, σ) < 0 and it is possible to find
N > N0 such that N · σ is a state and

π(s, σ)− π(s′, σ) +
1
N

(π(s′, s)− π(s, s)) < 0

a contradiction with Lemma 4.1.
(b) Suppose π(s′, σ) = π(σ, σ) and let s ∈ supp(σ). Since π(s, σ) =

π(σ, σ), it follows from Lemma 4.1 that π(s′, s)− π(s, s) > 0.
“If.” Consider any N such that N · σ is a state.
Consider any s′ ∈ S. If π(s′, σ) = π(σ, σ), then π(s′, σ) = π(s, σ) for all

s ∈ supp(σ) and hence, by (b), π(s′, s) > π(s, s). It follows that

π(s, σ)− π(s′, σ) +
1
N

(π(s′, s)− π(s, s)) =
1
N

(π(s′, s)− π(s, s)) > 0

If π(s′, σ) < π(σ, σ), then ∃ N0 such that, ∀ s ∈ supp(σ), ∀ N > N0,

π(s, σ)− π(s′, σ) +
1
N

(π(s′, s)− π(s, s)) > 0

The conclusion follows from Lemma 4.1.
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A BR-focal strategy corresponds to a Nash equilibrium and, whenever
it is possible to reinterpret it as a finite population profile, it turns out
to be absorbing in any dynamics based on best reply. Notice again that
the profile is not absorbing because of any tie-breaking assumption, but
because agents are actually earning strictly more than they would earn if
they were to deviate.8

Theorem 4.1 states that a strategy σ is BR-focal if, whenever an s-player
faces an alternative s′ which is just as good as s against σ, the part of the
total payoff against σ that he fails to realize because he cannot play against
himself (π(s, s)) is lower than the part of that same payoff that he will fail
to realize after switching to s′ due to the fact that, then, there will be one
s-player less (π(s′, s)).

Example 4.1. Consider the symmetric game with payoff matrix

A B C

A 0 1 2

B 2 0 1

C 1 2 0

There is a unique symmetric Nash equilibrium, given by the mixed strategy
σ = ( 1

3 , 1
3 , 1

3 ). The payoff of any pure strategy against σ is equal to 1.
Let N = 3 · k, k ≥ 0, and consider the state ω = (k, k, k). The average

payoff of any pure strategy player is given by

1
3k − 1

((k − 1) · 0 + k · 1 + k · 2) =
3k

3k − 1
> 1

The lack of an interaction yielding payoff zero makes the average payoff
strictly greater than zero. That is, strategy A is disadvantageous against
itself (payoff 0), but this effect is reduced by the fact that an agent does
not play against himself.

Consider now, for example, an A-player deciding whether to switch to
strategy B. Strategy B is very advantageous against A (payoff 2). If the
other agents remain with their strategies, his average payoff would be

1
3k − 1

((k − 1) · 2 + k · 0 + k · 1) =
3k − 2
3k − 1

< 1

The fact that the agent himself was originally an A-player reduces the
potential advantage of a switch to strategy B.

8Hence, in the “Small Population Case” considered in [13], it can be argued that the
tie-breaking assumption was actually harmless.
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Analogously, the average payoff if an A-player would switch to C would
be equal to 1. Hence, the strict (myopic) best reply of an A-player is to
keep playing A.

The previous theorem shows that σ is frequently absorbing. It turns out,
though, that σ is also an ESS.

Oechssler [13] proves that, for 3 × 3 games with a unique, completely
mixed equilibrium, the best reply process (with independent inertia) con-
verges to the corresponding state if and only if said state is absorbing.
The next example shows a 4 × 4 game with a completely-mixed BR-focal
equilibrium, which corresponds to an absorbing but unstable state in any
learning process with myopic best reply.

Example 4.2. Consider the symmetric game with payoff matrix

A B D D

A 0 1 x x

B 1 0 x x

C x x 0 1

D x x 1 0

Let 0 < x < 1
2 . There are three symmetric, mixed-strategy Nash equilibria,

corresponding to strategies σ1 = ( 1
2 , 1

2 , 0, 0), σ2 = (0, 0, 1
2 , 1

2 ), and σ1 =
(1
4 , 1

4 , 1
4 , 1

4 ). By Theorem 4.1, all three of them are BR-focal.
Let N = 4k and ω = (k, k, k, k). Since σ3 is BR-focal, no agent will

deviate under myopic best reply. However, consider state ω′ = (k−1, k, k+
1, k). The payoffs of an A-player are k + (2k + 1)x, while if he switched to
strategy D he would obtain (2k− 1)x + k + 1 > k + (2k + 1)x, that is, the
process leads away from ω from states close to it. Qualitatively, the game
is similar to a 2 × 2 Coordination Game, where σ1, σ2 correspond to the
attracting equilibria and σ3 to the unstable mixture between them.

4.3. Discussion and comparison with ESS
The similarity of Theorem 4.1 and the original definition of “Evolution-

arily Stable Strategy” (ESS) is remarkable. An ESS (a concept which
makes most sense in the framework of an explicitly infinite population)
is a strategy σ such that (a) (σ, σ) is a Nash Equilibrium, and (b) For
any mixed strategy σ′ 6= σ such that π(σ′, σ) = π(σ, σ, it follows that
π(σ, σ′) > π(σ′, σ′). That is, an ESS requires a Nash equilibrium to be
resistant to deviations in the sense that, if agents are indifferent between
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the ESS and another (mixed) strategy, the ESS performs better against
the deviating strategy than itself does.

In contrast, a BR-focal strategy σ must build a Nash equilibrium which
is resistant to deviations in the sense that, if agents are indifferent between
σ and another (pure) strategy, then the deviating strategy performs better
against strategies in the support of σ than each of them does against itself.

This condition arises from the individual, myopic nature of the considered
deviations. If the population profile corresponds to σ, the agent is not really
facing a mixed strategy σ, because he can not play against himself. That
is, his (non-averaged) payoffs are N · π(s, σ) − π(s, s). Hence, there is a
missing term π(s, s) in his payoffs. If the strategy s performs badly against
itself, this disadvantage will be reduced by the agent’s perception of himself
being an s-player (recall Example 4.1).

If the agent were to switch to s′, because of his own strategy change,
the profile in the population does not correspond to σ anymore. His (non-
averaged) payoffs after the deviation are N ·π(s′, σ)−π(s′, s). If the strategy
s′ is advantageous against S, the term π(s′, s) represents the reduction of
this advantage due to the fact that the agent was an s-player himself.

The condition for a strategy σ to be BR-focal is a comparison of these
two payoff reductions. If s′ is just as good as s against σ, the loss of
the possible disadvantage of s against itself (π(s, s)) must be offset by the
reduction in the advantage of s′ against s (π(s′, s)).

Example 4.3. Frequently absorbing does not imply ESS. Consider the
symmetric game whose payoff matrices are given by

A B C

A 0 2 1

B 2 0 1

C 1 1 x

This game has a symmetric mixed-strategy Nash equilibrium given by σ =
( 1
2 , 1

2 , 0), and, if x ≥ 1 a symmetric pure-strategy Nash equilibrium. Since
π(C, σ) = 1 = π(σ, σ), it is easy to see that σ is an ESS if and only if
π(σ,C) = 1 > x = π(C,C), i.e. x < 1. However, it follows from the
previous Theorem and mere observation of the payoff matrix that σ is
frequently absorbing for all possible values of x.

This is a feature of the finite-population framework and the individual-
behavior approach. The payoff x is unreachable for an agent which plans
to deviate from a profile where strategy C is not present. However, it plays
a role for an ESS, where deviations take the form of a small proportion of
mutants (which will also play among themselves).
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Notice that, in Example 4.2, the completely mixed strategy σ3 is fre-
quently absorbing but not an ESS.

Example 4.4. ESS does not imply frequently absorbing. Consider the
symmetric game whose payoff matrices are given by

A B C

A 0 2 1

B 2 0 1

C -1 3 x

This game has also a symmetric mixed-strategy Nash equilibrium given by
σ = ( 1

2 , 1
2 , 0), and, if x ≥ 1 a symmetric pure-strategy Nash equilibrium.

Again, σ is an ESS if and only if x < 1. However, since π(C, σ) = π(A, σ)
and π(C, A) < π(A,A), it follows from Theorem 4.1 that σ is never fre-
quently absorbing. Indeed, if there are N = 2·k agents in the population, an
agent playing A in state (k, k) will get average payoff 2k

2k−1 , while by switch-
ing to C he could get an average payoff of 1

2k−1 (−(k − 1) + 3k) = 2k+1
2k−1 .

Again, the payoff x is unreachable for an agent which plans to deviate
from a profile where strategy C is not present. However, in the rationale
behind an ESS, a small proportion of mutants will also play among them-
selves and obtain it. While in the previous example (if x > 1) this was to
the mutants’ advantage, in this case (if x < 1) it plays against them.

Example 4.5. ESS does not imply frequently absorbing (2). Consider
the following case of a “Rock-Scissors-Paper” game.

R S P

R 1 3 0

S 0 1 3

P 3 0 1

The Nash equilibrium given by σ = ( 1
3 , 1

3 , 1
3 ) is a completely mixed ESS (see

[16, pp.101]). However, a mere examination of the payoff matrix reveals
that it is not BR-focal (see Proposition 4.1).
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5. THE GENERAL CASE: IMITATION

Consider now a general learning process as in the previous section, but
endow agents with imitative rules rather than myopic best reply ones.

5.1. No absorbing states
The first negative result (for mixed strategy profiles) is that we have to

give up the hope of having absorbing states.

Lemma 5.1. Consider any learning process based on imitation. The
only absorbing states are the monomorphic states, i.e. states ω such that
ω(s) = N for some s ∈ S, ω(s′) = 0 for all s′ 6= s. Moreover, under
independent inertia all other states are in transient classes.

Proof. In any non-monomorphic state ω′, there would be different
strategies in its support. Let s ∈ supp(ω′) such that Π(s, ω′) ≥ Π(s′, ω′) ∀ s′ ∈
supp(ω). Then, there is positive probability that an agent not playing s
gets the opportunity to revise and imitates s, that is, P (ω′,m(ω′, s′, s) > 0
for all s′ ∈ supp(ω′), and hence ω′ is not absorbing.

Under independent inertia, there is positive probability that all agents
not playing s get the opportunity to revise and imitate s. It follows that
there is positive probability for a transition from any ω′ ∈ Ω to a monomor-

phic state, and hence any non-monomorphic state is in a transient class.

Two observations follow from the previous lemma. First, independent
inertia coupled with imitation is too quick a dynamics for a mixed profile
to be sustainable in any sense. Such extreme dynamics can only give rise
to monomorphic states.

Second, as we learned in the 2 × 2 case, for dynamics with slower ad-
justment this does not preclude mixed profiles from being stable in an
appropriately defined sense. However, this will never mean an absorbing
state, but, at best, a focal point within a (maybe narrow) non-singleton
recurrent communication class.

We will try to pursue the (encouraging) intuition we developed for the
2× 2 case and see whether it extends to more general games or not. That
is, we try to characterize Nash equilibria which are limits of sequences
of mixed strategies which, if reinterpreted as population profiles (barring
integer problems), turn out to identify rest points (or, at least, narrow
recurrent classes) of imitation dynamics.

5.2. Imitation-absorbing states
The first intuition concerns the existence (for each population size N)of a

focal point (n̂ in 2×2 games) such that all strategies in its support give the
same payoff in the round-robin tournament, and such that it approaches a
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mixed-strategy Nash equilibrium as the population size grows to infinity.
We use a fixed-point argument to show its existence in general games. In
the next theorem, we abuse notation writing π(x, y) to denote xT · A · y,
even if x, y are not mixed strategies but arbitrary vectors.

Theorem 5.1. Suppose the game has a symmetric Nash equilibrium
given by the mixed strategy σ∗. For any N , there exists a mixed strat-
egy σN such that π(s,N · σN − es) = π(s′, N · σN − e′s) ∀ s, s′ ∈ supp(σN )
and supp(σN ) ⊆ supp(σ). Moreover, if (σ∗, σ∗) is the only symmetric
Nash equilibrium on the restricted game with strategy space supp(σ∗), then
limN→∞ σN = σ∗.

Proof. We can assume without loss of generality that supp(σ∗) = S. If
not, it suffices to define a new game by restricting the previous one to the
sub-strategy space supp(σ∗). Let ∆ be the space of mixed strategies.

Given any mixed strategy σ, define

ΠR(s, σ) = eT
s ·A(N · σ − es)

Extend this function linearly to ∆ by ΠR(σ′, σ) =
∑

s∈S σ′(s) · ΠR(s, σ).
Define a correspondence from ∆ into itself by

BR(σ) = arg max ΠR(·, σ)

By continuity of ΠR(·, σ) on the (compact) set ∆, BR(σ) is nonempty. By
linearity of ΠR(·, σ) on the (convex) set ∆, BR(σ) is convex. By continuity
of ΠR, BR has a closed graph. Kakutani’s fixed point Theorem then implies
that there exists σN ∈ ∆ such that σN ∈ BR(σN ), i.e.

ΠR(σN , σN ) ≥ ΠR(σ, σN ) ∀ σ ∈ ∆

In particular, ΠR(σN , σN ) ≥ ΠR(s, σN ) ∀ s ∈ supp(σN ), which, by linearity
of ΠR(·, σN ), implies that ΠR(s, σN ) = ΠR(σN , σN ) ∀ s ∈ supp(σN )

We have shown existence of the sequence {σN}. Since this is a sequence
of real vectors in a compact set, it has a convergent subsequence {σNk}.
Let σ1 be its limit. Then, for all k,

ΠR(σNk , σNk) ≥ ΠR(σ, σNk) ∀ σ ∈ ∆

i.e.

∑

s∈S

σNk(s)
[

eT
s ·A · (σNk −

1
Nk

es)
]

≥
∑

s∈S

σ(s)
[

eT
s ·A · (σNk −

1
Nk

es)
]

∀ σ ∈ ∆
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and taking limits when k →∞,

∑

s∈S

σ1(s)
[

eT
s ·A · σ1

]

≥
∑

s∈S

σ(s)
[

eT
s ·A · σ1

]

∀ σ ∈ ∆

which can be rewritten simply as

π(σ1, σ1) ≥ π(σ, σ1) ∀ σ ∈ ∆

and means that σ1 is a Nash equilibrium.
We have proven that every convergent subsequence of {σN} converges to

a Nash equilibrium. If the game has only one Nash equilibrium, (σ∗, σ∗),
then every convergent subsequence converges to σ∗, which implies that
{σN} converges to σ∗.

Remark 5. 1. Actually, σN is a symmetric Nash equilibrium of a per-
turbed game defined as follows. If A = [as,s′ ] is the payoff matrix of the
original game, for each N we can define a game through the payoff matrix
AN = [aN

s,s′ ], where aN
s,s′ = as,s′ − 1

N as,s. Hence, the approximation of a
Nash equilibrium (σ, σ) by a sequence (σN , σN ) is actually an approxima-
tion through Nash equilibria of perturbed games as the perturbation goes
to zero. It is well-known that the Nash correspondence (mapping pertur-
bations to sets of equilibria) is not lower hemicontinuous, and hence, in
principle there might be (non-generic) Nash equilibria of the original game
that cannot be approximated by any such sequence.

The mixed strategies σN are the candidates as focal points of imitation
dynamics for any fixed population size. Suppose, analogously to previous
(INT) assumptions, that N · σN is actually a state in the dynamics with
N agents. In the 2 × 2 case, we saw that the set {n̂ − 1, n̂, n̂ + 1} is then
a recurrent communication class. The analogous requirement (admittedly
quite demanding) would be that, in case an agent drifts away from his
strategy under the profile σN , in the resulting profile the strategy that the
agent has left is the one which now gives the maximal payoff (provided
this strategy has not disappeared, i.e. there were more than one agent
playing it), prompting a return to the previous profile. This gives rise to
the following definition.

Definition 5.1. A non-monomorphic state ω is imitation-absorbing if

(a) Π(s, ω) = Π(s′, ω) ∀ s, s′ ∈ supp(ω)

(b) For all s, s′, s′′ ∈ supp(ω), s 6= s′, s′′, Π(s, ω′) > Π(s′′, ω′), where
ω′ = m(ω, s, s′)
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Note that condition (b) implicitly assumes that ω(s) > 1 ∀ s ∈ supp(ω),
that is, no strategy can disappear after a single deviation. Since σN ap-
proaches a mixed strategy equilibrium, and provided N ·σN is a state, this
will be true except for small population sizes.

Proposition 5.1. Consider any learning process with imitation and
non-simultaneous learning. If a state ω is imitation-absorbing, then

N1(ω) = {m(ω, s, s′) / s, s′ ∈ supp(ω)}

is a recurrent communication class.

Proof. Note that P (ω, ω′) > 0 ∀ ω′ ∈ N1(ω) by (a) in the definition
of imitation-absorbing state. Moreover, with non-simultaneous learning it
follows that P (ω, ω′′) = 0 ∀ ω′′ /∈ N1(ω).

Consider now a state ω′ = m(ω, s, s′). By (b) in the definition of
imitation-absorbing state, it follows that the strategy giving maximum
payoff in ω′ is s. Suppose P (ω′, ω′′) > 0. By non-simultaneous learn-
ing, we have that ω′′ = m(ω′, s′′, s) for some s′′ ∈ supp(ω). Note that
ω′′ = m(ω′, s′′, s) = m(m(ω, s, s′), s′′, s) = m(ω, s′′, s′) ∈ N1(ω).

We have proved that P (ω′, ω′′) = 0 ∀ ω′ ∈∈ N1(ω), ω′ /∈∈ N1(ω). It re-
mains to show that states in ∈ N1(ω) communicate. Note that, for all ω′ =
m(ω, s, s′), P (ω′, ω) > 0 and P (ω, ω′) > 0. By transitivity, it follows that
N1(ω) is a recurrent communication class.

Lemma 5.2. Consider any learning process with imitation and non-
simultaneous learning. Let ω = (n1, ..., nm) ∈ Ω, such that ni > 1 for
all i. Then, ω is imitation-absorbing if and only if

(a) Π(s, ω) = Π(s′, ω) ∀ s, s′ ∈ supp(ω)
(b) ∀ s, s′, s′′ ∈ supp(ω), s 6= s′, s′′, π(s, s)−π(s, s′) < π(s′′, s)−π(s′′, s′)

Proof. Fix s, s′ ∈ supp(ω) and let ω′ = m(ω, s, s′). Let A be the
payoff matrix of the underlying game, and let es be the vector of m = |S|
coordinates, all of them 0 except for a 1 in the position corresponding to
strategy s. The condition Π(s, ω′) > Π(s′′, ω′) can be written as

eT
s ·A · (ω′ − es) > eT

s′′ ·A · (ω′ − es′′)

and, since m(ω, s, s′) = ω − es + es′ , this is equivalent to

eT
s ·A · (ω − 2 · es + es′) > eT

s′′ ·A · (ω − es + es′ − es′′)

Since eT
s ·A · (ω − es) = eT

s′′ ·A · (ω − es′′), this is if and only if

eT
s ·A · (−es + es′) > eT

s′′ ·A · (−es + es′)
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which can be written in compact form as (es − es′′)T ·A · (es − es′) < 0 or,
in terms of the payoff function π:

π(s, s)− π(s, s′) < π(s′′, s)− π(s′′, s′)

as required.

Condition (b) above is clearly an spite requirement. Whenever an s-
player switches to s′, an arbitrary agent, playing strategy s′′, has a loss
of π(s′′, s) − π(s′′, s′), since he faces one s-player less and one s′-player
more. The condition above requires the loss experienced by the remaining
s-players to be minimal.

5.3. Imitation-focal strategies
Condition (b) above is independent of population size, while condition

(a) is not. This motivates the following definitions.

Definition 5.2. Let σ be a mixed strategy. An imitation sequence
approaching σ is a pair ({Nk}, {σk}) such that {Nk} is an strictly increasing
sequence of population sizes and {σk} is a sequence of mixed strategies {σk}
such that

(i) For all s, s′ ∈ supp σ,

π(s, σk)− 1
Nk

π(s, s) = π(s′, σk)− 1
Nk

π(s′, s′)

(ii) limk→∞
ωk
Nk

= σ.

An imitation sequence approaching σ is non-degenerate if there exists at
least one σNk such that supp(σNk) = supp(σ) and Nk ·σNk is a well-defined
state of the dynamics with Nk agents.

Degeneracy may appear because of integer problems, e.g. games with
some rational and some irrational payoffs.

Definition 5.3. A mixed strategy σ is frequently imitation-absorbing,
or simply imitation-focal if

(i) There exists an imitation sequence approaching σ.
(ii) For all imitation sequences ({Nk}, {σk}) approaching σ, there exists

N̂ such that, whenever Nk > N̂ and Nk · σk is a well-defined state of the
dynamics with Nk agents, then it is an imitation-absorbing state.

The strategy is non-degenerate if the sequence in (i) is non-degenerate.
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Theorem 5.2. Consider any learning process with imitation and non-
simultaneous learning. Let σ be a mixed-strategy.

(a) If σ is frequently imitation-absorbing, then (σ, σ) is a Nash Equilib-
rium of the game obtained by restricting the strategy space to supp σ.

(b) If σ is frequently imitation-absorbing and non-degenerate, then, for
any s, s′, s′′ ∈ supp(σ), s 6= s′, s′′,

π(s, s)− π(s, s′) < π(s′′, s)− π(s′′, s′) (1)

(c) Suppose that, either (σ, σ) is the only Nash equilibrium of the game
with restricted strategy space supp σ, or there exists an imitation-sequence
approaching σ. If condition (1) holds, then σ is frequently imitation-absorbing.

Proof. Without loss of generality, restrict the strategy space to supp(σ).
(a) Let σ be frequently imitation-absorbing, and let ({Nk}, {σk}) be an

imitation sequence approaching σ. By (i),

π(s, σk)− 1
Nk

π(s, s) = π(s′, σk)− 1
Nk

π(s′, s′) ∀ s, s′ ∈ supp σ

Taking limits when k →∞, we obtain

π(s, σ) = π(s′, σ) ∀ s, s′ ∈ supp σ

which proves that (σ, σ) is a Nash equilibrium.
(b) Follows directly from Lemma 5.2.
(c) If (σ, σ) is the only Nash equilibrium in the game with strategy space

supp(σ), by Theorem 5.1, there exists an imitation sequence ({N}, {σN})
approaching σ. Hence, for N > N0, supp(σN ) = supp σ. Whenever N · σN

is an state, Lemma 5.2 proves that it is almost absorbing.
If (σ, σ) is not the only Nash equilibrium of the restricted game but one

appropriate sequence exists, the proofs follows analogously.

Example 5.1. Consider the symmetric game with payoff matrix

A B C

A 1 1 1

B 2 0 1

C 0 2 0

This game has a symmetric Nash equilibrium given by the mixed strategy
σ = ( 1

2 , 1
2 , 0). It is easy to check, through Theorem 5.2, that this strategy

is imitation-focal.
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We first compute the sequence σN approaching σ. Given a population
size N , we want to find a profile ωN = N ·σN = (k, N −k, 0), where maybe
k is not an integer, such that, abusing notation, Π(A,ωN ) = Π(B,ωN ).
This equation amounts to (k − 1) · 1 + (N − k) · 1 = k · 2 + (N − k − 1) · 0,
which implies N = 2k + 1 or

σN =
(

N − 1
2

,
N + 1

2
, 0

)

This sequence does indeed approach σ and, moreover, N · σN is a well-
defined state of the dynamics with N agents whenever N is odd.

Let, thus, N = 2k + 1 with k > 2 and ω = (k, k + 1, 0). This state is
imitation-absorbing. We check now the dynamic consequences of this fact.

In state ω, both A and B yield a payoff of 2k. If an A-player imitates
B, the process moves to m(ω, A,B) = (k − 1, k + 2, 0). In the new state,
strategies A and B earn respectively 2k and 2k − 2, and hence the only
possible transition will happen when a B-player imitates A and the process
goes back to ω. Analogously, if a B-player imitates A, the process moves to
state m(ω, B, A) = (k+1, k, 0). Strategies A and B earn then 2k and 2k+2
respectively, and hence the only positive-probability transition occurs when
an A-player imitates B and the process goes back to ω.

5.4. Comparison of BR-focal and Imitation-focal strategies
First, we prove the intuition we obtained in the 2×2 case and show that

for this class of games, both concepts are equivalent.

Corollary 5.1. Consider a 2×2 symmetric game with rational payoffs
and a unique Nash equilibrium (σ, σ), with σ a mixed-strategy. Then, σ is
frequently absorbing under best reply if and only if it is frequently imitation-
absorbing.

Proof. It suffices to compare Theorems 4.1 and 5.2.9 Let the game be
given by

A B

A (a,a) (b,c)

B (c,b) (d,d)

9It is easy to check in this case that the imitation sequence approaching the mixed
equilibrium is non-degenerate if the payoffs are rational.
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Condition (b) in Theorem 5.2 reduces to a + d < b + c which is obviously
implied by condition (b) in Theorem 4.1, i.e. a < c and d < b.

Conversely, if a + d < b + c but a ≥ c (analogously if d ≥ b), then d < b
and it follows that strategy A weakly dominates strategy B, which contra-
dicts the existence of a (completely) mixed symmetric Nash equilibrium.

Now we show that for completely mixed strategies, Imitation-focal strate-
gies are always BR-focal strategies, i.e. the former are a sharper refinement
of Nash equilibria that collects stability properties both from imitation and
best-reply dynamics.

Proposition 5.2. Let σ be a completely mixed strategy with rational co-
ordinates. If σ is a (non-degenerate) frequently imitation-absorbing strat-
egy, then it is frequently absorbing under best reply.

Proof. By the previous result, it suffices to consider games with at least
three pure strategies. Let σ be frequently imitation-absorbing, and suppose
supp(σ) = S. Suppose further that σ is not frequently absorbing under best
reply. By Theorem 4.1, there exist s, s′ ∈ S such that π(s, s) ≥ π(s′, s).

Consider any s′′ ∈ S \ {s, s′}. By Theorem 5.2 (interchanging s′, s′′ in
condition (b)),

π(s, s) + π(s′, s′′) < π(s, s′′) + π(s′, s)

and, since π(s, s) ≥ π(s′, s), it follows that π(s, s′′) > π(s′, s′′) ∀ s′′ 6= s, s′.
Applying condition (b) in Theorem 5.2 to s′, s′′, s for any s′′ 6= s, s′, we

obtain

π(s′, s′) + π(s, s′′) < π(s′, s′′) + π(s, s′)

Since π(s, s′′) > π(s′, s′′), it follows that π(s, s′) > π(s′, s′).
In summary, strategy s (weakly) dominates strategy s′. This is a contra-

diction with the fact that both are in the support of the completely mixed
strategy σ, and (σ, σ) is a Nash equilibrium.

Remark 5. 2. It follows from this result and Proposition 4.1 that if σ is
an Imitation-focal strategy, the game restricted to the strategy subspace
supp σ cannot have any symmetric Nash equilibria in pure strategies.

The requirement of σ to be completely mixed is necessary. Since, under
imitation dynamics, anything not in the support of the current state is
irrelevant, it is easy to see that an imitation-focal strategy might easily fail
to be BR-focal if the strategies outside its support are attractive enough.
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Example 5.2. Imitation-focal and less than full support does not
imply BR-focal. Consider the symmetric game with payoff matrix

A B C

A 1 3 3

B 3 1 3

C 3 3 3

The mixed strategy σ = ( 1
2 , 1

2 , 0) is imitation-focal by Theorem 5.2. While
(σ, σ) is a Nash equilibrium of the game restricted to {A,B}, it is not even
a Nash equilibrium of the complete game and hence fails to be a BR-focal
strategy.

Now we show that the reverse implication fails, even in the full-support
case.

Example 5.3. BR-focal does not imply Imitation-focal. Consider the
symmetric game with payoff matrix

A B C

A 0 1 1

B 1 0 1

C 1 3 0

This game has a unique symmetric Nash equilibrium, given by the mixed
strategy σ = ( 1

5 , 1
5 , 3

5 ).
This strategy is BR-focal by Theorem 4.1. Indeed, consider a state ω

reproducing exactly the proportions in σ, i.e. ω = (k, k, 3k) with N = 5 ·k.
An A-player is obtaining payoff Π(A,ω) = (k−1)·0+k·1+(3k)·1 = 4k. If he
switched to B, he would obtain payoff (k−1)·1+k ·0+(3k)·1 = 4k−1 < 4k.
If he switched to C, he would obtain (k−1) ·1+k ·3+(3k) ·0 = 4k−1 < 4k.
Hence, he has an incentive to keep his current strategy. Analogously, B-
players and C-players will also keep their strategies under myopic best
reply.

Note, however, that π(A, A) + π(C, B) = 0 + 3 > 1 + 1 = π(A,B) +
π(C,A), and hence, by Theorem 5.2, σ fails to be imitation-focal.

To see why, we compute the sequence σN . Let ωN = (nA, nB , N − nA −
nB) such that

Π(A,ωN ) = Π(B, ωN ) = Π(C, ωN )
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From the first equation, it follows that nA = nB = k. From the second
equation, N = 5k. It follows that σN = ( 1

5 , 1
5 , 3

5 ), i.e. in this case the
sequence is constant and equal to σ.10

Consider, then, ω = (k, k, 3k) with N = 5 · k and k > 2. All agents are
obtaining payoff 4k, i.e. all strategies are perceived as equally worthwile.
Suppose an A-player decides to imitate strategy B. The resulting state is
m(ω, A,B) = (k−1, k+1, 3k), with payoffs 4k+1, 4k−1, 4k+2 respectively
for strategies A,B, and C. Hence, the maximum payoff corresponds now to
strategy C and the process may drift further away from σ. Since an state
ω is imitation-absorbing only if N1(ω) is recurrent, we see that (k, k, 3k) is
never imitation-absorbing.

6. CONCLUSION

This paper identifies two concepts, called BR-focal and Imitation-focal
strategies. Summarizing the analysis, these concepts could be roughly de-
fined as follows.

A BR-focal strategy is a mixed strategy which corresponds to a sym-
metric Nash equilibrium and such that, whenever (barring integer prob-
lems) it is re-interpreted as a (finite) population profile of agents playing
pure strategies, it turns out to be an absorbing state of any discrete-time,
stochastic dynamics where agents play the underlying game in a round-
robin tournament and update their strategies according to myopic best
reply.

An imitation-focal strategy is a mixed strategy which corresponds to
a symmetric Nash equilibrium (of the game where the strategy space is
restricted to be its support) such that it is the limit of a sequence of
strategies indexed by population size, which, if (barring integer problems)
re-interpreted as population profiles, turn out to be in a narrow recurrent
communication class of the finite-population, discrete-time dynamics where
agents play the underlying game in a round-robin tournament, update their
strategies according to imitation rules, and adjustment is non-simultaneous.

In spite of the technical complexities which make the analysis proceed in
this way, both BR-focal and imitation-focal strategies can be characterized
through conditions which depend only on the payoff matrix and not on any
population size. It turns out that both concepts coincide in the case of
2 × 2 games, and that every imitation-focal, completely mixed strategy is
also BR-focal, but the reverse implication fails for general games.

Technical difficulties associated both to finite population and discrete
time make necessary a careful consideration of the appropriate “rest point”
notion, and integer problems force to keep track of when mixed strategies

10The trick is of course the zero entries in the diagonal.
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can be reinterpreted as population profiles. The analysis, however, shows
that the above mentioned refinements of symmetric, mixed-strategy Nash
equilibria can be considered rest points of finite-population, discrete-time
dynamics in a meaningful, well-defined sense.

It is specially important to notice that the mixed strategy equilibria
studied in this paper exhibit what we could call stability properties without
resorting either to continuous-time approximations or to explicitly infinite
populations, at the price of, e.g., tracing approximations and facing integer
problems. In the words of John Nash [12, p.33], “The populations need not
be large if the assumptions still hold. [...] Actually, of course, we can only
expect some sort of approximate equilibrium, since the information, its
utilization, and the stability of the average frequencies will be imperfect.”
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