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1. INTRODUCTION

Informally defined, imitation is a behavioral rule that prescribes to mimic ob-
served behavior—to take an action only if this action has been used before. In
order to mimic, imitators need information about the actions taken by others. That
implies that imitation can only occur under particular information structures. Im-
itative rules of behavior are further specified by the type of role model behavior
that they follow.

Imitation is the basis of social learning and cultural transmission in general (see
e. g. Boyd and Richerson [2]). In economic contexts in particular, experimental
work (e. g. Huck, Norman, and Oechssler [5], Pingle and Day [7]) finds that
agents making complicated economic decisions also use imitative rules when they
lack relevant information and as a mode of economizing behavior in order to save
decision-making time. However, decisions taken by imitation may be suboptimal.
The question is then why and what type of imitation would prevail in a population,
provided that the information conditions that allow for it are fulfilled.

The literature justifies imitation on different grounds. Taking into account that
optimizing is costly, imitation may coexist with optimization since it saves the
costs of information gathering and processing (Conlisk [3]).

* I thank Carlos Aĺos-Ferrer and Manfred Nermuth for helpful comments and suggestions.
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On the other hand, certain imitative rules have been justified on the grounds of
their optimality among behavioral rules, according to suitable optimality criteria.

Schlag [8] explores the context of a finite population of agents who face a game
against nature. Decisions are made based on own experience and after observing
the behavior and experience ofonly oneother (randomly sampled) agent in the
population. In that context, he finds a particular imitation rule, which he calls
proportional imitation, that is optimal in the sense of increasing expected payoffs
from every state and inevery possible game. Proportional imitation prescribes
to imitate an action observed if it gave higher payoffs than the own action with a
probability proportional to the difference in the payoffs observed.

Schlag [9] and Hofbauer and Schlag [4] focus instead onproportional obser-
vation, which prescribes to imitate another observed individual with a probability
proportional to her payoff and independent of own payoff. The analysis is ex-
tended here to the case of observing more than one individual and playing a game
between two different populations. It is argued that, provided that play in the other
population does not change, optimality properties obtained in the case of games
against nature extend to this context.

In the present note we focus on situations where each agent in a finite population
plays the field, meaning that payoffs depend on the actions ofall agents in the
population, and not just on performance in a bilateral encounter against nature, or
against a randomly chosen member of a different population.1 We find that, in
general, there are no rules of behavior that are optimal forall possible strategic
situations. More likely, the properties of imitation cannot be separated from the
situation at hand. In our view, the advantage of imitation in general lies in the
fact that it minimizes decision costs, and other properties of imitation are strongly
dependent on the situation considered (whether it is specifically strategic or not,
whether the whole population is observed or not, etc).

The paper is organized as follows. In Section 2 we review the work on optimality
of imitation rules. In Section 3 we carry out the analysis for the case of playing
the field. In Section 4 we conclude.

2. GAMES AGAINST NATURE

Schlag [8] considers a finite population of agentsI = {1, . . . , n}who repeatedly
choose actions from a finite setA. Each actiona ∈ A yields an uncertain payoff
x ∈ [α, ω] ⊂ R according to a probability distributionPa with finite support in
the interval[α, ω]. Agents do not know the probability distributions over payoffs;
they only know the set of available actions and the range of attainable payoffs.

For any actiona ∈ A, let πa =
∑

x xPa(x) denote its expected payoff. The
tuple 〈A, (Pa)a∈A〉 is then called amulti-armed bandit. It constitutes a game
against nature, where the agent’s realization of payoffs is independent of the actions

1The term ‘playing the field’ is due to Maynard Smith [6]
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chosen by other agents in the population. CallG(A, [α, ω]) the set of all possible
multi-armed bandits with actions in setA and payoffs in the interval[α, ω].

At any periodt let a ∈ An be the population state—the vector of actions
chosen by each agent. Let∆(A) denote the unit simplex over the setA, and let
p = (pa)a∈A ∈ ∆(A) be the vector of proportions of agents choosing each action.
Thenπ(a) =

∑
a paπa is the average expected payoff in the population at statea.

Each period each agent decides what action to choose based on her own imme-
diate previous experience as well as that ofoneother, randomly observed member
of the population.

A behavioral ruleF is a function that maps the actions and payoffs observed
to the set of probability distributions over actions. That is, given the action and
payoffs observed, it gives a prescription of the probabilities with which actions
should be chosen next period.

F : A×A× [α, ω]× [α, ω] → ∆(A).

Fa′′(a, a′, xa, xa′) is the probability that an agent chooses actiona′′ if she chose
actiona last period, obtained payoffxa, and observed another agent who chose
action a′ and obtained payoffxa′ . A behavioral ruleF is called imitating if
Fa′′(a, a′, xa, xa′) = 0 for all a′′ ∈ A, a′′ 6= a, a′′ 6= a′.

Two optimality criteria are then proposed for selecting among behavioral rules,
one from an individual, although boundedly rational point of view, another one
from the point of view of a rational social planner.

Consider first a boundedly rational agent who were to enter this population
to randomly replace one of its members, without knowing how long she will
stay in. At entering, she would have the information about what her predecessor
was doing and the information about what another, randomly selected member
of the population was doing. This new member must first decide on a rule to
choose actions. One possible decision rule is the ‘never switch’ rule, which would
prescribe not to change with respect to what her predecessor was doing. So at least
she can always perform as well as her predecessor in expected terms. Therefore,
if she had to choose another decision ruleF , she would ask thatF lets her at least
as well off as the rule ‘never switch’ for the period in which entry occurs.

A behavioral ruleF is called improving, if the expected payoff of an agent
following F who randomly enters to replace any agent in the population at statea
is higher than or equal to the expected payoff of not switching actions —following
‘never switch’— and this for all possible states and all possible bandits—for all
possible situations faced.

Let π(F,a) be the expected payoff of any agent that enters at statea and uses
ruleF .2 Now defineexpected improvementat statea when using ruleF by

EIPF (a) = π(F,a)− π(a).

2See [8] for the exact definition.
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Definition 2.1. Given A and [α, ω], a ruleF is said to beimproving if
EIPF (a) ≥ 0 for all a ∈ An and all multi-armed bandits inG(A, [α, ω]).

Consider now, alternatively, that a social planner had to decide on a behavioral
rule to prescribe to all members of this population. The planner would look for a
rule that increases average expected payoff in the population. This is the second
criterion proposed by Schlag [8] to select among behavioral rules.

Given a multi-armed bandit, a rule is said to bepayoff increasingin that bandit,
if it increases average expected payoff in the population every period. At any state
a, let pa(F,a) be the expected proportion of agents choosing actiona ∈ A next
period when all agents decide according to a ruleF . The average expected payoff
in the population next period is given byπ(F,a) =

∑
a pa(F,a) · πa.

Definition 2.2. A rule F is said to bepayoff increasingin the bandit
g ∈ G(A, [α, ω]) if π(F,a) ≥ π(a) for all a ∈ An.

It is easy to see that, at anya, π(F,a) = π(F,a). Hence, a ruleF is improving
if and only if it is payoff increasing for allg ∈ G(A, [α, ω])—both selection criteria
turn out to be equivalent. Schlag [8] then concentrates only on improving rules.

Trivially, ‘never switch’ is improving, since it always leaves expected payoffs
unchanged. However, the interest is to find nontrivial improving rules. A first,
important result establishes thatall improving rules must be imitating; in order to
assure that a behavioral ruleF works wellin all possible games against nature, F
must never prescribe using any new, unobserved action. The reason being that one
can always find games where precisely that new action yields very low payoffs.
This is crucial when agents lack information about the game they are facing.

However, not all imitative rules are improving. Schlag [8] points out that some
imitative rules, e. g. ‘imitate if better’, cannot distinguish between lucky and
certain (or highly probable) payoffs. ‘Imitate if better’ prescribes to imitate an
actiona′ ∈ A if it gave higher payoffs than another actiona ∈ A observed.

The following theorem constitutes the main result by Schlag [8] and gives a
complete characterization of improving rules. A rule is improving if and only if,
first, it is imitating and, second, the probability of switching from one actiona ∈ A
to a different onea′ ∈ A is proportional to the difference in the payoffs observed
for both actions. These rules are calledproportional imitation rules.

Theorem 2.1 (Schlag [8]). A behavioral ruleF is improving if and only if
(1) F is imitating, and (2) for alla, a′ ∈ A, a 6= a′, there existθaa′ = θa′a ∈
[0, 1/(ω − α)] such that

Fa′(a, a′, xa, xa′)−Fa(a′, a, xa′ , xa) = θaa′ ·(xa′−xa) ∀xa, xa′ ∈ [α, ω].

Theorem 2.1 still gives a wide range of improving rules depending onθaa′ . It is
easy to see that, a behavioral rule isdominant, in the sense of achieving maximal
expected improvement, if it is improving, and for anya 6= a′, θaa′ = 1/(ω − α).



LEARNING BY IMITATION WHEN PLAYING THE FIELD 5

This result provides a rationale for imitative rules in the case of games against
nature. Being improving, proportional imitation rules are payoff increasing for all
possible such games faced. Therefore, if a population faces this type of decision
problem, and agents do not know anything about the bandit they are facing, or if
the bandit itself is subject to changes—if the environment faced is not stationary—
then the conjecture is that evolutionary selection of populations based on average
performance would favor those populations using proportional imitation. In this
way certain imitative rules turn out to be an optimal way to learn about a decision
problem and to make decisions.

The question then is whether those properties of the proportional imitation rule
also hold in strategic contexts. Schlag [8] argues that his analysis applies to
normal form games in the following way. In a game played between two different
populations, one can focus on how one of these two populations learns to play
against the other one. Given the payoff matrix, and the strategy profile in the
population of opponents, one can reinterpret the situation faced by the players in
the learning population as a multi-armed bandit. Provided that play in the other
population does not change, the optimal proportional imitation rule defined for
the case of bandits will also be the one that maximizes the increase in average
expected payoff for the learning population in this case.

Schlag [9] and Hofbauer and Schlag [4] study a different rule, calledpropor-
tional observation, which prescribes to imitate the sampled individual with a prob-
ability proportional to her payoff and independent of own payoff.

Schlag [9] studies the framework of an infinite population of agents who decide
after sampling two other agents. When agents face a game against nature, he finds
that payoff increasing rules must again be imitative, but dominant rules do not
exist. Moreover, it is shown that, in this context, an imitation rule consisting of
a sequential application of the proportional observation rule is payoff increasing.
When two populations play a game and learn according to proportional observa-
tion, the population state evolves according to a discrete version of the replicator
dynamics of Taylor [10].

Hofbauer and Schlag [4] generalize this approach to the sampling ofk ∈ N
individuals from an explicitly infinite population, and consider imitative rules ob-
tained by sequentially evaluating the proportional observation rule. In the context
of two populations playing a two-player game, where agents in each population
decide according to sequential proportional observation, they find that in the limit,
as the sample sizek grows to infinity, the population state evolves according to a
discretization of the replicator dynamics of Maynard Smith [6].

The analysis above shows an interesting property of imitation rules when the
sample and the population size are large, but does not address the question of what
type of imitation would prevail when the population size is finite and each agent
observes the whole population.

Moreover, the analysis above for the case of two-player games identifies rules
that improve average expected payoff in one population only when play in the other
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population does not change. Strictly speaking, the analysis applies neither to the
case in which both populations learn simultaneously, nor to the case of playing the
field—when there is only one population ofn agents playing ann-person game.
The reason is that, in a strategic context, it is not only the position of each agent
with respect to the environment, but also the position of each agent with respect
to her opponents what counts.

In the next section we analyze the case of playing the field, and try to find
improving and payoff increasing rules in that case. We find that it is very restrictive
to ask for such properties to be fulfilled in all possible situations.

3. PLAYING THE FIELD

In the present section we are interested in studying the properties of imitative
rules in a context where the analysis in Schlag [8] does not directly apply. In
particular, we are interested inn-person games, played by agents withinthe same
population, a main economic example being oligopolies. Furthermore, we want
to allow for each agent to make her decision on the basis of the information about
actions and payoffs ofall members of the population. In order to tackle this
task we first extend the model presented in the previous section to the case of
symmetricn-person games. Then, we extend the notion of a ‘behavioral rule’ in
order to accommodate our information structure in the model. Having done this,
we explore the applicability of the properties studied above to our context.

We prove that improving and payoff increasing rules are not equivalent in the
context of playing the field. Moreover, only trivial learning rules can have such
properties. It is obvious, for example, that a rule that would prescribe to switch
actions among players must be trivially payoff increasing for all possible games.
Similarly, a rule that prescribes to change actions only if the worst possible payoff
is observed must be improving. But we are interested in rules that are nontrivial.

3.1. Behavioral rules in ann-person game
Consider a finite population of agentsI = {1, . . . , n}, who are involved in the

same symmetric, strategic situation. All of them have the same finite setA of
actions available. In this context apopulation stateis a vectora ∈ An specifying
one action for each agent. Given a population state, payoffs for all agents are
determined by the same payoff functionπ : A × An−1 → [α, ω]. Agents do not
know this function—they lack information about the exact way payoffs are deter-
mined. We further assume that each agent’s payoff is determined independently
of the names of the opponents choosing specific actions. That is, for alla ∈ A and
for all (a1, ..., an−1) ∈ An−1, π(a, (a1, ..., an−1)) = π(a, (aσ(1), ..., aσ(n−1)))
for all σ ∈ Σn−1, whereΣn−1 denotes the symmetric group of permutations of
n− 1 elements. Following the notation in Schlag [8], we defineG(n, A, [α, ω]) as
the class of all symmetricn-person games with action setA, and payoff function
π : A×An−1 −→ [α, ω] satisfying the former condition.
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Here we extend the notion of a behavioral rule to allow for each agent to base
her decision on the information about the actions chosen and payoffs obtained by
all members of the population in the previous period. This is done by defining a
functionF : A×An−1× [α, ω]× [α, ω]n−1 −→ ∆(A). Given the actions chosen
and the payoffs realized, the functionF specifies how actions will be chosen in
the next period. In particular,Fa′

i
(ai, a−i, πi, π−i) is the probability that agent

i choosesa′i next period if she choseai today, obtained payoffπi, and observed
a−i ∈ An−1, and payoffsπ−i ∈ [α, ω]n−1 on the part of the other players.3

Again, π(a) denotes the average payoff at statea, andπ(F,a) the expected
payoff of any agent followingF , who is in the position to enter at statea to
randomly, uniformly replace any agent in the population. This expected payoff
depends here on the payoff function of the game,π, and is given by

π(F,a) =
1
n

n∑
i=1

∑
a′

i∈A

Fa′
i
(ai, a−i, πi, π−i)π(a′i, a−i) (1)

A behavioral ruleF is improving if EIPF (a, π) = π(F,a) − π(a) ≥ 0 for all
a ∈ An and for all games inG(n, A, [α, ω]). The improving ruleF is degener-
ate if EIPF (a, π) = 0 for all states and all games. Again, the behavioral rule
‘never switch’ is obviously a degenerate improving rule. The rule ‘never switch’
prescribes hereFa′

i
(ai, a−i, πi, π−i) = 0 for all a′i ∈ A \ {ai}. Moreover, any

behavioral ruleF , with Fa′
i
(ai, a−i, πi, π−i) = 0 for all a′i ∈ A \ {ai}, if πi 6= α,

is obviously improving. Such rules would prescribe to switch only if the minimum
possible payoff was obtained. We call this type of rulestrivially improving.

Given that the population is in statea, and that all agents followF , callπ(F,a)
the expected average payoff next period. In our framework this is given by

π(F,a) =
1
n

n∑
i=1

∑
a′∈An

 n∏
j=1

Fa′
j
(aj , a−j , πj , π−j)

 π(a′i, a
′
−i) (2)

Given a game inG(n, A, [α, ω]), a behavioral ruleF is payoff increasingfor that
game ifπ(F,a) ≥ π(a) for all a ∈ An.

Let C(a) = {a′ ∈ An | a′i = aσ(i), i = 1, ..., n, σ ∈ Σn}. Behavioral
rulesF , such that

∏n
j=1 Fa′

j
(aj , a−j , πj , π−j) = 0, if a′ 6∈ C(a) are obviously

payoff increasing, since they leave average payoff unchanged. These are rules
that prescribe a mere permutation of strategies among the agents. Rules satisfying

3Since payoffs are determined symmetrically, it seems natural to assume that behavioral rules
prescribe the same to all agents who face the same situation independently of their names. For-
mally, for all actionsa ∈ A, and all payoffsπ ∈ [α, ω], and for all (a1, ..., an−1) ∈ An−1,
and all(π1, ..., πn−1) ∈ [α, ω]n−1, F is such thatFa′ (a, (a1, ..., an−1), π, (π1, ..., πn−1)) =
Fa′ (a, (aσ(1), ..., aσ(n−1)), π, (πσ(1), ..., πσ(n−1))) for all σ ∈ Σn−1. However, we do not make
this assumption in what follows.
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∏n
j=1 Fa′

j
(aj , a−j , πj , π−j) = 0, if π(a) 6= α are also obviously payoff increas-

ing, since they also leave average payoff unchanged, except (maybe) in caseall
agents are obtaining the minimum possible payoff. Moreover, a rule that prescribes∏n

j=1 Fa′
j
(aj , a−j , πj , π−j) > 0 if and only if eithera′ ∈ C(a) or π(a) = α is

also payoff increasing. We call these last rulestrivially payoff increasing.
It might seem that rules prescribing switching of strategies necessarily imply

coordination of individual behavior. The next example shows that this is not the
case. Behavioral rules can be specified that do not imply explicit coordination.

Example 3.1. Let A = {L,R}, and letn = 4. Consider the following
behavioral ruleFR(L, (L, R,R), πi, π−i) = 1, FL(R, (L,L,R), πi, π−i) = 1 for
all π = (πi, π−i) and no change from all other states. That is, the rule prescribes
to change only when two agents are playingL and twoR, and in that case it
prescribes to switch strategy with probability one, which results in a permutation
of strategies and does not require explicit coordination.

It does not seem that improving and payoff increasing rules are equivalent in our
framework. In fact, as we have seen, trivially payoff increasing rules are different
from trivially improving rules. The main difference with the context analyzed in
Schlag [8] is that there payoffs are a result of the realization of random variables,
which are independent of the proportion of agents choosing each action, while in
our case payoffs depend in a deterministic way on the actions chosen by the other
players. Let us explore the two properties in our context.

3.2. Nonexistence of nontrivial rules
We prove now that, in the case ofn-player games, it is impossible to find

nontrivial rules that are well-behaved in all possible situations. Asking conditions
(1) and (2) to be fulfilled from every state and forall games is extremely restrictive.

Proposition 3.1. The only improving rules are the trivially improving ones.

Proof. Assume there exists an improving ruleF that is not trivially improving.
Then, there existsa ∈ An andπ ∈ [α, ω]n with πj ∈ (α, ω] for somej, such that
Fa′

j
(aj , a−j , πj , π−j) > 0 for somea′j ∈ A \ {aj}. Consider the statea ∈ An

and the game inG(n, A, [α, ω]) satisfyingπ(ai, a−i) = πi, π(a′i, a−i) = α, for
all a′i ∈ A \ {ai}, i = 1, 2, ..., n. Then,

EIPF (a, π) =
1
n

n∑
i=1

∑
a′

i∈A

Fa′
i
(ai, a−i, πi, π−i) · (π(a′i, a−i)− π(ai, a−i))

=
1
n

n∑
i=1

∑
a′

i∈A\ai

Fa′
i
(ai, a−i, πi, π−i) · (α− πi)

≤ 1
n

Fa′
j
(aj , a−j , πj , π−j) · (α− πj) < 0

which yields a contradiction.
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That is, ifF were improving, but not trivially improving, there would be some
state where a playerj, who was earning payoffs above the minimumα, is prescribed
to change action fromaj to a′j . In that case, we can always define a game such
that nothing else changes, but precisely the combination of strategies that results,
(a′j , a−j), yields payoffα, so that at leastj’s payoffs strictly decrease.

Proposition 3.2. The only rules that are payoff increasing for all possible
games inG(n, A, [α, ω]) are the trivially payoff increasing ones.

Proof. Assume the ruleF is payoff increasing for all games inG(n, A, [α, ω]),
but not trivially payoff increasing. Then, there exists a statea ∈ An and a pay-
off vector π ∈ [α, ω]n with πk ∈ (α, ω] for somek, such thatF prescribes∏n

j=1 Fa∗
j
(aj , a−j , πj , π−j) > 0 for somea∗ ∈ An \ C(a). Consider now the

statea ∈ An and the game inG(n, A, [α, ω]) satisfying thatπ(ai, a−i) = πi, and
π(a′i, a

′
−i) = α for all a′ ∈ An \ C(a), and alli = 1, 2, ..., n.

π̄(F,a)− π̄(a)=
1
n

n∑
i=1

∑
a′∈An

n∏
j=1

Fa′
j
(aj , a−j , πj , π−j)(π(a′i, a

′
−i)− π(ai, a−i))

=
1
n

n∑
i=1

∑
a′∈An\C(a)

n∏
j=1

Fa′
j
(aj , a−j , πj , π−j)(α− πi)

≤ 1
n

n∑
i=1

n∏
j=1

Fa∗
j
(aj , a−j , πj , π−j)(α− πi)

≤ 1
n

n∏
j=1

Fa∗
j
(aj , a−j , πj , π−j)(α− πk) < 0

which yields a contradiction.

That is, if F were payoff increasing for all games, but not trivially payoff
increasing, there would be some state where at least some players were earning
payoffs above the minimum, and where the rule prescribes to change actions in
such a way that the resulting state is not a mere permutation. In that case, we can
always define a game such that nothing else changes, but precisely the combination
of strategies that results yields minimum payoff, so that some agents’ payoffs, and
thus the resulting average payoff, strictly decrease.

Therefore, in the framework of a small population of agents involved in a sym-
metric, strategic situation, only trivial behavioral rules can be improving or payoff
increasing for all possible games. These properties turn out to be too strong. In the
search for well-behaved behavioral rules that are nontrivial, we must either relax
these properties, or concentrate on different ones. The following example tries to
illustrate further what underlies the results above, showing how easy it is to find
even small classes of games for which neither improving, nor payoff increasing
rules exist.
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Example 3.2. Consider the class of gamesG(3, {L,R}, [−2, 2]) with
three players, actionsA = {L,R} and payoffs in the interval[−2, 2]. Let
G̃ = {G1, G2, G3, G4} be a subclass ofG. Assume that in these four games
all players get the same payoffs in each state. Payoffs are summarized in the
following table. LLL LLR LRR RRR

G1 1 2 -2 1
G2 1 -2 2 1
G3 1 2 -2 -2
G4 -2 -2 2 1

For example, in each of the three states of type(L, L, R), where two players play
L, and the third one playsR, all players get payoff2 in gamesG1 andG3, and
payoff−2 in gamesG2 andG4. Note that inG̃ for each type of state there is always
some game where precisely that situation yields the lowest possible payoffs. In the
following we show that, in the subclass̃G there are neither nontrivial improving,
nor nontrivial payoff increasing rules.

Any improving rule must prescribe not to change from states of type(L,L,R)
when payoffs(2, 2, 2) are observed – a unilateral change of strategy would take
agents to a state of type(R,R, L) or (L,L,L), which in G1 andG3 yields a
negative expected improvement. Analogously, any improving rule must prescribe
not to change from(L,R,R) when payoffs(2, 2, 2) are observed. Moreover, any
improving rule must prescribe not to change from state(L,L, L) when payoffs
(1, 1, 1) are observed, since a unilateral change of strategy would take agents to
a state of type(L,L,R), which in gameG2 would yield payoffs−2 and, thus, a
negative expected improvement. Analogously, any improving rule must prescribe
not to change from state(R,R, R) when payoffs(1, 1, 1) are observed. This
proves that an improving rule may only prescribe to change action from states
where payoffs(−2,−2,−2) are observed.

Similarly, if we want a behavioral rule to be payoff increasing for all games
in G̃ the following must hold. The rule must prescribe not to change from states
(L,L,R) and(R,R, L) when payoffs(2, 2, 2) are observed.4 It must also pre-
scribe not to change from state(L,L, L) when payoffs(1, 1, 1) are observed. To
see this, letp0 be the induced joint probability of staying at(L,L,L) when pay-
offs (1, 1, 1) are observed. Letp1, p2, andp3 be the induced joint probabilities of
transition to states(L,L, R), (R,R, L), and(R,R, R) respectively when payoffs
(1, 1, 1) are observed. The following conditions must hold simultaneously.

p0 + 2p1 − 2p2 + p3 ≥ 1
p0 − 2p1 + 2p2 + p3 ≥ 1

p0 + 2p1 − 2p2 − 2p3 ≥ 1

4Note that in this case there exist no individual behavioral rule that induces with probability one a
permutation of strategies among agents.
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The first two equations imply thatp0 + p3 = 1. Thus,p1 = p2 = 0. Sincepi,
with i = 0, . . . , 3 are joint probabilities, this implies that eitherp0 = 1, orp3 = 1.
However, ifp3 = 1, then inG3 the rule would cause average expected payoff to
decrease. Thus, any payoff increasing rule for all games inG̃ must prescribe not
to change from state(L,L,L) when payoffs(1, 1, 1) are observed. Analogously,
the same must hold for state(R,R, R) when payoffs(1, 1, 1) are observed. This
proves that a payoff increasing rule may only prescribe to change action from
states where payoffs(−2,−2,−2) are observed.

In some cases, however, improving rules will exist, if we restrict the class of
games sufficiently. In what follows we give an example of a behavioral rule that
is improving for a particular class of Bertrand games.

Example 3.3. Consider an industry where identical firms set prices. Firms
are likely to know that they are involved in a market with some sort of Bertrand
competition. However, it is unlikely that they know the exact demand, and cost
functions. In this context they would probably like to use a behavioral rule that
works well for an extensive class of Bertrand-type of games, even if it is not
appropriate for making other decisions.5

For simplicity, consider a market withn identical firms facing constant marginal
and average costsc. Assume they set prices and customers buy only from the one
with minimum price. LetD(p) be a decreasing demand function. In case of ties,
demand splits equally. The profits of a firmi that charges minimum pricepi are
πi(pi, p−i) = (pi − c)D(pi)

m , wherem ∈ {1, 2, . . . , n} is the number of firms
with minimum pricepi. Profits are zero for the firms with higher than minimum
price. We want to show that rules of the type ‘imitate the best’ are improving for
this class of Bertrand games. These rules prescribe to mimic with probability one
the price charged by the firm with biggest profits. If several firms obtain the same
maximum profits, then any of them with positive probability.

Note that only two types of states are relevant. First, states in which all firms set
the same price. Here all firms share the market, and obtain the same profits. Imitate
the best gives zero expected improvement at these states. Second, states of the form
(p, p, m. . ., p, p1, p2, . . . , pn−m) with 1 ≤ m < n andp < pi, i = 1, . . . , n − m.
For these states we must consider the following cases. Ifp > c, i. e. firms with
minimum price make profits, then the expected improvement of a firm following
imitate the best is

n−m

n
(p− c)

D(p)
m + 1

> 0.

If p < c (p = c) andm > 1, i. e. at least two firms set minimum price and these
make losses (zero profits), then imitate the best always prescribes to mimic any
pi > p (anypi > p or p = c) with i = 1, . . . , n−m, which yields zero expected

5Al ós-Ferreret al. [1] analyze an evolutionary model of Bertrand competition in a richer framework
where firms learn what price to charge by using an imitative rule of the type considered in this example.
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profits and a nonnegative expected improvement. Finally, ifp < c (p = c) and
m = 1, i. e. only one firm sets minimum price and this makes losses (zero profits),
then again imitate the best always prescribes to mimic anypi > p (anypi > p
or p = c) with i = 1, . . . , n − 1. Let p′ = min{p1, . . . , pn−1} which is the
new minimum price after the firm with pricep imitates away fromp. Call ρ the
probability that this firm imitates preciselyp′, and letm′ ≥ 2 be the number of
firms settingp′ after imitation. Then the expected improvement of imitate the best
is

ρ

n
(p′ − c)

D(p′)
m′ − (p− c)

D(p)
n

,

which is obviously positive ifp′ ≥ c. If p′ < c, it follows from the fact thatD(p)
is decreasing; sincep′ > p

ρ
D(p′)
m′ <

D(p′)
m′ < D(p′) ≤ D(p),

and thus

ρ

n
(p′ − c)

D(p′)
m′ > (p′ − c)

D(p)
n

> (p− c)
D(p)

n
.

Imitate the best is also payoff increasing in this case. Note that at any state,
average payoff is alwaysD(p)

n (p − c). At states where all firms charge the same
price, and at states of type(p, p, m. . ., p, p1, p2, . . . , pn−m) with p > c imitate the
best leaves average payoff unchanged. Ifp ≤ c imitate the best increases average
payoff strictly.

4. CONCLUSION

We review the properties of learning by imitation in populations where all agents
face the same problem and lack either relevant information, or the capability to
decide by optimization. In such contexts, it seems that learning from the expe-
rience of other agents who have faced the same problem would allow to decide
accurately, and even optimally, without incurring the effort of individually ana-
lyzing the problem. Intuitively, the accumulated experience of other agents in the
population should contain more and better information than all the experience that
each agent can ever gather and process in a reasonable time. Moreover, by imi-
tating, an agent will avoid errors that the population has already leaned to avoid.
Actions that are no longer present in the population cannot be imitated.

In games against nature and in games between two different populations, where
conspecifics and opponents are separated, it has been shown in the literature that
certain imitation rules (proportional imitation and proportional observation) have
the property of increasing average expected payoff in the population, when all
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agents use these rules, and whenever play in the population of opponents does not
change. In those contexts, each agent learns from the members of her own popu-
lation and then plays against nature or against agents from a different population.
This implies that each agent’s payoffs are independent of the actions chosen by
other agents in the same population. An economic example of this type is that of a
population of sellers of a certain good trying to learn the average reservation value
of a population of buyers.

Our interest is on a framework where conspecifics and opponents are no longer
separated. We have looked at the example of identical firms in a market facing
the same demand and cost functions, unknown to them, and trying to decide what
price to charge for their output. The question is here to what extent imitation is
an efficient way of learning in the presence of strategic considerations within the
population.

In this case, we have found that, in general, nontrivial rules that increase average
payoffs in all possible situations do not exist. That is, there are no universally well-
behaved behavioral rules to be applied in all cases. We have seen that it is easy to
find simple examples where only trivial rules will always increase average payoffs.
Rules based on switching actions among players, or rules that prescribe to change
actions only when the worst possible case is observed, will trivially work. At
the same time, however, we have seen in an example that, if we restrict to specific
classes of games, we can still find imitative rules that are always payoff increasing.
In the example of Bertrand competition, if each firm imitates the price charged by
the firm with highest profits, average profits in the industry will never decrease.
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